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Abstract

Building on the maturity of single-robot SLAM algorithms, collaborative SLAM has brought significant gains in terms
of efficiency and robustness, but has also raised new challenges to cope with like informational, network and resource
constraints. Several multi-robot frameworks have been coined for visual SLAM, ranging from highly-integrated and
fully-centralized architectures to fully distributed and decentralized methods. However, many proposed architectures
compromise the autonomy of the robots in fusing the data processed by the other agents to enhance their own estimation
accuracy. In this paper, we propose three methods to share visual-inertial information, based on rigid, condensed and
pruned visual-inertial packets. We also propose a common collaborative SLAM architecture to organize the computation,
exchange and integration of such packets. We evaluated those methods on the EuRoC [1] dataset and on our custom
dataset AirMuseum [2]. Experiments showed that the proposed methods allow the agents to build, exchange and integrate
consistent visual-inertial packets, and improve their trajectory estimation accuracy up to several centimeters.
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1. Introduction

Collaborative robotics has gained much attention over
the past years as it promises to make the traditional ap-
plications of mobile robotics more efficient and robust. In-
deed, missions such as exploration, inspection and Search-
And-Rescue (SAR) [3] operations may benefit from the
parallelization and distribution of tasks, the inter-robot
mutual information derived from the fusing of their com-
plementary observations, and the resiliency of the fleet in
facing the loss of one of its agents. Such applications de-
pend on the ability of the robots to navigate through an
environment without prior knowledge on it, as aimed by
Simultaneous Localization And Mapping (SLAM).

While single-robot SLAM has been extensively stud-
ied [4], a current challenge is to extend it to collaborative
frameworks. Collaborative SLAM (CSLAM) does not boil
down to a mere extension of single-robot SLAM as it raises
specific challenges to cope with. The first challenge is in-
formational. The exchanged data should allow to spot
inter-robot correspondences and consistently re-estimate
the trajectories while faithfully reflecting the knowledge
of the agents. Secondly, processing inter-robot interac-
tions should not cut into the computational and memory
resources required by the other processes running in paral-
lel to the SLAM algorithm. Finally, robots should address
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communication issues stemming from the limited band-
width and communication range. Despite those difficul-
ties, CSLAM demonstrates an enhanced potential for var-
ious domestic, industrial and military applications. How-
ever, by relying on task integration in centralized architec-
tures or task distribution in decentralized architectures,
most proposed solutions undermine the data processing
autonomy of the robots when it comes to fuse information
from the other robots by exclusively relying on their own
resources and data.

The goal of this paper is to design data sharing meth-
ods for collaborative decentralized visual-inertial SLAM,
which enforce the agents’ autonomy while coping with
informational, communication and resource constraints.
They aim at allowing each agent to process the informa-
tion provided by its own sensors as well as the informa-
tion received from the other agents independently, with-
out the need for cloud computing resources. As contri-
butions, we propose three ways of locally summarizing
the visual-inertial information: condensed packets based
on the computation of consistent virtual factors, pruned
packets which select a subset of raw visual-inertial factors
in a less conservative way (both packets being completed
with raw 2D visual information), and rigid packets which
convey more exhaustive visual-structural information. We
also build a full collaborative SLAM architecture to orga-
nize their computation, exchange and integration. Ded-
icated to multi-robot navigation, those methods aim at
enhancing the estimation accuracy of each robot. They
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were designed to be agnostic to the SLAM Front-End as
long as it outputs a visual-inertial factor graph. We eval-
uate them on multi-robot scenarios built from the EuRoC
dataset [1] and our custom AirMuseum dataset [2].

This paper extends our previous work [5] in three ways.
First, it proposes multiple changes into the building of
the communicated packets and their integration into the
recipient robots’ maps. Secondly, it brings a deeper fo-
cus into the underlying system architecture regarding the
chosen communication policy and task allocation scheme.
Finally, it provides a more exhaustive performance eval-
uation of the proposed methods in coping with the em-
beddability, communication and information constraints
which are classically faced by multi-robot SLAM.

The paper is organized as follows. Section 2 first tackles
the structure of multi-robot SLAM algorithms and reviews
the main contributions which have been published in that
field. Section 3 introduces the notations and mathemati-
cal notions which we will use throughout the paper. Sec-
tions 4, 5 and 6 detail the proposed common collaborative
SLAM architecture regarding the retained task and data
allocation scheme, the communication policy and the data
association and fusion strategy. The next three sections
7, 8 and 9 propose three ways of building visual-inertial
packets to be exchanged between robots, each one being
introduced by a specific related work subsection. Finally,
experiments are carried out and discussed in section 10.

2. Related works

2.1. Simultaneous Localization And Mapping

Simultaneous Localization And Mapping methods con-
currently estimate a map of the observed environment and
the trajectory the robot has run within it, and continu-
ously refines them through local and global relocalization
against the reconstructed map. Figure 1 depicts the gen-
eral architecture of a SLAM algorithm. It first requires at
least one exteroceptive sensor like a LiDAR [6] or a camera
bench [7] for visual SLAM (VSLAM), those latter being
cheaper, lower power consuming and easier to embed on
drones. A local odometry and mapping module interprets,
abstracts and fuses such measurements to initialize locally
consistent map and trajectory estimates. However, it in-
evitably drifts, what compromises the global consistency
of the map. Hence, a correspondence detection module
builds on place recognition algorithms [8] to spot global
loop closures when the robot observes previously mapped
areas. Finally, a global inference module may globally and
smoothly refine the estimates based on the spotted corre-
spondences through Maximum A Posteriori (MAP) esti-
mation. All those modules are flagged either as Front-End
if they process incoming data at their reception rate, or
Back-End processes otherwise.

The contributions of this article focus on Visual-Inertial
(VI) SLAM, whose sensor bench enhances a monocular
camera with an Inertial Measurement Unit (IMU) [9, 10].

Such coupling of low-cost sensors brings multiple advan-
tages: not only does the IMU allow to scale the 3D model
reconstructed from monocular images and align it with
gravity vector, but it also improves the visual tracking,
especially in the case of tight-fusion VI Odometry (VIO)
[11]. However, it requires a steady time-synchronization
between the IMU and the camera, and enlarges the esti-
mation problem with velocity and inertial biases states.
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Figure 1: Common architecture of a SLAM algorithm

2.2. Collaborative SLAM

As emphasized in [4], single-robot SLAM has achieved
high maturity and widened new research perspectives, one
of which being CSLAM [12]. A CSLAM framework ex-
tends single-robot SLAM architectures along three axis: i)
a task and data allocation scheme; ii) an adapted commu-
nication policy and iii) a matching and merging (or data
association and fusion) strategy. The allocation scheme
governs how each task and data is either centralized, de-
centralized or distributed. The communication policy su-
pervises the topology, planning and content of inter-robot
exchanges. Finally, the matching and merging strategy
deals with the spotting of inter-robot correspondences and
multi-robot inference.

2.3. Task and Data allocation scheme

A task (resp. piece of data) is centralized when a single
agent is responsible for its completion (resp. storage). The
latter aggregates and processes data collected by the others
and eventually reports results and updates to them. On
the contrary, the task is decentralized when it is performed
by multiple agents. It is distributed if its computations are
shared among several agents.

2.3.1. Centralized allocation schemes

Centralized allocation schemes rely on a central server
which exhibits increased computational power and stor-
age capacity. Though relieving the agents from complex
Back-End tasks, such architectures might nonetheless un-
dermine their data processing autonomy. Existing meth-
ods can thus be classified according to what extents the
agents are integrated to the server. A first approach,
coined by CoSLAM [13], reduces agents to mobile sensors
and concentrates all mapping and localization tasks on the
server. On the contrary, a second strategy grants more
autonomy to the agents by providing them a full SLAM
pipeline, while it delegates the detection of global inter-
robot correspondences and global inference operations to
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the server. Such approach has been adopted by C2TAM
[14], MOARSLAM [15] and CORB-SLAM [16], which all
build on client-server architectures. Finally, a third and in-
termediary strategy splits individual SLAM pipelines be-
tween the agents and the server but leaves critical VIO
modules to agents. For instance, CSfM [17] spawns one
thread handler per agent on the server which builds it
associated map while a common place recognition mod-
ule spots intra and inter-robot correspondences. However,
CSfM does not provide any feedback to the agents, con-
trary to CCM-SLAM [18] and CVI-SLAM [19] for monoc-
ular and visual-inertial CSLAM. In the same way, Qin et
al. proposed CoVins [20] which extends Vins-Mono [10]
into CSLAM, and Deustch et al. introduced the generic
TeamSLAM [21] framework.

