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convex open billiards

Alexey Glutsyuk∗†‡§¶
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Abstract

Reflection in strictly convex bounded planar billiard acts on the
space of oriented lines and preserves a standard area form. A caus-
tic is a curve C whose tangent lines are reflected by the billiard to
lines tangent to C. The famous Birkhoff conjecture states that the
only strictly convex billiards with a foliation by closed caustics near
the boundary are ellipses. By Lazutkin’s theorem, there always ex-
ists a Cantor family of closed caustics approaching the boundary. In
the present paper we deal with an open billiard, whose boundary is a
strictly convex embedded (non-closed) curve γ. We prove that there
exists a domain U adjacent to γ from the convex side and a C∞-smooth
foliation of U ∪ γ whose leaves are γ and (non-closed) caustics of the
billiard. This generalizes a previous result by R.Melrose on existence
of a germ of foliation as above. We show that there exist a continuum
of above foliations by caustics whose germs at each point in γ are pair-
wise different. We prove a more general version of this statement for
γ being an (immersed) arc. It also applies to a billiard bounded by a
closed strictly convex curve γ and yields infinitely many ”immersed”
foliations by immersed caustics. For the proof of the above results,
we state and prove their analogue for a special class of area-preserving
maps generalizing billiard reflections: the so-called C∞-lifted strongly
billiard-like maps. We also prove a series of results on conjugacy of
billiard maps near the boundary for open curves of the above type.
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1 Introduction and main results

The billiard reflection from a strictly convex smooth planar curve γ ⊂ R2

(parametrized by either a circle, or an interval) is a map T acting on the
subset in the space of oriented lines that consists of those lines that are
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either tangent to γ, or intersect γ transversally at two points. (In general,
the latter subset is not T -invariant. In the case, when γ is a closed curve,
the latter subset is T -invariant and called the phase cylinder.) Namely, if
a line is tangent to γ, then it is a fixed point of the reflection map. If
a line L intersects γ transversally at two points, take its last intersection
point B with γ (in the sense of orientation of the line L) and reflect L from
TBγ according to the usual reflection law: the angle of incidence is equal to
the angle of reflection. By definition, the image T (L) is the reflected line
oriented at B inside the convex domain adjacent to γ. The reflection map
T is called the billiard ball map. See Fig. 1.

The space of oriented lines in Euclidean plane R2
x,y is homeomorphic to

cylinder, and it carries the standard symplectic form

ω = dφ ∧ dp, (1.1)

where φ = φ(L) is the azimuth of the line L (its angle with the x-axis) and
p = p(L) is its signed distance to the origin O defined as follows. For each
oriented line L that does not pass through O consider the circle centered
at O and tangent to L. We say that L is clockwise (counterclockwise), if it
orients the latter circle clockwise (counterclockwise). By definition,

- p(L) = 0, if and only if L passes through the origin O;
- p = dist(L,O), if L is clockwise; otherwise p = −dist(L,O).
It is well-known that
- the symplectic form ω is invariant under affine orientation-preserving

isometries;
- the billiard reflections from all planar curves preserve the symplectic

form ω.

Definition 1.1 A curve C is a caustic for the billiard on the curve γ, if each
line tangent to C is reflected from γ to a line tangent to C. Or equivalently,
if the curve of (appropriately oriented) tangent lines to C is an invariant
curve for the billiard ball map. See Fig. 1.

The famous Birkhoff Conjecture deals with a planar billiard bounded by a
strictly convex closed curve γ. Recall that such a billiard is called Birkhoff
integrable, if there exists a topological annulus adjacent to γ from the convex
side foliated by closed caustics, and γ is a leaf of this foliation. See Figure
2. It is well-known that the billiard in an ellipse is integrable, since it has
a family of closed caustics: confocal ellipses. The Birkhoff Conjecture
states the converse: the only integrable planar billiards are ellipses.
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Figure 1: The billiard ball map and a caustic.

Figure 2: A Birkhoff integrable billiard.

Remark 1.2 The condition of the Birkhoff Conjecture stating that the
caustics in question form a foliation is important: the famous result by
Vladimir Lazutkin (1973) states that each strictly convex bounded planar
billiard with boundary smooth enough has a Cantor family of closed caus-
tics. But Lazutkin’s caustic family does not extend to a foliation in general.

The main result of the paper presented in Subsection 1.1 shows that
the other condition of the Birkhoff Conjecture stating that the caustics in
question are closed is also important: the Birkhoff Conjecture is false without
closeness condition. Namely we show that any open strictly convex C∞-
smooth planar curve γ has an adjacent domain U (from the convex side)
admitting a foliation by caustics of γ that extends to a C∞-smooth foliation
of the domain with boundary U ∪ γ with γ being a leaf. Moreover, we show
that U can be chosen so that there exist infinitely many (continuum of)
such foliations, and any two distinct foliations have pairwise distinct germs
at every point in γ. We prove analogous statement for a non-injectively

4



immersed curve γ and ”immersed foliations” by immersed caustics. We
state and prove an analogue of this statement in the special case, when γ is
a closed curve.

Remark 1.3 Consider the map T of billiard reflection from a strictly con-
vex planar oriented C∞-smooth curve γ that is a one-dimensional submani-
fold in R2 parametrized by interval. Let γ̂ denote the family of its orienting
tangent lines. Then the points of the curve γ̂ are fixed by T . The map T is
a well-defined area-preserving map on an open subset adjacent to γ̂ in the
space of oriented lines. The latter subset consists of those lines that intersect
γ transversally and are directed to the concave side from γ at some inter-
section point. Each caustic close to γ corresponds to a T -invariant curve
(the family of its tangent lines chosen with appropriate orientation) and
vice versa. Thus, a foliation by caustics induces a foliation by T -invariant
curves. In Subsection 2.7 we prove the converse: each C∞-smooth foliation
by T -invariant curves on a domain adjacent to γ̂ from appropriate side (with
γ̂ being a leaf) induces a C∞-smooth foliation by caustics (with γ being a
leaf).

We show that the billiard map has infinite-dimensional family of C∞-
smooth foliations by invariant curves (including γ̂) in appropriate domain
adjacent to γ̂ with pairwise distinct germs at each point of the curve γ̂. This
together with Remark 1.3 implies existence of infinite-dimensional family of
foliations by caustics.

In Subsection 1.3 we state the generalization of the above result on fo-
liations by invariant curves to a special class of area-preserving maps: the
so-called C∞-lifted strongly billiard-like maps, for which we prove existence
of infinite-dimensional family of C∞-smooth foliations by invariant curves
with pairwise distinct germs at each point of the boundary segment. In
Subsection 1.4 we describe one-to-one correspondence between germs of the
latter foliations and germs at S1×{0} of C∞-smooth h-flat functions ψ(t, h)
on the cylinder S1 × R≥0 such that ψ(0, h) ≡ 0. This yields a one-to-one
correspondence between foliations by caustics and the above germs of flat
functions on cylinder. Theorem 1.28 stated in Subsection 1.4 asserts that all
the foliations by caustics (invariant curves) corresponding to a given billiard
(map) have coinciding jets of any order at each point of the boundary curve.

The results of the paper mentioned below are motivated by the following
open question attributed to Victor Guillemin:

Let two billiard maps corresponding to two strictly convex closed Jordan
curves be conjugated by a homeomorphism. What can be said about the
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curves? Are they similar (i.e., of the same shape)?
Theorem 1.24 presented in Subsection 1.3 states that each C∞-lifted

strongly billiard-like map is C∞-smoothly symplectically conjugated near
the boundary (and up to the boundary) to the normal form (t, z) 7→ (t +√
z, z) restricted to U ∪ J , where J ⊂ R × {0} is an interval of the hor-

izontal axis and U ⊂ R × R+ is a domain adjacent to J . In particular,
this holds for the billiard map corresponding to each C∞-smooth strictly
convex (immersed) curve. As an application, we obtain a series of results
on (symplectic) conjugacy of billiard maps near the boundary for billiards
with reflections from C∞-smooth strictly convex curves parametrized by in-
tervals. These conjugacy results are stated in Subsection 1.5 and proved
in Subsection 2.10. One of them (Theorem 1.36) states that for any two
strictly convex open billiards, each of them being bounded by an infinite
curve with asymptotic tangent line at infinity in each direction, the corre-
sponding billiard maps are C∞-smoothly conjugated near the boundary.

The results of the paper are proved in Section 2. The plan of proofs
is presented in Subsection 1.6. The corresponding background material on
symplectic properties of billiard ball map is recalled in Subsection 1.2. A
brief historical survey is presented in Subsection 1.7.

1.1 Main result: an open convex arc has infinitely many
foliations by caustics

Consider an open planar billiard: a convex planar domain bounded by a
strictly convex C∞-smooth one-dimensional submanifold γ that is a curve
parametrized by interval; it goes to infinity in both directions. Let U be
a domain adjacent to γ from the convex side. Consider a foliation F of
the domain U by strictly convex smooth curves, with γ being a leaf. We
consider that it is a foliation by (connected components of) level curves of
a continuous function h on U ∪ γ such that h|γ = 0, h|U > 0 and h strictly
increases as a function of the transversal parameter. We also consider that
for every x ∈ γ and every leaf L of the foliation F there are at most two
tangent lines to L through x. One can achieve this by shrinking the foliated
domain U , since for every x ∈ γ the line Txγ is the only line through x
tangent to γ. Indeed, if there were another line through x tangent to γ at
a point y 6= x, then the total increment of azimuth of the orienting tangent
vector to γ along the arc xy would be greater than π. But the latter azimuth
is monotonous, and its total increment along the curve γ is no greater than
π, since γ is convex and goes to infinity in both directions. The contradiction
thus obtained proves uniqueness of tangent line through x.
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Remark 1.4 In the above conditions for every compact subarc γ′ ⊂ γ and
every leaf L of the foliation F close enough to γ for every x ∈ γ′ there exist
exactly two tangent lines to L through x. This follows from convexity.

Definition 1.5 We say that F is a foliation by caustics of the billiard played
on γ, if its leaves are caustics, see Fig. 3, in the following sense. Let x ∈ γ,
and let L be a leaf of the foliation F . If there exist two tangent lines to L
through x, then they are symmetric with respect to the tangent line Txγ.

Remark 1.6 The above definition also makes sense in the case, when γ is
just a strictly convex arc that needs not go to infinity. A priori, in this case
for some x ∈ γ there may be more than two tangent lines through x to a
leaf of the foliation, even for leaves arbitrarily close to γ. This holds, e.g.,
if there is a line through x tangent to γ at a point distinct from x. This
may take place only in the case, when the azimuth increment along γ of the
orienting tangent vector to γ is bigger than π. In this case we modify the
above definition as follows. Let H denote the space of triples (x, y, z), where
x ∈ γ and y, z lie in the same leaf L of the foliation F , y 6= z, such that the
lines xy and xz are tangent to L at the points y and z respectively. Set

H := H ∪∆, ∆ := {(x, x, x) | x ∈ γ}.

Let H0 denote the path-connected component of the space H that contains
∆. We require that for every (x, y, z) ∈ H0 \ ∆ the lines xy and xz be
symmetric with respect to the line Txγ.

Definition 1.7 Let γ ⊂ R2 be a smooth curve parametrized by an interval.
Let U ⊂ R2 be a domain adjacent to γ. A collection of C∞-smooth foliations
on U ∪ γ with γ being a leaf is said to be an infinite-dimensional family of
foliations with distinct boundary germs, if their germs at each point in γ are
pairwise distinct, and if their collection contains a C∞-smooth N -parametric
family of foliations for every N ∈ N.

Theorem 1.8 1) Consider an open billiard bounded by a strictly convex
C∞-smooth curve γ ⊂ R2: a one-dimensional submanifold parametrized by
interval. There exists a simply connected domain U adjacent to γ from the
convex side that admits a foliation by caustics of the billiard that extends to
a C∞-smooth foliation on U ∪ γ, with γ being a leaf. Moreover, U can be
chosen to admit an infinite-dimensional family of foliations as above with
distinct boundary germs. See Fig. 3.
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Figure 3: An open strictly convex planar billiard and its caustics. Here the
ambient plane R2 is presented together with its boundary: the infinity line.

2) The above statements remain valid in the case, when γ is just an arc:
a strictly convex curve parametrized by an interval such that each its point
has a neighborhood V whose intersection with γ is a submanifold in V .

Remark 1.9 It follows from R.Melrose’s result [17, p.184, proposition (7.14)]
that each point of the curve γ has an arc neighborhood α ⊂ γ for which
there exists a domain U adjacent to α from the convex side such that U ∪α
is C∞-smoothly foliated by caustics of the billiard played on γ. The new
result given by Theorem 1.8 is the statement that the latter holds for the
whole curve γ and there exist infinitely many foliations by caustics with
distinct boundary germs.
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Below we extend Theorem 1.8 to the case of immersed (or closed) curve γ.

Definition 1.10 Let γ ⊂ R2 be a strictly convex C∞-smooth curve that
is the image of an interval (0, 1) with coordinate x under an immersion
ψ : (0, 1) → γ. Let V ⊂ (0, 1) × R+ ⊂ R2 be a domain adjacent to the
interval J := (0, 1) × {0}. Fix a C∞-smooth immersion Ψ : V ∪ J → R2

extending ψ as a map J → γ, sending V to the convex side from γ. Let
U ⊂ V be a domain adjacent to J and equipped with a foliation F by smooth
curves parametrized by intervals, with J being a leaf. We consider that F
is a foliation by level curves of a continuous function h : U → R, h|J = 0,
h|U > 0, such that h strictly increases as a function of the transversal
parameter. We say that F is a foliation by lifted caustics of the billiard
played on γ, if Ψ sends each its leaf Ft = {h = t} to a caustic of the billiard,
see Fig. 4. In more detail, let H denote the space of triples (x, y, z), where
x ∈ J and y, z lie in the same leaf L of the foliation F , y 6= z, such that the
lines Ψ(x)Ψ(y) and Ψ(x)Ψ(z) are tangent to the curve Ψ(L) at the points
Ψ(y) and Ψ(z) respectively. Set

H := H ∪∆, ∆ := {(x, x, x) | x ∈ J}.

Let H0 denote the path-connected component of the space H that contains
∆. We require that for every (x, y, z) ∈ H0 \ ∆ the lines Ψ(x)Ψ(y) and
Ψ(x)Ψ(z) be symmetric with respect to the line tangent to γ at Ψ(x).

Theorem 1.11 Let γ, ψ, Ψ, J , V be as above. There exists a domain
U ⊂ V adjacent to J on which there exists a foliation by lifted caustics that
extends to a C∞-smooth foliation on U∪J , with J being a leaf. The above U
can be chosen so that it admits an infinite-dimensional family of foliations
as above with distinct boundary germs. See Fig. 4.

Theorem 1.12 Let γ be a strictly convex closed curve bijectively parametrized
by circle. Fix a topological annulus A adjacent to γ from the convex side. Let
π : Ã = R× [0, ε)→ A be its universal covering, set J := R×{0}; π : J → γ
is the universal covering over γ. There exists a domain U ⊂ Ã \ J adjacent
to J that admits a foliation by lifted caustics of the billiard in γ that extends
to a C∞-smooth foliation on U ∪ J , with J being a leaf. Moreover, one can
choose U so that there exist an infinite-dimensional family of foliations as
above with distinct boundary germs.
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Figure 4: An immersed foliation by immersed caustics.

Remark 1.13 In general, in Theorem 1.12 the projected leaves are caus-
tics that need not be closed, may intersect each other and may have self-
intersections. Each individual caustic may have a finite length. However the
latter finite length tends to infinity, as the caustic in question tends to γ.

A generalization of Theorems 1.8, 1.11 for the so-called C∞-lifted strongly
billiard-like maps will be stated in Subsection 1.3.

1.2 Background material: symplectic properties of billiard
ball map

Let γ be a C∞-smooth strictly convex oriented curve in R2 parametrized
injectively either by an interval, or by circle. Let s be its natural length
parameter respecting its orientation. We identify a point in γ with the
corresponding value of the natural parameter s.

Let Γ := T=1R2|γ ⊂ TR2
γ denote the restriction to γ of the unit tangent

bundle of the ambient plane R2:

Γ = {(q, u) | q ∈ γ, u ∈ TqR2, ||u|| = 1}.

It is a two-dimensional surface parametrized diffeomorphically by (s, φ) ∈
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γ × S1; here φ = φ(u) is the angle of a given unit tangent vector u ∈ TsR2

with the orienting unit tangent vector γ̇(s) to γ. The curve

γ̃ := {φ = 0} = {(s, γ̇(s)) | s ∈ γ}

is the graph of the above vector field γ̇. For every (q, u) ∈ Γ set

L(q, u) := the oriented line through q directed by the vector u.

We treat the two following cases separately.
Case 1): the curve γ either is parametrized by an interval and goes to

infinity in both directions, or is parametrized by circle. That is, it bounds a
strictly convex infinite (respectively, bounded) planar domain. Let Γ0 ⊂ Γ
denote the neighborhood of the curve γ̃ that consists of those (q, u) ∈ Γ that
satisfy the following conditions:

a) the line L(q, u) either intersects γ at two points q and q′, or is the
orienting tangent line to γ at q: u = γ̇(s); in the latter case we set q′ := q;

b) the angle between the oriented line L(q, u) and any of the orienting
tangent vectors to γ at q or q′ is acute1

Let u′ denote the directing unit vector of the line L(q, u) at q′. Consider
the two following involutions acting on Γ0 and Γ respectively:

β : Γ0 → Γ0, β(q, u) = (q′, u′); β2 = Id;

I : Γ→ Γ is the reflection from Tqγ : I(q, u) = (q, u∗),

where u∗ is the vector symmetric to u with respect to the tangent line Tqγ.
Let Γ0

+ ⊂ Γ0 denote the open subset of those pairs (q, u) in which the vector
u is directed to the convex side from the curve γ.

