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UNIVERSAL FAMILIES OF EULERIAN MULTIPLE ZETA

VALUES IN POSITIVE CHARACTERISTIC

KWUN CHUNG, TUAN NGO DAC, AND FEDERICO PELLARIN

Abstract. We study positive characteristic multiple zeta values associated

to general curves over Fq together with an Fq-rational point ∞ as introduced
by Thakur. For the case of the projective line these values were defined as

analogues of classical multiple zeta values. In the present paper we first estab-

lish a general non-commutative factorization of exponential series associated
to certain lattices of rank one. Next we introduce universal families of multiple

zeta values of Thakur and show that they are Eulerian in full generality. In

particular, we prove a conjecture of Lara Rodŕıguez and Thakur in [28]. One
of the main ingredients of the proofs is the notion of L-series in Tate algebras

introduced by the third author [31] in 2012.

Introduction

0.1. Classical multiple zeta values.
Multiple zeta values are positive real numbers that have been involved in certain

investigations by Euler in the late eighteenth century. They generalize the values of
Riemann’s zeta function at integers ≥ 2 and occur naturally in the computation of
their products. Surprisingly, these particular real numbers are ubiquitous in several
mathematical and physical theories. For instance, they are connected with peri-
ods of mixed Tate motives, and with values of Feynman integrals in perturbative
quantum field theory. It is also known that they are related to a certain univer-
sal vector bundle with connection on the projective line with the points 0, 1,∞
removed. These, and other properties, made multiple zeta values the center of
intensive studies, especially in the last three decades. We refer the reader to the
survey of Zagier [43] and the book of Burgos Gil and Fresán [15] for a detailed
introduction to these topics, as well as for further references.

Let N be the set of positive integers. By definition, the classical multiple zeta
values are the values of the convergent series

ζ(n1, . . . , nr) =
∑

k1>···>kr>0

1

kn1
1 . . . knrr

, where ni ∈ N, n1 ≥ 2.

Here r is called the depth and w = n1 + · · · + nr the weight of the presentation
ζ(n1, . . . , nr). For notational convenience, we set ζ(∅) = 1. For r = 1 and n ≥ 2
we recover the special values ζ(n) of the Riemann zeta function.

In 1735, Euler proved that

(0.1)
ζ(2n)

(2π)2n
= (−1)n+1 1

2

B2n

(2n)!
for all n ≥ 1,
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where for k ≥ 0, Bk denotes the k-th Bernoulli number. In view of this, it is
natural to classify tuples (n1, . . . , nr) with ni ≥ 1, n1 ≥ 2 such that the quotient
ζ(n1, . . . , nr)/π

n1+···+nr is rational. In this case, following [27, 18], we say that the
multiple zeta value ζ(n1, . . . , nr) is Eulerian.

For example ζ(2, . . . , 2︸ ︷︷ ︸
n

) with n ≥ 1 is Eulerian. This follows from the identity

(0.2)
∑
n≥0

(−1)nζ(2, . . . , 2︸ ︷︷ ︸
n

)x2n+1 =
sin(πx)

π
=
∑
n≥0

(−1)n
π2n

(2n+ 1)!
x2n+1,

an elegant proof of which is given by Zagier in [44]. Further, one can show that
ζ(3, 1, . . . , 3, 1︸ ︷︷ ︸

n

) is Eulerian (conjectured in [43] and proved in [13]). We refer the

reader to [27, Remark after Conjecture 4.3] and [39, §7.5] for more details and more
complete references on Eulerian multiple zeta values. Brown formulated a sufficient
(and conjecturally necessary) condition for Eulerian multiple zeta values in terms
of motivic multiple zeta (see [14, Theorem 3.3]). This condition is not completely
effective (see [18, §1] for more details).

Finally, we mention that Siegel and Klingen were able to extend Euler’s formulas
(0.1) for Dedekind zeta values ζF (.) attached to a number field F and showed that
for a totally real number field F and all even n ≥ 2, ζF (n) is an algebraic multiple
of πn[F :Q] (see [33] for further details).

0.2. Multiple zeta values in positive characteristic.
There is a deep analogy between the arithmetic of number fields and that of

global function fields of positive characteristic. Through this analogy one can track
similarities in the comparison of the arithmetic over the ring Z on one side, and
the arithmetic over the ring A of rational functions over a given smooth curve X
over a finite field, which are regular away from a distinguished point (see below
for a rigorous description of the settings). Carlitz, in the years 1930s, inaugurated
this study in the case of X the projective line (the genus zero case). As a natural
consequence, a theory of positive characteristic multiple zeta values associated to A
emerged, pioneered by Thakur. At this level of generality (X a curve over a finite
field), the description of the algebraic relations connecting multiple zeta values
offers new challenges that do not seem to be immediately visible in the classical
setting. It is our aim to shed new light and perspectives on these aspects.

Throughout this paper, let Fq be the finite field with q elements and characteristic
p > 0. Let K be the function field of a geometrically connected smooth projective
curve X over Fq and let ∞ be a place of K of degree d∞ = 1. Let g be the genus
of X and let

(0.3) A = H0(X \ {∞},OX)

be the ring of elements of K which are regular outside∞ (A is called the base ring).
The ∞-adic completion K∞ of K is equipped with the normalized additive ∞-adic
valuation v∞ : K∞ → Z ∪ {+∞}. Let us set deg(·) := −v∞(·). The completion
C∞ of a fixed algebraic closure K∞ of K∞ comes equipped with a unique valuation
extending v∞, which will be again denoted by v∞. We fix a uniformizer π of K∞
so that we can identify K∞ and the field of formal Laurent series Fq((π)). This
choice also allows to introduce a sign function sgn : K×∞ → F×q . This is the unique
group homomorphism defined by sgn(π) = 1. We define A+ to be the set of monic
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elements of A, i.e., the set of a ∈ A such that sgn(a) = 1. For all i ∈ N, we also set
A+,i = {a ∈ A+ : deg(a) = i}.

The genus 0 case. We consider the genus 0 case where X = P1 and ∞ is an Fq-
rational point on it. Then A = Fq[θ] the polynomial ring in θ, a rational function
over P1 which has a simple pole at ∞ and which is regular everywhere else on
P1. We denote by K = Fq(θ) the fraction field of A and by K∞ = Fq((1/θ)) the
completion of K at the place associated with ∞.

Recall that N denotes the set of positive integers. In [16] Carlitz introduced, for
n ∈ N, the elements ζA(n) given by the convergent series

ζA(n) :=
∑
a∈A+

1

an
∈ K∞

which, through the previously mentioned analogy, correspond to classical special
zeta values in the function field setting and are called the Carlitz zeta values. For
any tuple of positive integers s = (s1, . . . , sr) ∈ Nr, Thakur [36] considered the
elements ζA(s) (or ζA(s1, . . . , sr)) of K∞ defined by the convergent series

(0.4) ζA(s) :=
∑ 1

as11 . . . asrr
∈ K∞

where the sum runs through the set of tuples (a1, . . . , ar) ∈ Ar+ with deg a1 > . . . >
deg ar. These are Thakur’s multiple zeta values, characteristic p analogues of the
classical multiple zeta values. We call r the depth of ζA(s) and w(s) = s1 + · · ·+ sr
the weight of ζA(s). We extend the definition of ζA(s) to the empty tuple by defining
the associated zeta value ζA(∅) to be 1. We note that Carlitz zeta values ζA(n) are
exactly depth one multiple zeta values. It can be proved that for any s as above,
ζA(s) ∈ K×∞ (see [38]). A much stronger property holds: Thakur’s multiple zeta
values ζA(s) and 1 span an Fp-vector space which is also an Fp-algebra, graded by
the weights (see [17, 39]).

In 1935 Carlitz [16] introduced analogues BCn ∈ K× (n ≥ 1) of the Bernoulli
numbers of even order and proved an analogue of Euler’s result (0.1) (see also [25,
§9.2]):

ζA(n)

π̃n
=
BCn
Γn

for all n ≥ 1, n ≡ 0 (mod q − 1).

Here Γn ∈ A is the n-th Carlitz factorial, and π̃ ∈ C×∞ denotes the Carlitz period
which is defined up to multiplication by an element of F×q (see [25, 36]).