2.3.2. Decentralized allocation schemes

Decentralized allocation schemes seek increased flexi-
bility for the fleet and enhanced autonomy for its agents.
Each agent thus maintains its own map and is respon-
sible for its full SLAM pipeline and the integration of
the data received from the other agents (e.g. spotting of
inter-robot correspondence and running global inference).
Such approach has been implemented by several methods
such as DDF-SAM [22], AUV-CSLAM [23] for underwater
acoustic SLAM, Schuster et al. [24] for dense stereo-visual
collaborative SLAM, Dubois et al. [5] and Sartipi et al.
[25] for visual-inertial CSLAM. Decentralized allocation
schemes are more conducive to the distribution of tasks
and data which compensates for the absence of a central
server. Such pooling of computational resources may tar-
get specific modules such as correspondence detection [26]
and global correspondences consistency checks [27], dis-
tributed inference [27, 28] and map storage [29, 30].

2.4. Communication policies

2.4.1. Communication topology

The communication topology defines the set of robots
each agent can communicate with. Though the adopted
topology should match to the chosen allocation scheme, it
still retains some degrees of freedom. In centralized topolo-
gies, some frameworks [13, 17] restrict to unidirectional ex-
changes from the agents to the server while a second family
[18, 19] make the server provide feedback to the agents
through bidirectional exchanges. On the opposite, de-
centralized topologies allow peer-to-peer exchanges. They
certainly make multi-robot interactions more flexible, but
also denser and unstructured. Special attention should be
paid to handle communication losses and recoveries, and
to prevent double-counting issues. Double-counting arises
when a robot fuses received data while being unaware of
its eventual correlations with its own estimates; this is
likely to stem from cyclic data exchanges and result into
inconsistent, overconfident and biased estimates.

2.4.2. Communicated packets

SLAM algorithms process three kinds of data: i) raw or
pre-processed sensor outputs (like image keypoints and de-
scriptors); ii) probabilistic models and iii) map and trajec-
tory estimates. The communication policy dictates which
of them are shared among the agents. Communication
strategies can be classified according to the degree of pro-
cessing involved in the exchanged data, and whether such
data is communicated exhaustively or in a summarized
way. In most centralized methods such as CSfM [17] and
CVI-SLAM [19], agents communicate extensive informa-
tion on each keyframe. It may include up to keypoints,
descriptors, landmarks, inertial measurements, etc. Van
Opdenbosch et al. [31] proposed to communicate a selec-
tion of compressed visual binary features to share visual
information. Schuster et al. [24] make robots exchange
submaps augmented with rigid stereo-triangulated dense
point clouds, pose estimates and a factor graph. A sec-
ond strategy relies on marginalization and sparsification
techniques, as in DDF-SAM [22], Lazaro et al. [32] using
condensed measurements and AUV-CSLAM [23].

2.4.3. Communication planning

The communication policy schedules the sending of the
packets. Two strategies have been coined in the litera-
ture. The first one is robot-centric as packets are broad-
cast based on intrinsic criteria such as the run distance. It
ensures regular data exchanges which may occur keyframe-
per-keyframe as in CSfM [17] and DOOR-SLAM [27], or
submap-per-submap as done by AUV-CSLAM [23]. The
second strategy is altruistic as exchanged packets are gen-
erated based on the other agents’ estimated knowledge.
Such approach was notably investigated by Tian et al.
[33]: preliminary exchanges of light metadata allow to
identify potential inter-robot correspondences and subse-
quently compute the optimal exchange policy to minimize
the communication cost and the induced labor division.

2.5. Matching & Merging Strategies

2.5.1. Inter-robot correspondences and loop closures

When a robot receives data from another robot, its
first task is to spot eventual correspondences with its own
observations. This step is critical for the mutual registra-
tion of the reference frames attached to the robots, and for
the multi-robot inference as it enforces inter-robot mutual
information. Correspondences may first stem from direct
inter-robot observations, through marker detection [34] or
appearance tracking [35]. Additionally, indirect correspon-
dences are spotted through visual-structural correspon-
dences. Instantaneous indirect correspondences, which only
compares the robots’ current observations, are mostly used
for collaborative localization [25, 36]. Retrospective indi-
rect correspondences may be spotted between any inter-
robot pair of keyframes upon the reception of data from
other robots. Centralized architectures take advantage of
the central server to spot such correspondences, while de-
centralized ones may distribute the task [26], make each
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robot build one visual database per other robot [27], or
leverage preliminary metadata exchanges to circumscribe
the search [37].

2.5.2. Multi-robot inference

Though filtering-based multi-robot inference has first
been proposed [38], most CSLAM algorithms have taken
advantage of the flexibility of factor graphs. They nat-
urally extend to multi-robot frameworks, for which ones
Kim et al. [39] proposed to use anchor nodes to han-
dle multiple trajectories. Furthermore, factor graphs are
prone to support distributed optimizations as proposed
by Choudhary et al. [28] and DOOR-SLAM [27]. De-
centralized methods should prevent double-counting which
may compromise the consistency of the estimates. For
such purpose, Cunningham et al. [22] coined anti-factors
to subtract information while Paull et al. [23] send con-
secutive independent local packets. Multi-robot inference
is also responsible for estimating the transformations be-
tween the reference frames attached to the robots. To that
aim, Indelman et al. [40] use Expectancy-Maximization
(EM) optimization where latent variables are used to de-
activate inconsistent inter-robot correspondences.

2.6. Autonomy in multi-robot frameworks

This literature review shows that the current trend
for CSLAM to enhance efficiency and robustness is to
develop either highly-integrated centralized architectures
or highly-distributed decentralized frameworks. However,
both approaches prevent the agents from independently
fusing the information received from the other agents with
the information provided by their own sensors by exten-
sively resorting to cloud computing resources, and thus
mitigate their autonomy. Indeed, they either depend on a
central server whose failure may neutralize the whole fleet,
or mutually depend on each other. To tackle this issue, we
propose three data sharing methods for VI CSLAM which
enforce the autonomy of the agents while addressing the
information, network and resource constraints.

3. Notations

In the next sections, AtBC denotes a physical quantity
t attached to C w.r.t. B expressed in A, where A, B and
C are reference frames. SEn and SOn respectively denote
the Special Euclidean Group and the Special Orthogonal
Group of dimension n. We parameterize SE3 using the
composite Lie group SO3 × R3. The operator ⊕ denotes
the SE3 pose product. We define the � and � operators:

δτ , T2 � T1 =

[
logSO3

(R2 ·R>1 )∨

t2 − t1

]
=

[
δθ
δp

]
(1)

T2 = δτ � T1 =

[
expSO3

(δθ∧) ·R1 δp+ t1
0 1

]
(2)

where R(·) ∈ SO3 and t(·) ∈ R3 parameterize T(·) ∈ SE3,
logSO3

maps from SO3 to its Lie algebra so3, the vee opera-

tor maps from so3 to R3, and the expSO3
and hat operators

respectively map reversely. Interested readers may refer to

[41] for more details on operations on Lie groups. J
f(θ)
θ (θ̂)

denotes the Jacobian matrix of f(θ) w.r.t. θ evaluated at

θ̂. Finally, the Mahalanobis norm of x ∈ Rn, weighted by
a symmetric positive-definite matrix A, is denoted ‖x‖A.

4. Overview of the proposed architecture

In this paper, we propose three decentralized collabora-
tive visual-inertial SLAM algorithms dedicated to multi-
robot navigation, respectively based on the exchange of
condensed, pruned and rigid visual-inertial packets. We
first assume that each robot estimates its own map and
trajectory using a given VIO algorithm which outputs a
visual-inertial factor graph. We make robots regularly ex-
change data packets which summarize successive, uncor-
related and local portions of their map, and append them
with a selection of visual information. Such packets are
used by the receiver to spot inter-robot correspondences,
and estimate the trajectories with enhanced accuracy. A
client-server architecture is also added: it allows the robots
to optionally request additional visual information upon
the spotting inter-robot correspondences in order to dy-
namically refine them.