Remark 1.14 The domain Γ0 is β-invariant. It is a topological disk (cylin-
der), if γ is parametrized by an interval (circle). The domain Γ0

+ is a topo-
logical disk (cylinder) adjacent to γ̃.

Let Πγ denote the open subset of the space of oriented lines in R2 consist-
ing of the lines L(q, u) with (q, u) ∈ Γ0

+. The mapping Λ : (q, u) 7→ L(q, u)
is a diffeomorphism

Λ : Γ0
+ → Πγ

It extends to the set Γ0
+∪γ̃ as a homeomorphism sending each point (s, γ̇(s)) ∈

γ̃ to the tangent line Tsγ directed by γ̇(s).

1In the case under consideration condition b) implies that the line L(q, u) has acute
angle with the orienting tangent vector γ̇ at each point of the arc qq′ (for appropriately
chosen arc qq′ in the case, when γ is a closed curve).
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Remark 1.15 Let T denote the billiard ball map given by reflection from
the curve γ acting on oriented lines. It is well-known that the billiard ball
map T restricted to Πγ is conjugated by Λ to the product of two involutions

δ̃+ := I ◦ β = Λ−1 ◦ T ◦ Λ : Γ0
+ → Γ.

If the curve γ is C∞-smooth, then both involutions I and β are C∞-smooth
on Γ and Γ0 respectively. Their product is well-defined and smooth on a
neighborhood of the curve γ̃ and fixes the points of the curve γ̃. Both
involutions preserve the canonical symplectic form sinφds ∧ dφ on Γ \ γ̃,
which is known to be the Λ-pullback of the standard symplectic form on the
space of oriented lines. See [2, 3, 16, 17, 18, 20]; see also [10, subsection 7.1].

Let us recall another representation of the billiard ball map T in a chart
where it preserves the standard symplectic form. To do this, consider the
orthogonal projection π⊥ : (TR2)|γ → Tγ sending each vector u ∈ TqR2

with q ∈ γ to its orthogonal projection to the tangent line Tqγ. It projects
the unit tangent bundle Γ to the unit ball bundle

T≤1γ := {(q, w) |q ∈ γ, w ∈ Tqγ, ||w|| ≤ 1}.

A tangent vector w = w ∂
∂s ∈ Tqγ will be identified with its coordinate

w = ±||w|| in the basic vector ∂
∂s . Thus, π⊥(s, φ) = (s, cosφ). Consider the

following function and differential form on Tγ:

y := 1− w; ω := ds ∧ dy. (1.2)

The form ω coincides with the standard symplectic form on the tangent
bundle Tγ of the curve γ (considered as a Riemannian manifold equipped
with the metric |ds|2 coming from the standard Euclidean metric on R2).

The curve γ̃ = {(s, γ̇(s)) | s ∈ γ} = {w = 1} = {y = 0} ⊂ Tγ is a
component of the boundary ∂T≤1γ. The projection π⊥ sends Γ0

+ diffeomor-
phically to a domain in T≤1γ adjacent to γ̃. It extends homeomorphically
to Γ0

+ ∪ γ̃ as the identity map Id : γ̃ → γ̃. Let µ+ : π⊥(Γ0
+ ∪ γ̃)→ Γ0

+ ∪ γ̃ be
the inverse to the restriction of the projection π⊥ to Γ0

+ ∪ γ̃. Set

δ+ := π⊥ ◦ δ̃+ ◦ µ+ = π⊥ ◦ Λ−1 ◦ T ◦ Λ ◦ µ+. (1.3)

Theorem 1.16 ([20, subsection 1.5], [17, 18, 2, 3]; see also [10, theorem
7.3]). The mapping δ+ : π⊥(Γ0

+) → T≤1γ given by (1.3), is symplectic: it
preserves the form ω = ds ∧ dy.
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Proposition 1.17 [10, proposition 7.5]. Let κ(s) denote the (geodesic) cur-
vature of the curve γ. The involutions I, β and the mappings δ̃+, δ+ admit
the following (asymptotic) formulas:

I(s, φ) = (s,−φ), β(s, φ) = (s+ 2κ−1(s)φ+O(φ2),−φ+O(φ2)), (1.4)

δ̃+(s, φ) = (s+ 2κ−1(s)φ+O(φ2), φ+O(φ2)), (1.5)

δ+(s, y) = (s+ 2
√

2κ−1(s)
√
y +O(y), y +O(y

3
2 )). (1.6)

The asymptotics are uniform on compact subsets of points s ∈ γ, as φ → 0
(respectively, as y → 0).

Case 2). Let γ be parametrized by an interval, but now it does not
necessarily go to infinity or bound a region in the plane. Moreover, we allow
γ to be an immersed curve that may self-intersect. In this case some lines
L(q, u) may intersect γ in more than two points. Now the definition of the
subset Γ0 ⊂ Γ should be modified to be the subset of those (q, u) ∈ Γ for
which there exists a q′ ∈ γ ∩ L(q, u) satisfying the condition b) from Case
1) and such that the arc qq′ ⊂ γ is disjoint from the line L(q, u), injec-
tively immersed (i.e., without self-intersections) and satisfies the statement
of Footnote 1: the orienting tangent vector γ̇ at each its point has acute
angle with L(q, u). (Here q and q′ may be not the only points of intersection
γ ∩ L(q, u).)

Remark 1.18 For any given (q, u) ∈ Γ0 the point q′ satisfying the condi-
tions from the above paragraph exists, whenever u is close enough to γ̇(q)
(dependently on q). Whenever it exists, it is unique. All the statements and
discussion in the previous Case 1) remain valid in our Case 2). Now the
mapping Λ is a local diffeomorphism but not necessarily a global diffeomor-
phism: an oriented line intersecting γ at more than two points (if any) may
correspond to at least two different tuples (q, u) ∈ Γ0

+.

1.3 Generalization to C∞-lifted strongly billiard-like maps

In this subsection and in what follows we study the next class of area-
preserving mappings introduced in [10] generalizing the billiard maps (1.6).

Definition 1.19 (see [10, definition 7.6]). Let (a, b) be a (may be (semi)
infinite) interval in R with coordinate s. Let V ⊂ R × R+ be a domain
adjacent to the interval J := (a, b)×{0}. A mapping F : V ∪J → R×R≥0 ⊂
R2
s,y is called billiard-like, if it satisfies the following conditions:
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(i) F : V ∪ J → F (V ∪ J) is a homeomorphism fixing the points in J ;
(ii) F |V is a diffeomorphism preserving the standard area form ds ∧ dy;
(iii) F has the asymptotics of the type

F (s, y) = (s+ w(s)
√
y +O(y), y +O(y

3
2 )), as y → 0; w(s) > 0, (1.7)

uniformly on compact subsets in the s-interval (a, b);
(iv) the variable change

(s, y) 7→ (s, z), z =
√
y > 0

conjugates F to a smooth map F̃ (s, z) (called its lifting) that is also smooth
at points of the boundary interval J ; thus, w(s) is continuous on (a, b).

If, in addition to conditions (i)–(iv), the latter mapping F̃ is a product
of two involutions I and β fixing the points of the line z = 0,

F̃ = I ◦ β, I(s, z) = (s,−z),

β(s, z) = (s+ w(s)z +O(z2),−z +O(z2)), β2 = Id, (1.8)

then F will be called a (strongly) billiard-like map.
If F is strongly billiard-like, and the corresponding involution β (or

equivalently, the conjugate map F̃ ) is C∞-smooth, and also C∞-smooth
at the points of the boundary interval J , then F is called C∞-lifted. The
above definitions make sense for F being a germ of map at the interval J .

Example 1.20 The mapping δ+ from (1.6) is strongly billiard-like in the
coordinates (s, y) with w(s) = 2

√
2κ−1(s), see (1.4), (1.5) and (1.6). If the

curve γ is C∞-smooth, then β and hence, δ̃+ = I ◦ β are C∞-smooth, and
hence, δ+ is C∞-lifted.

Proposition 1.21 The class of (germs at J of) C∞-lifted strongly billiard-
like maps is invariant under conjugacy by (germs at J of) C∞-smooth sym-
plectomorphisms G : V ∪ J → G(V ∪ J) ⊂ R × R≥0 sending J onto an
interval in R× {0}. Here V ⊂ R× R+ is a domain adjacent to J .

Proof Let F be a C∞-lifted strongly billiard-like map, F̃ = I ◦ β be its
lifting. Let V ⊂ R × R+ be a domain adjacent to J . Let F be defined
on V ∪ J , and let G : V ∪ J → G(V ∪ J) ⊂ R × R≥0, be a C∞-smooth
symplectomorphism as above. Let us denote G(s, y) = (ŝ(s, y), ŷ(s, y)).
One has ŷ(s, 0) ≡ 0, ∂ŝ∂s(s, 0) > 0, ∂ŷ∂y (s, 0) > 0, by definition and orientation-
preserving property (symplecticity). Thus, ŷ(s, y) = yg(s, y), where g(s, y)
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is a positive C∞-smooth function on a neighborhood of the interval J in
(R× R>0) ∪ J . The lifting G̃ of the map G to the variables (s, z), z =

√
y,

acts as follows:

G̃ : (s, z) 7→ (ŝ(s, z2), ẑ(s, z)); ẑ =
√
ŷ(s, z2) = z

√
g(s, z2). (1.9)

The latter square root is well-defined and C∞-smooth. This implies that the
map G̃ is a C∞-smooth diffeomorphism of domains with arcs of boundaries
corresponding to V ∪ J and G(V ∪ J). Hence, the lifting G̃ ◦ F̃ ◦ G̃−1 of the
conjugate FG := G ◦ F ◦ G−1 is a C∞-smooth diffeomorphism that is the
product of G̃-conjugates of the involutions I and β. One has G̃◦I ◦G̃−1 = I,
by (1.9); FG is a symplectomorphism, since so are F and G;

G(s, y) = (ŝ, ŷ) = (ŝ(s, 0) +O(y), g(s, 0)y +O(y2)), (1.10)

by diffeomorphicity. Substituting (1.10) and (1.7) to the expression FG =
G ◦ F ◦G−1 and denoting (s, 0) := G−1(ŝ, 0), we get

FG(ŝ, ŷ) = (ŝ+
∂ŝ

∂s
(s, 0)w(s)g−

1
2 (s, 0)(ŷ)

1
2 +O(ŷ), ŷ +O(ŷ

3
2 )).

This implies that the conjugate FG has type (1.7) and hence, is strongly
billiard-like. This proves the proposition. 2

Convention 1.22 Let J = (a, b) × {0} ⊂ R2
x,y. Let U ⊂ {y > 0} be a

domain adjacent to J . Let F : U ∪ J → R × R≥0 be a map fixing all the

points of the interval J . Let h̃ : U ∪ J → R≥0 be a C∞-smooth F -invariant

function, i.e., h̃(z) = h̃ ◦ F (z) whenever z, F (z) ∈ U ∪ J , and let

h̃|J ≡ 0,
∂h̃

∂y
> 0. (1.11)

Let h̃ = const denote the foliation by connected components of level curves
of the function h̃. This is a C∞-smooth foliation on U ∪ J , with J being a
leaf. It will be called a foliation by F -invariant curves.

Theorem 1.23 For every C∞-lifted strongly billiard-like map F there exists
a domain U adjacent to J such that U ∪J admits a C∞-smooth F -invariant
function h̃ satisfying (1.11); thus, h̃ = const is a foliation by F -invariant
curves. Moreover, U can be chosen so that there is an infinite-dimensional
family of foliations as above with distinct boundary germs.
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Theorem 1.24 For every function h̃ from Theorem 1.23, replacing it by
its post-composition with a C∞-smooth function of one variable (which does
not change the foliation h̃ = const) one can achieve that there exists a C∞-
smooth function τ = τ(s, y) and a domain U ⊂ {y > 0} adjacent to J such
that (τ, h̃) are symplectic coordinates on U ∪ J and in these coordinates

F (τ, h̃) = (τ +
√
h̃, h̃). (1.12)

Definition 1.25 Let V ⊂ R × R+ ⊂ R2
s,y be a domain adjacent to an

interval J = (a, b)× {0}. A C∞-smooth function f(s, y) on V ∪ J is y-flat,
if f(s, 0) ≡ 0, f(s, y) tends to zero with all its partial derivatives, as y → 0,
and the latter convergence is uniform on compact subsets in the s-interval
(a, b) for the function f and for each its individual derivative.

Remark 1.26 In the conditions of the above definition let (x, h) be new
C∞-smooth coordinates on V ∪J with h(s, 0) ≡ 0. Then each y-flat function
is h-flat and vice versa. This follows from definition.

The proof of Theorem 1.23 uses Marvizi–Melrose result [16, theorem
(3.2)] stating a formal analogue of Theorem 1.23: existence of a F -invariant
formal power series

∑
k hk(s)y

s, see Theorem 2.1 below. It implies that in
appropriate coordinates (τ, h) the map F takes the form F (τ, h) = (τ +√
h + flat(h), h + flat(h)). Here flat(h) is an h-flat function, see the above

definition. In the coordinates (τ, φ), φ =
√
h, the lifted map F̃ takes the

form
F̃ (τ, φ) = (τ + φ+ flat(φ), φ+ flat(φ)). (1.13)

We prove existence of a C∞-smooth F̃ -invariant function φ̃ with φ̃ − φ =
flat(φ) (the next theorem), and then deduce the existence statements in
Theorems 1.23, 1.8, 1.11.

Theorem 1.27 Let V ⊂ Rτ × (R+)φ be a domain adjacent to an interval

J = (a, b)×{0}. Let F̃ : V ∪ J → Rτ × (R≥0)φ be a C∞-smooth mapping of
type (1.13). (Here we do not assume any area-preserving property.)

1) There exists a domain W ⊂ V adjacent to J and an F̃ -invariant

C∞-smooth function φ̃ on W ∪ J of the type φ̃(τ, φ) = φ+ flat(φ); ∂φ̃
∂φ > 0.

2) For every function φ̃ as above one can shrink the domain W (keeping it
adjacent to J) so that there exists a C∞-smooth function τ̃(τ, φ) = τ+flat(φ)
such that the map (τ, φ) 7→ (τ̃ , φ̃) is a C∞-smooth diffeomorphism on W ∪J
that conjugates F̃ to the map

F̂ : (τ̃ , φ̃) 7→ (τ̃ + φ̃, φ̃). (1.14)
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3) There exist continuum of functions φ̃ satisfying Statement 1) such that
the corresponding foliations φ̃ = const are C∞-smooth on the same subset
W ∪ J and form an infinite-dimensional family of foliations with distinct
boundary germs.

1.4 Unique determination of jets. Space of germs of folia-
tions. Non-uniqueness

Theorem 1.28 All the germs of foliations satisfying the statements of any
of Theorems 1.8, 1.11, 1.12, 1.23, 1.27 at the corresponding boundary curve
γ, J are flatly close to each other near the boundary. That is, they have the
same n-jet for every n at each point of the boundary.

The statement of Theorem 1.28 follows from Marvizi–Melrose result [16,
theorem (3.2)] recalled below as Theorem 2.1. For completeness of presen-
tation, we will give a proof of Theorem 1.28 in Subsection 2.8.

Let us now describe the space of jets at J of foliations satisfying the
statements of Theorem 1.23. Recall that there exist coordinates (τ, h̃) in

which J = {h̃ = 0} and F acts as in (1.12): F : (τ, h̃) 7→ (τ +
√
h̃, h̃). Fix

these coordinates (τ, h̃). Without loss of generality we consider that 0 ∈ J .
Consider the foliation h̃ = const. Let F be another C∞-smooth foliation

by F -invariant curves defined on a domain V in the upper half-plane {h̃ > 0}
adjacent to J that extends C∞-smoothly to J with J being a leaf. It is a
foliation by level curves of an F -invariant function g(τ, h̃) = h̃ + flat(h̃),
which follows from Theorem 1.28. We can and will normalize g so that

g(τ, h̃) = h̃+ flat(h̃), g(0, h̃) ≡ h̃. (1.15)

Remark 1.29 The above normalization can be achieved by replacing the
function g by its post-composition with a function φ + flat(φ) of one vari-
able φ. Each foliation from Theorem 1.23 admits a unique F -invariant first
integral g as in (1.15) and vice versa: for every F -invariant function g as in
(1.15) the foliation g = const satisfies the statement of Theorem 1.23.

Proposition 1.30 1) For every C∞-smooth function g on a domain V ⊂
{h̃ > 0} adjacent to J that extends C∞-smoothly to J , satisfies (1.15) and

is invariant under the mapping F : (τ, h̃) 7→ (τ +
√
h̃, h̃) there exist a δ > 0

and a unique C∞- smooth h̃-flat function ψ(t, h̃) on S1 × [0, δ), S1 = Rt/Z
such that

ψ(0, h̃) = 0, (1.16)
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g(τ, h̃) = h̃+ ψ

(
τ√
h̃
, h̃

)
. (1.17)

Here we treat ψ(t, h̃) as a function of two variables that is 1-periodic in t.
Conversely, for every δ > 0 every h̃-flat function ψ on the cylinder S1×[0, δ)
satisfying (1.16) corresponds to some function g as above via formula (1.17),
defined on V ∪ J with J = R× {0} and V = {0 < h̃ < δ}.