Thakur called ζA(s) Eulerian (see [36, Definition 5.10.8]) if ζA(s)/π̃w(s) belongs
toK. Since ζ(ps1, . . . , psr) = ζ(s1, . . . , sr)

p, we restrict ourselves to primitive tuples
s, characterized by the property that not all the coefficients si are divisible by p.

Chen [20], Lara Rodŕıguez and Thakur [27] proved the following remarkable
theorem:

Theorem 0.1 (Chen, Lara Rodŕıguez and Thakur). Assume that A = Fq[θ]. Then
for all n ≥ 1 and k ≥ 0, the multiple zeta value

ζA
(
qn − 1, (q − 1)qn, . . . , (q − 1)qn+k−1

)
is Eulerian.

Contrary to the classical setting, for q > 2, it is conjectured that these series
exhaust all the (primitive) Eulerian tuples when the depth exceeds 2 (see [18, §6.2]
and [39, §7.3]). The depth is formally defined in §1.2.
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The higher genus case. The analogy mentioned in the beginning of §0.2 focuses
on the comparison between the arithmetic theory over Z and that over an Fq-algebra
A as in (0.3). For this reason, Carlitz’s theory only gives an incomplete view. We
now move to include the general situation of the higher genus cases and present our
main results.

The definition (0.4) of ζA(s) extends without modification to the case of general
A with∞ ∈ X(Fq) such that d∞ = deg(∞) = 1 as in (0.3) (see also §1.2 for precise
definitions). Following Lara Rodŕıguez and Thakur in [28], we say that ζA(s) is

Eulerian if ζA(s)/π̃
w(s)
A is algebraic over K, where π̃A := π̃φ ∈ C∞ is the period

attached to the standard sign-normalized Drinfeld module of rank one associated
to A (see §3.1).

It turns out that for all n ≥ 1 and n ≡ 0 (mod q− 1), ζA(n) is Eulerian (see [25,
§8.18] and note the proximity with the Klingen-Siegel theorem mentioned above).
However, only five other cases of Eulerian multiple zeta values were known by
the recent work of Lara Rodŕıguez and Thakur [28]: they are all of the form
ζA (q − 1, q(q − 1)) or ζA

(
q2 − 1, (q − 1)q2

)
for one of the four base rings A of

class number one. The proofs are based on explicit log-algebraicity formulas de-
veloped in [34, 37] (see for examples [1, 2, 5, 7, 30] for further developments about
log-algebraicity identities). Based on extensive use of computer aided numerical
experiments, Lara Rodŕıguez and Thakur conjectured that the appropriate gener-
alization of the statement of Theorem 0.1 remains valid for these four base rings
(see [28, Conjecture 3.1]).

0.3. Main results.
In this paper we work with the general case where A is an arbitrary base ring as

given in §0.2. We first establish a non-commutative analogue of Zagier’s formula
(0.2) in our settings, with A as in (0.3) and d∞ = 1.

Theorem 0.2 (Theorem 3.4). Let A be an arbitrary base ring and let φ be the
corresponding standard sign-normalized Drinfeld module of rank one. Then∑

k≥0

(−1)kζA
(
q − 1, . . . , (q − 1)qk−1

)
τk = π̃−1

φ expφ π̃φ ∈ K∞[[τ ]].

In particular, for all k ∈ N, ζA(q − 1, q(q − 1), . . . , qk−1(q − 1)) is Eulerian.

Here π̃φ ∈ C∞ is any fundamental period attached to φ and expφ ∈ K∞[[τ ]] is the
exponential function associated to φ (see §3.1). As π̃φ is defined up to multiplication
by an element of F×q , the formula does not depend on its choice.

We then extend Theorem 0.1 with explicit formulas for a base ring A as in
the hypotheses of Theorem 0.2, and prove the aforementioned conjecture of Lara
Rodŕıguez and Thakur in full generality.

Theorem 0.3 (Theorem 3.6). Let A be an arbitrary base ring and let n ≥ 1 be an
integer. We denote by H ⊂ K∞ the Hilbert class field of A. Then for all k ≥ 0,
there exists an explicitly computable constant αn,k ∈ H (see (3.8)) such that

ζA
(
qn − 1, (q − 1)qn, . . . , (q − 1)qn+k−1

)
= αn,kζA

(
qn+k − 1

)
.

In particular, ζA
(
qn − 1, (q − 1)qn, . . . , (q − 1)qn+k−1

)
is Eulerian.

As pointed out by Lara Rodŕıguez and Thakur in [28], such identities also hold, in
the genus zero case, at ‘finite levels’ (that is, at the level of partial sums). However,
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different phenomena occur in the case of X of genus g > 0. In this case, identities
of multiple zeta values (‘infinite level’ identities) are regulated in a different way
and Theorems 0.2 and 0.3 do not seem to mirror identities at the finite level. It is
in fact the analysis of the interesting phenomenology described in [28] that brought
us to the path that gave rise to the present paper. The reader will also notice
similarities in the processes behind the proofs of, on one side, [27, Theorem 3.2]
and, on the other side, the proof of [24, Lemma 6.11].

We now briefly describe the ingredients of the proofs. Our approach is completely
different from that of the previous works. To prove Theorem 0.2 we provide a
non-commutative factorization of the so-called Carlitz-Hayes polynomials. Then,
passing to the limit, we obtain a non-commutative factorization of the function
expA := π̃−1

φ expφ π̃φ from which Theorem 0.2 follows.
The proof of Theorem 0.3 is based on the key notion of L-series in Tate algebras

introduced by the third author in [31]. This notion has turned out to be very
fruitful in function field arithmetic, see for example [5, 6, 7, 9, 10, 11, 12, 24, 26].
In our setting, these functions can be identified with rigid analytic functions over
the analytification (X \{∞})anC∞ of the affine curve Spec(A⊗Fq C∞) over C∞. Note
that other classical functions of the theory, such as the exponential functions expφ
and expA, are rather rigid analytic functions over the rigid affine line A1,an

C∞ .
We prove a key and unexpected new general identity in Theorem 2.4 among

L-series in Tate algebras at finite levels. As a consequence, we obtain a harmonic
product formula in Proposition 3.5 which allows us to conclude.

Finally, as an application, for class number one base rings, we show in Theorem
4.2 that our explicit expressions match with those conjectured by Lara Rodŕıguez
and Thakur [28, Conjecture 3.3].

Acknowledgements. The authors are deeply thankful to Dinesh Thakur for a
careful reading of a preliminary version of the present manuscript, and for useful
corrections, suggestions and discussions.

1. Background

1.1. Notation. We keep the notation of the Introduction. Recall that N is the set
of positive integers. We denote by Z≥0 the set of non-negative integers. Let K be
the function field of a geometrically connected smooth projective curve X over Fq
and ∞ be a place of K of degree d∞ = 1. Let g be the genus of X and A be the
base ring of elements of K which are regular outside ∞. Let v∞ be the additive
valuation at ∞ and let us set deg(·) := −v∞(·). We denote by K∞ the completion
of K at ∞ and by C∞ the completion of an algebraic closure K∞. Let K be the
algebraic closure of K in K∞.

We fix a uniformizer π of K∞ so that we can identify K∞ and the field of formal
Laurent series Fq((π)). This choice also allows to associate to it a sign function
sgn : K×∞ → F×q which is the unique group homomorphism such that ε(π) = 1 (see
[25, §7.2]). We define A+ to be the set of monic elements of A, i.e., the set of a ∈ A
such that sgn(a) = 1. For all i ∈ Z≥0, we also set A+,i = {a ∈ A+ : deg(a) = i},
and

A(≤ i) = {a ∈ A : deg(a) ≤ i}, A(< i) = {a ∈ A : deg(a) < i}.
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Further, for any field extension L of Fq, we have a uniquely determined sign
function

s̃gn : (L⊗Fq K∞)× → L×

extending sgn. We also set

XL := X ×Fq L.

1.2. Multiple zeta values of Thakur, and in Tate algebras. We follow Thakur
in [39, §3] and Lara Rodŕıguez-Thakur in [28, §2]. To the datum (K,∞, sgn) we
associate certain multiple zeta values

ζA
(
s1, . . . , sr

)
∈ K∞

in the following way. For d ≥ 0 and n ∈ N we consider the power sum of degree d
and order n given by

Sd(n) =
∑

a∈A+,d

1

an
∈ K.