Task and data allocation scheme. As illustrated in Fig-
ure 2, we use a fully decentralized and weakly distributed
task and data allocation scheme: each robot is responsible
for running its own SLAM algorithm and integrating the
received packets into its own estimated map. Nonetheless,
it yields an implicit labour division since each robot re-
stricts to spotting correspondences against its own map.

SLAM Front-End

Multi-robot
inference

Robot A’s
estimates

Detection of
inter-robot

correspondences

Reference frame
anchoring

Other robots’
estimates

Robot A

SLAM Front-End

Multi-robot
inference

Robot B’s
estimates

Detection of
inter-robot

correspondences

Reference frame
anchoring

Other robots’
estimates

Robot B

Each robot handles its own Front-End modules to build its map and
spot loop-closures within its own trajectory. It also handles multi-
robot inference and reference frame anchoring. However, it only
detects inter-robot correspondences against its own observations.

Figure 2: Task and Data allocation scheme

Communication policy. The proposed decentralized
communication policy, described in section 5, splits into
two communication regimes. First, a regular communi-
cation policy makes robots regularly build and exchange
data packets from successive uncorrelated local submaps
to avoid double-counting issues. Each packet decouples
the data for place recognition and trajectory estimation.
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It also handles the exchange of spotted correspondences
and direct inter-robot observations. A client-server archi-
tecture allows each robot to request additional visual in-
formation after spotting inter-robot correspondences. The
communication policy is completed with a regularization
policy which operates when two robots recover contact.

Robot A Robot B

VI Packets

Correspondences

Requested keyframesRequest

Regular policy

Keyframe request

Current knowledge state

VI Packets

Correspondences

Requested keyframes

Regularization policy

Delayed
requests

Figure 3: Communication policies

Matching and Merging strategy. Received packets are
integrated independently from each other and connected to
the previously received ones in a dedicated reference frame.
Those latest get mutually anchored as soon as enough
inter-robot correspondences between them are available.
Upon reception, each new packet is used to spot inter-
robot correspondences with the receiver’s past keyframes,
and regularly matched against the receiver’s new keyframes.
Newly spotted correspondences trigger global multi-robot
inference which only uses the factors attached to sent and
received packets (see section 6).

5. Common communication policy

5.1. Regular communication policy

The regular communication policy supervises the ex-
change of three kinds of data: i) packets; ii) spotted corre-
spondences and iii) requested visual frame information, as
described in Figure 3. The computation and broadcasting
of a new packet is triggered based on kinematic criteria,
as soon as the robot estimates it has traveled a distance
d ≥ dmax since it computed its last packet, where dmax

can be set to several meters. The computed packet is then
broadcast to all reachable neighbors. Each spotted corre-
spondence is broadcast the same way. A correspondence
message holds the IDs of the robots, the timestamp of
their matched keyframes and the measurement itself. Sent
packets and correspondences are associated with sending
indexes, which are incremented for each newly broadcast
packet or correspondence. Robots maintain and update
a table which maps such indexes either to the correspon-
dence’s ID or a structure describing the spatial extend of
the packet. Finally, when a robot spots a inter-robot cor-
respondence, it can request additional visual information
about the k neighboring frames to the matched one to spot
more correspondences. As a response, the queried robot
sends a selection of the keypoints and descriptors of the
neighboring frames (see §5.3).

5.2. Regularization communication policy

In a decentralized framework with limited communica-
tion range, robots may occasionally lose contact between
each other when covering large areas, and thus miss some
valuable information broadcast in the meanwhile. When
they recover contact, they should regularize their knowl-
edge. For that purpose, we make each robot hold a recep-
tion bookkeeping. Robot i stores the index of the most
recently received information from each other robot j 6= i.
When two robots recover contact, they first exchange their
current reception bookkeeping. They can then regularize
their knowledge by sending to the other robot all the pack-
ets and all the correspondences with posterior indexes. For
each robot, data must be sent in chronological order not
to break the consistency of the reception history if the
communication was to be lost again during the process.

5.3. Visual information selection

All presented methods resort to a keyframe and key-
point selection mechanisms. Given a sub-trajectory, the
objective is to select a subset of the keyframes which covers
the whole environment observed from that sub-trajectory,
as described by Algorithm 1. As a second step, we select a

Algorithm 1– Keyframe selection on a sub-trajectory

Parameters

nmin : threshold on commonly observed landmarks;
qmin : threshold quotient of commonly observed landmarks;
α : coefficient between 0 and 1;
Li : set of observed landmarks from keyframe with index i;

Input: I1:N = {I0, ..., IN} the set of successive keyframes
within the given sub-trajectory.

Output: S the set of selected keyframes.

S ← {I0, IN};
r ← 0;

for i ∈ {1, ..., N − 1} do
nri ← |Lr ∩ Li|;
qri ←

|Lr ∩ Li|
|Lr|

;

if niN ≤ nmin ou qiN ≤ qmin then
niN ← |Li ∩ LN |;
qiN ←

|Li ∩ LN |
|LN |

;

if nri ≤ α · nmin ou qri ≤ α · qmin then
S ← S ∪ {Ii};
r ← i;

subset of the keypoints on the selected keyframes. We use
a simple heuristic which involves to retain the nkp key-
points associated with the most observed landmarks, as
they are likely to be associated to the most stable and in-
formative descriptors. The track length is a good heuristic
indicator of the salience of a keypoint, which depends on
its distinctiveness, repeatability and detectability.
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(b) Multi-robot factor graph

Figure 4: Single and multi-robot factor graphs

6. Common Matching & Merging strategy

6.1. Correspondence detection module

To spot indirect correspondences, we use the pipeline
developed by Lynen et al. [42] and implemented in the
Maplab framework [43]. Each spotted correspondence is
broadcast to all reachable robots. When a correspon-
dence is received from another robot, it is added to the
map if both corresponding keyframes are known. Other-
wise, it is buffered until missing keyframes from upcom-
ing packets are received. When a new packet is received,
the robot looks for correspondences between the received
keyframes and its own keyframes. It also checks whether
some buffered correspondences may be added to the map.
Finally, when it adds a new keyframe to its own trajec-
tory, it looks for loop closures with its own keyframes, as
well as inter-robot correspondences with the keyframes re-
ceived from the other robots. All spotted correspondences
are broadcast to the other robots.

6.2. Global inference module

The trajectory is modeled as a discrete set of con-
secutive keyframes, each one being described by its pose
TWBk

∈ SE3, its velocity WvWBk
and its inertial biases

Bkbk, where W and B respectively denote the global and
the body inertial frames. The environment is sparsely rep-
resented as a set of 3D landmarks `i whose positions Bili
are estimated w.r.t. their first observer keyframe Bi. We
encompass all those variables in the set Θ and denote their
associated space HΘ. The knowledge carried by a set of
measurements Z onto a set of variables Θ is modeled as a
graph of factors [44]. This is a bipartite graphical proba-
bilistic model which encodes the likelihood p(Z|Θ) of the
observations w.r.t. the estimated variables. Under the hy-
pothesis of identically and independently distributed ob-
servations, it factors as:

p(Z|Θ) =
∏

z∈Z
p(z|Θ) (3)

Each observation z ∈ Z yields a factor p(z|Θ) which ap-
pears in such decomposition. In the Gaussian case:

p(z|Θ) = N (ξz(Θ); 0,Σξz ) ∝ exp

(
−1

2
‖ξz(Θ)‖2Σξz

)
(4)

where N is the normal distribution, 0 is the null vector,
ξz(Θ) is the associated residual and Σξz its covariance
matrix. Inference is performed by minimizing the resulting
negative log-likelihood of the measurements:

Θ̂ = arg max
Θ∈HΘ

p(Z|Θ) = arg min
Θ∈HΘ

∑

z∈Z
‖ξz(Θ)‖2Σξz

(5)

which yields a nonlinear least-square optimization problem
over the residuals in the Gaussian case, classically solved
using the Levenberg-Marquardt algorithm. In the visual-
inertial case, the associated factor graph has the form de-
picted by Figure 4a with inertial and visual factors which
are defined below. In our multi-robot framework, we use
the architecture advocated by Kim et al. [39], where each
robot’s baseframe is associated to a dedicated anchor node
as illustrated by Figure 4b. Multi-robot inferences are
triggered as soon as a minimum number of new correspon-
dences have been spotted or if a minimum time duration
has elapsed since the spotting of the latest new and unpro-
cessed correspondence. In the next paragraphs, we detail
the residuals for inertial, visual and relative pose factors.