2) The analogous statements hold for the map F : (τ, φ) 7→ (τ + φ, φ)
and the function

g(τ, φ) = φ+ ψ

(
τ

φ
, φ

)
. (1.18)

Theorem 1.31 Every germ at J of C∞-smooth foliation F by invariant
curves under a map F of one of the types (1.12) or (1.14) is defined by a
unique germ at S1 × {0} of C∞-smooth h-flat function ψ(t, h), ψ : S1 ×
R≥0 → R, ψ(0, h) = 0, so that F is the foliation by level curves of the
corresponding function g given by (1.17) or (1.18) respectively. Conversely,
each germ of function ψ as above defines a germ of foliation as above at J .

Theorem 1.32 The space of germs of foliations satisfying statements of
any of Theorems 1.8, 1.11, 1.12, 1.23, 1.27 at the corresponding boundary
curve γ or J is isomorphic to the space of h-flat germs at S1 × {0} of C∞-
smooth functions ψ(t, h) on S1 × R≥0 with ψ(0, h) = 0.

Theorems 1.28, 1.31, 1.32 and Proposition 1.30 will be proved in Subsec-
tion 2.8. In Subsection 2.9 we deduce non-uniqueness statements of Theo-
rems 1.8, 1.11, 1.12, 1.23, 1.27 from Theorem 1.32 and the following propo-
sition, which will be also proved there.

Proposition 1.33 Let J = (a, b) × {0}, W ⊂ Rτ × (R+)φ be a domain

adjacent to J . Let F̃ : W ∪ J → R× R≥0 be a map, as in (1.13). Any two

F̃ -invariant foliations (functions, line fields) on W having distinct germs
at J have distinct germs at each point in J . The same statement holds for
similar objects invariant under a C∞-lifted strongly billiard-like map.

1.5 Corollaries on conjugacy of open billiard maps near the
boundary

The results stated below and proved in Subsection 2.10 concern (symplectic)
conjugacy of billiard maps near the boundary.
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Here we deal with a strictly convex oriented C∞-smooth curve γ ⊂ R2

that is not closed: parametrized by an interval. We consider that it is
positively oriented as the boundary of its convex side. Let us first consider
that γ goes to infinity in both directions and bounds a convex open billiard.
By γ̃ we denote the family of its orienting unit tangent vectors; γ̃ lies in the
space Γ, which is the unit tangent bundle of the ambient plane restricted to
γ. Let s be a natural length parameter of the curve γ. Let Γ0

+ ⊂ Γ be the
open subset adjacent to γ̃ defined in Subsection 1.2. It lies in the space of
pairs (s, v) where s ∈ γ and v ∈ TsR2 is a unit vector directed to the convex
side from the curve γ. Recall that φ = φ(v) denote the angle between
the vector v and the unit tangent vector γ̇(s). Let (a, b) = (aγ , bγ) ⊂ R
denote the length parameter interval parametrizing γ. In the coordinates
(s, φ) the curve γ̃ is the interval J = Jγ = (a, b)× {0}, and Γ0

+ is a domain
in R × R+ adjacent to J . Set y = 1 − cosφ, see (1.2). Recall that the
billiard map Tγ acting by reflection from γ of the above unit vectors is a
C∞-smooth diffeomorphism defined on Γ0

+∪ γ̃. In the coordinates (s, y) it is
a symplectic map: a C∞-lifted strongly billiard-like map defined on V ∪ J ,
where V ⊂ Rs × (R+)y is a domain adjacent to J .

The above statements remain valid in the case, when the curve γ in
question is a subarc (parametrized by interval but not necessarily infinite)
of a strictly convex C∞-smooth curve; γ also may be an immersed curve.

Definition 1.34 Let γ1, γ2 ⊂ R2 be strictly convex C∞-smooth planar
curves parametrized by intervals (they are allowed to be immersed), pos-
itively oriented as boundaries of their convex sides. Let Jγi ⊂ R × {0},
i = 1, 2, be the corresponding intervals defined above. We say that the
billiard maps Tγi are C∞-smoothly conjugated near the boundary in the
(s, φ)- ((s, y)-) coordinates if there exist domains Ui in Rs × (R+)φ (re-
spectively, in Rs× (R+)y) adjacent to Jγi and a C∞-smooth diffeomorphism
H : U1 ∪ Jγ1 → U2 ∪ Jγ2 conjugating the billiard maps, H ◦ Tγ1 ◦H−1 = Tγ2 .
In the case, when the billiard maps are conjugated in the (s, y)-coordinates,
and the conjugating diffeomorphism H is a symplectomorphism, we say that
they are C∞-smoothly symplectically conjugated near the boundary.

Remark 1.35 Smooth conjugacy of billiard maps near the boundary in the
coordinates (s, y) implies their smooth conjucacy in the coordinates (s, φ).
This follows from the fact that for every two intervals J1, J2 ∈ Rs×{0} and
every two domains U1, U2 ⊂ Rs × (R+)y adjacent to J1 and J2 respectively
every diffeomorphism H : U1 ∪ J1 → U2 ∪ J2 lifts to a diffeomorphism of
the corresponding domains in the (s, φ)-coordinates (taken together with
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adjacent intervals Ji). The latter statement follows from [10, lemma 3.1]
applied to the second component of the diffeomorphism H.

The results stated below on conjugacy of billiard maps near the boundary
are corollaries of Theorems 1.24 and 1.27 on normal forms of C∞-lifted
strongly billiard-like maps and their liftings.

Theorem 1.36 Let γ1, γ2 be strictly convex C∞-smooth one-dimensional
submanifolds in R2 parametrized by intervals (thus, going to infinity in both
directions) and positively oriented as boundaries of their convex sides. Let
in addition, the curves γi have finite asymptotic tangent lines at infinity: as
x ∈ γi tends to infinity (in each direction), the tangent line Txγi converges
to a finite line. Then the corresponding billiard maps are C∞-smoothly con-
jugated near the boundary in (s, y)- (and hence, in (s, φ)-) coordinates.

Theorem 1.37 The statement of Theorem 1.36 on conjugacy of billiard
maps corresponding to C∞-smooth strictly convex curves γi remains valid
in the case, when each γj is either a submanifold going to infinity in both
directions, or a (may be immersed) subarc of an (immersed) C∞-smooth
curve, and the two following statements hold:

1) as the length parameter s of the curve γj goes to an endpoint of the
length parameter interval, the corresponding point of the curve γj tends ei-
ther to a finite limit (endpoint of γj) where γj is C2-smooth, or to infinity;

2) in the latter case, when the limit is infinite, the tangent line Tsγj has
a finite limit: a finite asymptotic tangent line.

Remark 1.38 V. Kaloshin and C.E. Koudjinan [12] proved continuous con-
jugacy near the boundary of two billiard maps corresponding to two arbi-
trary ellipses. For any two ellipses with two appropriate points deleted in
each of them they have also proved smooth conjugacy of the correspond-
ing billiard maps on open domains adjacent to the corresponding boundary
intervals J in the (s, φ)-coordinates.

Below we state a more general result and provide a sufficient condition
of symplectic conjugacy of billiard maps in the coordinates (s, y). To this
end, let us recall the following definition.

Definition 1.39 Let γ be a C2-smooth oriented planar curve, and let s be
its length parameter defining its orientation. Let Iγ = (aγ , bγ) ⊂ Rs denote
the length parameter interval parametrizing γ. Let κ = κ(s) denote the
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geodesic curvature of the curve γ as a function of s. The Lazutkin length of
the curve γ is the integral

L(γ) :=

∫ bγ

aγ

κ
2
3 (s)ds, (1.19)

see [15, formula (1.3)]. (While the length parameter interval is defined up
to translation, the integral L(γ) is uniquely defined.)

Theorem 1.40 Let γ1, γ2 be two strictly convex C∞-smooth (may be im-
mersed) planar curves, parametrized by intervals and positively oriented as
local boundaries of their convex sides. The corresponding billiard maps are
C∞-smoothly conjugated near the boundary in (s, y)-coordinates, if and only
if one of the two following conditions holds:

i) either both Lazutkin lengths L(γi) are finite;
ii) or both Lazutkin lengths L(γi) are infinite and the improper integrals

defined them are
- either both infinite in both directions;
- or both infinite in one and the same direction (with respect to the

orientations of the curves γi) and both finite in the other direction.
The same criterium also holds for C∞-smooth conjugacy near the bound-

ary in (s, φ)-coordinates.

Theorem 1.41 Let in the conditions of Theorem 1.40, some of conditions
i) or ii) hold. Then the billiard maps are C∞-smoothly symplectically
conjugated near the boundary, if and only if the Lazutkin lengths of the
curves γj are either both finite and equal, or both infinite and the above
condition ii) holds.

Theorems 1.36 and 1.37 will be deduced from Theorem 1.40 using the
following propositions on C∞-lifted strongly billiard-like maps and lemma
on curves with asymptotic line at infinity.

Proposition 1.42 Let F (s, y) = (s + w(s)
√
y + O(y), y + O(y

3
2 )) be a

C∞-lifted strongly billiard-like map, see (1.7), defined on U ∪ J , where
J = (a, b)×{0} and U ⊂ R×R+ is a domain adjacent to U . Let H(s, y) =
(H1(s, y), H2(s, y)) be a C∞-smooth diffeomorphism of the domain with bound-
ary U ∪J onto its image in R×R≥0 that conjugates F with its normal form
Λ : (t, z) 7→ (t+

√
z, z), i.e., H ◦ F ◦H−1 = Λ. Fix a s0 ∈ (a, b).

1) The diffeomorphism H is orientation-preserving, H(J) ⊂ R×{0}, and
the restriction H1(s, 0) to J of its first component is an increasing function.
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2) If H is symplectic, then, up to additive constant,

H1(s, 0) = tL(s) :=

∫ s

s0

w−
2
3 (s)ds. (1.20)

3) If H is not necessarily symplectic, then

H1(s, 0) = αtL(s) + β for some α > 0 and β ∈ R. (1.21)

Proposition 1.43 Let F , U , J be the same, as in Proposition 1.42. Let F̃
be the lifting of the map F to the coordinates (s, ψ), ψ2 = y, which is a C∞-
smooth diffeomorphism defined on Ũ ∪J , Ũ = {(s, ψ) | (s, ψ2) ∈ U, ψ > 0}.
Let H̃ be a C∞-smooth diffeomorphism defined on Ũ ∪ J conjugating F̃
with the diffeomorphism Λ̃ : (t, z̃) 7→ (t + z̃, z̃): H̃ ◦ F̃ ◦ H̃−1 = Λ̃. Then
H̃(J) ⊂ R× {0}, and the first component of the map H̃ satisfies (1.21).

Lemma 1.44 Let a C∞-smooth strictly convex planar curve γ go to infinity
in some direction, and let it have a finite asymptotic tangent line at infinity
in this direction (in the same sense, as in Theorem 1.36). Then the improper
integral (1.19) defining the Lazutkin length converges in the given direction.

Remark 1.45 For a C∞-smooth strictly convex planar curve going to in-
finity, existence of finite asymptotic tangent line is not a necessary condition
for convergence of the improper integral (1.19) defining the Lazutkin length.
Namely, consider the graph {y = xr} ⊂ [1,+∞)× [1,+∞), r > 1. One has∫

κ
2
3 (s)ds < +∞, if and only if r > 2. (1.22)

Indeed, ds =
√

1 + r2x2(r−1)dx, κ(s(x)) = r(r−1)xr−2

(1+r2x2(r−1))
3
2

, see (2.59),

κ
2
3 (s(x))ds = (r(r−1))

2
3

x
2
3
(r−2)√

1 + r2x2(r−1)
dx ' (r(r−1))

2
3xνdx, ν = −r + 1

3
.

Therefore, the integral in (1.22) converges, if and only if ν < −1, i.e., r > 2.
In the case of parabola {y = x2} the integral (1.22) diverges.

1.6 Plan of the proof of main results

In Subsection 2.1 we recall the above-mentioned Marvizi – Melrose result
[16, theorem 3.2] (with proof) yielding C∞-smooth coordinates in which
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a C∞-lifted strongly billiard-like map F takes the form F (τ, h) = (τ +√
h + flat(h), h + flat(h)). It implies that the lifted map F̃ , written in the

coordinates (τ, φ), φ =
√
h, takes form (1.13).

Theorem 1.27, Statement 1) will be proved in Subsections 2.2–2.4. To do
this, first in Subsection 2.2 we construct a fundamental domain for the map
F̃ (a curvilinear sector ∆ with vertex at a point in J) and an F̃ -invariant
function φ̃ defined on a bigger sector that is φ-flatly close to φ on the latter
bigger sector. Then in Subsection 2.3 we construct its F̃ -invariant extension
along the F̃ -orbits and show that it is well-defined on a domain adjacent to
J . In Subsection 2.4 we prove that thus extended function φ̃ is C∞-smooth
and φ-flatly close to φ. This will prove Statement 1) of Theorem 1.27. Its
Statement 2) on normal form will be proved in Subsection 2.5.

The existence statement in Theorem 1.23 will be deduced from State-
ment 1) of Theorem 1.27 in Subsection 2.6, where we will also prove Theorem
1.24. Existence in Theorems 1.8, 1.11 and 1.12 will be proved in Subsection
2.7. The results from Subsection 1.4 on jets and space of germs of folia-
tions will be proved in Subsection 2.8. Proposition 1.33 and non-uniqueness
statements in main theorems will be proved in Subsection 2.9.

The results of Subsection 1.5 on conjugacy of billiard maps near the
boundary will be proved in Subsection 2.10.

1.7 Historical remarks

The Birkhoff Conjecture was first stated in print by H. Poritsky [19], who
proved it under additional condition that for any two nested closed caustics
the smaller one is a caustic of the billiard played in the bigger one; the
same result was later obtained in [1]. One of the most famous results on
the Birkhoff Conjecture is due to M. Bialy [4], who proved that if the phase
cylinder of the billiard is foliated by non-contractible invariant closed curves,
then the billiard boundary is a circle; see also another proof in [23]. Recently
V. Kaloshin and A. Sorrentino proved that any integrable deformation of an
ellipse is an ellipse [13]. Very recently M. Bialy and A. E. Mironov proved
the Birkhoff Conjecture for centrally-symmetric billiards having a family of
closed caustics that extends up to a caustic tangent to four-periodic orbits
[7]. For a detailed survey of the Birkhoff Conjecture see [13, 14, 8, 5, 7, 9, 22]
and references therein.

Existence of a Cantor family of closed caustics in every strictly convex
bounded planar billiard with sufficiently smooth boundary was proved by
V. F. Lazutkin [15] using KAM type arguments.

R. Melrose proved that for every C∞-smooth germ γ of strictly convex
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planar curve there exists a germ of C∞-smooth foliation by caustics of the
billiard played on γ, with γ being a leaf [17, p.184, proposition (7.14)].

S. Marvizi and R. Melrose have shown that the billiard ball map T in
a planar domain bounded by a C∞-smooth strictly convex closed curve γ
always has an asymptotic first integral on a domain with boundary in the
space of oriented lines: a domain adjacent to the family of tangent lines to
γ. Namely, there exists a C∞-smooth function F on the closure of a domain
as above such that the difference F ◦ T − F is C∞-smooth there, and it is
flat at the points of the family of tangent lines to γ; see [16, theorem (3.2)];
see also statement of their result in Theorem 2.1 below.

(Strongly) billiard-like maps were introduced and studied in [10], where
results on their dynamics were applied to curves with Poritsky property.

V. Kaloshin and E.K.Koudjinan proved that for a non-integrable bil-
liard bounded by a strictly convex closed curve, the Taylor coefficients of
the normalized Mather β-function are invariant under C∞-conjugacies [12].
They also obtained a series of results on conjugacy of elliptic billiard maps,
showing in particular that global topological conjugacy implies similarity of
underlying ellipses.

2 Construction of foliation by invariant curves.
Proofs of main results

2.1 Marvizi–Melrose construction of an ”up-to-flat” first in-
tegral

Here we recall the following Marvizi–Melrose theorem with proof. Though
it was stated in [16] for billiard ball maps, its statement and proof remain
valid for C∞-lifted strongly billiard-like maps.

Theorem 2.1 [16, theorem (3.2)]. 1) Let V ⊂ (a, b) × R>0 ⊂ R2
s,y be a

domain adjacent to the interval J := (a, b)×{0}. Let F : V ∪ J → R×R≥0
be a C∞-lifted strongly billiard-like map. There exist a domain W ⊂ V
adjacent to J and a real-valued C∞-smooth function h : W ∪ J → R≥0,
h|J ≡ 0, ∂h

∂y |J > 0, such that the difference h◦F−h is C∞-smooth and y-flat.
Moreover, one can normalize h as above so that the mapping F coincides, up
to y-flat terms, with the time 1 map of the flow of the Hamiltonian vector
field with the Hamiltonian function 2

3h
3
2 . This normalization determines

the asymptotic Taylor series h(s, y) =
∑+∞

k=1 hk(s)y
k of the function h(s, y)

uniquely.
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2) The analogue of the above statement holds if J is replaced by the
coordinate circle S1 = S1 × {0}, S1 := Rs/Z, lying in the cylinder C :=
S1× [0, ε) equipped with the standard area form and F is a strongly billiard-
like map C → S1 × R≥0. In this case the coefficients hk(s) of the above
normalized series are 1-periodic and C∞-smooth.