By convention we define empty sums to be 0 and empty products to be 1. Thus if
A+,d = ∅, then Sd(n) = 0. Note that some such sums can vanish. Along with this,
we also set

S<d(n) :=

d−1∑
i=0

Si(n) ∈ K

and iteratively for r > 1 and s1, . . . , sr ∈ N,

Sd(s1, . . . , sr) := Sd(s1)S<d(s2, . . . , sr),

S<d(s1, . . . , sr) :=

d−1∑
i=0

Si(s1, . . . , sr) ∈ K.

It is easily seen that Sd(n) tends to 0 in K∞, as d tends to ∞, the sequence
S<d(s1, . . . , sr) converges in K∞ for any choice of s1, . . . , sr ∈ N. We write

(1.1) ζA
(
s1, . . . , sr

)
:= lim

d→∞
S<d(s1, . . . , sr) ∈ K∞.

For notational convenience, we also set

ζA(∅) := 1 ∈ K∞.

For an r-tuple s = (s1, . . . , sr) ∈ Nr we shall write ζA(s) instead of using the
long expression (1.1). The weight of s is w(s) = s1 + · · ·+ sr and its depth is r. We
shall also say that the presentation ζA(s) is of depth r and weight w(s).

These elements of K∞ are the ∞-adic multiple zeta values of the papers [28, 39,
40]. At this level of generality, not all the basic properties of the multiple zeta values
of §0.2 are known to be true. For instance, it is unclear if all the values defined in
(1.1) are non-zero. Moreover, while it is fairly well known that the Fp-subvector
space they span in K∞ also is an Fp-algebra (with the product rules being identical
to those in the genus zero case), it seems that we miss a proof that the algebra they
generate is graded by the weights.
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1.2.1. A family of rigid analytic functions. We recall that C∞ is the completion of
an algebraic closure K∞ of K∞. We present here the basic multiple zeta values in
Tate algebras that we study in the paper. We consider the Fq-algebra homomor-
phism

χ : A→ A⊗Fq C∞
determined by a 7→ a⊗1. There is a natural bijection x 7→ χx between closed points
x ∈ X(C∞) \ {∞} (where for F a field extension of Fq, X(F ) denotes the set of

F -rational points of X) and Fq-algebra homomorphisms A
χx−−→ C∞. We denote by

Ξ the unique point of X(C∞) \ {∞} such that χΞ is the natural inclusion A ⊂ C∞.
For any given a ∈ A the assignment x 7→ χx(a) ∈ C∞ defines a rational map

X(C∞) \ {∞} χ(a)−−−→ C∞
which is regular everywhere away from ∞, with a pole of order deg(a) at ∞. If
x ∈ X(C∞) \ {∞} we denote by χx(a), or χ(a)x, or χ(a)|x, the image of x by χ(a)
and we call it the evaluation of χ(a) at x.

If F is a subfield of C∞, we consider the Tate algebra

T(F ) := ̂A⊗Fq F ‖·‖

with the completion (̂·) relative to ‖·‖ the multiplicative Gauss valuation extending
a fixed multiplicative valuation | · | over 1⊗ F , trivial over A⊗ 1. Let B = (βi)i∈I
be a basis of the Fq-vector space A. Note that I is countable set. Every element f
of T(F ) can be expanded in a unique way as a series

f =
∑
i∈I

βifi, fi ∈ F̂ ,

with F̂ the completion of F , where fi → 0 for the Fréchet filter over I. Then
‖f‖ = supi∈I |fi|. An entire function f over X(C∞) \ {∞} is by definition one

such formal series in T(C∞) such that additionally, |fi|ρdeg(βi) → 0 for all ρ > 1.
Equivalently, the sequence (fiχx(βi))i tends to zero for all x ∈ X(C∞) \ {∞}.
We denote by f(x) or f |x the sum of the convergent series

∑
i fiχx(βi) ∈ C∞.

This is the evaluation of the entire function f at x ∈ X(C∞) \ {∞}. It is not
difficult to see that this evaluation does not depend on the choice of the basis B,
and that the evaluations taken with respect to different bases agree. Also, let Xan

C∞
be the analytification of X over C∞. It is easy to verify that if f =

∑
i∈I βifi

is an entire function over X(C∞) \ {∞}, then the everywhere convergent series
defines a rigid analytic function Xan

C∞ \ {∞} → C∞. In the case X = P1 with
∞ an Fq-rational point, this coincides with the usual notion of an entire function
f : C∞ → C∞ (see [25, Chapter 3]). We denote by E the C∞-algebra of entire
functions X(C∞) \ {∞} → C∞.

The unique continuous and open A⊗1-linear automorphism τ of T(C∞) extend-
ing c 7→ cq over 1⊗ C∞ induces an automorphism of E. Explicitly, if

f =
∑
i∈I

βifi

is the series expansion of the entire function f , relative to the basis B, then

f (k) := τk(f) =
∑
i∈I

βif
qk

i , k ∈ Z,
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is another entire function over X(C∞) \ {∞}, well defined independently of the
choice of the basis B. If x 7→ x(1) denotes the Frobenius map X(C∞) → X(C∞)
then f (1)(x(1)) = f(x)q for all x ∈ X(C∞) \ {∞}.

We consider the rational functions X(C∞) \ {∞} → C∞

(1.2) Sd :=
∑

a∈A+,d

χ(a)

a
∈ A⊗Fq K.

Note that they are also entire in the above terminology.
In the present paper, we study the functions τn(Zk) where, for all k ≥ 0, we

define Zk by the formal series

Zk :=
∑
d≥0

SdS<d

(
q − 1, (q − 1)q, . . . , (q − 1)qk−1

)
which converges in T(K). They are all entire functions, as shown by the following
lemma:

Lemma 1.1. For all k ≥ 0, the series Zk ∈ T(K) defines an entire function
X(C∞) \ {∞} → C∞.

Proof. It suffices to show that for all x ∈ X(C∞)\{∞}, the sequence of evaluations(
Si|x

)
i≥0

of Si at x tends to zero uniformly for the standard admissible covering of Xan
C∞\{∞}.

The proof we give is a simple adaptation of the proof of [8, Lemma 7]. We set,
for r ≥ 0, yr = qr+1 − 1 which p-adically tends to −1 ∈ Zp as r → ∞. Note that
for all r ≥ 0, assuming that A+,i 6= ∅,∑

a∈A+,i

χ(a)ayr =
∑

b∈A(<i)

L(ηi + b)L0(ηi + b)q−1 · · ·Lr(ηi + b)q−1 ∈ A⊗Fq A,

where ηi is any element of A+,i, L is the Fq-linear form a 7→ a ⊗ 1 and Lj is the

Fq-linear form a 7→ 1⊗aqj for j = 0, . . . , r. By [25, Lemma 8.8.1],
∑
a∈A+,i

χ(a)ayr

vanishes if 1 + (r + 1)(q − 1) < dimFq (A(< i)). We can therefore choose

r = dimFq (A(< i))−

{
2 if q > 2,

3 otherwise.

assuming at once i large enough so that r is non-negative. In particular we have,
for this choice of r, the identity

∑
a∈A+,i

χ(a)ayr = 0.

We consider a ∈ A+,i. Since ε(a) = 1, there exists a unique element 〈a〉 ∈
K×∞ ∩Ker(ε), depending on π, such that a = 〈a〉π−i. Note that |〈a〉 − 1| ≤ |π| < 1.
We have

〈a〉−1 − 〈a〉yr =
∑
j≥0

((−1

j

)
−
(
yr
j

))
(〈a〉 − 1)j ∈ Fq[[π]].