6.2.1. Inertial factors

Each inertial measurements uk connecting keyframes
Kk and Kk+1 yields an inertial residual:

ξuk
(Θ) =




TWBk+1
� T̂WBk+1|k

WvWBk+1
−Wv̂WBk+1|k

Bk+1bk+1 − Bkbk


 (6)

where T̂WBk+1|k , Wv̂WBk+1|k are predicted using a RK4 in-
tegrated discrete-time dynamics of the robot from the pose
and inertial states at time k. Inertial factors may also be
derived from pre-integrated IMU factors [45].
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6.2.2. Visual factors

The observation zij of landmark lj from keyframe Ki

yields a visual residual:

ξzij(Θ) = zij − πBi

(
T−1

WBi
⊕ TWBj · Bj lj

)
(7)

where Bj denotes the first observer keyframe of landmark
lj . The function πBi

is the pinhole camera projection
which maps a 3D point expressed in Bi onto the camera
image plane, and which depends on distortion, intrinsic
and camera-IMU extrinsic parameters.

6.2.3. Relative pose factors

A relative pose factor zij between keyframes Ki and Kj

of robots Ri and Rj yields the residual:

ξzij
(Θ) =

(
T−1

RiBi
⊕ TRiRj

⊕ TRjBj

)
� T̂BiBj

(8)

where T̂BiBj
is the estimated relative pose, and TRiRj

is
the offset pose between the reference frames attached to
robots Ri and Rj , associated to an anchor node [39].

7. Condensed Visual-Inertial Packets (CVIP)

7.1. Related works

A first strategy to communicate visual-inertial informa-
tion is to summarize it into condensed packets. Marginal-
ization techniques allow to bound the ever-increasing com-
plexity of the SLAM inference problem by pruning vari-
ables without losing information. However, it yields a
dense distribution as it induces cross-correlations between
all the remaining variables. Sparsification is the process of
approximating this dense distribution by a sparse one with
less partial pairwise correlations yielded by a set of virtual
factors and which result into the same MLE estimate. In
the Gaussian case, it involves to compute the mean and
covariance of the virtual factors of the new topology.

Ideally, the sparsification process should minimize the
loss of information which is commonly quantified using the
relative entropy i.e. Kullabck-Leibler divergence (KLD)
w.r.t. the dense distribution. This first requires a judi-
cious choice for the enforced topology. Invertible topolo-
gies such as spanning trees (e.g. Chow-Liu trees [46]) allow
closed-form sparsification as used for Generic Linear Con-
straints [47] and Nonlinear Factor Recovery [48]. How-
ever, richer topologies may provide better approximations
at the cost of requiring iterative minimization with the
constraint of enforcing a positive-definite information ma-
trix. For such case, Interior Point [49], quasi-Newton [48]
and block-coordinate descent [50] methods can be used.

The sparsified distribution should ideally be consistent
with the original one, meaning that it should not add arti-
factual information by artificially reducing the uncertainty
on any subset of variables. In the Gaussian case, this yields
a Loewner ordering constraint over the dense and spar-
sified covariance matrices, respectively denoted Σd and
Σs: Σd ≤ Σs. Such constraint can be enforced with

log-barriers or by truncating inconsistent eigenvalues in
the spectrum of the sparsified covariance matrix resulting
from the relaxed problem [23].

Marginalization and sparsification techniques are used
in single-robot SLAM frameworks to simplify the inference
problem, especially by pruning the oldest variables of opti-
mization sliding windows [51]. In multi-robot frameworks,
it provides a convenient means to communicate condensed
packets by projecting the information over commonly ob-
served landmarks [22, 23, 32]. Marginalization and spar-
sification steps may be coupled to minimize subsequent
communication costs [52].

7.2. Packet computation

The proposed method is inspired from AUV-CSLAM
[23] and relies on the exchange of consistently marginalized
and sparsified packets, augmented with a selection of raw
2D visual information to spot inter-robot correspondences.

7.2.1. Local marginalization

We first perform a local visual-inertial bundle adjust-
ment in a local gravity-aligned frame of reference L. The
pose of the first keyframe is kept constant for gauge fixing.
The optimized variables Θ include all the keyframe poses
T and inertial states E , and the positions L of the ob-
served landmarks. ZVI denotes the set of visual and iner-
tial factors. The posterior distribution p(Θ|ZVI) is locally
approximated as a Gaussian distribution in the neighbour-
hood of the resulting MLE estimate Θ̂:

p(Θ|ZVI) = N
(
ξΘ̂(Θ); 0,

[
IΘ
ZVI

(Θ̂)
]−1
)

(9)

where ξΘ̂ is the stacked residual w.r.t. the MLE estimates.

IΘ
ZVI

(Θ̂) is the observed Fisher Information Matrix (FIM):

IΘ
ZVI

(Θ̂) =
∑

z∈ZVI

[
JξzΘ (Θ̂)

]>
·Σ−1

ξz
·
[
JξzΘ (Θ̂)

]
(10)

where ξz, Σξz and JξzΘ (Θ̂) respectively denote the mea-
surement residual, its covariance matrix, and its Jacobian
matrix w.r.t. Θ evaluated at Θ̂. We marginalize p(Θ|ZVI)
to yield the following distribution on the pose variables T :

p (T |ZVI) = N
(
ξT̂ (T ); 0,

[
ITZVI

(T̂ )
]−1
)

(11)

where ξT̂ (T ) is the stacked absolute pose residual. The

marginalized information matrix ITZVI
(T̂ ) is computed as

the Schur’s complement of the discarded variables:

ITZVI
(T̂ ) =

[
IΘ
ZVI

(Θ̂)
]

RR
−

[
IΘ
ZVI

(Θ̂)
]

RM

[
IΘ
ZVI

(Θ̂)
]−1

MM

[
IΘ
ZVI

(Θ̂)
]

MR
(12)

where the subscripts R and M respectively denote the
sets of rows or columns associated to the retained and
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marginalized variables. The resulting distribution is equiv-
alent to a single dense |T |-ary stacked absolute pose factor
zT̂ such that p

(
zT̂ |T

)
, p (T |ZVI). The marginalization

process is depicted by Figure 5a, compared to Figure 4a.

7.2.2. Consistent sparsification

The resulting marginalized factor p(zT̂ |T ) is far too
complex to be communicated as such. As a second step,
we thus take advantage on sparsification techniques to con-
sistently approximate it using a set ZS of uncorrelated
Gaussian relative pose factors (as defined in equation (8)
and shown in Figure 5b) between successive keyframes.
Such virtual factors yield a distribution:

p(ZS |T ) =
∏

z∈ZS

p (z|T ) = N
(
ξZS

(T ); 0,ΣξZS
|ZS

)
(13)

where ξZS
(T ) is the stacked relative pose residual, and

ΣξZS
|ZS

is its block diagonal covariance matrix. The vir-
tual factors must yield the same MLE estimate:

T̂ = arg max
T ∈HT

p(ZVI|T ) = arg max
T ∈HT

p(ZS |T ) (14)

whose locally associated Gaussian distribution is:

p(T |ZS) = N
(
ξT̂ (T ); 0,

[
ITZS

(T̂ )
]−1
)

(15)

with the following observed Fisher Information matrix:

ITZS
(T̂ ) =

[
J
ξZS

T (T̂ )
]>
·Σ−1

ξZS
·
[
J
ξZS

T (T̂ )
]

(16)

The covariance matrices of the virtual factors are found as
the solution of an optimization problem which minimizes
the information loss under a consistency constraint:

Σ∗ξZS
= arg min

ΣξZS
∈D+

DKL (p(T |ZVI), p(T |ZS)) (17a)

subjected to ITZS
(T̂ ) ≤ ITZVI

(T̂ ) (17b)

where DKL denotes the Kullback-Leibler divergence, D+ is
the set of block diagonal positive definite matrices which
matches the desired sparsified topology. Mazuran et al.
[48] showed that this problem, relaxed from the consis-
tency constraint, has a closed-form solution as the Jaco-

bian matrix J
ξZS

T (T̂ ) of the sparsified topology is invert-
ible. The dense covariance matrix is first projected onto
the space of the new relative pose factors ZS :

ΣξZS
|ZVI

=
[
J
ξZS

T (T̂ )
] [

ITZVI
(T̂ )
]−1 [

J
ξZS

T (T̂ )
]>

(18)

The projected covariance matrix ΣξZS
|ZVI

is then marginal-
ized onto each new virtual factor z ∈ ZS to get its covari-
ance matrix Σξz|ZVI

. The transformations applied to the
covariance matrices are illustrated by Figure 6. However,
such factors are still correlated as each one summarizes the
whole information of the original distribution.