3) Let h be the function normalized as in Statement 1). Let τ denote the
time function for the Hamiltonian vector field with the Hamiltonian function
h. In the coordinates (τ, h) (which are symplectic) the map F takes the form

F : (τ, h) 7→ (τ +
√
h+ flat(h), h+ flat(h)). (2.1)

Proof The lifting F̃ (s, z), z =
√
y, of the map F (s, y) is C∞-smooth and

has the form

F̃ (s, z) = (s+ w(s)z +O(z2), z +
q(s)

2
z2 +O(z3)), (2.2)

where q(s) is a C∞-smooth function on (a, b). This follows from (1.7) and
C∞-liftedness. The map F̃ (s, z) admits an asymptotic Taylor series in z.
The map F has the form

F (s, y) = (s+ w(s)
√
y +O(y), y + q(s)y

3
2 +O(y2)), (2.3)

by (2.2), and it admits an asymptotic Puiseux series in y involving powers
0, 12 , 1,

3
2 , 2, . . . . The coefficients of both series are C∞-smooth functions in

s. Therefore, the mapping F acts by the formula h 7→ h ◦ F not only on
functions, but also on formal Puiseux series. It transform each power series
h =

∑+∞
k=1 hk(s)y

k with coefficients being C∞-smooth functions on (a, b) to
a Puiseux series of the above type. Our goal is to find an F -invariant power
series (or equivalently, an F̃ -invariant even power series

∑+∞
k=1 hk(s)z

2k) and
then to choose its C∞-smooth representative. To do this, we use the follow-
ing formula for the function q(s) in (2.3), see [15, formula (1.2)], [10, formula
(7.18)], which follows from area-preserving property:

q(s) = −2

3
w′(s). (2.4)

Step 1: constructing an even series
∑+∞

k=1 gk(s)z
2k whose F̃ -image is also

an even series. We construct its coefficients gk by induction as follows.
Induction base: k = 1. Let us find a function g1(s) such that the F̃ -

image of the function g1(s)z
2 contains no z3-term. This is equivalent to the
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statement saying that the function g1(s + w(s)z)(z + q(s)
2 z2)2 contains no

z3-term, which is in its turn equivalent to the differential equation

g′1(s)w(s) + q(s)g1(s) = 0, q(s) = −2

3
w′(s),

which has a unique solution g1(s) = w
2
3 (s) up to constant factor. (Note that

w
2
3 (s)y is a well-known function: the second Lazutkin coordinate [15, 16].)

Induction step in the case, when J = (a, b)× {0} is an interval. Let we
have already found an even Taylor polynomial Gn−1(s, z) :=

∑n−1
k=1 gk(s)z

2k,

n ≥ 2, such that the asymptotic Taylor series in z of the function Gn−1 ◦ F̃
contains no odd powers of z of degrees no greater than 2n − 1. Let us
construct gn(s), set Gn(s, z) :=

∑n
k=1 gk(s)z

2k, so that

Gn ◦ F̃ −Gn contains no z2n+1 − term. (2.5)

Note that Gn ◦ F̃ −Gn obviously cannot contain odd powers of degrees less
than 2n. Let b(s)z2n+1 denote the degree 2n + 1 term in the Taylor series
of the function Gn−1 ◦ F̃ . Condition (2.5) is equivalent to the differential
equation

g′n(s)w(s)− 2n

3
w′(s)gn(s) = −b(s), (2.6)

which always has a solution gn(s) well-defined on the interval (a, b).
Step 2. Constructing an F̃ -invariant series. The mapping F̃ is the prod-

uct I ◦β of two involutions: I(s, z) = (s,−z) and β. Let g :=
∑+∞

k=1 gk(s)z
2k

be the series constructed on Step 1. One has

g ◦ F̃ = (g ◦ I) ◦ β = g ◦ β, (2.7)

since the series g is even. The series (2.7) is even (Step 1). Hence, the series

t := g + g ◦ β

is even and β-invariant by construction. Therefore, it is F̃ -invariant. Its
first coefficient is equal to 2g1(s) = 2w

2
3 (s) > 0, by construction. We denote

the F̃ -invariant series thus constructed by t :=
∑+∞

k=1 tk(s)z
2k.

Step 3: symplectic coordinates and normalization. Let t(s, y) be a func-
tion representing the series

∑+∞
k=1 tk(s)y

k, which is obtained from the latter
series (given by Step 2) by the variable change y = z2. It is defined on a
domain W adjacent to J and C∞-smooth on W ∪ J ; t|J ≡ 0, ∂t

∂y |J > 0.
Let Ht denote the corresponding Hamiltonian vector field. Fix an arbitrary
C∞-smooth function θ such that dθ(Ht) ≡ 1, θ|s=0 = 0: a time function
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for the vector field Ht. Then (θ, t) are symplectic coordinates for the form
ω = dx ∧ dy: ω = dθ ∧ dt. Shrinking W (keeping it adjacent to J) we can
and will consider that they are global coordinates on W ∪ J . The difference
t ◦F − t is t-flat, by construction, and hence, so is dF (Ht)−Ht. Therefore,
in the coordinates (θ, t) the symplectic map F takes the form

F : (θ, t) 7→ (θ + ξ(t), t) + flat(t). (2.8)

In the new coordinates (θ, t) the map F is C∞-lifted strongly billiard-like,
as in the old coordinates (s, y), by Proposition 1.21.

Claim 1. The function ξ(t) in (2.8) has the form ξ(t) =
√
tψ(t), where

ψ(t) is a C∞-smooth function on a segment [0, ε], ε > 0, ψ ≥ 0, ψ(0) > 0.
Proof Let F̃ denote the lifting of the map F to the coordinates (θ, ζ),
ζ =
√
t. One has F̃ = I ◦ β, where I(θ, ζ) = (θ,−ζ) and β is an involution,

β(θ, 0) ≡ (θ, 0). The involution β takes the form

β(θ, ζ) = (θ + r(ζ),−ζ) + flat(ζ), r(ζ) = ξ(ζ2) for ζ > 0. (2.9)

The function r(ζ) should be C∞-smooth, as is β, and r′(0) > 0 (strong
billiard-likedness). The condition saying that β is an involution implies that
r(ζ) + r(−ζ) = flat(ζ). This in its turn implies that r(ζ) = ζψ(ζ2) + flat(ζ),
where ψ is a C∞-smooth function; ψ(0) = r′(0) > 0. This together with
(2.9) implies the statement of the claim. 2

We have to find a function h(s, y), h(s, 0) ≡ 0, such that the Hamiltonian

vector field with the Hamiltonian function 2
3h

3
2 coincides with ξ(t) ∂∂θ . This

function will satisfy the normalization statement of Theorem 2.1, part 1),
by construction. We are looking for it as a function depending only on
t: h(s, y) = v(t). The above Hamiltonian vector field is then equal to√
v(t)v′(t) ∂∂θ . Thus, we have to solve the equation

v
1
2 (t)v′(t) = ξ(t) =

√
tψ(t), v(0) = 0.

Its solution v(t) is given by the formula

v(t) =

(
3

2

∫ t

0

√
pψ(p)dp

) 2
3

.

This is a C∞-smooth function, by construction and smoothness of the func-
tion ψ(t). One has ∂h

∂y |J > 0, since v′(0) = ψ
2
3 (0) > 0 and ∂t

∂y (s, 0) =

2g1(s) = 2w
2
3 (s) > 0, by construction. Uniqueness of the Taylor series in y
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of the function h(s, y) satisfying the above Hamiltonian vector field state-
ment (up to flat terms) follows directly, as in [16, p.383]. Statement 1) of
Theorem 2.1 is proved. Statement 3) follows immediately from Statement
1), since in the coordinates (τ, h), see Statement 3), the Hamiltonian field

with the Hamiltonian function 2
3h

3
2 is equal to (

√
h, 0). Statement 2) (case,

when J is a circle and F is defined on a cylinder bounded by J) says that the
Taylor coefficients of the series in y of the function h(s, y) are well-defined
functions on the circle J . This follows from its the above uniqueness state-
ment (which holds locally, in a neighborhood of every point (s0, 0) ∈ J).
Theorem 2.1 is proved. 2

2.2 Step 1. Construction of an invariant function on a neigh-
borhood of fundamental domain

Here we give the first step of the proof of Theorem 1.27. We consider
a fundamental sector ∆ for the map F̃ that is bounded by the segment
K = [0, η2 ] of the φ-axis, by its F̃ -image and by the straightline segment

connecting their ends. We construct an F̃ -invariant function φ̃ that is φ-
flatly close to φ on a sectorial neighborhood Sχ,η of ∆ \ {(0, 0)}. See Fig. 5.

  b
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η
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~

∆

 K

J

        χ,η

 0a

Figure 5: The fundamental domain ∆ and its sectorial neighborhood Sχ,η.

Without loss of generality we consider that the τ -interval contains the
origin: a < 0 < b. Fix a number χ, 0 < χ < 1

2 . Consider the sectors

Sχ = {−χφ < τ < (1 + χ)φ} ⊂ Rτ × (R+)φ, (2.10)
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Sχ,η := Sχ ∩ {0 < φ < η}

The domain Sχ,η will be the above-mentioned neighborhood of fundamental

sector, where we construct an F̃ -invariant function.

Proposition 2.2 For every χ ∈ (0, 12) and η > 0 small enough dependently

on F̃ and χ the following statements hold.
(i) The maps F̃±1, F̃±2 are well-defined on Sχ,2η.

(ii) The domains Sχ,2η and F̃ 2(Sχ,2η) are disjoint; the latter lies on the
right from the former.

(iii) The segment K := {0}× [0, η2 ] ⊂ R2
τ,φ and its image F̃ (K) intersect

just by the origin; F̃ (K) lies on the right from K. The domain ∆ ⊂ Sχ,2η
bounded by K, F̃ (K) and the straightline segment connecting the endpoints
of the arcs K and F̃ (K) distinct from (0, 0) is a fundamental domain for
the map F̃ . See Fig. 5.

Proof One has

dF̃ (0, 0) =

(
1 1
0 1

)
. (2.11)

The latter differential sends each line {τ = ζφ} to the line {τ = (ζ + 1)φ}.
This implies that for every η > 0 small enough statements (i)–(iii) hold. 2

Proposition 2.3 For every χ ∈ (0, 12) and η > 0 small enough dependently

on F̃ and χ there exists a C∞-smooth and F̃ -invariant function φ̃(τ, φ) on
Sχ,η such that the difference φ̃(τ, φ) − φ is φ-flat on Sχ,η: that is, tends to
zero with all its partial derivatives, as (τ, φ) ∈ Sχ,η tends to zero.

Proof Let ν : Sχ → R denote the function

ν :=
τ

φ
,

whose level curves are lines through the origin. The interval of values of the
function ν on Sχ is M := (−χ, 1 + χ). Fix a

σ > 0, 2σ <
1

2
− χ. (2.12)

Consider the covering of the interval M by the intervals

(−χ, 1

2
+ σ), (

1

2
− σ, 1 + χ)
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and a corresponding C∞-smooth partition of unity ρ1, ρ2: M → R,

ρ1 ≡ 1 on (−χ, 1

2
− σ); ρ2 ≡ 1 on (

1

2
+ σ, 1 + χ); (2.13)

ρ1, ρ2 ≥ 0, ρ1 + ρ2 ≡ 1 on M = (−χ, 1 + χ).

Set
φ̃(x) := ρ1(ν(x))φ(x) + ρ2(ν(x))φ ◦ F̃−1(x) (2.14)

= φ(x) + ρ2(ν(x))(φ ◦ F̃−1(x)− φ(x)).

Proposition 2.4 For every fixed χ ∈ (0, 12), σ ∈ (0, 12(12 − χ)) and every η

small enough (dependently on χ and σ) the function φ̃ given by (2.14) is well-
defined on Sχ,η and F̃ -invariant: if x, F̃ (x) ∈ Sχ,η, then φ̃(F̃ (x)) = φ̃(x). It

is C∞-smooth, and the difference φ̃(x)− φ(x) is φ-flat on Sχ,η.

Proof Recall that F̃ satisfies asymptotic formula (1.13):

F̃ (τ, φ) = (τ + φ+ flat(φ), φ+ flat(φ)).

Well-definedness and C∞-smoothness of the function φ̃ on Sχ,η for small η
are obvious. Its φ-flatness on Sχ,η follows from formula (2.14), φ-flatness of

the difference φ◦F̃ −φ, see (1.13), and the fact that the function ν(τ, φ) = τ
φ

has partial derivatives of at most polynomial growth in φ, as (τ, φ)→ 0 along
the sector Sχ,η. Let us prove F̃ -invariance, whenever η is small enough. For
every δ > 0 and every η > 0 small enough (dependently on δ) the inclusion
x, F̃ (x) ∈ Sχ,η implies that x ∈ {−χφ < τ < (χ+δ)φ}, see (2.11). Choosing
δ < σ, we get that the latter sector lies in the sector {−χφ < τ < (12 −σ)φ},
since χ+δ < χ+σ < 1

2−σ, see (2.12). Thus, on the latter sector ρ1◦ν ≡ 1 and

ρ2 ◦ ν ≡ 0, see (2.13). Hence, φ̃(x) = φ(x), by (2.14). Similarly applying the
above argument ”in the inverse time” yields that the inclusion x, F̃ (x) ∈ Sχ,η
implies that F̃ (x) lies in the sector {(1 − χ − δ)φ < τ < (1 + χ)φ}. The
latter sector, and hence, F̃ (x) lie in the sector {(12 + σ)φ < τ < (1 + χ)φ},
since

1− χ− δ > 1− χ− σ = 1− χ+ σ − 2σ > 1− χ+ σ − 1

2
+ χ =

1

2
+ σ.

Therefore, ρ2◦ν(F̃ (x)) = 1, by (2.13), and φ̃(F̃ (x)) = φ◦F̃−1(F̃ (x)) = φ(x),
by (2.14). Finally we get that φ̃(x) = φ̃ ◦ F̃ (x), and hence φ̃ is F̃ -invariant.
The proposition is proved. 2

Proposition 2.4 immediately implies the statement of Proposition 2.3. 2
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2.3 Step 2. Extension by dynamics

Here we show that an F̃ -invariant function φ̃ constructed above on a neigh-
borhood of the fundamental domain ∆ extends along F̃ -orbits to an F̃ -
invariant function on a domain W adjacent to J = (a, b)× {0} ⊂ R2

τ,φ. The
fact that it is C∞-smooth on W ∪J and coincides with φ up to φ-flat terms
will be proved in the next subsection. It suffices to prove that the function
φ̃ extends as above to a rectangle (a′, b′) × [0, η′) adjacent to arbitrary rel-
atively compact subinterval J ′ = (a′, b′) × {0} b J . A union of the above
rectangles corresponding to an exhaustion of J by a sequence of subintervals
J ′ yields a domain W adjacent to all of J , where the extended function is
defined. Therefore, we make the following convention.

Convention 2.5 Everywhere below we identify the interval J = (a, b)×{0}
with (a, b) and sometimes we denote J = (a, b) ⊂ R. We consider that J is
a finite interval: a, b are finite. We will consider that there exists a δ > 0
such that F̃±1 are diffeomorphisms of the rectangle J × [0, δ) ⊂ R2

τ,φ onto
its images, and the φ-flat terms in asymptotic formula (1.13) are uniformly
φ-flat: the difference F̃ (τ, φ) − (τ + φ, φ) converges to zero uniformly in
τ ∈ J , and every its partial derivative (of any order) also converges to zero
uniformly, as φ → 0. Indeed, the flat terms in question are uniform on
compact subsets in J . Hence, one can achieve their uniformity replacing
J by its relatively compact subinterval. Under this assumption the above
difference and its differential are both uniformly o(φm) in τ ∈ J for each
individual m ∈ N.

The next proposition describes asymptotics of two-sided F̃ -orbits.

Proposition 2.6 For every η small enough and x := (τ0, φ0) ∈ J × [0, η)
a) the iterates F̃ j(x) = (τj , φj) are well defined for all j ≥ 0, j ≤ N+,

where N+ = N+(x) is the maximal number j for which τj < b;

b) the inverse iterates F̃−j(x) = (τ−j , φ−j) are well-defined for all j ≤
N− where N− = N−(x) is the maximal number j for which τ−j > a;

c) φj = φ0(1 + o(1)) uniformly in τ0 and j ∈ [−N−, N+], as φ0 → 0;
d) the points τj form an asymptotic arithmetic progression: τj+1 − τj =

φ0(1 + o(1)) uniformly in τ0 ∈ J and in j ∈ [−N−, N+ − 1], as φ0 → 0.

Proof Consider two lines and segments through x:

L±(x) := {φ = φ0 ± φ40(τ − τ0)}, λ± := L± ∩ (J × [0, 2η)) .

