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Abstract. With the growing interest in identifying plant species and the availa-
bility of digital collections, many automated methods based on bark images 
have been proposed. Bark identification is often formulated as a texture analysis 
problem. Among numerous approaches, Local Binary Pattern (LBP) based tex-
ture description has achieved good performances. Bark structure appearance is 
subject to resolution variations which can be due to a number of factors (envi-
ronment, age, acquisition conditions, etc). Thus it remains a very challenging 
problem. In this paper, we implement and study the efficiency of different mul-
ti-scale LBP descriptors: Multi-resolution LBP (MResLBP), Multi-Block LBP 
(MBLBP), LBP-Filtering (LBPF), Multi-Scale LBP (MSLBP), and Pyramid 
based LBP (PLBP). These descriptors are compared on two bark datasets: AFF 
and Trunk12. The descriptors are evaluated under increasing levels of scale 
space. The performances are assessed using the Mean Average Precision and 
Recall\Precision curves. The results show that multi-scale LBP descriptors out-
perform the basic LBP and MResLBP. In our tests, we observe that the best re-
sults of LBPF and PLBP are obtained under low scale space levels. We also ob-
serve similar results for MSLBP and MBLBP across the six scales considered. 

 
Keywords: Plant Identification, Multi-scale LBP, Texture description, Bark 

species recognition, Image retrieval. 

 Introduction 

Plants play an essential role in sustaining life on our planet. In addition to providing a 
natural habitat, they are a constant source of oxygen, food, and medicine. Given the 
vast diversity and variety of plant species, there is understandably increasing interest 
in indentifying new and existing species in order to improve agriculture and plant 
production, while adding to the proof of knowledge available to researchers in the 
field of botany. 

The classical approach to identifying and classifying plant species requires special-
ist domain knowledge meaning that only a taxonomist or botanist can distinguish 
between various species. 



 However, ever a domain expert cannot be expected to know of all plant species, 
and recent years have seen increasing interest in automated plant species identifica-
tion and classification.  

Over the last decade, many automated plant species identification methods based 
on low-level features extracted from images of organs (leaf, flower, fruit, stem, bark 
…) have been proposed; [1,2,3,4,5]. Mobile applications, Leafsnap and Pl@ntNet, 
have been developed aiming to achieve accurate real time identification. Recently, 
many studies based on bark (or stem) images have appeared [3, 4] [6,7,8,9,10].  

The appearance and morphology of the bark are used by foresters and botanists to 
distinguish between plant species and to estimate plant age [11]. The Bark has the 
advantage of being the only part of the tree that is available throughout the year and it 
is present for almost all plant’s lifetime. As bark is a rigid 3D object, its 2D image 
acquisition is straightforward. 

Since bark shows texture properties, its automated identification is formally de-
fined as  a texture analysis problem, and researchers aim to develop relative methods 
to extract highly discriminative features for an accurate identification. Nonetheless, it 
remains a challenging problem in the image processing and computer vision field. 

Bark appearance often depends on environmental conditions, tree age and the ef-
fects of plant diseases. Additionally, acquisition conditions like rescaling, uncon-
trolled illumination changes, branch shadow clutter can alter the image quality and the 
texture properties. Fig 1 illustrates some examples. 

 

       
 (a)            (b)            (c)                     (d)                          (e)    (f)                    (g) 

Fig. 1. Examples of the visual diversity of the surface of bark: (a) lichen, (b) peeled bark, (c) 
scars, (d) tree age deformation, (e) illumination change, (f) shadow clutters, (g) different texture 
structures at different scales. 

The most significant image transformation problem in bark images is scale 
changes, due to the fact that image samples are taken at distinct distances from the 
tree trunk: texture structures taken close to the trunk are of high resolution while those 
far from the trunk are of low resolution. To handle this disparity, many features need 
to be extracted to capture texture properties at different scale levels.  

Several texture descriptors [12] have been used for bark image classification and 
identification. Statistical features such as co-occurrence distribution were used by [7]. 
Huang et al [8], [13, 14] proposed different approaches, respectively, based on con-
tourlet filter, Gabor filters, and Discrete Wavelet Decomposition (DW). In [4], a bag 
of words model was constructed with SIFT interest points.  Recently, structural fea-
tures such as LBP variants have been used [9, 10], [15,16]. 