We finally need to impose the consistency constraint
(17b) from the solution of the relaxed problem. Classical
methods [53] based on the solving of Semi-Definite Pro-
gramming problems by interior point methods and which
model the consistency constraint with log-det barriers are
intractable in real-time. We therefore use a non-optimal
method to enforce this constraint with less complexity.
The consistency constraint can be reformulated with co-
variances:

ITZS
(T̂ ) ≤ ITZVI

(T̂ )⇔ ΣξZS
|ZS
≥ ΣξZS

|ZVI
(19)

We compute the largest eigenvalue λmax of ΣξZS
|ZVI

. This
can be efficiently achieved using for instance the Lanczos
algorithm [54]. Then, we iterate over each factor z ∈ ZS

and perform an eigen-decomposition of its marginalized
covariance matrix Σξz|ZVI

= Q · diag(λz) · Q> with λz

the vector of its eigenvalues and Q ∈ SO6. Two alter-
native truncation techniques are possible. The first one
replaces by λmax each eigenvalue of λz which is lower
while the second expands λz by a factor α ≥ 1 such that
min(α ·λz) = λmax. This preserves the relative uncertain-
ties between the residuals. To account for the fact that
each eigenvalue will indifferently contribute to the orien-
tation and translation residuals, which exhibit different
magnitudes and units, the dilatation is carried out in a
normalized space, by working on the correlation matrix.

7.2.3. Finalizing the packet

The packet is completed by adding a selection of raw vi-
sual information following the procedure described in §5.3
and Algorithm 1. The final packet consists of the com-
puted relative pose virtual factors and the communicated
pruned visual frames. The camera model is appended to
the first packet as it is required to estimate relative poses
from spotted inter-robot correspondences. The computed
relative pose factors are recorded in the map, and will be
used for global inference along with the received factors.

7.3. Packet integration

Once the trajectory is initialized using the relative pose
factors, we search for inter-robot correspondences. Inter-
robot correspondences are spotted by querying the re-
ceived visual frames into the receiver’s visual database
as exposed in section §6.1. For instantaneous correspon-
dences, the receiver’s new keyframes are temporally stored
into a local visual database of limited capacity, which we
query with all the received visual frames when it gets full.
The local visual database is then re-initialized. When a
robot spots an inter-robot correspondence using a received
visual frame, it can request additional visual information
over the neighboring visual frames to the corresponding
robot. It then receives the keypoints coordinates and de-
scriptors associated to the highly covisible keyframes. To
mitigate the communication cost of such requests, only a
subset of the keypoints is communicated, using the same
selection process as described in section §5.3.
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(a) Marginalized graph: marginalization yields an equivalent n-
ary factor zT̂ over the remaining pose variables T encoding the
likelihood p(T |ZVI).
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(b) Sparsified graph: sparsification approximates the dense dis-
tribution p(T |ZVI) as p(T |ZS) ∝∏
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Figure 5: Marginalization and Sparsification processes

Project
ξT̂ → ξZs

Covariance ΣξT̂ |ZVI Covariance ΣξZs |ZVI

Marginalize
ξZs → ξzs

Covariances Σξzs |ZVI, zs ∈ Zs

Σξzs |ZVI

The dense covariance matrix is first projected onto the virtual fac-
tors’ space, an then marginalized onto each virtual factor’s subspace.

Figure 6: Solving the relaxed problem

8. Pruned Visual-Inertial Packets (PVIP)

8.1. Related works

A second strategy to synthetize visual-inertial informa-
tion is to summarize the localization information through
factor pruning. It seeks to approximate the original visual-
inertial distribution as compactly as possible without ex-
cessively compromising the reliability of the resulting MLE
estimate in terms of accuracy and uncertainty. It does not
face the consistency issue met by condensation techniques,
and boils down to a NP-hard resource-constrained optimal
subset selection problem :

Z∗S = arg max
ZS⊆Z

u(Θ,ZS) s.t. c(Θ,ZS) ≥ 0 (20)

where u quantifies the utility of the set of selected factors
ZS w.r.t. some interest variables Θ, and c encodes a se-
lection constraint. The utility function should ideally pro-
mote the synergistic selection of informative factors while
penalizing the joint selection of mutually redundant ones.

The information theory provides adequate tools to mea-
sure the redundancy between variables, such as mutual in-
formation [55] and relative entropy [56]. However, they
result into complex metrics, which can be approached by
simpler correlated heuristic, geometric [7] or statistical
metrics [18]. Building on graph theory, Khosoussi et al.
[57] related the reliability of the MLE estimate to the num-
ber of spanning trees in the pose graph and designed a
subsequent graph pruning strategy.

The second purpose of the utility function is to quan-
tify how a subset ZS of factors contributes to the estima-
tion of interest variables Θ like trajectory variables. Joint

utility functions may once again benefit from information-
theoretic tools to derive landmark selection schemes which
bound the localization uncertainty along the trajectory
[58]. Zhao et al. [59] coined a max-LogDet criteria to se-
lect landmarks which best condition the least square pose
estimation problem. Finally, Dymzcyk et al. [60] proposed
an optimization framework for landmark sparsification un-
der limited budget constraints in the context integer linear
and quadratic programming.

In practice, it may be approximated as a sum of indi-
vidual contributions. Landmarks are then ranked accord-
ing to their information gain to spot the most informative
landmarks for localization [61] or collision-avoidance [62].
The utility of each landmark can be learnt using statis-
tical regression models [63], based on simple criteria in-
cluding tracking, reprojection and appearance. Dymzcyk
et al. [64] used an iterative reduction algorithm alternat-
ing between sampling and scoring, based on the number of
observer keyframes. In the context of Structure from Mo-
tion, Cao et al. [65] proposed a probabilistic Min-K-Cover
(MKC) algorithm to ensure a probabilistic k-cover while
maximizing the associated descriptor variance.

8.2. Packet computation

The proposed method resembles the previous one but
relies on landmark pruning formulated as a set cover prob-
lem. It makes robots regularly exchange pruned packets.
Each packet consists of raw inertial factors and selected
landmark tracklines to convey the localization information
on the trajectory poses, and of raw 2D visual information
on selected keyframes.

8.2.1. Subgraph extraction

Contrary to CVIP, we consider a larger subgraph which
includes some keyframes communicated in the previous
packet but which have a covisibility ratio r ≥ rcommon with
the first new keyframe, as illustrated in Figure 7. The ob-
jective is to mitigate border effects during the selection of
the landmarks and enforce trackline overlapping between
successive packets. Furthermore, no local optimization nor
covariance extraction is needed.
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Figure 7: Structure of the underlying visual-inertial factor graph of
a PVIP packet, to be compared with Figure 4a

8.2.2. Appending trajectory and inertial measurements

The first step is to append the trajectory and iner-
tial information to the packet. For each keyframe Ki, we
append its current relative pose estimate TKi-1K with its
previous keyframe Ki-1. Only inertial factors posterior to
the previous packet are actually appended despite of the
subgraph’s overlapping.

8.2.3. Landmark selection

Then, we select a subset of the landmarks which ideally
maximizes the information on the pose of the keyframes.
The first method models the selection as a set k-cover
problem. It consists of computing a minimal subset of
well-constrained landmarks such that each keyframe is cov-
ered with at least k landmark observations. This is a NP-
complete problem whose solution can be approximated us-
ing a greedy sampling and scoring algorithm. At each iter-
ation, we select the landmark `i which covers the most par-
tially covered keyframes. In the case of multiple optimal
landmarks, we select the one with the most observations.
Each landmark is selected with its full trackline, which
may result in supernumerary covers on some keyframes.
Then, the selected landmark is deleted from the pool of
candidates and the covering scores for keyframes and land-
marks are updated. We also delete all the landmarks `j
which show redundancies to `i which we quantify using the
quantity Rij, inspired from [60]:

Rij =
1

|Kij|
∑

k∈Kij

min (dmin, d(pk,i,pk,j))

dmin
≤ Rmin (21)

where Kij denotes the set of the keyframes onto which ones
they both project, and pk,• stands for their projection on
the kth keyframe; dmin is a threshold and normalization
distance and Rmin ∈ [0, 1] is a user-defined threshold to
characterize redundancy. The algorithm stops as soon as
all keyframes are covered with at least k landmark observa-
tions or no remaining landmark covers a partially covered
keyframe. We call this method PVIP-MKC.