Claim 2. For every x = (τ0, φ0) ∈ J × [0, 2η) with φ0 small enough
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e) the image F̃ (λ±) is disjoint from λ± and lies on its right;
f) the image F̃−1(λ±) is disjoint from λ± and lies on its left.
g) the right sector S+(x) bounded by the right subintervals in λ± with

vertex x is F̃ -invariant;
h) the left sector S−(x) bounded by the left subintervals in λ± with vertex

x is F̃−1-invariant.
Proof If η is small enough, then F̃±1 are well-defined on J × [0, 3η). If φ0
is small enough, then each λ± is projected to all of J , and the φ-coordinates
of all its points are uniformly asymptotically equivalent to φ0 (finiteness of
J). The map F̃ moves a point z = (τ, φ) ∈ λ± to y := (τ + φ, φ) up to
a φ-flat term, which is o(φm0 ) for every m ∈ N. On the other hand, the
distance of the latter point y to the line L± is equal to φ ' φ0 times the
| sin | of the azimuth of the line L±. The latter | sin | is asymptotic to φ40,
and hence, is greater than 1

2φ
4
0, whenever φ0 < 1 is small enough. Thus,

dist(y, L±) ≥ 1
3φ

5
0. Therefore, adding a term o(φm0 ), m ≥ 5, to y will not

allow to cross L±, and we will get a point lying on the same, right side from
the line L±, as y. The cases of lines L∓ and inverse iterates are treated
analogously. Statements e) and f) are proved. They immediately imply
statements g) and h). 2

Let η ∈ (0, 18) be small enough so that F̃ is defined on the rectangle
Π := J × [0, 3η) and for every x ∈ Π with φ0 = φ(x) ∈ [0, 2η] the sector
S+(x) contains the points xj = F̃ j(x) until they go out of Π (Claim 2 g)).
The intersection S+(x)∩∂Π is contained in the right lateral side {b}×[0, 3η).
Therefore, the first j for which xj goes out of Π is the one for which τ(xj) ≥ b.
This proves Statement a) of Proposition 2.6. The proof of Statement b)
is analogous. For every x ∈ Π with φ0 = φ(x) small enough the above
inclusion xj ∈ S+(x) holds for j = 1, . . . , N+. It implies Statement c) for
the above j, by the definition of the sector S+. The proof of Statement c)
for j = −N−, . . . ,−1 is analogous. Statement d) follows from Statement
c), since τ ◦ F̃ (x) − τ(x) = φ(x) + flat(φ(x)), see (1.13). Proposition 2.6 is
proved. 2

Corollary 2.7 1) For every η > 0 small enough each point x = (τ0, φ0) ∈
J × [0, 2η3 ) has two-sided orbit lying in J × [0, η) and consisting of points xj,
j ∈ [−N−(x), N+(x)], with φj ' φ0, as φ0 → 0; the latter asymptotics is
uniform in the above j and in τ0 ∈ J .

2) Let ∆ denote the fundamental domain (curvilinear triangle) for the
map F̃ from Proposition 2.2, Statement (iii). Let ∆̂ denote the complement
of the closure ∆ to the union of its vertex (0, 0) and the opposite side. If
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η > 0 is small enough, then the domain W saturated by the above two-sided
orbits of points in ∆̂ lies in J × [0, 2η3 ) and contains the strip J × (0, η4 ).

3) The orbit of each point in W contains either a unique point lying
in the fundamental domain ∆, or two subsequent points lying in its lateral
boundary curves (glued by F̃ ).

4) Each F̃ -invariant function φ̃ on ∆̂ extends to a unique F̃ -invariant
function on W as a function constant along the latter orbits.

The corollary follows immediately from Proposition 2.6. Step 2 is done.

2.4 Step 3. Regularity and flatness. End of proof of Theorem
1.27, Statement 1)

Here we will prove the following lemma, which will imply Statement 1) of
Theorem 1.27.

Lemma 2.8 Let in Corollary 2.7 the function φ̃ on ∆̂ be the restriction to
∆̂ of a C∞-smooth F̃ -invariant function defined on a neighborhood of ∆̂.
Let the function φ̃(τ, φ)− φ be flat on ∆̂: it tends to zero with all its partial
derivatives, as (τ, φ) ∈ ∆̂ tends to zero. Consider its extension to the above
domain W from Corollary 2.7, Statement 4), and let us denote the extended
function by the same symbol φ̃. The difference φ̃(τ, φ)−φ is C∞-smooth on
W ∪ J , and it is uniformly φ-flat (see Convention 2.5).

Proof For every point x = (τ, φ) ∈ W there exists a N = N(x) ∈ Z such
that F̃N (x) ∈ ∆̂. The latter image F̃N (x) lies in the definition domain
of the initial function φ̃ (which is defined on a neihborhood of ∆̂), and
φ̃(x) = φ̃N (x) := φ̃(F̃N (x)), by definition. This immediately implies C∞-
smoothness of the extended function φ̃ on W . Let us prove its φ-flatness.
This will automatically imply C∞-smoothness at points of the boundary
interval J . To do this, we use the asymptotics

dF̃ (τ, φ) = A+ flat(φ), A =

(
1 1
0 1

)
; (2.15)

N(x) = N(τ, φ) = O

(
1

φ

)
. (2.16)

Here the flat term in (2.15) is uniformly flat, see Convention 2.5. Formula
(2.15) follows from (1.13). Formula (2.16) holds, since N ≤ N+ + N− =
O( 1

φ), which follows from Proposition 2.6, Statement d).
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We study the derivatives of the functions φ̃N−φ, N = N(x), at the point
x = (τ, φ), as functions in x with fixed N chosen as above for this concrete
x. To prove uniform flatness, we have to show that all its partial derivatives
tend to zero uniformly in τ ∈ J , as φ→ 0. We prove this statement for the
first derivatives (step 1) and then for the higher derivatives (step 2).

Without loss of generality everywhere below we consider that N ≥ 1, i.e.,
x lies on the left from the sector ∆: for negative N the proof is analogous.

Step 1: the first derivatives. The initial function φ̃ defined on a neigh-
borhood of the set ∆̂ is already known to be φ-flat on ∆̂. The differential
of the composition φ̃N = φ̃ ◦ F̃N at the point x, N = N(x), is equal to

d(φ̃ ◦ F̃N )(x) = dφ̃(F̃N (x))dF̃ (F̃N−1(x)) . . . dF̃ (x). (2.17)

Proposition 2.9 For every sequence of points x(k) = (τ0k, φ0k) ∈ W with
φ0k → 0, as k → ∞, and numbers Nk = N(x(k)) ∈ N with F̃Nk(x(k)) ∈ ∆̂
the difference d(φ̃ ◦ F̃Nk)(x(k))− dφ tends to zero, as k →∞.

Proposition 2.9 implies uniform convergence to zero of the first derivatives.
In its proof (given below) we use the following asymptotics of differential

dF̃ (F̃ j(x)) and technical proposition on matrix products. We denote

M(τ, φ) := the Jacobian matrix of the differential dF̃ (τ, φ).

Proposition 2.10 Let x = (τ0, φ0) ∈ J × (0, η4 ), xj = (τj , φj) := F̃ j(x),
j = 0, . . . , N(x). For every m ∈ N one has

M(τj , φj) = A+ o(φm0 ), as φ0 → 0; A =

(
1 1
0 1

)
, (2.18)

uniformly in j = 1, . . . , N(x) and in τ0 ∈ J for each individual m.

Proof Formula (2.18) follows from (2.15) and Proposition 2.6, part c). 2

Proposition 2.11 Consider arbitrary sequences of numbers φ0k > 0, Nk ∈
N, φ0k → 0, Nk = O( 1

φ0k
), as k →∞, and matrix collections

Mk = (M1;k, . . . ,MNk;k), Mj;k ∈ GL2(R),

Mj;k = A+ o(φm0k) for every m ∈ N; A =

(
1 1
0 1

)
. (2.19)

Here the latter asymptotics is uniform in j = 1, . . . , Nk for each individual
m, as k →∞. Then the products of the matrices Mj;k have the asymptotics

M̂k := MNk;k . . .M1;k =

(
1 Nk

0 1

)
+ o(φm0k) for every m ∈ N. (2.20)
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Proof Conjugation by the diagonal matrix Hk := diag(1, φ−10k ) transforms
the matrices Mj;k and their product respectively to the following matrices:

M̃j;k = Bk + o(φm0k), Bk =

(
1 φ0k
0 1

)
; M̃k := M̃Nk;k . . . M̃1;k.

Claim 3. One has

M̃k = BNk
k + o(φm0k) =

(
1 Nkφ0k
0 1

)
+ o(φm0k). (2.21)

Proof Without loss of generality we can and will consider that Nkφ0k →
C ∈ R≥0, passing to a subsequence, since Nk = O( 1

φ0k
), by assumption.

Let UT ⊂ GL2(R) denote the one-parametric subgroup of unipotent upper
triangular matrices. Consider the tangent vector

V =

(
0 1
0 0

)
∈ T1UT ⊂ T1 GL2(R).

Let us extend it to a left-invariant vector field on GL2(R), which is tangent
to the UT -orbits under right multiplication action. Take a small transverse
section S ⊂ GL2(R) passing through the identity and consider the subset
W ⊂ GL2(R) foliated by arcs of phase curves of the field V starting in S and
parametrized by time segment [0, 2C]. The subset W is a bordered domain
(flowbox) diffeomorphic to the product S × [0, 2C] via the diffeomorphism
sending a point y ∈ W to the pair (s(y), t(y)) such that the orbit issued from
the point s(y) ∈ S arrives to y in time t(y). Fix an arbitrary m ≥ 3. In the

new chart (s, t) the multiplication by a matrix M̃j;k = Bk + o(φm0k) from the
right moves a point (s, t) to the point (s, t + φ0k) up to a small correction
of order o(φm0k). Therefore, the multiplication by Nk ' C

φ0k
similar matrices

M̃j;k with the o(φm0k) in their asymptotics being uniform in j moves a point
(s, t) to a point (s, t+Nkφ0k) up to a correction of orderNko(φ

m
0k) = o(φm−10k ).

This implies (2.21) with m replaced by m− 1. Taking into account that m
can be choosen arbitrary, this proves (2.21). 2

Conjugating formula (2.21) by the matrix H−1k and taking into account
that m ∈ N is arbitrary yields (2.20). This proves Proposition 2.11. 2

Proof of Proposition 2.9. For z ∈ ∆̂ set

St(z) := (
∂φ̃

∂τ
,
∂φ̃

∂φ
)(z).
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The string of the first partial derivatives of the function φ̃N = φ̃ ◦ F̃N (x),
N = N(x), is equal to the product

St(τN , φN )M(τN−1, φN−1) . . .M(τ0, φ0), (τj , φj) = F̃ j(x), j = 0, . . . , N,

St(τN , φN ) = (0, 1) + o(φm0 ) for every m ∈ N, (2.22)

by φ-flatness of the initial function φ̃ on ∆̂ and by the uniform asymptotics
φj = φ0(1 + o(1)), j = 1, . . . , N (Proposition 2.6, Statement c)).

Take arbitrary sequence of points x(k) := (τ0k, φ0k), τ0k ∈ J , φ0k → 0,
as k →∞. Set

(τjk, φjk) := F̃ j(x(k)), Nk := N(x(k)).

The sequence of collections of Jacobian matrices Mj+1;k := M(τjk, φjk),
j = 0, . . . , Nk − 1, satisfy the conditions of Proposition 2.11, by (2.16) and

(2.18). Therefore, their product M̂k, which is the Jacobian matrix of the
differential dF̃Nk(x(k)), has asymptotics (2.20):

M̂k := the Jacobian matrix of dF̃Nk(x(k)) =

(
1 Nk

0 1

)
+ o(φm0k). (2.23)

Thus, the matrix-string of the differential dφ̃Nk(τ0k, φ0k) is the product

St(τNk, φNk)M̂k = ((0, 1) + o(φm0k))

(
1 Nk

0 1

)
+ o(φm0k) = (0, 1) + o(φm−10k ),

since Nk = O( 1
φ0k

), see (2.16). For m = 2 we get that the differential

d(φ̃Nk(τ, φ) − φ) taken at the point x(k) tends to zero, as k → ∞. This
proves Proposition 2.9. 2

Step 2: the higher derivatives. For a smooth function f defined on a
neighborhood of a point x by j`x(f) we will denote its `-jet at x. Below we
prove the following proposition.

Proposition 2.12 In the conditions of Proposition 2.9 for every ` ∈ N the
`-jet at x(k) of the difference φ̃ ◦ F̃Nk − φ tends to zero, as k →∞.

Proposition 2.12 will imply C∞-smoothness and φ-flatness of the extended
function φ̃ at the points of the boundary interval J × {0}.

For every ` ∈ N and x ∈ R2 let J `x denote the space of `-jets of functions
at the point x. The map F̃ induces a transformation of functions, g 7→ g◦ F̃ .
This induces linear operators in the jet spaces, D`F̃ (x) : J `

F̃ (x)
→ J `x. We

36



identify the space of `-jets at each point in R2 with the `-jet space at the
origin, which in its turn is identified with the space P≤` of polynomials in
two variables of degrees no greater than `. Thus, we consider the operator
D`F̃ (x) as acting on the above space P≤`. One has

D`F̃
N (x) = D`F̃ (x) . . . D`F̃ (FN−1(x)). (2.24)

Linear changes of variables (τ, φ) act on the space P≤` and induce an in-
jective linear anti-representation ρ : GL2(R)→ GL(P≤`). Let A denote the
unipotent Jordan cell, see (2.19).

Proposition 2.13 For every sequence of points x(k) = (τ0k, φ0k) ∈W with
φ0k → 0, as k →∞, set Nk := N(x(k)), one has

D`F̃
Nk(x(k)) = ρ(ANk) + o(φm0k) for every m ∈ N. (2.25)

Proof One has
D`F̃ (τ, φ) = ρ(A) + flat(φ), (2.26)

by (2.15). Set xj(k) = (τjk, φjk) = F̃ j(x(k)), j = 0, . . . , Nk − 1. One has

D`F̃ (xj(k)) = ρ(A) + o(φm0k) for every m ∈ N, (2.27)

by (2.26) and Proposition 2.6, Statement c). We use (2.24) and the following
multidimensional version of Proposition 2.11.

Proposition 2.14 Consider arbitrary sequences of numbers φ0k > 0, Nk ∈
N, φ0k → 0, Nk = O( 1

φ0k
), as k →∞, and matrix collections

Mk = (M1;k, . . . ,MNk;k), Mj;k ∈ GL(P≤`),

Mj;k = ρ(A) + o(φm0k) for every m ∈ N; A =

(
1 1
0 1

)
. (2.28)

Here the latter asymptotics is uniform in j = 1, . . . , Nk for each individual
m, as k →∞. Then the product of the matrices Mj;k has the asymptotics

M̂k := MNk;k . . .M1;k = ρ(ANk) + o(φm0k) for every m ∈ N. (2.29)

Proof Conjugating the matrices Mj;k by ρ(Hk), Hk := diag(1, φ−10k ), trans-
forms them to matrices

M̃j;k = ρ(Bk) + o(φm
′

0k ), Bk =

(
1 φ0k
0 1

)
, m′ = m− `− 1.
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It suffices to show that the product of the matrices M̃j;k has asymptotics

ρ(BNk
k ) + o(φm0k) for every m ∈ N, as in Claim 3. This is done by applying

the arguments from the proof of Claim 3 to the left-invariant vector field on
GL(P≤`) whose time t flow map acts by right multiplication by ρ(At). 2

Formula (2.25) is deduced from Proposition 2.14 and formulas (2.24),
(2.27), as formula (2.23). 2

Proof of Proposition 2.12. The polynomial representing the `-jet of the
initial function φ̃ at a point z ∈ ∆̂ tends to the linear polynomial P (τ, φ) = φ,
as z → 0, so that its distance to P (τ, φ) is o(φm) for every m ∈ N, by flatness
of φ̃ on ∆̂. This together with Proposition 2.6, Statement c) implies that the
distance of its `-jet at the point F̃Nk(x(k)) to the polynomial φ is asymptotic
to o(φm0k). The image of the latter `-jet under the operator D`F̃

Nk(x(k)) is
also o(φm0k)-close to φ for every m ∈ N. This follows from the previous
statement, formula (2.25), the fact that ρ(A) fixes φ and the asymptotics
Nk = O(φ−10k ). Finally we get that the difference of the `-jet of the function

φ at x(k) and the `-jet j`x(k)(φ̃◦ F̃
Nk) of the extended function tends to zero,

as k →∞. Proposition 2.12 is proved. 2

Lemma 2.8 follows from Proposition 2.12. It implies Statement 1) of
Theorem 1.27. 2

2.5 Normal form. Proof of Statement 2) of Theorem 1.27

Let φ̃ be a function from Statement 1) of Theorem 1.27. The vector function
(τ, φ̃) has non-degenerate Jacobian matrix at J . Hence, shrinking W , we
can and will consider that (τ, φ̃) are C∞-smooth coordinates on W ∪ J . In
these coordinates

F̃ : (τ, φ̃) 7→ (τ + g(τ, φ̃), φ̃), g(τ, φ̃) = φ̃+ flat(φ̃). (2.30)

Claim. Shrinking W , one can achieve that there exists a C∞-smooth func-
tion τ̃(τ, φ̃) = τ + flat(φ̃) on W ∪ J such that (τ̃ , φ̃) are C∞-smooth coordi-
nates on W ∪ J in which F̃ acts as in (1.14):

F̃ : (τ̃ , φ̃) 7→ (τ̃ + φ̃, φ̃). (2.31)

Proof Statement (2.31) is equivalent to the equation

τ̃ ◦ F (x) = τ̃(x) + φ̃(x). (2.32)
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Shifting τ and shrinking W , we can and will consider that (0, 0) ∈ J ,

g|W > 0, W ∩ {φ̃ = ζ} = (α(ζ), β(ζ))× {ζ} for all small ζ > 0, (2.33)

α(ζ)→ a, β(ζ)→ b, as ζ → 0; F̃±1 are well-defined on W ∪ J.

Fix a small χ ∈ (0, 12) and a η > 0 (dependently on χ) satisfying the state-
ments of Proposition 2.2 and such that the second statement (set equality)
in (2.33) holds for every ζ < 3η. Consider the sector Sχ,η, the segment
K = {0} × [0, η2 ] and the fundamental domain ∆ bounded by K, F (K)
and the (now horizontal) straightline segment connecting their endpoints
distinct from the origin. Set ∆̂ := ∆ \ {(0, 0)} ⊂ Sχ,η. First we define the

function τ̃ on the sector Sχ,η so that (2.32) holds, whenever x, F̃ (x) ∈ Sχ,η.
Afterwards we extend τ̃ to all of W by dynamics.

