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Voxel-based Deep Point Cloud Geometry Compression

Giuseppe Valenzise, Maurice Quach, Dat-Than Nguyen, Frédéric Dufaux
Université Paris-Saclay, CNRS, CentraleSupelec, Laboratoire des Signaux et Systèmes (L2S)

Abstract : We present two learning-based methods
for coding point clouds geometry. The two methods tar-
get lossy and lossless compression, respectively, and have
in common the fact to use a voxel-based representation
of geometry. This representation enables us to extend
well-known architectures used for 2D image generation
and compression to 3D. We show that, when the point
cloud density is sufficiently high, the voxel-based approach
achieves state-of-the-art performance compared to conven-
tional octree-based methods such as MPEG G-PCC.

Keywords: point cloud, geometry coding, voxels,
auto-encoder, generative models.

1 Introduction
Due to recent advances in visual capture technology, point
clouds have been recognized as a crucial data structure for
3D content. In particular, point clouds are essential for
numerous applications such as virtual and mixed reality,
sensing for autonomous vehicle navigation, architecture
and cultural heritage, etc. Point clouds are sets of 3D
points identified by their coordinates, which constitute
the geometry of the point cloud. In addition, each point
can be associated with attributes like colors, normals and
reflectance. Point clouds can have a massive number of
points, especially in high precision or large scale captures.
This entails a huge storage and transmission cost. As a
result, Point Cloud Compression (PCC) is fundamental
in practice. The Moving Picture Experts Group (MPEG)
has recently released two PCC standards [1]: Geometry-
based PCC (G-PCC) and Video-based PCC (V-PCC). G-
PCC approaches PCC from a 3D perspective and com-
presses point clouds in their native form using 3D data
structures such as octrees. On the other hand, V-PCC
approaches PCC from a 2D perspective, projects 3D data
onto a 2D plane and makes use of video compression tech-
nology. Recently, deep point cloud compression (DPCC)
methods have been proposed and shown to provide sig-
nificant coding gains compared to traditional methodolo-
gies [2, 3, 4, 5].

In this paper, we focus on the compression of point
cloud geometry, and we review two recently proposed
learning-based methods for lossy and lossless coding. We
consider the case of voxelized point clouds. Voxelization is
the process that quantizes the coordinates of a point cloud
to integer precision prior to the coding process and is typ-
ically applied in most codecs to discretize the geometry.
We also make the implicit hypothesis that the point cloud
is dense enough to exhibit local correlations among neigh-
boring points on the voxel grid – in other terms, we assume
there is not too much “empty space” between points. This
enables us to employ deep neural networks with voxel-
based 3D convolutions (see, e.g., [2]), which have been

shown to be particularly effective in point cloud compres-
sion. On the other hand, point-based convolutions [6, 7]
are also possible [8], but their performance in PCC is still
lagging behind traditional hand-crafted methods such as
those used in MPEG G-PCC.

When a point cloud is voxelized, its geometry can be
expressed as a binary signal over the voxel grid. In par-
ticular, a voxel is consider occupied if it contains at least
one point, and is non occupied otherwise. Based on this
observation, learning-based methods for geometry coding
typically cast decoding as a binary classification problem,
see Section 2. Instead, in lossless compression an explicit,
accurate estimation of the likelihood of voxel occupancy
is necessary: in this case, the decoding can be interpreted
as a voxel generation process, as we will see in Section 3.