The iterative sampling and scoring method proposed
by Dymczyk et al. [64] provides an alternative suitable
solution for solving the above set cover problem as an

integer-based optimization problem [60]:

I∗LS
= arg min

ILS
∈{0,1}N

q> · ILS
s.t. A · ILS

≥ k (22)

where ILS
is a binary indicator vector whose ith variable

indicates whether the ith landmark is selected into LS or
not. The ith coefficient of q is the inverse observer count
for the ith landmark. The cover constraint is encoded by
a visibility matrix A defined such that Aij = 1 if keyframe
i observes landmark j and Aij = 0 otherwise. k is the tar-
get cover vector. As the optimization is already performed
on the bounded extracted subgraph, no preliminary parti-
tioning is needed. We refer to this approach as PVIP-ILP.

8.2.4. Finalizing the packet

The visual information is appended the same way as
it was done for CVIP. The final packet includes the con-
secutive inertial factors, the selected landmark tracklines,
as well the selected keypoints and descriptors. We might
need to fuse landmarks and keypoints on the already re-
ceived extra vertices. The current relative pose estimates
between the consecutive keyframes are also appended to
the packet. In the first packet, we also include the IMU
and camera model coefficients which are needed for infer-
ence and the detection of inter-robot correspondences.

8.3. Packet integration

Upon reception, the trajectory is reconstructed from
the relative pose estimates, which we then use to initialize
the inertial states and triangulate the communicated land-
marks. Inter-robot correspondences are spotted following
the same process as CVIP. Global multi-robot inference is
performed as a reduced visual-inertial bundle-adjustment
over the selected landmarks. However, such inference is
run as a Back-End process. To quickly impact new corre-
spondences, we formulate a pose-graph relaxation problem
which we build over the new correspondences and by en-
forcing priors on the current relative pose estimates along
the trajectories and the previously included correspon-
dences, and we only consider unit-covariance matrices.

9. Submap Visual-Inertial Packets (SVIP)

9.1. Related works

When sharing data with other robots, a third and more
classical solution involves transmitting rigid submaps, hold-
ing extensive visual-structural information on the observed
environment. Global consistency is then approached by
mutually registering the locally consistent submaps. The
sub-mapping approach has been used in decentralized col-
laborative SLAM: Schuster et al. [24] make robots ex-
change dense stereo-visual point clouds registered through
ICP, Sartipi et al. [25] exchange and update current visual-
inertial submaps for collaborative localization and [66] ex-
change submaps associated to Truncated Signed Distance
Functions for dense mapping.
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9.2. Packet computation

The proposed method relies on the exchange of visual-
inertial submaps. In each packet, the localization infor-
mation is summarized into a condensed factor graph us-
ing local marginalization and sparsification techniques as
presented in §7. However, no consistency constraint was
enforced on those packets. The particularity of SVIP lies
in the way it communicates visual-structural information.
We take advantage on the rigid point cloud associated to
the submap to encode visual and structural information re-
quired for place recognition and correspondence character-
ization. The positions of well-constrained landmarks are
expressed relatively to the body frame of the first keyframe
of the submap. We associate each landmark with its most
consensual (median) descriptor. Landmarks with high de-
scriptor variance are ignored as they may be unstable or
result from incorrect data association.
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Lξ̂B1
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Lξ̂B2

T̂LB3

Lξ̂B3

T̂LB4
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Positions of observed landmarks
{
B0 ˆ̀

}
`∈L

Landmark median descriptors

Landmark covisibility information

A SVIP packet includes virtual relative pose factors, and a rigid
point cloud of landmarks resulting from local optimization, along
with descriptor and a landmark covisibility table as required to spot
and filter correspondences.

Figure 8: Content of a SVIP packet, compared with Figure 4a

Finally, inspired by the structure of the summary maps
described by Lynen et al. [42], we also append a land-
mark covisibility table: each landmark is associated with
a list of the indexes of all its observer keyframes within
the submap, but the coordinates of the associated 2D key-
points are not communicated. Such information is nec-
essary to filter outlier candidate keyframes for correspon-
dences. The final packet is represented in Figure 8. Once
the submap is completed, we replace the portion of the
original map with the computed submap but we keep the
original frames whose 2D visual information is needed to
spot correspondences.

9.3. Packet integration

The received submap is reconstructed and connected
to the previously received submaps. Indirect retrospec-
tive inter-robot correspondences are spotted by querying
a subset of the recipient robot’s keyframes against the vi-
sual database associated to the received submap. Those
query keyframes are selected along the recipient robot’s
trajectory using Algorithm 1. If a correspondence is found,
then neighboring keyframes are also queried. Finally, the
submap visual database is appended to the global visual
database attached to the sender robot. When adding a

new keyframe on the receiver’s trajectory, it is queried
against the visual databases of the other robots.

10. Performance evaluation

The proposed methods aim at enforcing the auton-
omy of the robots while meeting the requirements de-
rived from informational, communication and embeddabil-
ity constraints. While the autonomy regarding the de-
tection of inter-robot correspondences and multi-robot in-
ference is achieved by construction, the suitability of the
proposed architectures and data exchange methods w.r.t.
those constraints must be assessed.

10.1. Test scenarios

We evaluated the proposed methods on multiple multi-
robot scenarios. We first used the EuRoC dataset [1] to
build 4 multi-robot scenarios by synchronizing individual
Machine Hall sequences, as detailed in table 1a. However,
the EuRoC sequences were primarily designed for single-
robot SLAM, and consequently, trajectories are already
self-sufficient in terms of loop closures. To properly stage
the specific challenges of online collaborative SLAM, we
designed the AirMuseum dataset [2]. It consists in five
heterogeneous multi-robot scenarios with aerial and ter-
restrial sequences whose properties are displayed in Table
1b. Their trajectories were jointly designed such that they
accumulate a significant odometric drift which would be
correctable online based on the temporal and spatial distri-
bution of informative inter-robot direct and indirect corre-
spondences. The additional objective was to evaluate the
proposed methods in a heterogeneous context including
terrestrial robots and test the limits of the proposed meth-
ods on more complicated scenarios than the one built from
the EuRoC sequences (e.g. less correspondences, lower
signal-to-noise ratio, IMU excitations and visual richness
on the terrestrial sequences, lower IMU quality, etc.).

10.2. Implementation and simulation details

Simulations were carried out using the ROS middle-
ware on an Inter R© Xeon(R) W-123 CPU 3.60 GHz × 8
processor. We simulated the outputs of an elementary
SLAM Front-End by using the open loop trajectory esti-
mates of the Vins-Mono visual-inertial estimator. We then
performed a KLT retracking [67] over the trajectory and
the input images. The output was then dumped into a
.bag file with custom keyframe messages including visual
frame information, landmark tracklines, inertial states and
relative pose estimates between consecutive keyframes.

The simulation were carried out as a turn-by-turn pro-
cess based on the chronological iteration of all the keyframes
and direct observation ROS messages extracted from the
provided .bag files as described by Algorithm 2 and Fig-
ure 9a. We implemented each robot as a ROS node with
its own topic publishers and subscribers to simulate data
sending and reception. Robot manage their own map using
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(a) Multi-robot simulation architecture (b) CVIP simulated on MH123 (c) SVIP simulated on MH123

Figure 9: Simulation architecture and visuals

Seq.
Distance Duration Scenarios

[m] [s] 12 13 45 123
MH1 80.6 182 é é é
MH2 73.5 150 é é
MH3 130.9 132 é é
MH4 91.7 99 é
MH5 97.6 111 é

Multi-robot scenarios built from the EuRoC dataset are given names of
the form MH{XYZ} according to the involved sequences. For instance,
MH12 denotes the scenario which consists of sequences MH1 and MH2.