Fix a σ ∈ (0, 12(12 −χ)). Let ρ1, ρ2 be a partition of unity on the interval
(−χ, 1+χ) subordinated to its covering by intervals (−χ, 12+σ), (12−σ, 1+χ),
see (2.13). Set ν := τ

φ̃
. For every x ∈ Sχ,η set

τ̃(x) := ρ1(ν(x))τ(x) + ρ2(ν(x))(τ ◦ F̃−1(x) + φ̃(x)). (2.34)

The inclusion x, F̃ (x) ∈ Sχ,η implies (2.32), since then ρ1(ν(x)) = 1 and

ρ2(ν ◦ F (x)) = 1, as in the proof of Proposition 2.2, by (2.34) and F̃ -
invariance of the function φ̃. Recall that the height of the fundamental
domain ∆ is η

2 . Let us now replace W by W ∩ {φ̃ < η
2}. Then for every

x ∈ W there exists a N = N(x) ∈ Z such that F̃N (x) ∈ ∆̂; the latter N is
unique, unless F̃N (x) ∈ ∂∆̂. This follows from (2.33). Set

τ̃(x) := τ̃(F̃N (x))−Nφ̃(x). (2.35)

The function τ̃(x) is well-defined and C∞-smooth on all of W and satis-
fies equation (2.32) there. Indeed, it suffices to check smoothness on the
boundary ∂∆̂ and on its images. If x ∈ ∂∆̂, then either x, F̃ (x) ∈ ∆̂, or
x, F̃−1(x) ∈ ∆̂. In the first case one can take N = 0 or N = 1. For both
these values of N the corresponding right-hand sides τ̃(x) and τ̃ ◦F (x)−φ̃(x)
in (2.35) coincide, since equation (2.32) holds on Sχ,η ⊃ ∆̂. The second
case is treated analogously. For the same reason the function τ̃ on Sχ,η
given by (2.34) coincides with the corresponding expression (2.35) (in which
N ∈ {0,±1}). This implies smoothness of the function (2.35) on a neigh-
borhood of the subset ∆̂ ⊂ W . One has τ̃(F̃ (x)) = τ̃(x) + φ̃(x), by (2.35).
This together with the above discussion implies that τ̃ is C∞-smooth on W
and satisfies (2.32) on all of W . The function τ̃ extends to a C∞-smooth
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function on W ∪J , and the function τ̃−τ is φ̃-flat. This is proved as in Sub-
section 2.4. Namely, fix an arbitrary compact segment [a′, b′] ⊂ (a, b) = J .
The differential of the map H : (τ, φ̃) 7→ (τ̃ , φ̃) tends to the identity, and
all its higher derivatives tend to zero, as φ̃ → 0, uniformly in τ ∈ [a′, b′].
In particular, ∂τ̃

∂τ (τ, φ̃) → 1. Indeed, for every x, set N = N(x), one has

H(τ, φ̃) = F̃N (τ, φ̃) − (Nφ̃, 0) on a neighborhood of x. This together with
formulas (2.23) and (2.25) applied to the differential and higher jet action of
the iterates of the map F̃ together imply the above convergence statement.
The restriction of the function τ̃ to Sχ,η extends continuously to the origin

as τ̃(0, 0) = 0. Thus, τ̃(0, φ̃) → 0, as φ̃ → 0. This together with uniform
convergence ∂τ̃

∂τ (τ, φ̃) → 1 in τ ∈ [a′, b′], as φ̃ → 0, implies uniform conver-

gence τ̃(τ, φ̃) → τ . Together with the above higher derivative convergence,
this implies φ̃-flatness of the function τ̃ − τ and proves the claim. 2

The above claim immediately implies Statement 2) of Theorem 1.27.

2.6 Proof of existence in Theorem 1.23. Proof of Theorem
1.24

Let F be a C∞-lifted strongly billiard-like map. Let (τ, h) be the coordinates
from Theorem 2.1. Set φ =

√
h. Let F̃ denote the map F written in

the coordinates (τ, φ), which is C∞-smooth and takes the form (τ, φ) 7→
(τ + φ + flat(φ), φ + flat(φ)) (Theorem 2.1). There exists a F̃ -invariant
function φ̃ = φ+flat(φ) (Theorem 1.27). The function h̃ := φ̃2 is F -invariant,

C∞-smooth, and h̃ = h + flat(h); hence ∂h̃
∂h > 0 on J and on some domain

adjacent to J . The existence in Theorem 1.23 is proved. Non-uniqueness of
the function h̃ will be proved in Subsection 2.9.

Let us now prove Theorem 1.24. Let us fix a function h̃ constructed
above. Let θ denote the time function of the Hamiltonian vector field with
the Hamiltonian function h̃, normalized to vanish on the vertical axis {τ =
0}. (We consider that (0, 0) ∈ J , shifting the coordinate τ .) The coordinates
(θ, h̃) are symplectic. In these coordinates F (θ, h̃) = (θ + ξ(h̃), h̃) for some

function ξ(h̃) =
√
h̃ψ(h̃) in one variable, since F preserves the symplectic

area; ψ is C∞-smooth and ψ(0) > 0, as in Claim 1 in Subsection 2.1.
Afterwards modifying the functions h̃ and θ, as at the end of Subsection
2.1, we get new coordinates (τ, h̃) (with new τ) in which F takes the form
(1.12). Theorem 1.24 is proved.
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2.7 Foliation by caustics. Proof of existence in Theorems
1.8, 1.11, 1.12

First let us consider the case, when γ is a strictly convex curve injectively
parametrized by interval and bounding a domain in R2 (conditions of The-
orem 1.8).

Let W denote the domain in the space of oriented lines that consists
of lines intersecting γ twice and satisfying condition b) from the beginning
of Subsection 1.2. Let γ̂ denote the curve given by the family of orienting
tangent lines of γ. The domain W is adjacent to γ̂. The billiard ball map
is well-defined on W ∪ γ̂. Each line L close to a tangent line ` of γ carries a
canonical orientation: the pullback of the orientation of the line ` under a
projection L→ ` close to identity. The billiard ball map acting on thus ori-
ented lines close to tangent lines of γ and intersecting γ twice will be treated
as a map acting on non-oriented lines: we will just forget the orientation.

Let us fix a natural length parameter s on the curve γ and identify each
point in γ with the corresponding length parameter value. Let us introduce
the following tuples of coordinates on the domain W . For every line L ∈W
let s1 = s1(L) and s2 = s2(L) denote the length parameter values of its
intersection points with γ. Let φj denote the oriented angles between L and
the tangent lines to γ at the points sj . To each L we put into correspondence
the pair (s1, φ1) where sj are numerated so that s1 < s2. Set

y1 = 1− cosφ1,

see (1.2). Any of the pairs (s1, φ1) or (s1, y1) defines L uniquely. Recall that
(s1, y1) are symplectic coordinates on W , see the discussion after Remark
1.15. Let V ⊂ R×R+ denote the domain W represented in the coordinates
(s1, y1). It is adjacent to an interval J = (a, b) × {0} representing γ̂. Let
Ṽ ⊂ R×R+ denote the same domain represented in the coordinates (s1, φ1).

Proposition 2.15 In the coordinates (s1, y1) the billiard ball map is a C∞-
lifted strongly billiard-like map F defined on V ∪J . In the coordinates (s1, φ1)
it is a C∞-smooth diffeomorphism F̃ defined on Ṽ ∪ J .

Proof The statements of the proposition follow from Proposition 1.17 and
Example 1.20. 2

Proposition 2.16 Shrinking V (without changing its boundary interval J),
one can achieve that there exists a C∞-smooth F -invariant function G(s1, y1)
on V ∪ J such that

G|J ≡ 0,
∂G

∂y1
> 0.
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Proof The proposition follows from Theorem 1.23 (existence). 2

From now on by W we denote the domain of those lines that are repre-
sented by points of the (shrinked) domain V from Proposition 2.16.

The level curves of the functionG are F -invariant and form a C∞-smooth
foliation. Lifting everything to the domain W in the space of lines we get a
foliation by invariant curves under the billiard ball map. Each its leaf is a
smooth family of lines. Its enveloping curve is a caustic of the billiard in γ.
To prove that γ and the caustics in question form a C∞-smooth foliation of
a domain adjacent to γ, we use the following lemma.

Lemma 2.17 The above function G is C∞-smooth as a function on the
domain with boundary W ∪ γ̂ in the space of lines. It has non-degenerate
differential on W ∪ γ̂. Thus, its level curves form a C∞-smooth foliation of
W ∪ γ̂ with γ̂ being a leaf.

Remark 2.18 The function s1(L) is smooth on W but not on W ∪ γ̂: it
is not C1-smooth at points of the curve γ̂. Therefore, a priori a function
smooth in (s1, y1) is not necessarily smooth on W ∪ γ̂.

Proof of Lemma 2.17. The function G is C∞-smooth on W and has
non-degenerate differential there, by Proposition 2.16. Let us prove that
this also holds at points of the boundary curve γ̂. The function G lifts to
an F̃ -invariant function

G̃(s1, φ1) = G(s1, 1− cosφ1).

The map (s1, φ1) → (s1, s2) is a diffeomorphism defined on Ṽ ∪ J . The
analogous statement holds for the diffeomorphism (s2, φ2) 7→ (s1, s2). One
has

G̃(s1, φ1) = G̃(s1,−φ1) = G̃(s2, φ2) = G̃(s2,−φ2), (2.36)

by invariance of the function G̃ under sign change at the second coor-
dinate and by its invariance under the billiard ball map represented by
δ̃+ : (s1, φ1) 7→ (s2,−φ2). Given an unordered pair (s1, s2), the tuples
(s1, φ1) and (s2, φ2) are well-defined up to permutation. Therefore, in the
coordinates (s1, s2) on Ṽ (where a < s1 ≤ s2 < b by definition) the func-
tion G̃ is C∞-smooth and extends C∞-smoothly to a neighborhood of the
diagonal (identified with J) in (a, b) × (a, b) as a function invariant under
coordinate permutation. This means that in the coordinates

(α, β) := (
s1 + s2

2
,
s2 − s1

2
)
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(which are C∞-diffeomorphic coordinates on Ṽ ∪J) the function G̃ is invari-
ant under sign change at β. Hence, G̃ is a C∞-smooth function in (α, β2),

G̃(s1, φ1) = Ĝ(α,ψ), ψ := β2 :

the function Ĝ is C∞-smooth on the domain in Rα × (R+)ψ adjacent to J
and corresponding to W , and it is also smooth at points of the boundary J .

Proposition 2.19 The pair (α,ψ) forms C∞-smooth coordinates on the
domain with boundary arc W ∪ γ̂ in the space of lines.

Proof Consider the map SΛ : (s1, s2) → {lines} sending a pair of points
(s1, s2) of the curve γ to the line through them. (For s1 = s2 = s, the
image is the tangent line to γ at s.) The map SΛ is C∞-smooth on (a, b)×
(a, b). It is invariant under pertumation of the coordinates s1, s2, and its
restriction to each connected component of the complement to the diagonal
is a diffeomorphism, by convexity. Equivalently, it is C∞-smooth in the
coordinates (α, β) and invariant under sign change at β. Hence, it is smooth
in (α,ψ). Its differential is non-degenerate at those points, where s1 6= s2,
or equivalently, ψ 6= 0. It remains to check that it has non-degenerate
differential at the points of the line {ψ = 0}. To do this, consider yet
another tuple of coordinates (α∗, ψ∗) on W ∪ γ̂ defined as follows: for every
L ∈W ∪ γ̂

- the point α∗ = α∗(L) ∈ (a, b) is the unique point in the curve γ where
the tangent line to γ is parallel to L (it exists by Rolle Theorem);

- the number ψ∗ = ψ∗(L) is the distance between the line L and the
above tangent line.

Proposition 2.20 The coordinates (α∗, ψ∗) are C∞-smooth coordinates on
W ∪ γ̂.

Proposition 2.20 follows from definition and strict convexity of γ.
Consider now (α∗, ψ∗) as functions of (α,ψ). One obviously has

ψ∗(α, 0) ≡ 0, α∗(α, 0) ≡ α, ∂α
∗

∂α
(α, 0) ≡ 1,

∂ψ∗

∂α
(α, 0) ≡ 0. (2.37)

As (α,ψ)→ (α0, 0), one has

ψ∗ ' 1

2
κ(α0)ψ. (2.38)

Here κ is the curvature of the curve γ. Indeed, as s1, s2 → α0, the line
L through s1 and s2 is parallel to a line tangent to γ at a point α∗ that
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is o(s1 − s2)-close to α = s1+s2
2 . The distance between the two lines is

asymptotic to 1
2κ(α)(α∗ − s1)2, by [10, formula (2.1)]. This together with

the equality α − s1 = β ' α∗ − s1 implies (2.38), which in its turn implies
that ∂ψ∗

∂ψ (α, 0) > 0. Together with (2.37), this implies non-degeneracy of
the Jacobian matrix of the vector function (α∗(α,ψ), ψ∗(α,ψ)) at the line
{ψ = 0}. This proves Proposition 2.19. 2

The function Ĝ(α,ψ) = G̃(s1, φ1) is smooth in (α,ψ), as was shown
above. Hence, it is smooth on W ∪ γ̂ (Proposition 2.19). It remains to show
that it has non-zero differential at each point x ∈ γ̂; then shrinking W we
get that the differential is non-zero at each point in W ∪ γ̂. Indeed, it is
smooth in the coordinates (s1, y1) (in which y1|γ̂ ≡ 0), and one has

G̃(s1, φ1) ' a(s1)y1(1 + o(1)), as y1 → 0, a(s) > 0, (2.39)

by Proposition 2.16. On the other hand, as s1, s2 → s, one has y1, φ1 → 0
and

y1 = 1− cosφ1 =
1

2
φ21(1 + o(1)), ψ =

(
s2 − s1

2

)2

, s2 − s1 ' 2(κ(s))−1φ1.

Hence, y1 ' 1
2κ

2(s)ψ. This together with (2.39) implies that in the coordi-

nates (α,ψ) one has ∂Ĝ
∂ψ (α, 0) > 0. Together with the above discussion, this

proves Lemma 2.17. 2

Proof of existence in Theorem 1.8. The function G defined on the
set W ∪ γ̂ in the space of lines is invariant under the billiard ball map.
Therefore, its level curves are invariant families of lines. They form a C∞-
smooth foliation of W ∪ γ̂, with γ̂ being a leaf. Let us denote the latter
foliation by F . The enveloping curves of the curve γ̂ and of its leaves are
respectively the curve γ and caustics of the billiard on γ. Let us show that
they lie on its convex side and there exists a domain U ⊂ R2 adjacent to
γ from the convex side such that the latter caustics form a C∞-smooth
foliation of U ∪ γ, with γ being a leaf.

Fix a projective duality sending lines to points, e.g., polar duality with
respect to the unit circle centered at a point O in the convex domain bounded
by γ. Let us shrink W so that its points represent lines that do not pass
through O. Then the duality represents the subset W ∪ γ̂ in the space of
lines as a domain in the affine chart R2 ⊂ RP2 with a boundary curve. The
latter domain and curve will be also denoted by W and γ̂ respectively. The
curve γ̂ is dual to γ.
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Proposition 2.21 The curve γ̂ is strictly convex, and the domain W lies
on its concave side.

Proof The curve γ̂ is strictly convex, being dual to the strictly convex
curve γ. Each point x ∈W is dual to a line intersecting γ twice. Therefore,
there are two tangent lines to γ̂ through x. Hence, x lies on the concave side
from γ̂. 2

For every x ∈ W let Fx ⊂ R2 ⊂ RP2 denote the leaf through x of
the foliation F (represented in the above dual chart), and let Lx denote its
projective tangent line at x. The enveloping curve of the family of lines
represented by the curve Fx (treated now as a subset in the space of lines)
is its dual curve F∗x . It consists of points L∗y dual to the lines Ly for all
y ∈ Fx. Recall that the boundary curve γ̂ is a strictly convex leaf.

Proposition 2.22 Shrinking the domain W adjacent to γ̂ one can achieve
that the map x 7→ L∗x be a C∞-smooth diffeomorphism of the domain W ∪ γ̂
onto a domain U ⊂ R2 ⊂ RP2 taken together with its boundary arc γ. The
domain U lies on the convex side from the curve γ.

Proof The curve γ̂ is strictly convex. No its tangent line passes through
O, being dual to a point of the curve γ (which is a finite point). Therefore,
every compact arc in γ̂ has a neighborhood in R2 whose intersection with
each leaf of the foliation F is a strictly convex curve. Thus, shrinking W we
can and will consider that each leaf L is strictly convex and no its tangent
line passes through O. Hence, each line L tangent to L is disjoint from
the leaves lying on the convex side from L. Thus, L is disjoint from γ̂ and
O /∈ L. Let U denote the set of points dual to lines tangent to leaves in W .
In the dual picture the latter statements mean that U ⊂ R2 and for every
A = L∗ ∈ U there are no tangent lines to γ passing through A. The set U is
path-connected, disjoint from γ, and it accumulates to all of γ. Therefore,
it approaches γ from the convex side, by the previous statement. Hence, it
lies entirely on its convex side. Let us now prove that shrinking W one can
achieve that the map x 7→ L∗x be a diffeomorphism W ∪ γ̂ → U ∪ γ.

Fix a compact arc exhaustion

γ̂1 b γ̂2 b · · · = γ̂.