Sixta et al [9], used Multi-Block Local Binary Pattern where mean filter with dif-
ferent sizes is applied to input images. MBLBP was the first multi-scale LBP variant 



used for bark texture analysis. Sulc et al [10] proposed a Multi-Scale LBP. Input im-
ages are Gaussian Filtered prior to the LBP operator with increasing radii. In both, 
histograms of all the scales considered are concatenated to form the final texture de-
scriptor.  

Motivated by the high performances achieved in the two last studies, we want to 
focus more closely on multi-scale LBP as efficient texture descriptor for bark texture 
identification.  

Our work aims to quantitatively discuss and compare four different multi scale 
LBP approaches with filters for bark texture analysis, namely: (1) Multi-Block LBP 
(MBLBP) [17]with a mean filter, (2) LBP Filtering (LBPF) [18] and (3) Multi-Scale 
LBP (MSLBP) [10]with a low pass Gaussian filter, and (4) Pyramid-based LBP 
(PLPB) [19]with a pyramid transform. These methods are implemented and compared 
to the conventional Multi Resolution LBP (MResLBP) [20] where texture information 
is simply collected from single pixels at different scales rather than using filter’s res-
ponses.  

The remainder of this paper is structured as follows: the LBP operator and its mul-
ti-scale variants are presented in Section 2. In Section 3, a detailed description of bark 
datasets is given. Our bark image retrieval experiments and results are set out and 
discussed in Section 4. Finally, the conclusion is given in Section 5. 

 The LBP operator and its Multi-Scale variants 

2.1 The LBP operator 

Basic LBP [20] encodes the sign of the local difference between a central pixel p� and 
its P neighbors  p� , evenly spaced on a circle of radius R. Formally, it is given by: 

LBP�,� =  � s(p� −  p�)2�

���

�� �

 
 
(1) 

Where s(x) is a step function; s(x) = 1, if x >= 0; 0 otherwise. 
Once the LBP codes have been computed, a histogram is built to represent the texture 
image. 

Another extension to the basic LBP operator considers uniform patterns; the un-
iformity measure was first defined by [21] as “the number of bitwise 0/1 and 1/0 
changes when the pattern is considered circular”. Based on this definition, a local 
binary pattern is said to be uniform if its uniformity measure takes that form U≤ 2.  

Using this mapping, denoted by LBPu2, every uniform pattern is assigned to a sin-
gle bin in the histogram and all non uniform patterns are assigned to a unique bin.  

It is formally defined by: 

 LBP�,�
�� = ∑ s(p� − p�), if U�LBP�,�����

�� � ≤ 2, � + 1 ��ℎ������                (2) 

The uniform patterns are shown to provide fundamental local texture information 
properties [20]. Furthermore, it can significantly reduce the histogram length: only 59 
bins with 8 samples in the local neighborhood instead of 256. 



Multi Resolution LBP (MRes-LBP). 
Bark texture images are captured at various scales. Therefore, large-scale structures 
cannot be defined within the 3×3 space area of the original LBP. 

An intuitive and efficient way to capture large-scale structures is to combine dif-
ferent LBP operators with increasing values of (P, R), i.e. (8, 1), (16, 2), (24, 3). 

Ojala’s [20] multi resolution LBP (MResLBP) is based on the concatenation of 
three uniform LBP histograms, LBP�,�

��  +  LBP��,�
�� +  LBP��,�

�� . Fig 2 shows LBP opera-

tors with different configurations of (P, R). 

 

Fig. 2. LBP operator with different values of (P, R): (8, 1), (16, 2) and (8, 2). 

Using different LBP operators with increasing radii causes an aliasing effect and 
leads to noise sensitivity since the texture information is collected from a single pixel 
at different levels. To overcome this issue, several multi-scale LBP schemes have 
been proposed [10], [17,18,19] mainly based on filter responses to collect texture 
information from large areas at different scales. Therefore, it captures microstructures 
as well as macrostructures with reduced noise.  