(a) Multi-robot scenarios built from EuRoC [1]

Scenarios #1 #2 #3 #4 #5
Duration [s] 445 387 304 316 304
Trajectory length
Robot A [m] 229 116 147 182 141
Robot B [m] 225 141 143 120 178
Robot C [m] 191 162 202 222 131
Drone [m] — — 203 215 204

Robots A, B and C are terrestrial WifibotsTM and the drone is a DJI-
M100TM. All robots carry a stereo camera bench and an IMU.

(b) AirMuseum multi-robot scenarios

Table 1: Properties of the multi-robot scenarios

the Maplab framework [43], and handle dedicated modules
to add new keyframes, perform detect intra and inter-robot
correspondences, perform multi-robot inference, build, ex-
change and integrate packets and anchor reference frames.
Figures 9b and 9c give some example visuals of the re-
spective simulations of the CVIP and the SVIP methods
on the MH123 scenario.

The presented methods share some common parame-
ters. The first one is the minimum traveled length `min

between two consecutive packets, which tunes the amount
of information contained in the packets versus their com-
putation complexity. It especially affects CVIP and SVIP
since the processing requirements of the marginalization
step drastically increase with the size of the packets. In
the following simulation, we empirically set `min = 5m
as a good compromise. The second family of parameters
include the covisibility ratio qmin and threshold nmin for

Algorithm 2– Multi-robot turn-by-turn simulation

foreach msg in sorted messages do
update clock(msg);

robot ← robots[msg→robot id]
if msg.type = keyframe then

Process subscribers’ callbacks queues

robot.add received packets();
robot.add received correspondences();
robot.process frame requests and responses();
Add the new keyframe

robot.add new keyframe to the map(msg);
robot.compute new packet if required();
robot.detect intra robot loop closures();
robot.detect inter robot correspondences();
robot.anchor reference frames if possible();
robot.perform inference if required();

else if msg.type = direct correspondence then
robot.direct correspondence topic.publish(msg);

Run the turn of the robots which have stayed inactive
more than a given time period;

the selection of the keyframes in CVIP and PVIP. The
third one is the number nkp of keypoints and descriptors
to retain on each selected keyframe, and which is used in
the three methods. Since visual information accounts for
most of the weights of the exchanged packets, those pa-
rameters should be tuned so that they allow to spot inter-
robot correspondences without degrading the communi-
cation cost too much. We empirically set qmin = 20%,
nmin = 20 and nkp = 100. The last family of parame-
ters is specific to PVIP and includes the landmark target
cover k and the maximum allowed redundancy threshold
Rmin. We set Rmin = 0.5. We experiment different values
for k, which should be chosen large enough such that the
keyframe poses are sufficiently constrained for BA. If not
explicitly specified, k = 20.

10.3. Assessing embeddability constraints

The distribution of packet computation times on the
EuRoC scenarios are shown in Figure 10a. We note that
they range from a few tenth of seconds to a few seconds,
which suits to real-time requirements. We note that SVIP
and CVIP methods require more processing time than
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PVIP. This results from the local marginalization and spar-
sification process which require local inference and Fisher
information matrix calculus and inversion. On the con-
trary, PVIP packets are exempted from any optimization
step. We note that the ILP selection procedure outruns
the MKC selection, what may be mostly explained by the
need to first build a redundancy table of the Rij indices
between pairwise covisible landmarks.

(a) Packet computation times (s)

10−1 100 101

SVIP

CVIP

PVIP-MKC

PVIP-ILP

(b) Packet integration times (s)

10−4 10−3 10−2 10−1 100

SVIP

CVIP

PVIP

Results are similar for PVIP-ILP and PVIP-MKC without
significant differences w.r.t. the target cover.

Figure 10: Distribution of packet computation and integration times

Packet integration times are displayed in Figure 10b.
CVIP packets are the fastest packets to be integrated, in
a few tenth of milliseconds, as they just require to extend
the trajectory with the exchanged relative pose factors and
rebuild the visual frames. SVIP requires additional time to
rebuild the landmark point-cloud. PVIP packets require
more time to be integrated – but still less than a tenth of
second – as they need to re-initialize the inertial states and
re-triangulated the landmarks based on their tracklines.

(a) Multi-robot pose-graph optimization times (s)

10−2 10−1 100

SVIP

CVIP

PVIP-PG

PVIP-PG denotes the pose-graph relaxation introduced in §8.

(b) Multi-robot reduced BA optimization times (s)

100 101 102

k = 10

k = 20

k = 30

k = 40

Processing times are displayed for different target cover k.

Figure 11: Distribution of processing times

Multi-robot pose-graph inference durations are shown

in Figure 11a. Once again, we note that such processes
are compatible with real-time requirements as their pro-
cessing times range from a tenth of second to a second.
Pose-graph optimizations for CVIP and SVIP, and pose-
graph relaxation for PVIP, allow to quickly impact new in-
tra and inter-robot correspondences than CVIP and PVIP.
SVIP generally requires more time for pose-graph inference
as it spots more correspondences. In the case of PVIP,
pose-graph relaxations are completed with reduced visual-
inertial bundle-adjustements, which last from a few sec-
onds to a few dozen of seconds, depending on the target
cover, as shown in Figure 11b.

10.4. Assessing communication constraints

The second aspect to evaluate is the induced network
load. The distribution of the weights of the computed
packets are displayed in Figure 12a while Figure 12b de-
composes the content of the packets. CVIP outputs the
lightest packets, with a median weight around 60 kBytes,
since they only include the computed relative factors, aug-
mented with local selections of keypoints and descriptors
on a subset of the keyframes and which explain 80% of
the weight of the packets. SVIP and PVIP packets are
much heavier, with median weights between 0.1 and 0.2
MBytes. Most of the weight of a SVIP packet is explained
by its visual-structural information. Regarding PVIP, the
weight of the packet split between its inertial factors and
its visual frame information (which also include the track-
lines of the selected landmarks).

(a) Packet sizes (MBytes)
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SVIP
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PVIP10

PVIP20
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PVIP40

(b) Packet decomposition (MBytes)
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Extra visual frames Landmarks & Descriptors
Relative pose factors

Figure 12: Packet sizes and decomposition

Packets are not the only items to be exchanged be-
tween the robots. Figure 14 shows the accumulation of ex-
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changed data over time in the three-robot scenario MH123
between the three robots. We notice that most of the in-
duced communication load is explained by the broadcast-
ing of the computed packets, whose bandwidth require-
ments scale linearly with the number of robots, apart from
regularization processes. Figure 13 shows the averaged
bandwidth consumption associated to each method. In all
methods, the average consumed bandwidth barely exceeds
100 kB/s. We note that the broadcasting of the spotted
correspondences explains a significant portion of the con-
sumed bandwidth in SVIP, as sharing visual-structural in-
formation helps spotting more correspondences.

100 101 102

SVIP

CVIP

PVIP

Average bandwidth consumption (in kB/s)

Correspondences Visual frames Packets

Figure 13: Average bandwidth consumption in MH123.

10.5. Assessing informational constraints

Finally, we need to evaluate how the proposed methods
deal with the above-mentioned informational constraints.
We first assess how well the computed packets manage to
preserve the original visual-inertial information. For such
purpose, we compute the Kullback-Leibler divergence be-
tween the distribution induced on the absolute pose es-
timates by the original visual-inertial factors ZVI and the
one derived from the compute packet factors Zpacket. Such
results are reported in Figure 15.It shows that both PVIP
MKC and ILP packets are the ones which best minimize
the loss of information, with one order of magnitude of dif-
ference with CVIP and SVIP. The influence of the target
cover appears explicitly.

Additionally, Figure 16 displays the distribution of the
eigenvalues of the difference of the covariance matrices of
the original and the packet distributions. The resulting
packets are consistent if and only if all those eigenvalues
are positive, and all the less conservative as they are low.
Thus, even though SVIP, which implements a version of
CVIP relieved from the consistency constraint, seems to
better preserve the original information, it clearly appears
that it double counts the original information in the re-
sulting distribution, and thus adds artifactual information
spread between correlated factors. Figure 16 also clearly
shows the impact of the proposed normalization step in the
sparsification process, which results into a ”lower” covari-
ance matrix difference. Finally, it unsurprisingly confirms
that PVIP performs better than SVIP and CVIP not only
in minimizing the information loss, but also in ensuring
the consistency of the final packets. In particular, it is less
conservative than CVIP.