Since
(−1
j

)
−
(
yr
j

)
= 0 for j = 0, . . . , qr+1−1, the above difference has multiplicative

valuation strictly smaller than |π|qr+1

. This implies that Si ∈ A ⊗Fq K∞ has the
property that there is a finite expansion Si =

∑
a∈A+,i

a ⊗ αa with, for a ∈ A+,i,

αa ∈ K∞ such that |αa| < |π|i+q
r+1

. From this we deduce that the sequence of
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entire functions Si tends to zero uniformly for the standard admissible covering of
Xan

C∞ \ {∞}. The covering is given by the filtered union⋃
ρ∈|C×∞|
ρ>1

Spm
(
Â⊗ C∞‖·‖ρ

)
,

where Spm denotes the maximal spectrum, and where we take the completions with
respect to ‖ ·‖ρ the multiplicative valuation which restricts to | · | over 1⊗C∞, such

that ‖a⊗ 1‖ρ = ρdeg(a). By the above discussion, for all x ∈ Spm
(
Â⊗ C∞‖·‖ρ

)
we

have, by the maximum principle, and for large values of i:

|Si(x)| ≤ ‖Si‖ρ ≤ ρi|π|i+q
r+1

which tends to zero for any fixed ρ > 1 as i→∞. �

Remark 1.2. The entire function Zk can be viewed as an example of multiple zeta
value in the Tate algebra T(K). These functions have been investigated in [24] in
the case of X = P1 and ∞ an Fq-rational point. We will not pursue the general
theory of such functions because in the present paper we only need to work with
the entire functions

τn(Zk), n, k ≥ 0.

However, we mention here that, in agreement with the notations of ibid., we could
have written:

Zk = ζA

(
{1} ∅ · · · ∅
1 q − 1 · · · (q − 1)qk−1

)
∈ T(K),

to stress the analogy. Note that, following this notation, we have Z0 = ζA
({1}

1

)
.

We also set Z−1 := 0. Also, Lemma 1.1 can be easily generalized to match with the
formalism of [24] and the reader can see that all the functions that naturally arise
in this picture define entire functions over products of the curve X(C∞) \ {∞} in
an appropriate sense.

2. A universal formula

2.1. Auxiliary results. We recall several results from [34, §0 and §1]. For all
i ∈ Z≥0 and n ∈ N, we set, with appropriate conventions for empty sums and
products,

Di :=
∏

a∈A+,i

a,

ei(z) :=
∏

a∈A(<i)

(z − a),

ei(z)

Di
:=
∑
k≥0

Aikz
qk

Si(n) :=
∑

a∈A+,i

1

an
,

Si := Si(1) =
∑

a∈A+,i

1

a
.
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If A+,i 6= ∅, then by [34, Eq. (13)],

ei+1(z) = ei(z)
q −Dq−1

i ei(z).

Otherwise, if A+,i = ∅, we get ei+1(z) = ei(z). In particular, for all i ∈ Z≥0,
Di+1A(i+1)0 and Dq

iAi0 agree up to a sign so that we can write Di+1A(i+1)0 =
±Dq

iAi0 and

Ai0 = ± (D0D1 . . . Di−1)q−1

Di
6= 0.

Now, if A+,i 6= ∅, by [34, Eq. (18)], we have

Ai0

1−
∑i
k=0Aikz

qk
= −

∑
a∈A+,i

1

z − a
=
∑
n≥0

Si(n+ 1)zn.

Consequently,

(2.1) Si = Si(1) = Ai0 6= 0,

and for all 1 ≤ n ≤ q − 1,

(2.2) Si(n) = Sni .

For all d ∈ Z≥0, we recall that we have set (see (1.2))

Sd =
∑

a∈A+,d

χ(a)

a
.

We additionally set

S<d :=

d−1∑
i=0

Si, S<d :=

d−1∑
i=0

Si.

We put S≤d = S<d+1 and S≤d = S<d+1.

If D is a divisor over XK , then we denote by L(D) the K-subvector space of
the fraction field of XK consisting of functions f such that (f) + D is effective:
(f) ≥ −D. For all m ∈ Z≥0, we define jm to be the smallest non-negative integer
such that dimK L(jm∞) = m + 1. Note that L(jm(∞)) = A(≤ jm) ⊗Fq K, where
A(≤ `) is the Fq-vector space spanned by the elements a ∈ A such that deg(a) ≤ `.
We have j0 = 0 < j1 < j2 < ... and for m sufficiently large, jm = m + g by the
Riemann-Roch theorem.

Lemma 2.1. For all m ≥ 1, the function Sjm vanishes at Ξ, . . . ,Ξ(m−1).

Proof. Let us choose an element ηm ∈ A+,jm . Then A+,jm = ηm + A(≤ jm−1).
Note that by the definition of the sequence {jm}m≥0, dimFq A(≤ jm−1) = m. Since

Sjm(Ξ(j)) =
∑

a∈A+,jm

aq
j−1 =

∑
b∈A(≤jm−1)

L0(ηm + b)q−1 · · ·Lj−1(ηm + b)q−1

where Li is the Fq-linear form a 7→ aq
i

for i = 0, . . . , j − 1, Sjm(Ξ(j)) vanishes for
j = 0, . . . ,m− 1 in virtue of [25, Lemma 8.8.1]. �

Lemma 2.2. The set {Sj0 , . . . , Sjm} forms a basis of L(jm∞).

Proof. We observe that for all k ∈ Z≥0, Sjk has a pole of order jk at ∞. The

integers j0, . . . , jm being distinct, Sj0 , . . . , Sjm are linearly independent over K.
Since dimK L(jm∞) = m+ 1, the Lemma follows. �
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Lemma 2.3. The function Sjm does not vanish at Ξ(m).

Proof. We suppose by contradiction that Sjm vanishes at Ξ(m). Combining with

Lemma 2.1 implies that for all k ≥ m, Sjm , . . . , Sjk belong to L(jk∞−Ξ−· · ·−Ξ(m)).
We choose k sufficiently large so that by the Riemann-Roch theorem,

• dimK L(jk∞) = jk + 1− g,

• dimK L(jk∞− Ξ− · · · − Ξ(m)) = jk − (m+ 1) + 1− g.

The first equation implies jk + 1− g = k+ 1. Putting this into the second equation
yields

dimK L(jk∞− Ξ− · · · − Ξ(m)) = jk − (m+ 1) + 1− g = k −m.

By Lemma 2.2, we know that Sjm , . . . , Sjk are linearly independent over K. Thus
we get a contradiction since

k −m = dimK L(jk∞− Ξ− · · · − Ξ(m))

≥ dimK Vect(Sjm , . . . , Sjk)

= k −m+ 1.

We conclude that Sjm does not vanish at Ξ(m). �

2.2. A key identity. We now prove the main result of this section.

Theorem 2.4. For all i ∈ Z≥0, we have

S
(1)
i = S≤i · Si(q − 1).

Proof. Note that if i 6= jm for all m, then A+,i = ∅. Thus Si = Si(q − 1) = 0 and
we are done. Therefore, it suffices to prove that for all m ∈ Z≥0,

(2.3) S
(1)
jm

= S≤jm · Sjm(q − 1).

We observe

S
(1)
jm

∣∣∣
Ξ

= Sjm(q − 1) = Sq−1
jm

.

Here the second equality holds by (2.2). By (2.1), it follows that S
(1)
jm

∣∣∣
Ξ
6= 0. Thus

(2.3) is equivalent to

(2.4)
S

(1)
jm

S
(1)
jm

∣∣∣
Ξ

= S≤jm .

We now prove (2.4) by induction on m. For m = 0, (2.4) holds since S≤jm =

S
(1)
jm

= Sjm(q − 1) = 1. Suppose that for all 0 ≤ k ≤ m− 1,

S
(1)
jk

S
(1)
jk

∣∣∣
Ξ

= S≤jk .

We show that

S
(1)
jm

S
(1)
jm

∣∣∣
Ξ

= S≤jm .
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In fact,

F :=
S

(1)
jm

S
(1)
jm

∣∣∣
Ξ

∈ L(jm∞).

By Lemma 2.2, the set Sj0 , . . . , Sjm forms a basis of the K-vector space L(jm∞).

Therefore, there exist a0, . . . , am ∈ K such that

(2.5) F = a0Sj0 + · · ·+ amSjm .

We show by induction on 0 ≤ k ≤ m − 1 that ak = 1. For k = 0, we evaluate
(2.5) at Ξ. The left-hand side gives F |Ξ = 1. By Lemma 2.1, the right-hand side
returns

a0Sj0

∣∣∣
Ξ

+ · · ·+ amSjm

∣∣∣
Ξ

= a0.