2.2 Multi-Scale LBP 

Multi-Block Local Binary Pattern (MBLBP).  
Liao [17] applied a set of mean filters at different scales to the input image. The sim-
ple point to point comparison in basic LBP was extended to a comparison between 
mean intensity values of square sub-blocks. The size of the filter s×s denotes the scale 
of the MBLBP operators. Each filter is divided into 9 sub blocks as shown in Fig. 3. 
Therefore its size must be a multiple of 3.  

  

Fig. 3. MBLBP operator of size 9*9 [17] 

In their work, [17] stated a new uniformity definition based on percentage distribu-
tion. The n patterns (n = 63) with a high percentage distribution are labeled as uni-
form and the remaining patterns are labeled as non uniform. 



Local Binary Pattern Filtering (LBPF).  
Following a multi-scale approach, in [18] large-scale texture patterns are detected by 
combining exponentially growing neighborhood radii with Gaussian low-pass filter-
ing. Gaussian low-pass filtering is used to collect information from an area larger than 
a single pixel, named the “effective area”. Solid circles in Fig. 4 (a) indicate a con-
stant number of effective areas over different scales. The P circles (P=8) are tangent 
and have the same size.  

Exponentially growing radii of the LBP operator, �� , indicated by dotted circles in 
Fig. 4 (a) at level s, are given by: 

 �� =  
��� ����

�
 (3) 

Multi-Scale Local Binary Pattern (MSLBP). 
In contrast to the scale space in [18] where LBP radii are designed so that the effec-
tive areas at different levels are tangent, in MSLBP [10] a finer scale with a step of 

√2 is used between LBP radii, i.e. 

                                                        �� =  ���� √2  ��� ��= 1                                         (4) 

Pyramid-Based Local Binary Patterns (PLBP).  
Qian et al [19] proposed Pyramid-based LBP. Each image at level s of the pyramid 
representation is obtained by convolving it with a Gaussian low pass filter, �(�, �), 
followed by down sampling of the  s-1th level image. Formally �� (�, �) is obtained as 
follows, where �� (�, �) is the original image: 
 

 ��(x, y) = �(�, �) ∗  �������� + �, ��� + ��, ��� ����� � > 1 (5) 

 
Where R�, R�are the down-sampling ratios in x and y directions respectively, and the 

Gaussian filter, G(x, y), is given by: 

                                            �(�, �) =  
�

����  ��� �
��� ��

��� � (6) 

PLBP can be seen as a general case of LBPF and MSLBP differing in that is sam-
pling or no sampling; that the effective areas being tangent or not; and low pass filter 
types, (more details can be found in [19]). 

 
(a)                                 (b)                                   (c) 

Fig. 4. Effective areas. (a)LBPF, (b)MSLBP Finer scale space, (c) PLBP with differ-
ent LBP bits at each scale [19], [10]. 



 Bark Datasets 

Two bark image datasets (AFF1 [4] and Trunk122 [16]) were used to evaluate the 
multi-scale LBP descriptors. These datasets differ with regard to the number of 
classes, the number of samples per class, image transformation i.e. scale, pose and 
illumination changes. Fig. 5 shows samples from each class of the two datasets. 

 

 
 

 

Fig. 5.       Bark image samples; Top row, AFF dataset, bottom row, Trunk12 dataset. 

 AFF Dataset: The AFF bark dataset provided by “Osterreichische Bundesforste”, 
Austrian Federal Forests (AFF) was first used in [4]. It is a collection of the most 
common Austrian trees and the dataset contains 1182 bark samples belonging to 11 
classes, the size of each class varying between 16 and 213 images. AFF samples 
are captured at different scales, and under different illumination conditions. 
 

 Trunk12 Dataset: Trunk12 was the first publicly available bark dataset. It con-
tains 393 images of tree barks belonging to 12 different trees that are found in Slo-
venia. The number of images per class varies between 30 and 45 images. Bark im-
ages are captured under controlled scale, illumination and pose conditions. The 
classes are more homogenous than those of AFF in terms of imaging conditions. 

A challenging bark dataset, ImageClef, was excluded from this comparison study 
since its bark images do not show only the tree trunk, but also contain natural back-
ground. Thus a segmentation preprocessing would be required to extract the bark 
regions. In addition, unlike AFF and Trunk12, ImageClef image samples are subject 
to rotation changes, as the bark images are captured at random orientations. 