2 Lossy compression

Our lossy compression scheme is inspired by the success of
variational auto-encoder (VAE) methods for image com-
pression [9, 10]. The general architecture of a VAE-based
codec is illustrated in Figure 1. An input signal x (pixels
for the case of 2D images, binary voxel occupancies for
3D PCs) is transformed by an analysis network fa into
a latent representation y and quantized into ỹ. This is
later used as input to a synthesis network, producing an
approximated reconstruction x̃ of the original signal. The
quantizer Q represents the main difference with respect to
a conventional VAE, in which the latent space is typically
continuous. Since quantization is not differentiable, sev-
eral approximations have been proposed; in this work, we
replace quantization noise by uniform noise during train-
ing, as initially suggested in [9]. Quantization, along with
the fact that y has smaller dimensionality compared to x,
contribute both to achieve compression. The quantized la-
tent code ỹ is entropy coded and transmitted as bitstream.
A basic version of the VAE-based codec assumes that the
components of ỹ are i.i.d. and computes symbol proba-
bilities for entropy coding accordingly. However, this has
been shown to be suboptimal, and later versions intro-
duce a hyperprior model [10], where the probability of
the quantized latent variables is also modeled through a
VAE. This allows the codec to capture the residual spatial
dependencies among voxels.

The model is trained end-to-end using a D + λR loss
function, for a given value of λ. The rate term includes
both the bits for the latent variables ỹ and z̃, which are ap-
proximated by their differential entropy at training time.
The D part is computed using the focal loss, a variant
of the binary cross-entropy loss [11] used in classification,
which has been shown to be more effective when the class
distribution is strongly unbalanced (in the case of PC,
most of the voxels are empty). The output of the VAE is
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Figure 1: Scheme of a VAE-based codec with hyperprior.

a set of per-voxel probabilities of occupancy, which need
to be thresholded in order to provide the final binary oc-
cupancy values.

The choice of the threshold is of paramount impor-
tance for coding performance. We choose to optimize this
threshold at the encoder side and transmit it as a side
information into the bitstream. Our codec operates on a
block-by-block basis, in such a way that all decisions are
taken locally and adapted to the spatially varying density
in the point cloud. Further details about the architecture
of the codec are reported in [3], and the code is publicly
available as a toolbox [12].

2.1 Performance evaluation

We report RD performance on a subset of four dense point
clouds. Details about the training dataset, as well as
the training hyperparameters, are given in [3]. We evalu-
ate the different conditions using G-PCC trisoup and oc-
tree as baselines. The octree is the basic coding struc-
ture of G-PCC: the point cloud is recursively subdivided
into octants, and only those nodes that contain at least
a point are further split. On top of the basic vanilla oc-
tree, G-PCC adds a number of additional modes and opti-
mizations, including direct coding for isolated points, pla-
nar modes and sophisticated contexts for entropy coding
(see [1] for a survey). The triangle soup (trisoup) mode,
in particular, adds local triangular approximations at the
octree leaves, and is typically included in PC compres-
sion benchmarks (although it is not included in the re-
leased standard). The distortion metrics D1 and D2 are
obtained, respectively, from symmetrized point-to-point
and point-to-distance mean squared errors, which are con-
verted to PSNR using the original PC bit depth as peak
error [13].

Table 1 reports Bjontegaard Delta PSNR of the pro-
posed scheme compared to G-PCC trisoup and octree:
the coding gains are significant for all the considered point
clouds, demonstrating the potential of voxel-based convo-
lutions in the compression of dense point clouds.

3 Lossless compression

Voxel-based convolutional architectures can be success-
fully used also for lossless geometry coding of dense point
clouds. Compared to lossy compression, the goal here is to
estimate accurately the voxel occupancy probabilities for

Point cloud Metric BD-PSNR

loot D1 5.91 / 6.99
D2 6.87 / 6.13

redandblack D1 5.01 / 6.48
D2 5.93 / 5.63

longdress D1 5.55 / 6.94
D2 6.60 / 6.01

soldier D1 5.57 / 6.93
D2 6.57 / 6.04

Average D1 5.51 / 6.83
D2 6.50 / 5.95

Table 1: RD performance of the proposed VAE-based
codec compared to G-PCC (version 10.00). We specify
BD-PSNR values (dB) compared to G-PCC trisoup and
G-PCC octree in each cell (trisoup BD-PSNR / octree
BD-PSNR).

entropy coding, rather than handling class imbalance to
favor a precise binary reconstruction. In the following, we
present briefly the VoxelDNN codec we proposed in [14],
whose general architecture is illustrated in Figure 2.