We then obtain a0 = 1.
Suppose that for all j such that 0 ≤ j < k, we have aj = 1. We have to prove

that ak = 1. We evaluate (2.5) at Ξ(k). Note that 1 ≤ k ≤ m− 1. By Lemma 2.1,

F |Ξ(k) = 0.

We get

(a0Sj0 + · · ·+ amSjm)
∣∣∣
Ξ(k)

= a0Sj0

∣∣∣
Ξ(k)

+ · · ·+ amSjm

∣∣∣
Ξ(k)

= a0Sj0

∣∣∣
Ξ(k)

+ · · ·+ akSjk

∣∣∣
Ξ(k)

= Sj0

∣∣∣
Ξ(k)

+ · · ·+ Sjk

∣∣∣
Ξ(k)

+ (ak − 1)Sjk

∣∣∣
Ξ(k)

= (Sj0 + · · ·+ Sjk)
∣∣∣
Ξ(k)

+ (ak − 1)Sjk

∣∣∣
Ξ(k)

= S≤jk

∣∣∣
Ξ(k)

+ (ak − 1)Sjk

∣∣∣
Ξ(k)

.

Here the second equality follows from Lemma 2.1 again. The third equality holds
as a0 = · · · = ak−1 = 1.

Since k ≤ m− 1, by the induction hypothesis and Lemma 2.1,

S≤jk

∣∣∣
Ξ(k)

=
S

(1)
jk

∣∣∣
Ξ(k)

S
(1)
jk

∣∣∣
Ξ

= 0.

We then get

(a0Sj0 + · · ·+ amSjm)
∣∣∣
Ξ(k)

= (ak − 1)Sjk

∣∣∣
Ξ(k)

.

Putting all together yields

0 = F |Ξ(k) = a0Sj0

∣∣∣
Ξ(k)

+ · · ·+ amSjm

∣∣∣
Ξ(k)

= (ak − 1)Sjk

∣∣∣
Ξ(k)

.

By Lemma 2.3, Sjk

∣∣∣
Ξ(k)
6= 0. We deduce that ak = 1 as desired.

To finish the proof, we show that am = 1. We look at the sign of both sides of
(2.5). The left-hand side gives

s̃gn(F ) =
s̃gn(S

(1)
jm

)

S
(1)
jm

∣∣∣
Ξ

=
Sqjm

Sjm(q − 1)
= Sjm .
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Here the last equality follows from Lemma 2.2. The right-hand side equals amSjm .
Thus Sjm = amSjm . As Sjm 6= 0, we deduce am = 1 and the proof is complete. �

As a direct consequence, since Z0 = limn→∞ S≤n ∈ T(K), we deduce that the

entire function Z0 vanishes at the points Ξ(1),Ξ(2), . . . and Z0

∣∣
Ξ

= 1. The genus
one case of Theorem 2.4 can also be deduced from the explicit arguments of Green
and Papanikolas in [26].

3. Universal families of Eulerian multiple zeta values

3.1. Sign-normalized rank one Drinfeld modules. If R is an Fq-algebra we
denote by R[τ ] the skew polynomial ring in τ (denoted by R{τ} in [25, Chapter 1]),
and by R[[τ ]] the ‘ring of Frobenius power series’ (denoted by R{{τ}} in [25, §4.6].)
Let φ : A→ K∞[τ ] be a rank one Drinfeld module such that for all a ∈ A \ {0},

φa = a+ · · ·+ sgn(a)τdeg a.

Such a Drinfeld module φ is said to be sign-normalized. In [26] a sign-normalized
rank one Drinfeld module is called a Drinfeld-Hayes module. By [25, Theorem
7.2.15], there always exist sign-normalized rank one Drinfeld modules. Further, if
we denote by H the Hilbert class field of A and OH the integral closure of A in H,
then for all a ∈ A, φa ∈ OH [τ ].

There exist unique elements expφ, logφ ∈ H[[τ ]] such that

expφ, logφ ∈ 1 +H[[τ ]]τ,

∀a ∈ A, expφ a = φa expφ,

expφ logφ = logφ expφ = 1.

We write

expφ =
∑
i≥0

εiτ
i, εi ∈ H,

logφ =
∑
i≥0

λiτ
i, λi ∈ H.

The formal series expφ, and logφ are respectively called the exponential series and
the logarithm series associated to φ. Additionally, expφ defines, in a unique way,
an Fq-linear entire function C∞ → C∞ (unlike the functions Zk which are entire
X(C∞) \ {∞} → C∞). In what follows, we identify the operator expφ with this
entire function C∞ → C∞ hence tolerating an abuse of notation. The kernel of expφ
is a projective A-module of rank one embedded discretely in C∞. By [35, Theorem
5.8], the coefficients λi are non-zero for all i ≥ 0. Theorem 3.2 of [35] describes
non-vanishing criteria for the coefficients εi’s at a superior level of generality, i.e.
with ∞ a closed point of X not necessarily Fq-rational. Note that the condition
d∞ = 1 ensures that they are all non-zero.

Drinfeld proved that there is a bijection between the set of sign-normalized rank
one Drinfeld module φ and a set of certain functions f called shtuka functions in
the rational function field F := Frac(A⊗Fq K) of XK (see [22, 23, 35]). It follows
that one can associate a shtuka function fφ ∈ F× to any sign-normalized Drinfeld
module of rank one φ. The divisor (fφ) associated to fφ can be expressed in the
following way:

(fφ) = V
(1)
φ − Vφ + Ξ−∞,
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for some effective divisor Vφ of X(K) of degree g. We call it the Drinfeld divisor
attached to φ. Note that the points Ξ and ∞ do not belong to the support of Vφ
(see [35, Corollary 0.3.3]).

There exists a unique sign-normalized Drinfeld module of rank one φ, called the
standard sign-normalized Drinfeld module, such that the kernel of expφ is a free
A-module of rank one. From now on, we only work with this standard Drinfeld
module φ. Then,

Ker(expφ) = Aπ̃φ

for some element π̃φ ∈ C×∞, uniquely defined up to multiplication by a factor in
F×q . We also denote by f and V , respectively, the associated shtuka function and
the associated Drinfeld divisor.

We now come back to the multiple zeta values of Thakur, in K∞. We choose
an r-tuple s = (s1, . . . , sr) ∈ Nr, with r > 0. We recall from the introduction the
following definition (see the first paragraph concerning the higher genus cases).

Definition 3.1. The multiple zeta value ζA(s) is Eulerian if ζA(s)/π̃
w(s)
φ ∈ C∞ is

algebraic over K.

Remark 3.2. We consider the genus 0 case, i.e., X = P1 with ∞ an Fq-rational
point. Then as already noticed, A = Fq[θ] and K = Fq(θ) for some rational function
θ over P1. In this case we have φ = C the Carlitz module. It is uniquely defined by
the identity Cθ = θ + τ in K[τ ]. We write π̃ = π̃C and we have already mentioned
that if q−1 | n with n ≥ 1, ζA(n) is Eulerian, see [25, 36] for more details. By using
a positive characteristic variant of Baker’s theory and a seminal result of Anderson
and Thakur [4], Yu proved the following result for n > 0: ζA(n)/π̃n ∈ K if and
only if ζA(n)/π̃n ∈ K, and of course the latter property occurs if q − 1 | n (see
[41, Corollary 2.6]). This result was generalized for multiple zeta values associated
to Fq[θ], of arbitrary depth, by Chang [17]. Chang and Yu explicitly computed in
[19, 42] the transcendence degree of the subfield of C∞ generated by K and the
zeta values ζA(n), n ≥ 1. The methods of [17, 19] do not use Baker’s theory but
rest on the transcendence methods of Anderson, Brownawell and Papanikolas [3],
and Papanikolas [29].

Recall that expφ =
∑
i≥0 εiτ

i with εi ∈ H. Let us consider

expA(z) := z
∏

a∈A\{0}

(
1− z

a

)
, z ∈ C∞.

This product converges for all z ∈ C∞ and defines an entire Fq-linear function
C∞ → C∞ with kernel A ⊂ C∞ that we identify with an operator

expA =
∑
k≥0

eiτ
i ∈ K∞[[τ ]].

The link between the operators expA and expφ is given by the following identity in
C∞[[τ ]]:

(3.1) expA = π̃−1
φ expφ π̃φ.