                                                           
1  We are grateful to the computer vision Lab, TU, Vienna for allowing us access to the AFF 

dataset for scientific use. 
2  http://www.vicos.si/Downloads/TRUNK12 



 Experimental Results and Evaluation 

Bark images in the AFF dataset and the Trunk12 dataset are of high resolution and 
processing the samples with their original pixel resolution slows down the task. 
Therefore, all the images are resized to 600×400 px and converted to gray level. 

LBP histograms at level s are normalized to unit length, and then concatenated. 
Thus the final multi-scale histogram length is 2� × � where P is set to 8 neighbors for 
all scales and � ∈ {1, … , �} where S=6, is the scale space level. Table 1 summarizes 
the parameter settings for each multi-scale LBP descriptor at each level of the scale 
space, where σ, and Rs denote respectively, the standard deviation of the Gaussian 
filter and the LBP radius at level s (see [10, 18] for details). 

Table 1. Multi-scale LBP descriptor  parameters over different scales. 

 

s 

LBPF MSLBP PLBP MBLBP 

σ Rs σ Rs Image size Filter size 

1 0.38 2.43 0.28 1.41 600×400 3×3 

2 0.85 5.44 0.39 2 300×200 9×9 

3 1.91 12.19 0.55 2.83 150×100 15×15 

4 4.27 27.3 0.78 4 75×50 21×21 

5 9.56 61.16 1.1 5.66 38×25 27×27 

6 21.42 136.98 1.56 8 19×13 33×33 

 
To evaluate the descriptors presented above, we use the Mean Average Precision and 
the Precision\Recall curves. The Precision (Pre) and the Recall (Rec) are given by: 

                      ��� =  
#�������� ������

#��������� ������
 ; ��� =  

#��������� �������� ������

#�������� ������
 (7) 

The Mean Average Precision (MAP) is the mean of the Average Precision (AP) of 
a set of queries Q, and is defined by: 

               ��� =  
∑ ��(�)

�
���

�
 , where     ��(�) =  

∑ ���(�)×�(�)�
���

#��������� �������� ������ ��� �
 (8) 

Where Pre (k) is the precision at a given cut-off, and f (k) is set to 1 if the retrieved 
image at rank k is relevant; zero otherwise. 
 
In what follows, we highlight the max values of MAP in bold and min values in ital-
ics.  

Table 2. Mean Average Precision of LBP variants without filtering. 

 LBP LBPu2 MResLBP 

AFF 31.46 31.00 32.69 

Trunk12 31.42 29.69 30.03 



 
Table 2 reports the MAP values of LBP, LBPu2, and MResLBP. We can see that the 
LBP and LBPu2 results are very close. The MResLBP, which is the concatenation of 
three uniform LBPs slightly, exceeds the uniform LBP performance. One reason for 
this slight improvement of MResLBP, is the aliasing effect in the second and third 
scales. 

Table 3. Mean Average Precision of multi-scale LBP variants on the AFF dataset.  

AFF MBLBP LBPF MSLPB PLBP 

s org u2 n org u2 org u2 org u2 

1 32.12 30.28 26.39 34.1 33.95 32.14 31.66 34.99 33.69 

2 33.86 31.75 29.4 35.62 34.96 33.25 33.08 35.17 34.18 

3 33.40 31.9 29.98 36.6 35.39 34.09 33.74 34.68 34.78 

4 32.74 31.72 30.04 35.5 34.19 34.87 34.53 32.93 32.78 

5 32.17 31.65 30 29.75 28.44 35.33 34.71 27.82 27.91 

6 31.67 31.53 29.93 18.97 19.91 35.8 34.77 22.71 22.98 

Table 4. Mean Average Precision of multi-scale LBP variants on the Trunk12 dataset.  