The basic element of the codec is the context model,
which is based on an auto-regressive generative model in-
spired by PixelCNN [15]. Specifically, let vi denote the
binary occupancy of a voxel i. We factorize the joint
distribution p(v) of a block of voxels v as a product of
conditional distributions p(vi|vi−1, . . . , v1) over the voxel
volume: p(v) =

∏N
i=1 p(vi|vi−1, vi−2, . . . , v1), with N the

number of voxels in a block. Each term p(vi|vi−1, . . . , v1)
is the probability of the voxel vi being occupied given the
occupancy of all previous voxels. An illustration is given
in Figure 2(c). We approximate p̂(vi|vi−1, . . . , v1) using a
convolutional neural network, which we train by minimiz-
ing the binary cross-entropy Ev∼p(v)

[∑N
i=1− log p̂(vi)

]
.

This is equivalent to minimize the distance between the
estimated conditional distributions and the real data dis-
tribution, yielding accurate context distributions for arith-
metic coding. This process can be carried out on blocks of
different sizes (typically, N ranges between 83 and 643),
using a rate-optimization algorithm. Since empty blocks
in a point cloud do not bring any useful context, we apply
an octree-based partitioning to pre-process the PC and re-
move the non-occupied space. Further details about Vox-
elDNN are available in [14].

3.1 Performance evaluation

A comparison of the bitrates of VoxelDNN and G-PCC
(v. 12) for various PC categories is reported in Table 2.
We observe that VoxelDNN achieves significant gains of up
to 37% on dense point clouds (MVUB and 8i). On sparser
point clouds the gains are smaller, but still competitive
compared to G-PCC. The only exception is the PC “Arco
Valentino”, which has large density variations and very
sparse regions where context modeling is ineffective.

Notice that a drawback of VoxelDNN is the sequen-
tial decoding of voxels, which is equivalent to a sequen-
tial sampling from the voxel occupancy distribution. As
a result, the decoding times are significantly higher than
G-PCC. In a follow-up work [16], we propose a partial
solution consisting in breaking some dependencies to par-
allelize decoding, achieving execution times withing one
order of magnitude from G-PCC.
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Figure 2: General architecture of the VoxelDNN codec, composed by a high-level octree partitioning part; a multi-
resolution encoder; and the basic context model unit.

G-PCC VoxelDNN
Dataset Point Cloud bpov bpov Gain over

G-PCC

MVUB
Phil 1.1599 0.8252 -28.86%
Ricardo 1.0673 0.7572 -29.05%
Average 1.1136 0.7912 -28.95%

8i

Redandblack 1.0893 0.7003 -35.71%
Loot 0.9524 0.6084 -36.12%
Thaidancer 0.9990 0.6627 -33.66%
Boxer 0.9492 0.5906 -37.78%
Average 0.9975 0.6405 -35.79%

CAT1

Frog 1.8990 1.7071 -10.11%
Arco Valentino 4.8531 4.9900 +2.82%
Shiva 3.6716 3.5135 -4.31%
Average 3.4746 3.4035 -3.86%

USP
BumbaMeuBoi 5.4068 5.066 -6.29%
RomanOiLight 1.8604 1.6231 -12.76%
Average 3.6336 3.4855 -9.52%

Table 2: Average rate in bits per occupied voxel (bpov)
of proposed method and percentage reductions compared
with MPEG G-PCC.

4 Conclusion and perspectives

We have described two deep learning-based architectures
for point cloud geometry compression (lossy and lossless).
In both cases, the use of voxel-based convolutions pro-
vides significant gains over the reference G-PCC solution
for dense point clouds. We believe this advantage is given
by the ability to represent the underlying geometric struc-
ture (local surfaces, objects, etc.), which is not captured
by simple octree-based approaches. On the other hand,
when the point cloud is sparser or scant (as for LiDAR
data), voxel-based techniques break down, and other kinds
of approaches are more suitable, such as point-based and
graph convolutions [17]. Compression of very sparse PC
is still an open challenge.
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