We also have the identity of meromorphic functions over C∞ and of formal series
of K∞[[z]]:
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z

expA(z)
= 1 +

∑
n≥1

(q−1)|n

ζA(n)zn ∈ K∞[[z]].

From it we get

(3.2) ζA(qk − 1) = λkπ̃
qk−1
φ , k ≥ 0.

Note that this implies λk 6= 0 for all k ≥ 0, which is Theorem 5.8 of [35] (and
essentially the same proof). Further, we deduce that for all n ≥ 1 with n ≡ 0
(mod q − 1), ζA(n) is Eulerian (see [25, Lemma 8.18.1]).

3.2. Carlitz-Hayes polynomials. We know that for all n ≥ 1 there exists a
unique polynomial called the n-th Carlitz-Hayes polynomial

Ẽn ∈ K[τ ]

such that, for all z ∈ C∞,

Ẽn(z) = z
∏

a∈A(<n)\{0}

(
1− z

a

)
.

Here Ẽn(z) denotes the evaluation of Ẽn at z. Let κn,m be the coefficient of τm in
En seen as a linear combination of 1, τ, τ2, . . .

Proposition 3.3. With the above notation, we have

κn,m = (−1)mS<n(q − 1, q(q − 1), . . . , qm−1(q − 1))

Proof. Since the zeros of Ẽn are exactly the elements of the Fq-vector space A(< n)
with multiplicity 1, we can write

Ẽn = (1− αn−1τ)Ẽn−1

for some αn−1 ∈ K. Thus we obtain a non-commutative factorization

Ẽn = (1− αn−1τ) · · · (1− α1τ)(1− α0τ)

with α0 = 1. It follows that

(3.3) κn,1 = −(α0 + α1 + · · ·+ αn−1).

Now, by considering the zeros, degree and the constant term, we see that, for
any a ∈ C×∞, ∏

c∈F×q

(
1− z

ca

)
= 1− zq−1

aq−1
.

Thus

Ẽn(z) = z
∏

a∈A(<n)\{0},
a monic

(
1− zq−1

aq−1

)
.

We deduce

(3.4) κn,1 = −
∑

a∈A(<n)\{0},
a monic

1

aq−1
.



16 KWUN CHUNG, TUAN NGO DAC, AND FEDERICO PELLARIN

Combining (3.3) and (3.4) yields, inductively,

αn−1 =
∑

a∈A+,n−1

1

aq−1
= Sn−1(q − 1).

We then get an explicit factorization

Ẽn =
(

1− Sn−1(q − 1)τ
)
. . .
(

1− S1(q − 1)τ
)
.

The Proposition follows. �

Note that the multiple zeta value ζA
(
q − 1, . . . , (q − 1)qk−1

)
has depth k. If

k = 0, we have set ζA
(
q − 1, . . . , (q − 1)qk−1

)
= ζA(∅) = 1.

Theorem 3.4. We have the following identity

(3.5) expA =
∑
k≥0

(−1)kζA
(
q − 1, . . . , (q − 1)qk−1

)
τk ∈ K∞[[τ ]].

In particular, for all k ∈ N,

(3.6) ζA(q − 1, q(q − 1), . . . , qk−1(q − 1)) = (−1)kεkπ̃
qk−1
φ .

Proof. We observe that Ẽn(z) converges uniformly on every compact subset of C∞
to the function expA ∈ K∞[[τ ]]. By the previous discussion, (3.5) follows immedi-
ately and, viewing (3.1), it suffices to justify (3.6). �

As a direct consequence of Theorem 3.4 we deduce that the multiple zeta values
ζA(q − 1, q(q − 1), . . . , qk−1(q − 1)) are all Eulerian in the sense of Definition 3.1.

Note that the special case of A = Fq[θ] is considered in [32, Proposition 4.4.9].
Unlike (3.2), (3.6) does not seem to deliver non-vanishing properties of the coef-
ficients εk. We can however consider the reverse implication and deduce that the
multiple zeta values ζA(q − 1, q(q − 1), . . . , qk−1(q − 1)) are non-zero by using [35,
Theorem 3.2].

3.3. Harmonic products. We are ready to prove our main result, by variants of
the harmonic products discussed in [24].

Proposition 3.5. For all k ∈ N we have the following identity of entire functions
over Spec(A)anC∞ :

Z0 · ζA(q − 1, . . . , qk−1(q − 1)) = Zk + Z
(1)
k−1.

Proof. By Lemma 2.4,

Z0 · ζA(q − 1, . . . , qk(q − 1))− Zk

=
∑
i≥0

S≤i · Si(q − 1, q(q − 1), . . . , qk(q − 1))

=
∑
i≥0

S≤i · Si(q − 1) · S<i(q(q − 1), . . . , qk(q − 1))

=
∑
i≥0

S
(1)
i · S<i(q(q − 1), . . . , qk(q − 1))

= Z
(1)
k−1.

�
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As a consequence, we obtain

Theorem 3.6. Let n ≥ 1 be an integer. Then for all k ≥ 0, there exists αn,k ∈ H
such that

(3.7) ζA
(
qn − 1, (q − 1)qn, . . . , (q − 1)qk−1+n

)
= αn,kζA

(
qn+k − 1

)
.

Further,

(3.8) αn,k = (−1)kλ−1
n+k

k∑
i=0

λn+iε
qn+i

k−i .

In particular, the multiple zeta value ζA(qn − 1, qn(q − 1), . . . , qn+k−1(q − 1)) is
Eulerian.

Note that the depth of the multiple zeta value in the left-hand side of (3.7)
equals k + 1. The coefficient αn,k is well defined because λn+k never vanishes, as
previously noticed. If k = 0 the left-hand side is just ζA(qn − 1) so that αn,k = 1
in this case.

Proof of Theorem 3.6. Let us write

F :=
∑
k≥0

(−1)kZkτ
k ∈ T(K)[[τ ]].

The coefficient of 1 = τ0 is therefore Z0. We also set

G :=
∑
k≥0

(−1)kζA
(
q − 1, . . . , (q − 1)qk−1

)
τk ∈ K∞[[τ ]].

We recall that by (3.5),

G = expA ∈ K∞[[τ ]].

Hence Proposition 3.5 implies the identity in T(K)[[τ ]]:

F − τF = Z0 expA .

This allows to write

F =
∑
i≥0

τ i(Z0)τ i expA,

a series expansion which is convergent for the τ -adic topology. Explicitly, equating
the coefficients of τk, we find

(3.9) Zk = (−1)k
k∑
i=0

εq
i

k−iτ
i(Z0)π̃q

k−qi
φ , k ≥ 0.

Applying τn we get

τn(Zk) = (−1)k
k∑
i=0

εq
i+n

k−i τ
i+n(Z0)π̃

(qk−qi)qn
φ .

Evaluating at Ξ the above identity of entire functions and using (3.1) and (3.2)
together with the identities

τ i(Z0)Ξ = ζA(qi − 1), i ≥ 0,
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we obtain

ζA
(
qn − 1, (q − 1)qn, . . . , (q − 1)qk−1+n

)
=

= (−1)kλ−1
n+k

(
k∑
i=0

λn+iε
qn+i

k−i

)
ζA(qk+n − 1),

and (3.8) holds. This completes the proof of the Theorem. �

Remark 3.7. Applying τn for n > 0 to both sides of the identity of Proposition
3.5, evaluating at Ξ, and assuming that X = P1, yields directly [20, Theorem 5.1].
If k = 1, (3.9) yields

Zk = −ε1Z0π̃
q−1 − Z(1)

0 .

Since ε1 = −λ1 the above is equivalent, by (3.2), to the harmonic product formula

(3.10) Z0ζA(q − 1) = Z
(1)
0 + Z1.

A particular case of this formula, when φ = C is Carlitz’s module, so that A = Fq[θ],
appears in [24, §7.2.1].

Remark 3.8. Applying τn with n > 0 to both sides of (3.10) and evaluating at Ξ
yields the formula

ζA(qn − 1)ζA(q − 1)q
n

= ζA(qn+1 − 1) + ζA (qn − 1, (q − 1)qn)

which is a generalization of [37, Theorem 4]. The case n = 0 makes sense too, but
returns a tautological identity. Theorem 3.6 in the case k = 1 rewrites as

(3.11) ζA (qn − 1, (q − 1)qn) = −

(
λnε

qn

1

λn+1
+ 1

)
ζA(qn+1 − 1)

and agrees with the above formula again in virtue of the fact that ε1 = −λ1.