Trunk12 MBLBP LBPF MSLPB PLBP 

s org u2 n org u2 org u2 org u2 

1 32.34 28.32 24.76 32.85 31.11 31.3 28.75 36.23 34.74 

2 34.43 29.16 28.75 37.44 35.51 31.62 29.43 40.93 39.67 

3 35.8 29.84 31.22 42.8 40.14 32.68 30.59 45.05 44.29 

4 36.46 30.74 32.58 47.66 44.28 35.09 33.15 47.1 46.74 

5 36.66 31.22 33.32 39.07 36.64 37.38 35.01 37.6 38.27 

6 36.57 31.79 33.77 17.38 18.2 39.59 36.66 23.45 24.85 

 
Table 3 and Table 4 show MAP values for the multi-scale LBP descriptors on the 

AFF and the Trunk12 datasets respectively with increasing scale space levels. The 
uniform extension of multi-scale LBP variants, noted u2, as well as the original pat-
terns i.e. all possible patterns (256), noted org, are also considered. Note that for 
MBLBP, the uniformity measure defined in [17] is also tested in this study, noted by 
MBLBPn. Fig 6 illustrates Recall\Precision curves. The multi-scale LBP descriptors 
are chosen at their best scale according to the highest MAP value in Table 3 and Ta-
ble 4 for the AFF and Trunk 12 datasets respectively. 
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Trunk12 classes are more homogenous than those of AFF regarding both imaging 
conditions and botanical factors. 

One reason why all multi-scale descriptors with only u2 patterns perform slightly 
lower than org patterns is the part of information that is roughly described by the last 
bin of the non-uniform histogram. 

MBLBPn has the lowest MAP value and the worst Recall\Precision curve on the 
AFF dataset, but not on the Trunk12 dataset. Note, however, that MBLBPn is based 
on a statistical distribution of patterns and not on fundamental local texture properties. 
Consequently, the comparison of two histograms can match completely different pat-
terns together. This can explain the AFF results. For the Trunk12 dataset, we suppose 
that the matching between different patterns coincides with space projection.  

MBLBP has the lowest performances on the AFF dataset and the Trunk12 dataset. 
We believe that this came from low pass filtering used, i.e. mean filter in MBLBP. 

For MSLBP, the best MAP values are obtained at scale 6 on both datasets. MSLBP 
MAP values increase slowly compared to other variants. Indeed, a finer scale with 

step of √2 is used between LBP radii (see Table 1) and Gaussian smoothing is applied 
firstly at scale 4 (more details in [10]). The best results for LBPF are obtained at scale 
3 with LBP radius equal to 12.19, which is higher than the MSLBP radius at scale 6 
(R6 =8). Based on these remarks, we believe that MSLBP reaches its optimal perfor-
mance at scales higher than 6.  However, it results in a longer histogram compared to 
LBPF. 

 

 

Fig. 7. LBPF descriptor behavior. Request image highlighted in solid square, false positive in 
dotted square, from top to bottom; first five returned images at level 3, second row, returned 
images et level 6; third row: LBP images at level 3, with high inter-class variation; bottom row, 
LBP images at level 6, high inter-class similarity. 



The sharp drop in MAP values for the LBPF descriptor on both, AFF and Trunk 12 
from scales 3 and 4 respectively can be explained as follows: With  increasing values 
of σ over the scales (details in Table 1), images are increasingly smooth, and local 
texture information is lost and subject to noise sensitivity. Thus the descriptor loses its 
discriminative power. Fig 7 shows an example of an image request and the first 5 
images returned, the LBPF descriptor, cannot distinguish between different classes at 
scale level 6. 

The deterioration in PLBP performances on the two datasets is due to the fact that 
images at coarse pyramid levels are of very low resolution, as reported in Table 1, and 
do not provide enough structure information. 

 Conclusion 

This paper reports on the evaluation results of basic LBP, uniform LBP, and five mul-
ti-scale LBP descriptors. These descriptors are tested and compared on two bark data-
sets (AFF and Trunk12). 

It is worth noticing that multi-scale LBP provides more discriminative texture fea-
tures than basic and uniform LBP. Therefore, multi-scale information improves LBP 
results. LBPF gives the best results over all the descriptors tested on both datasets. 
MBLBPn produced less satisfying results than we had expected for both datasets. 
This is due to its uniformity definition. Using a distribution percentage does not take 
into account the local structure properties, and the uniqueness of the relative patterns.  

In this work, we focused on the multi-scale problem. It would be interesting to ex-
plore other LBP configurations with different neighborhood topologies in addition to 
the classic circular one, and to combine other complementary texture information in 
order to boost performances. 
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