For every k fix a flowbox Πk ⊂ W of the foliation F adjacent to γ̂k and
lying in W whose leaves are strictly convex. We construct the flowboxes
Πk with decreasing heights, which means that for every k each leaf of the
flowbox Πk+1 crosses Πk. Now replace W by the union ∪kΠk, which will be
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now denoted by W . The leaves of the foliation on W ∪ γ̂ are strictly convex
and connected, by construction. We claim that the map x 7→ Lx, and hence,
x 7→ L∗x is a C∞-smooth diffeomorphism. Indeed, it is a local diffeomorphism
by strict convexity of leaves. It remains to show that Lx 6= Ly for every
distinct x, y ∈ W . Indeed, fix an x ∈ W , let L denote the leaf of the
foliation F through x. Set L = Lx. Fix a k such that x ∈ Πk. Every leaf
in the flowbox Πk that does not lie in its leaf through x either intersects L
transversally, or is disjoint from L, by convexity. Then the latter statement
also holds for every other flowbox Π`, by construction and convexity. This
implies that L can be tangent to no other leaf in W . It cannot be tangent
to the same leaf L at another point y 6= x, by convexity and the above
statement. This proves diffeomorphicity of the map x 7→ L∗x. 2

The above C∞-smooth diffeomorphism x 7→ L∗x sends W onto a domain
U ⊂ R2 adjacent to γ. It sends leaves of the foliation F to the corresponding
caustics of the billiard on γ. Hence, the caustics together with the curve γ
form a C∞-smooth foliation of U ∪ γ. Constructing the above flowboxes Πk

narrow enough in the transversal direction (step by step), we can achieve
that for every x ∈ γ and every leaf L of the foliation F there are at most
two tangent lines through x to the caustic L∗. Indeed, each leaf L of the
foliation F is a leaf of some flowbox Πk. Its dual caustic L∗ will satisfy
the above tangent line statement, if the total angle increment of its tangent
vector is no greater than π. The latter angle increment statement holds for
the curve γ. Hence, it remains valid for the caustics dual to the leaves of
the flowbox Πk, if Πk is chosen narrow enough. The existence statement of
Theorem 1.8 is proved. 2

The proof of the existence in Theorem 1.11 repeats the above proof of
the existence in Theorem 1.8 with obvious changes. The existence statement
of Theorem 1.12 follows from that of Theorem 1.11.

2.8 Space of foliations. Proofs of Theorems 1.28, 1.31, 1.32
and Proposition 1.30

Proof of Theorem 1.28. It suffices to prove the statement Theorem 1.28
for foliations from Theorems 1.23, 1.27, since the foliations in Theorems 1.8,
1.11, 1.12 are obtained from foliations in Theorem 1.23 by duality, see the
above subsection.

Case of Theorem 1.23. Consider a C∞-lifted strongly billiard-like map.
We already know that in appropriate coordinates it takes the form (1.12):

F (τ, h) = (τ +
√
h, h). (2.40)
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The function h is F -invariant, and so are its level lines.
Suppose the contrary: there exists another C∞-smooth F -invariant func-

tion G(τ, h), G(τ, 0) ≡ 0, without critical points on J = {h = 0} and such
that there exists an x ∈ J where the foliations G = const and h = const
have different k-jets for some k. Without loss of generality we consider that
x = (0, 0), shifting the coordinate τ . Then the asymptotic Taylor series of
the function G at x contains at least one monomial amnτ

mhn with m ≥ 1
and a non-zero coefficient amn. Set

N := {(m,n) | amn 6= 0, m ≥ 1}, d := min{m+ 2n | (m,n) ∈ N}.

Consider the lower (1, 2)-quasihomogeneous part:

Gd(τ, h) :=
∑

(m,n)∈N , m+2n=d

amnτ
mhn + a0, d

2
hd.

One has G ◦ F (τ, h)−G(τ, h) ≡ 0. On the other hand,

G ◦ F (τ, h)−G(τ, h) = G(τ +
√
h, h)−G(τ, h)

= Gd(τ +
√
h, h)−Gd(τ, h) + higher terms. (2.41)

Here ”higher terms” means ”a function that admits an asymptotic Taylor
series in (τ,

√
h) at (0, 0) that contains only terms amnτ

αhβ of quasihomo-
geneous degrees α + 2β > d”. Let m0 denote the higher degree of τ in a
monomial entering Gd. The difference Gd(τ +

√
h, h)−Gd(τ, h) is quasiho-

mogeneous of degree d. It contains the monomial τm0−1h`, m0− 1 + 2` = d,
with non-zero coefficient, by construction; here a priori ` may be non-integer.
This monomial will not cancel out with other monomials in the asymptotic
Taylor series of the difference G ◦F (τ, h)−G(τ, h), by construction. There-
fore, the latter difference cannot be identically equal to zero. The contradic-
tion thus obtained proves the statement of Theorem 1.28 in the conditions
of Theorem 1.23.

Case of Theorem 1.27. In this case we know that the map in question is
conjugated to (τ, φ) 7→ (τ + φ, φ). The statement of Theorem 1.28 for the
latter map is proved by the above arguments for lower homogeneous (i.e.,
(1, 1)-quasihomogeneous) terms of the Taylor series of the function G. 2

Proof of Proposition 1.30. Let g(τ, h) be a C∞-smooth function invari-
ant under the map F : (τ, h) 7→ (τ +

√
h, h) that has type (1.15):

g(τ, h) = h+ flat(h), g(0, h) ≡ h. (2.42)
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Invariance is equivalent to the equality g(τ+
√
h, h) = g(τ, h). This together

with (2.42) implies that

the function ψ(s, h) := g(s
√
h, h)− h is 1-periodic in s, ψ(0, h) = 0.

(2.43)
Moreover, the function ψ(s, h) is C∞-smooth and h-flat on a cylinder S1 ×
[0, δ), S1 = Rs/Z, for a small δ > 0. This follows from smoothness and
h-flatness of the function g(τ, h)−h. Conversely, consider an h-flat function
ψ(s, h) that is 1-periodic in s and such that ψ(0, h) = 0. Then the function

g(τ, h) := ψ(
τ√
h
, h) + h

is C∞-smooth, F -invariant and its difference with h is h-flat, by construc-
tion. Statement 1) of Proposition 1.30 is proved. Its Statement 2) can be
reduced to Statement 1) and also can be proved analogously. 2

Theorem 1.31 follows immediately from Proposition 1.30, and in its turn,
it immediately implies Theorem 1.32.

2.9 Proof of Proposition 1.33 and non-uniqueness in main
theorems

Proof of Proposition 1.33. Let us prove the statement of Proposition
1.33 for a map F̃ of type (1.13). We prove it for line fields: for other
objects the proof is analogous. Without loss of generality we can and will
consider that the map F̃ takes the form (τ, φ) 7→ (τ + φ, φ): see Statement
2) of Theorem 1.27. Let G1 and G2 be two F̃ -invariant line fields on W with
distinct germs at J . This means that there exists a sequence of points x(k) =
(τ(k), φ(k)) with φ(k)→ 0 and τ(k) lying in a compact subset in J such that
the lines G1(x(k)), G2(x(k)) ⊂ Tx(k)R2 are distinct. Taking a subsequence,
we can and will consider that x(k) → x = (τ0, 0), as k → ∞. The two-
sided orbit of a point x(k) with big k consists of points with φ-coordinate
φ(k) whose τ -coordinates form an arithmetic progression with step φ(k)
converging to zero. At each point of the orbit the lines of the fields G1 and
G2 are distinct, since this holds at x(k) and by F̃ -invariance. Therefore,
passing to limit, as k → ∞, we get that for every point z ∈ J there exist
points z′ arbitrarily close to z with G1(z

′) 6= G2(z
′). Hence, the germs at z of

the line fieldsG1 andG2 are distinct. The first statement of Proposition 1.33,
for a map F̃ of type (1.13), is proved. Its second statement, for a C∞-lifted
strongly billiard-like map F : V ∪ J → F (V ∪ J) ⊂ R2 follows from its first
statement and the fact that F is conjugated to the map (τ, φ) 7→ (τ + φ, φ)
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by a homeomorphism that is smooth on the complement to the boundary
interval J . The latter conjugating homeomorphism is the composition of a
diffeomorphism conjugating F to the map (τ, h) 7→ (τ +

√
h, h) (Theorem

1.24) and the map (τ, h) 7→ (τ, φ), φ =
√
h. Proposition 1.33 is proved. 2

Proof of non-uniqueness in Theorems 1.27, 1.23, 1.8, 1.11, 1.12
Existence of continuum of distinct germs of foliations satisfying the state-

ments of any of the above-mentioned theorems follows immediately from
Proposition 1.33 and Theorem 1.32, which states that there are as many
distinct boundary germs, as many flat functions on the cylinder S1 × R≥0
with distinct germs at S1 × {0}. It remains to show that there exists a
domain adjacent to the boundary interval (or the curve γ) which admits an
infinite-dimensional family of corresponding foliations with distinct germs.

Case of Theorem 1.27. Fix coordinates (τ, φ) in which F̃ (τ, φ) = (τ +
φ, φ). Recall that the coordinates (τ, φ) are defined on W ∪ J , where W ⊂
R × R+ is a domain adjacent to the interval J = (a, b) × {0}. Fix a C∞-
smooth h-flat finction ψ on the cylinder S1×R≥0, S1 = R/Z, with non-trivial
germ at S1 × {0}:

ψ(s, h) = ψ(s+ 1, h) = flat(h), ψ(0, h) = 0, |ψ| < 1

8
. (2.44)

For every ε > 0 the function

gε(τ, φ) := φ+ εχ(τ, φ), χ(τ, φ) := ψ(
τ

φ
, φ), (2.45)

is F̃ -invariant, C∞-smooth and well-defined on W ∪ J . Let us show that
shrinking the domain W one can achieve that the foliation gε = const is
regular, that is gε has no critical points on W , whenever ε is small enough.

Claim 1. Replacing W by a smaller domain adjacent to J , one can
achieve that each partial derivative of the function χ (of any order) be
bounded on W . For any given m and every δ > 0 shrinking W (depen-
dently on m and δ) one can achieve that all its order m partial derivatives
have moduli less than δ.
Proof The modulus of each partial derivative of order at most m admits
an upper bound by a quantity

|∂
mχ(τ, φ)

∂τ `∂φm−`
| ≤ cm(1 + |τ |m)(1 + φ−2(m+1))

m∑
`,r=1

|ψ`r|, (2.46)

cm = const > 0, ψ`r(τ, φ) =
∂`+rψ

∂s`∂φr
(
τ

φ
, φ) = o(φk), for every k ∈ N.
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Here the latter o(φk) is uniform in τ , as φ → 0. Estimate (2.46) follows
from 1-periodicity and flatness of the function ψ(s, h) and chain rule for
calculating derivatives. Let us now replace the domain W by a smaller
domain adjacent to J on which the right-hand side in (2.46) is bounded
for each m and is less than δ for a given m. First let us replace W by
the connected component adjacent to J of its intersection with the strip
{a < τ < b}. In the case, when (a, b) is a finite interval, the right-hand
side in (2.46) is uniformly bounded on W and tends to zero uniformly in
τ ∈ (a, b), as φ→ 0: the asymptotics ψ`r(τ, φ) = o(φ3m+3) kills polynomial
growth of the function φ−2(m+1). Therefore, shrinking W one can achieve
that for given m and δ, the right-hand side in (2.46) be less than δ on W .

In the case, when some (or both) of the boundary points a or b is infinity,
take an exhaustion of the interval (a, b) by segments [ak, bk]. By the above
argument, we can take a rectangle Πk = (ak, bk) × (0, dk) ⊂ W on which
for all m the right-hand sides in (2.46) be bounded, and for some given m
the same right-hand side be less than a given δ. Replacing W by ∪kΠk, we
achieve that the two latter inequalities hold on W ∪ J . 2

Let W satisfy the statements of the above claim so that each first partial
derivative of the function χ has modulus less than 1

2 . Then for every ε ∈ [0, 1]
the foliation gε = const is regular on W ∪ J , since for those ε one has
∂gε
∂φ = 1+ε∂χ∂φ >

1
2 onW∪J . All its leaves are F̃ -invariant. For distinct values

of the parameter ε the germs of the corresponding foliations are distinct
at each point of the interval J , by Theorem 1.32 and Proposition 1.33.
This yields a one-dimensional family of foliations from Theorem 1.27 with
pairwise distinct germs at each point in J .

Now let us apply the above argument with the expression εχ in (2.45)
being replaced by an arbitrary linear combination

χ̃ε(τ, φ) =
N∑
k=1

εk
k!4k

ψk(
τ

φ
, φ), ε = (ε1, . . . , εN ) ∈ [0, 1]N . (2.47)

Recall that |ψ| < 1
8 . This inequality together with the above assumption that

the first partial derivatives of the function χ(τ, φ) = ψ( τφ , φ) have moduli

less than 1
2 on W imply that for every ε as in (2.47) the module of each first

partial derivative of the function χ̃ε is less than 1
2 on W∪J . This implies that

the foliation by level curves of the function gε(τ, φ) = φ+ χ̃ε is a C∞-smooth
foliation on W ∪ J . We get a N -dimensional family of foliations on W ∪ J
depending on (ε1, . . . , εN ) ∈ [0, 1]N with pairwise distinct germs at J , and
hence, at each point of the curve J (Proposition 1.33). The non-uniqueness
statement of Theorem 1.27 is proved.
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Case of Theorem 1.23. Its non-uniqueness statement follows from that
of Theorem 1.27 and also from the above arguments.

Case of Theorem 1.8. Let us consider the billiard ball map acting on
lines as a C∞-lifted strongly billiard-like map F . Let us introduce new
(symplectic) coordinates (τ, h) in which F (τ, h) = (τ +

√
h, h), see (1.12).

The map F is defined on W ∪ J , where J = (a, b) × {0} parametrizes the
family of lines tangent to γ and W ⊂ R × R+ is a domain adjacent to J .
Representing lines as points in RP2 via a projective duality RP2∗ → RP2

transforms J to a strictly convex curve γ∗ ⊂ RP2 dual to γ, and W to a
domain adjacent to γ∗ from the concave side. See Subsection 2.7. We can
and will consider that γ∗ and W lie in an affine chart R2, as in the proof of
the existence in Theorem 1.8 in Subsection 2.7. In what follows we identify
J with γ∗. Consider the foliation h = const by F -invariant curves. Let us
construct a family of foliations using a C∞-smooth h-flat function ψ(s, h)
on S1 × R≥0 with non-trivial germ at S1 × {0}, as in (2.44). Namely, set

gε(τ, h) := h+ εχ(τ, h), χ(τ, h) := ψ(
τ√
h
, h).

The functions gε are F -invariant. The germs of any two foliations gε1 =
const, gε2 = const, ε1 6= ε2, are distinct at each point in J , by Theorem 1.32
and Proposition 1.33. It remains to prove their regularity and regularity of
the dual foliations by caustics on one and the same domain. To do this, we
use the following claim.

Claim 2. Shrinking the domain W adjacent to J = γ∗ one can achieve
that for every ε ∈ [0, 1] the foliation gε = const is regular on W ∪ J , its
leaves are strictly convex curves, as is γ∗, and the map Λε : x → Lx,ε
sending a point x ∈ W to the projective line Lx,ε tangent to the level curve
{gε = gε(x)} at x is a diffeomorphism on W .
Proof Consider the function h and the above function χ as functions on
W ∪ γ∗ as on a domain in R2 ⊂ RP2. The curve γ∗ = {h = 0} is strictly
convex. Hence, shrinking W we can and will consider that each level curve
{h = const}∩W is strictly convex. Consider the rectangles Πk ⊂W from the
proof of the above Claim 1 (in the coordinates (τ, h)) with decreasing heights.
They are represented as curvilinear quadrilaterals in R2 ⊂ RP2. Choosing
them with heights small enough, we can achieve that ||∇χ|| < 1

2 ||∇h|| on
Πk. Let us now replace W by ∪kΠk. Then ∇gε 6= 0 on W , and hence,
the foliation gε = const is regular for all ε ∈ [0, 1]. Choosing Πk with
heights small enough (step by step) one can also achieve that each level
curve {gε = const} ∩ Πk be strictly convex for every ε ∈ [0, 1], by strict
convexity of the boundary curve γ∗ and h-flatness of the function ψ. In
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more detail, let (x, y) be coordinates on the ambient affine chart R2. Strict
convexity of level curves {gε = const} is equivalent to non-vanishing of the
Hessian2 H(gε):

H(gε) 6= 0, H(g) :=
∂2g

∂x2

(
∂g

∂y

)2

+
∂2g

∂y2

(
∂g

∂x

)2

− 2
∂2g

∂x∂y

(
∂g

∂x

)(
∂g

∂y

)
.

The Hessian H(gε) is the sum of the Hessian H(h) (which is non-zero on
W ∪ γ∗, since the curves {h = const} are strictly convex) and a finite sum
of products; each product contains ε, at least one derivative of the function
χ and at most two derivatives of the function h; each derivative is of order
at most two. Choosing the rectangles Πk with heights small enough, we
can achieve that the module of the latter sum of products be no greater
than 1

2ε|H(h)| for ε ∈ [0, 1]. This follows from convexity of the curve γ∗

and h-flatness of the function ψ: shrinking W , one can achieve that all
the first and second derivatives of the function χ have moduli bounded by
arbitrarily small δ (Claim 1). Then H(gε) 6= 0 on W , hence, the curves
{gε = const} ∩W are strictly convex.