4. Applications

In this section, we consider Drinfeld modules on elliptic curves and ramifying
hyperelliptic curves as studied in [21, 26]. We then derive a simple formula for the
ratio αn,1. As a consequence, we prove a conjecture of Lara Rodŕıguez and Thakur
(see Theorem 4.2).

4.1. Elliptic curves: the genus 1 case. We work with Drinfeld modules on
elliptic curves (i.e., g = 1 and d∞ = 1) which were studied in detail in [26]. We let
E be the elliptic curve defined over Fq given by

E : η2 + a1θη + a3η = θ3 + a2θ
2 + a4θ + a6, ai ∈ Fq.

We denote by A = Fq[θ, η] the ring of functions on E and K its fraction field. We
recall the Fq-algebra homomorphism χ : A→ A⊗C∞ given by a 7→ a⊗ 1. We put
y = χ(η) and t = χ(θ).

The shtuka function attached to the standard sign-normalized Drinfeld module
of rank one is given by

f =
ν

δ
=
y − η −m(t− θ)

t− α
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where m = η−βq
θ−αq and V = (α, β) ∈ E(H) is the Drinfeld divisor. Recall that for all

i ≥ 0,

εi =
1

ff (1) . . . f (i−1)

∣∣∣
Ξ(i)

, λi =
δ(i+1)

δ(1)f (1) . . . f (i)

∣∣∣
Ξ

The first equality is proved by Thakur [35, Proposition 0.3.6] as mentioned be-
fore. The second equality is shown by Anderson [35, Proposition 0.3.8], Green and
Papanikolas [26, Theorem 3.4 and Corollary 3.5].

By (3.11),

αn,1 = −

(
λnε

qn

1

λn+1
+ 1

)

= −

(
δ(n+1)f (n+1)

δ(n+2)

∣∣∣
Ξ

1

(f
∣∣
Ξ(1))q

n
+ 1

)

= −

(
ν(n+1)

δ(n+2)

∣∣∣
Ξ

1

(f
∣∣
Ξ(1))q

n
+ 1

)
.

4.2. Ramifying hyperelliptic curves. In [21], the first author extended the pre-
vious results to the case of ramifying hyperelliptic curves. More precisely, letting
g ≥ 1 be an integer, we consider a ramifying hyperelliptic curve X defined over Fq
is given by

X : η2 + F2(θ)η = F1(θ)

with Fi ∈ Fq[θ], F1 monic of degree 2g + 1 and F2 of degree at most g. Thus the
genus of X equals g. We denote by A = Fq[θ, η] the ring of functions on X and K
its fraction field. We recall the Fq-algebra homomorphism χ : A → A ⊗ C∞ given
by a 7→ a⊗ 1. We put y = χ(η) and t = χ(θ).

By [21, Proposition 3.1], the shtuka function attached to the standard sign-
normalized Drinfeld module of rank one can be expressed as

f =
ν

δ

where ν = y − η − Q and δ,Q ∈ H[t] of degree g in t. Further, we have s̃gn(ν) =
s̃gn(δ) = 1. Then by [35, Proposition 0.3.6] and [21, Proposition 3.3], we still get

εi =
1

ff (1) . . . f (i−1)

∣∣∣
Ξ(i)

, λi =
δ(i+1)

δ(1)f (1) . . . f (i)

∣∣∣
Ξ

Thus we obtain a similar expression for αn,1:

αn,1 = −

(
ν(n+1)

δ(n+2)

∣∣∣
Ξ

1

(f
∣∣
Ξ(1))q

n
+ 1

)
.

4.3. Class number one base rings. Following Thakur [35] (see also [28]), another
important class of base rings consists of class number one rings, i.e., we require that
A is a principal ideal domain. There are exactly four of them listed as Examples
(i)-(iv) in [28]:

(i) A = F2[θ, η]/(η2 + η + θ3 + θ + 1);
(ii) A = F3[θ, η]/(η2 − (θ3 − θ − 1));

(iii) A = F4[θ, η]/(η2 + η+ θ3 +w), where w2 +w+ 1 = 0, i.e., w is a generator
of F×4 ;

(iv) A = F2[θ, η]/(η2 + η + θ5 + θ3 + 1).
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They considered the following ratios (in [28], these ratios are denoted by Rn)

αn,1 :=
ζA(qn − 1, qn+1 − qn)

ζA(qn+1 − 1)
,

and conjectured that they are in K in the above four cases. In each of the four
cases, we will set X and Y to be some qn-th power of θ and η respectively.

Conjecture 4.1 ([28], Conjecture 3.3). The following formulas hold in Examples
(i)-(iv) above:

(i) Set X := θ2n and Y := η2n . Then

αn,1 =
θ2n+1

+ θ2

η2n+1 + η + θ2n+1+1 + θ

=
X2 + θ2

Y 2 + η + θX2 + θ
.

(4.1)

(ii) Set X := θ3n and Y := η3n . Then

αn,1 =
(θ3n − θ)(η3n − η)2 + (θ3n − θ)(−θ3n − θ3 − θ + 1)

θ2·3n+1 + θ3n+1+1 + θ3n+1 + η3·3n+1 + θ2 − θ + 1

=
(X − θ)(Y − η)2 −X2 + (−θ3 + 1)X + θ2 − θ

ηY 3 +X6 + (θ + 1)X3 + θ2 − θ + 1
.

(4.2)

(iii) Set X := θ4n and Y := η4n . Then

αn,1 =
(θ4n + θ)(η4n+1

+ η4) + (θ4n+1

+ θ4)(θ4n+2 + θ3 + 1) + (θ4n + θ)

θ2·4n+1+2 + (θ4n+1 + θ)(η4n+1 + η) + θ4n+1

=
(X + θ)(Y 4 + η4) + (X4 + θ4)(θ2X + θ3 + 1) +X + θ

θ2X8 + (X4 + θ)(Y 4 + η) +X4

=
(X + θ)(Y 4 + η4) + θ2X5 + (θ3 + 1)X4 + (θ6 + 1)X + θ7 + θ4 + θ

(X4 + θ)(Y 4 + η) + θ2X8 +X4
.

(4.3)

(iv) Set X := θ2n−1

and Y := η2n−1

. Then

αn,1 =
1

X24 + θX16 + (θ + 1)X8 + θ2 + θ

(
X22 + (1 + θ)

· (X20 +X18 +X16) + (θ2 + θ + 1)(X12 +X10) +X9 + θX8

+X5 + (Y + η)(X4 +X2) + θ2 + θ

)
.

(4.4)

Theorem 4.2. Conjecture 4.1 holds.

Proof. In the case of elliptic curve and ramifying hyperelliptic curves, we have
proved an expression in terms of the shtuka function f for the standard sign-
normalized rank one Drinfeld module φ:

αn,1 = −
(
ν(n+1)

δ(n+2)

∣∣∣∣
Ξ

1

(f |Ξ(1))q
n + 1

)
.

Here ν, δ are respectively the numerator and denominator of the shtuka function
f , as given in §4.1 and §4.2. Upon evaluation and reusing the notations from
Conjecture 4.1, we have
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(i)

f =
y − η − θ(t− θ)

t− θ − 1
, f |Ξ(1) = 1,

αn,1 =
η + η2n+1

+ θ2n+1+1 + θ + 1

θ2n+2 + θ + 1

=
Y 2 + η + θX2 + θ + 1

X4 + θ + 1
.

(4.5)

(ii)

f =
y − η − η(t− θ)

t− θ − 1
, f |Ξ(1) =

1

η
,

αn,1 =
(η − η3n+1 − η3n+1

(θ − θ3n+1

))η3n − θ3n+2

+ θ − 1

θ3n+2 − θ + 1

=
Y 4(X3 − θ − 1) + ηY −X9 + θ − 1

X9 − θ + 1
.