Even though individual packets are consistent and in-
dependent from each other, inconsistencies may still oc-
cur in the global map since the correlations between the
inter-robot correspondences whose underlying PnP prob-
lems involve common landmarks are ignored.

Finally, we evaluate the multi-robot estimation accu-
racies. Figure 17 reports the translation estimation errors
for each robot in each scenario on its own trajectory in
the single-robot case (red), and in the multi-robot cases
for each method. Each robot also estimates the trajec-
tories of the other robots, with very similar accuracies of
their associated self-estimation. 1

10.5.1. Evaluation of the EuRoC scenarios

Results on the EuRoC scenario are reported in Figure
17a. As previously mentioned, EuRoC trajectories were
intentionally made self-sufficient in terms in loop closures,
which results into good single-robot accuracies, except on
MH3 whose trajectory shows a much ampler kinematics.

First, we note that SVIP performs poorly on those
scenarios, and significantly degrades the estimation ac-
curacies with wider error distributions. This is particu-
larly blatant in scenario MH45. Two factors may explain
such poor performances. First, this may be explained by a
poorer quality of the inter-robot correspondences spotted
using the exchanged rigid visual-structural information,
and whose relative pose factors are then expressed w.r.t.
to the first vertex of the packet. This may especially hap-
pen when the matched section of the packet’s point cloud
relates to the packet’s last keyframes. Furthermore, SVIP
detects at once bunches of inter-robot correspondences and
yields a resulting topology which enforces strong and sud-
den constraints solely on the first vertex of the spotted
packet. This seems to compromise the online integration
of such correspondences during the subsequent pose-graph
optimization. It was notably the case on the MH45 sce-
nario, what amplified an estimation error which could not
be recovered afterwards.

Contrary to SVIP, CVIP shows encouraging results on
all the scenarios as it generally allows to tighten the error
distribution and reduce the average and median estima-
tion errors. This is especially the case in scenario MH13
for Robot 3, which benefits from the integration of Robot
1’s packets to reduce its median estimation error of nearly
14cm. However, Robot 1 fails to properly absorb Robot
3’s estimation errors conveyed in its packets, which slightly
degrades its estimation accuracy. This suggests that some

1Note that, as described in section §10.2, the reported perfor-
mances for single-robot SLAM are those of the SLAM algorithm
whose Front-End builds on the the open-loop trajectory estimated
by Vins-Mono, and whose Back-End builds on the loop-closure and
optimization tools provided by Maplab [43]. We advocate it allows a
fairer comparison between the mono and multi-robot scenarios which
thus share the very same underlying SLAM algorithm. The per-
formances of the actual Vins-Mono algorithms on the EuRoC and
AirMuseum sequences are respectively reported in [10] and [2].
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(a) Exchange timeline of SVIP
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(b) Exchange timeline of CVIP
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(c) Exchange timeline of PVIP
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Legend: Broadcast packets Broadcast spotted correspondences Visual frames requests and responses

Figure 14: Cumulated exchanges (MBytes) timelines (s) in scenario MH123
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Figure 15: Evaluation of the packets’ relative entropy
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Figure 16: Evaluation of the packets’ consistency

additional regularization mechanisms should frame the in-
tegration of the received packets to specifically deal with
prior disparities in estimation accuracy.

Finally, PVIP performs better than CVIP and SVIP,
as it improves the estimation accuracy for all the robots
in all the EuRoC scenarios. It is notably the only meth-
ods which achieves to improve the accuracies for Robot 1
while its trajectory already benefits from several informa-
tive loop closures. Interestingly, we observe MKC and ILP
versions perform similarly, and that the marginal utility of
additional landmark cover is low as we achieve comparable
performances with the different covers. PVIP clearly bene-
fits from its two-level inference process with pose-graph re-
laxation and reduced visual-inertial Bundle Adjustement.

Furthermore, the EuRoC scenarios provide an ideal frame-
work for PVIP as it is a richly textured environment and
IMU sensors are excited enough to make its biases observ-
able during the packet integration.

10.5.2. Evaluation on the AirMuseum scenarios

Results on the AirMuseum scenarios are reported in
Figure 17b. Such scenarios allow to evaluate the proposed
methods in an heterogeneous context, and confront them
with the specific challenges of terrestrial VI SLAM (i.e.
more agressive kinematics with jerk movements, higher
noise to vibration ratio, poorlier textured ground obser-
vations, less intra-robot loop closures, etc.). The reported
single-robot estimation accuracies suggest the difficulty of
those sequences to VI-SLAM.

A first observation is that SVIP performs better in im-
proving the estimation accuracies than it did on the Eu-
RoC scenarios. One reason may be that fewer inter-robot
correspondences are spotted, what enforces a more favor-
able constraint pattern than in the EuRoC scenarios. Fur-
thermore, the inconsistency of the packet allows to yield
stronger relative pose factors, which result into less flexible
trajectory estimates.

The CVIP method is the one which achieves the best
performances on the terrestrial sequences, and generally
allows significant gains in accuracy as well as a manifest
tightening of the error distribution. However, its results
on drone sequences are very contrastive. As in the Eu-
RoC scenarios, the method shows difficulties in absorbing
the estimation errors conveyed with the received packets,
hence the need for additional regularization mechanisms
during packet integration. Another observation from the
terrestrial sequences is the trajectory estimation suffers
from the loss of the absolute gravity information, which is
entirely projected onto the 6DoF relative pose factors.

PVIP shows reasonable performances on most of the
scenarios. However, it also exhibits significant failures, as
in scenario 3 for robot B, and also on the drone sequences.
In terrestrial sequences, this may be explained by the fact
that some local portions of the trajectories may be visu-
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(a) EuRoC scenarios
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Figure 17: Distribution of the translation errors [m] on the estimated trajectories

ally under-constrained, and that the inertial biases may
not always be observable when re-initializing the inertial
states on the reconstructed received packets. Results on
the drone trajectory once again highlights the difficulty
to properly absorb the estimation errors associated to the
trajectories which are received and integrated within the
map, without compromising the estimation accuracy on
its own trajectory in the case of such disparities. PVIP
has difficulties in areas with low visual quality.

11. Conclusion and perspectives

In this article, we aimed at providing data exchange
solutions for collaborative visual-inertial SLAM which en-
hances the autonomy of the robots in fusing the data re-
ceived from the other agents while meeting the require-
ments for the informational, communication and resource
constraints. We proposed CVIP, PVIP and SVIP, respec-
tively based on the exchange of condensed, pruned and
rigid visual-inertial packets, and designed a common multi-
robot framework based on a decentralized and weakly dis-
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tributed task allocation scheme, a dual communication
policy based on a regular and a regularization regime, and
a matching and merging strategy which builds on the ex-
changed packets for the spotting of inter-robot correspon-
dences and multi-robot inference.

The proposed methods were evaluated on the multi-
robot scenarios built from the EuRoC dataset and pro-
vided by the custom AirMuseum dataset. We showed that
they allow the computation and the integration of consis-
tent packets in real-time with a low induced bandwidth
consumption in a decentralized architecture. The eval-
uation on the EuRoC scenarios showed that CVIP and
PVIP allowed to enhance the estimation accuracy on the
robot trajectories in most of the scenarios, while the SVIP
method showed some limitations. The evaluation on the
AirMuseum scenarios showed that they were able to posi-
tively impact the estimation accuracy on most of the ter-
restrial sequences, but also highlighted some limitations
which draw perspectives for improvement. CVIP allows
to share light packets which are easily fused within the
receiver’s map, but their computation is complex and con-
servative. PVIP provides a faster and more consistent
way to broadcast the visual-inertial information which al-
lows a more accurate two-level multi-robot inference, even
though it requires more bandwidth. Finally, SVIP com-
municates exhaustive visual-structural information which
helps to spot many inter-robot correspondences.

A perspective would be to make the integration of re-
ceived packets more robust not to compromise the esti-
mation accuracy on the other trajectories. This could be
achieved prior to the multi-robot inference by adding some
regularization mechanisms, for instance through a more
extensive and systematic use of robust cost functions not
to compromise the receiver’s trajectory estimate to easily.
Spotted inter-robot correspondences could also undergo a
preliminary cycle analysis, as advocated by [68] and done
in DOOR-SLAM [27]. Finally, the tuning of the param-
eters could be made automatic, especially regarding the
target cover of PVIP, which may adapt to the local topol-
ogy of the summarized map.
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