Now for every k we choose smaller rectangles Π̃k ⊂ Πk with decreasing
heights and with the lateral (i.e., vertical) sides lying in the lateral sides
of the bigger rectangles Πk that satisfy the following additional statement.
For every ε ∈ [0, 1] let Πk,ε denote the minimal flowbox for the foliation
gε = const with lateral (i.e., transversal) sides lying in the lateral sides of
Πk that contains Π̃k. This is the union of arcs of leaves that go from one
lateral side of Πk to the other one and cross Π̃k. For every k we can and
will subsequently choose Π̃k with heights small enough (i.e., narrow enough
in the transversal direction) so that for every ε ∈ [0, 1] the flowbox Πk,ε

lies in Πk, and the heights of the flowboxes Πk,ε be decreasing in k: more
precisely, for every k each local leaf in Πk+1,ε crosses Πk,ε, as in the proof
of Proposition 2.22. Then the map Λε : x 7→ Lx,ε is a diffeomorphism on
Wε := ∪kΠk,ε for every ε ∈ [0, 1], as at the end of the proof of Proposition
2.22. Hence, it is a diffeomorphism on

W̃ := ∪kΠ̃k. (2.48)

The claim is proved. 2

2The Hessian H(g) of a function g was introduced by S.Tabachnikov in his paper [22],
where he used it to study his conjecture stating that every polynomially integrable outer
billiard is an ellipse (later this conjecture was solved in [11]). The Hessian was also used by
M.Bialy, A.E.Mironov and later the author in the solution of Bolotin’s polynomial version
of the Birkhoff Conjecture, which is the result of papers [5, 6, 9].
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Claim 3. Consider the foliation by caustics of the billiard on γ that is
dual to the foliation gε = const. There exists a domain U ⊂ R2 adjacent to
γ from the convex side where the above foliation by caustics is C∞-smooth
(and also smooth at the points of the curve γ) for every ε ∈ [0, 1]. Moreover,
shrinking U one can achieve that for every x ∈ γ and every ε ∈ [0, 1] there
are at most two tangent lines through x to any given leaf of the corresponding
foliation by caustics on U .
Proof Let W̃ be the domain (2.48) constructed above. For every ε ∈ [0, 1]
the map Λ∗ε : x 7→ L∗x,ε sending x to the point dual to the corresponding line

Lx,ε is a diffeomorphism, since so is Λε. It sends the domain W̃ foliated by
level curves of the function gε onto a domain Uε adjacent to γ and foliated
by their dual curves: caustics of the billiard on γ. They form a C∞-smooth
foliation on Uε ∪ γ. For the proof of the first statement of Claim 3 it re-
mains to show that there exists a domain U adjacent to γ that lies in the
intersection ∩εUε (and hence, for each ε it is smoothly foliated by the cor-

responding caustics). To do this, we construct the above W̃ and a smaller

domain W ′ ⊂ W̃ adjacent to γ∗ so that the following statement holds:
(*) for every p ∈ W ′ and every ε ∈ [0, 1] there exists a q = q(p, ε) ∈ W̃

such that the projective line Lp,0 tangent to the curve {h = h(p)} at p is
tangent to the leaf of the foliation gε = const at q.

Statement (*) implies that the image U = Λ0(W
′) is contained in all

the domains Uε and regularly foliated by caustics dual to level curves of the
function gε for every ε ∈ [0, 1].

Take the rectangles Πk and Π̃k from the proof of Claim 2. Let us call their
sections h = const horizontal and transversal sections τ = const vertical.
For every k fix two vertical sections `1,k and `2,k crossing the interior Int(Πk)
that lie in the 1

2k
-neighborhoods of the corresponding lateral sides of the

rectangle Πk. We can and will choose a rectangle Π′k ⊂ Π̃k with lateral sides
lying on `1,k and `2,k and height small enough so that for every ε ∈ [0, 1]

and every p ∈ Π′k there exists a q = q(p, ε) ∈ Π̃k satisfying statement (*).
This is possible by flatness of the function ψ and strict convexity of the
curve γ∗. Then statement (*) holds for the domain W ′ = ∪kΠ′k ⊂ W . This
together with the above discussion proves the first statement of Claim 3.
One can achieve that its second statement (on tangent lines) hold as well by
choosing the above rectangles Π′k with heigth small enough, as in the proof
of the existence in Theorem 1.8 at the end of Subsection 2.7. 2

Claim 3 implies non-uniqueness statement of Theorem 1.8, with one-
dimensional family of foliations with distinct germs. Modifying the above
arguments as in the proof of non-uniqueness statement of Theorem 1.27 (see
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formula (2.47) and the discussion after it) we get N -dimensional family of
foliations with distinct germs for every N ∈ N. Non-uniqueness statements
of Theorems 1.11 and 1.12 are proved analogously. 2

2.10 Conjugacy of billiard maps and Lazutkin length. Proof
of Theorems 1.36, 1.37, 1.40, 1.41, Propositions 1.42,
1.43 and Lemma 1.44

Proof of Proposition 1.42. The map

(s, y) 7→ (X,Y ) := (tL(s), w
2
3 (s)y), tL(s) =

∫ s

s0

w−
2
3 (u)du

is symplectic and conjugates F to a C∞-lifted strongly billiard-like map of
the type

Φ : (X,Y ) 7→ (X +
√
Y +O(Y ), Y + o(Y

3
2 ), (2.49)

see [10, theorem 7.11] and Proposition 1.21. Thus, without loss of generality
we can and will consider that F has the form (2.49), hence, w(s) ≡ 1. Then
tL(s) = s up to additive constant. Thus, we have to show that

H1(s, 0) = αs+ β, (2.50)

H1(s, 0) = s+ β, if H is symplectic. (2.51)

By definition, H(s, y) = (H1(s, y), H2(s, y)) conjugates F to Λ : (t, z) 7→
(t+
√
z, z). Hence, it sends the fixed point line {y = 0} of the map F to the

fixed point line {z = 0} of the map Λ, thus, H2(s, 0) ≡ 0. Writing conjugacy
equation on the first components yields

H1◦F (s, y) = H1(s+
√
y+O(y), y+o(y

3
2 )) = H1(s, 0)+

∂H1

∂s
(s, 0)

√
y+O(y)

= Λ1 ◦H(s, y) = H1(s, y) +
√
H2(s, y) = H1(s, 0) +

√
∂H2

∂y
(s, 0)

√
y +O(y).

This yields

∂H1

∂s
(s, 0) ≡

√
∂H2

∂y
(s, 0) > 0. (2.52)

The Jacobian matrix of the map H at points (s, 0) is equal to

Jac(s, 0) =
∂H1

∂s
(s, 0)

∂H2

∂y
(s, 0) =

(
∂H1

∂s
(s, 0)

)3

> 0, (2.53)
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by (2.52) and since H2(s, 0) ≡ 0, which yields ∂H2
∂s (s, 0) = 0. This proves

orientation-preserving property of the diffeomorphism H and increasing of
the function H1(s, 0).

Let now H be symplectic, that is Jac(s, 0) ≡ 1. Then ∂H1
∂s (s, 0) ≡ 1,

by (2.53). This means that H1(s, 0) = s + β for some β ∈ R. This proves
(1.20).

Let now H be not necessarily symplectic. Let us prove (2.50). Suppose
the contrary: there exist two points s0 < s∗0 ∈ (a, b) such that

` :=
∂H1

∂s
(s0, 0) 6= `∗ :=

∂H1

∂s
(s∗0, 0).

Fix small ε, δ > 0 such that

s0 − ε, s∗0 + ε ∈ (a, b), [`− δ, `+ δ] ∩ [`∗ − δ, `∗ + δ] = ∅.

Fix a small η > 0 and a y0 ∈ (0, η4 ), set q0 = (s0, y0). Let q−N− , . . . , q−1, q0,
q1, . . . , qN+ , qj = (sj , yj), denote the F -orbit of the point q0 in the rectangle
[s0−ε, s∗0+ε]× [0, η]. Here N± = N±(y0). It is known that the s-coordinates
of its points form an asymptotic arithmetic progression sj = s(qj), and their
y-coordinates are asymptotically equivalent:

sj+1 − sj '
√
y0, yj ' y0, as y0 → 0, (2.54)

uniformly in j ∈ [−N−(y0), N+(y0)− 1],

s−N− < s0, sN+ > s∗0, (2.55)

whenever y0 is small enough (dependently on ε). See [10, lemma 7.13]. The
image of the above orbit under the map H should be an orbit of the map
Λ : (t, z) 7→ (t +

√
z, z). The abscissas of its points, xj := H1(qj), form an

arithmetic progression: xj+1−xj =
√
z0, z0 = z(H(q0)). We claim that this

yields a contradiction to the inequality ` 6= `∗ and (2.54). Indeed, one has

x1 − x0 = H1(q1)−H1(q0) ' `(s1 − s0) ' `
√
y0, (2.56)

by (2.54) and the Lagrange Increment Theorem. On the other hand, take a
family of indices k = k(y0) such that sk = sk(y0)→ s∗0, as y0 → 0: it exists,
since the asymptotic progression sj has steps uniformly decreasing to 0, it
starts on the left from s0 and ends on the right from s∗0 > s0, see (2.55).
Repeating the above argument for xk and xk+1 yields

xk+1 − xk ' `∗
√
y0 6= x1 − x0 ' `

√
y0,
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whenever y0 is small enough, since ` 6= `∗. The contradiction thus obtained
to the equality of the above differences proves that ∂H1

∂s (s, 0) ≡ const. This
proves (2.50) and Proposition 1.42. 2

Proof of Proposition 1.43. It repeats the proof of Proposition 1.42,
statement 2). 2

Proof of Theorem 1.41. Let us fix an arbitrary point in each curve
γi and parametrize it by natural length parameter so that the given point
corresponds to zero parameter value. For every i = 1, 2 let Tγi denote the
billiard map corresponding to the curve γi. It is a C∞-lifted strongly billiard-
like map in the coordinates (s, y) defined on a domain in R × R+ adjacent
to an interval Jγi = (ai, bi) × {0}. The corresponding function w = wi(s)
is equal to 2

√
2κ−1i (s), where κi is the curvature of the curve γi. There

exists a domain Ui ⊂ Rs × (R+)y adjacent to Jγi such that there exists a
C∞-smooth symplectomorphism Hi = (H1i, H2i) on Ui∪Jγi conjugating Tγi
to its normal form Λ : (t, z) 7→ (t +

√
z, z), Hi ◦ Tγi ◦ H−1i = Λ (Theorem

1.24). The restriction to the s-axis of the first component H1i is given by
the Lazutkin parameter:

H1i(s, 0) = tL(s) :=

∫ s

0
w
− 2

3
i (u)du+ const =

1

2

∫ s

0
κ

2
3
i (u)du+ const, (2.57)

by Proposition 1.42. Therefore, the image H1i(Jγi) is the interval J̃i × {0}
equipped with the coordinate tL, whose length is thus equal to 1

2L(γi). The

image domain Hi(Ui) ⊂ R × R+ is adjacent to J̃i. Thus, (symplectic) C∞-
conjugacy of the billiard maps near the boundary is equivalent to the ex-
istence of a (symplectic) C∞-diffeomorphism Φ commuting with Λ, defined
on a domain V1 ⊂ Rt × (R+)z adjacent to J̃1 and sending it onto a domain
V2 ⊂ Rt × (R+)z adjacent to J̃2 that extends as a C∞-diffeomorphism to
J̃1, Φ(J̃1) = J̃2. The latter diffeomorphism Φ exists in the class of symplec-
tomorphisms, if and only if L(γ1) = L(γ2) and one of the conditions i) or
ii) of Theorem 1.40 holds. Indeed, if a symplectomorphism Φ commuting
with Λ exists, then its restriction to J̃1 should be a translation (Proposition
1.42). This implies that the lengths of the intervals J̃1, J̃2 are equal (i.e.,
the Lazutkin lengths of the curves γ1, γ2 are equal) and at least one of the
conditions i) or ii) holds. Conversely, if L(γ1) = L(γ2) and one of the condi-
tions i) or ii) holds, then we can and will consider that J̃1 = J̃2, applying a
translation. Then the identity symplectomorphism Φ = Id has the required
properties. This proves Theorem 1.41. 2

Proof of Theorem 1.40. Let us repeat the above argument, where now
the above diffeomorphism Φ : V1 ∪ J̃1 → V2 ∪ J̃2 commuting with Λ is not
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necessarily symplectic. Let such a Φ exist. Then its restriction to J̃1 is
an affine map in the first coordinate, t 7→ αt + β (Proposition 1.42), and
J̃2 = Φ(J̃1). This implies that L(γ2) = αL(γ1), and one of the conditions
i) or ii) holds. Conversely, let one of the conditions i) or ii) holds. Then
without loss of generality we can and will consider that the interval J̃2 is
obtained from J̃1 by a homothety t 7→ αt, applying a translation. The latter
homothety extends to the linear map Φ : (t, z) 7→ (αt, α2z) commuting with
Λ and thus, having the required properties. The statement of Theorem 1.40
on conjugacy in (s, y)-coordinates is proved. Together with Remark 1.35, it
implies that if one of the conditions i) or ii) holds, then the billiard maps
are C∞-smoothly conjugated near the boundary in (s, φ)-coordinates. Let
us prove the converse: C∞-smooth conjugacy in (s, φ)-coordinates implies
that one of the conditions i) or ii) holds.

Let H̃ be a C∞-smooth diffeomorphism conjugating the billiard maps
Tγ1 and Tγ2 near the boundary in (s, φ)-coordinates, H̃ ◦ Tγ1 ◦ H̃−1 = Tγ2 .
Let Hi be symplectomorphisms conjugating the billiard maps Tγi in (s, y)-
coordinates with the map Λ : (t, z) 7→ (t +

√
z, z), see the above proof of

Theorem 1.41. The variable changes

y 7→ φ = arccos(1− y), z 7→ z̃ :=
√
z

lift each diffeomorphismHi to a diffeomorphism Ĥi(s, φ) = (Ĥ1i(s, φ), Ĥ2i(s, φ̃))
conjugating the corresponding billiard map with the map Λ̃ : (t, z̃) 7→
(t + z̃, z̃). Then the restriction of its first component Ĥ1i(s, 0) = H1i(s, 0)
to the s-axis coincides with the Lazutkin parameter tL of the curve γi up
to post-composition with affine transformation, by Proposition 1.42. Set
Ĵi := H1i(Jγi). The diffeomorphism Φ := Ĥ2 ◦ H̃ ◦ Ĥ−11 commutes with Λ̃,

sends the interval Ĵ1 onto Ĵ2, and it sends a domain in R× R+ adjacent to
Ĵ1 onto a domain in R × R+ adjacent to Ĵ2. Therefore, the restriction of
its first component to Ĵ1 is an affine map t 7→ αt + β, by Proposition 1.43.
Thus, Ĵ2 is a rescaled image of the interval Ĵ1 up to translation. Recall that
the lengths of the intervals Ĵi are equal to the Lazutkin lengths of the corre-
sponding curves γi divided by 2, see (2.57). This implies that the improper
integrals defining the Lazutkin lengths of the curves γi converge or diverge
simultaneously, and one of the conditions i) or ii) holds. Theorem 1.40 is
proved. 2

Proof of Lemma 1.44. Consider a strictly convex C2-smooth planar
curve γ going to infinity that has an asymptotic tangent line at infinity.
Without loss of generality we can and will consider that the latter tangent
line is the horizontal x-axis in R2

x,y, γ lies above it, and γ is the graph of a
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C2-smooth function f defined on [1,+∞), γ = {y = f(x)},

f(x), f ′(x)→ 0, as x→ +∞, f, f ′′ > 0, f ′ < 0. (2.58)

One can achieve this by applying rotation sending the asymptotic line to
the x-axis, restricting ourselves to a subarc of the curve γ with the same
asymptotic line and applying symmetry with respect to the x-axis, if nec-
essary. The improper integral defining the Lazutkin length of the curve γ
takes the form∫ +∞

1
κ

2
3 (s)ds, κ(s(x)) =

f ′′(x)

(1 + (f ′(x))2)
3
2

, ds =
√

1 + (f ′(x))2dx. (2.59)

Its convergence is equivalent to the convergence of the integral∫ +∞

1
(f ′′(x))

2
3dx, (2.60)

since f ′(x)→ 0, thus, 1 + (f ′(x))2 → 1, as x→ +∞.
Claim. For every C2-smooth function f as in (2.58) the improper inte-

gral (2.60) converges.
Proof The integral (2.60) is estimated from above by Hölder inequality:∫ +∞

1
(f ′′(x))

2
3dx =

∫ +∞

1
(xf ′′(x))

2
3x−

2
3dx

≤
(∫ +∞

1
xf ′′(x)dx

) 2
3
(∫ +∞

1

dx

x2

) 1
3

. (2.61)

Therefore, it remains to prove that the integral
∫ +∞
1 xf ′′(x)dx converges.

Integrating by parts yields∫ +∞

1
xf ′′(x)dx = xf ′(x)|+∞1 −

∫ +∞

1
f ′(x)dx = xf ′(x)|+∞1 − f(1). (2.62)

Suppose the contrary: the integral in the left-hand side diverges. Then
it is equal to +∞, since f ′′(x) > 0. Therefore, xf ′(x) → +∞, as x →
+∞. Hence, f ′(x) > 1

x , whenever x is greater than some constant N > 1.
Integrating the latter inequality along the interval [N,+∞) yields f(N) =
+∞. The contradiction thus obtained proves convergence of the integral in
the left-hand side in (2.62), and hence, of the integral (2.60). The claim is
proved. 2
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The claim together with (2.59) imply convergence of the improper inte-
gral defining the Lazutkin length. This proves Lemma 1.44. 2

Proof of Theorem 1.36. The Lazutkin lengths of both curves γ1 and
γ2 are finite, since they have asymptotic tangent lines at infinity in both
directions and by Lemma 1.44. This together with Theorem 1.40 implies
C∞-smooth conjugacy of the corresponding billiard maps near the boundary
and up to the boundary. Theorem 1.36 is proved. 2

The proof of Theorem 1.37 is analogous to the above proof of Theorem
1.36.
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