(4.6)

(iii)

f =
y − η − θ2(t− θ)

t− θ
, f |Ξ(1) =

1

θ4 + θ
,

αn,1 =
(η4n+1

+ η + θ2·4n+1

(θ + θ4n+1

))(θ4n+1

+ θ4n) + θ4n+2

+ θ

θ4n+2 + θ

=
(Y 4 + η)(X4 +X) +X13 + θX12 + θX9 + θ

X16 + θ
.

(4.7)

(iv)

f =
y + η − (t+ θ)(θ4 + θ3 + θ2(t+ 1))

θ3 + tθ2 + (1 + t)θ + t2 + t
, f |Ξ(1) =

1

θ2 + θ
,

αn,1 =
1

θ3·2n+2 + θ2·2n+2+1 + (1 + θ)θ2n+2 + θ2 + θ

((
η + η2n+1

+ (θ + θ2n+1

)(θ4·2n+1

+ θ3·2n+1

+ θ2·2n+1

(θ + 1))
)
· (θ2n+1

+ θ2n)

+ (θ3·2n+2

+ θ2·2n+2+1 + (1 + θ)θ2n+2

+ θ2 + θ)

)
=

1

X24 + θX16 + (θ + 1)X8 + θ2 + θ

((
η + Y 4

+ (θ +X4)(X16 +X12 + (θ + 1)X8)
)
· (X4 +X2)

+ (X24 + θX16 + (θ + 1)X8 + θ2 + θ)

)
=

1

X24 + θX16 + (θ + 1)X8 + θ2 + θ

(
(η + Y 4)(X4 +X2)

+X22 + (θ + 1)(X20 +X18) + (θ + 1)X16 +X14

+ (θ2 + θ)(X12 +X10) + (θ + 1)X8 + θ2 + θ

)
.

(4.8)

We now prove that our expressions match those in Conjecture 4.1.

Example (i) A = F2[θ, η]/(η2 + η + θ3 + θ + 1).
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Set (4.1) and (4.5) to be equal and cross multiply. We want to show that the
following equality holds:

Y 4 + η2 + θ2X4 + θ2 + Y 2 + η + θX2 + θ = X6 + θ2X4 + (θ + 1)X2 + θ3 + θ2.

Using η2 + η = θ3 + θ + 1, we can simplify the above equation as

Y 4 + Y 2 = X6 +X2 + 1.

This is true since

Y 2 + Y = η2·2n + η2n = (η2 + η)2n = (θ3 + θ + 1)2n = X3 +X + 1,

and we obtain the desired equality by squaring this equation. This proves that the
expressions (4.5) and (4.1) are equal.

Example (ii) A = F3[θ, η]/(η2 − (θ3 − θ − 1)).
By squaring η2 = θ3 − θ − 1, we have η4 = θ6 + θ4 + θ3 + θ2 − θ + 1. Hence

Y 4 = (η4)3n = X6 +X4 +X3 +X2 −X + 1.

Thus we can rewrite the expression in (4.6) as

(4.9) αn,1 =
1

X9 − θ + 1

(
ηY +X7 − θX6 +X5

+ (−θ + 1)X4 − θX3 − (θ + 1)X2 + (θ + 1)X + 1
)
.

We also expand the terms involving Y in (4.2). First, we have that

Y 2 = (η2)3n = (θ3 − θ − 1)3n = X3 −X − 1.

Thus

(Y − η)2 = Y 2 + ηY + η2

= (X3 −X − 1) + ηY + (θ3 − θ − 1)

= ηY +X3 −X + θ3 − θ + 1.

At the same time,
Y 3 = Y 2 · Y = (X3 −X − 1)Y.

Putting these into (4.2), we have that the expression equals

(X − θ)(ηY +X3 −X + θ3 − θ + 1)−X2 + (−θ3 + 1)X + θ2 − θ
(X3 −X − 1)ηY +X6 + (θ + 1)X3 + θ2 − θ + 1

=
(X − θ)ηY +X4 − θX3 +X2 −X − θ2 + θ

(X3 −X − 1)ηY +X6 + (θ + 1)X3 + θ2 − θ + 1
.

Set this and (4.9) to be equal and cross multiply, we want to show that the
following equality holds:(

X10 − θX9 + (−θ + 1)X + θ2 − θ
)
ηY +X13 − θX12 +X11

−X10 + (−θ2 + θ)X9 + (−θ + 1)X4 + (θ2 − θ)X3

+ (−θ + 1)X2 + (θ − 1)X + θ3 + θ2 + θ

= η2(X3 −X − 1)Y 2 +
(
X10 − θX9 + (−θ + 1)X + θ2 − θ

)
ηY

+X13 − θX12 +X11 −X10 + (−θ2 + θ)X9 + (−θ3 + θ + 1)X6

− (θ3 + 1)X4 + (−θ3 + θ2 + 1)X3 + (−θ3 − 1)X2 + (θ3 + 1)X

+ θ2 − θ + 1.
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Cancelling common terms and rearranging, we want the following equality to
hold:

η2(X3 −X − 1)Y 2 = (θ3 − θ − 1)X6 + (θ3 − θ − 1)X4 + (θ3 − θ − 1)X3

+ (θ3 − θ − 1)X2 − (θ3 − θ − 1)X + (θ3 − θ − 1).

This is indeed true since η2 = θ3 − θ − 1, and

(X3 −X − 1)Y 2 = (X3 −X − 1)2 = X6 +X4 +X3 +X2 −X + 1.

This proves that the expressions (4.6) and (4.2) are equal.

Example (iii) A = F4[θ, η]/(η2 + η + θ3 + w) where w2 + w + 1 = 0.
Set the expressions (4.3) and (4.7) to be equal and cross multiply. We want to

show that the following equality holds:

(X17 + θX16 + θX + θ2)(Y 4 + η4) + θ2X21 + (θ3 + 1)X20 + (θ6 + 1)X17

+ (θ7 + θ4 + θ)X16 + θ3X5 + (θ4 + θ)X4 + (θ7 + θ)X + θ8 + θ5 + θ2

= (X8 +X5 + θX4 + θX)(Y 4 + η)2 +
(
X17 + θX16 +X8 +X5

+ θX4 + θ2
)
(Y 4 + η) + θ2X21 + θ3X20 + (θ3 + 1)X17 + θX16

+ θX13 + θ3X8 + θX4.

Recall that η2 = η + θ3 + w. Squaring both sides, we have that

η4 = η2 + θ6 + w2 = η + θ6 + θ3 + w2 + w = η + θ6 + θ3 + 1.

Using this and rearranging the long equation, we want to show that the following
equality holds:

(X8 +X5 + θX4 + θX)(Y 4 + η)2 + (X8 +X5 + θX4 + θX)(Y 4 + η)

= (X17 + θX16 + θX + θ2)(θ6 + θ3 + 1) +X20 + (θ6 + θ3)X17 + (θ7 + θ4)X16

+ θX13 + θ3X8 + θ3X5 + θ4X4 + (θ7 + θ)X + θ8 + θ5 + θ2.

The right hand side can be simplified to

X20 +X17 + θX16 + θX13 + θ3X8 + θ3X5 + θ4X4 + θ4X

= (X8 +X5 + θX4 + θX)(X12 + θ3)

Hence, it suffices to show that

(Y 4 + η)2 + (Y 4 + η) = X12 + θ3.

Raising η2 + η = θ3 + w by 4 · 4n-th power, we have that

Y 8 + Y 4 = X12 + w.

In particular, w4 = w as w ∈ F4. Thus,

(Y 4 + η)2 + (Y 4 + η) = Y 8 + Y 2 + η2 + η = X12 + w + θ3 + w = X12 + θ3,

completing the proof.

Example (iv) A = F2[θ, η]/(η2 + η + θ5 + θ3 + 1).
This one is the easiest among the four examples. The expression (4.8) has the

same denominator as Lara Rodŕıguez-Thakur’s expression (4.4). Hence it suffices
to show that their numerators are the same. By setting the numerators to be equal,
it boils down to showing that

Y 4 + Y = X10 +X6 +X5 +X3,
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Or equivalently,

η2n+1

+ η2n−1

= θ10·2n−1

+ θ6·2n−1

+ θ5·2n−1

+ θ3·2n−1

for n ≥ 1. This follows from the equality

η4 + η = θ10 + θ6 + θ5 + θ3

by squaring η2 = η + θ5 + θ3 + 1. The proof is complete. �
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