Giuseppe Valenzise

Maurice Quach

Dat-Than Nguyen

Frédéric Dufaux

Voxel

Voxel-based Deep Point Cloud Geometry Compression

Keywords: point cloud, geometry coding, voxels, auto-encoder, generative models

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Due to recent advances in visual capture technology, point clouds have been recognized as a crucial data structure for 3D content. In particular, point clouds are essential for numerous applications such as virtual and mixed reality, sensing for autonomous vehicle navigation, architecture and cultural heritage, etc. Point clouds are sets of 3D points identified by their coordinates, which constitute the geometry of the point cloud. In addition, each point can be associated with attributes like colors, normals and reflectance. Point clouds can have a massive number of points, especially in high precision or large scale captures. This entails a huge storage and transmission cost. As a result, Point Cloud Compression (PCC) is fundamental in practice. The Moving Picture Experts Group (MPEG) has recently released two PCC standards [START_REF] Cao | Compression of sparse and dense dynamic point clouds-methods and standards[END_REF]: Geometrybased PCC (G-PCC) and Video-based PCC (V-PCC). G-PCC approaches PCC from a 3D perspective and compresses point clouds in their native form using 3D data structures such as octrees. On the other hand, V-PCC approaches PCC from a 2D perspective, projects 3D data onto a 2D plane and makes use of video compression technology. Recently, deep point cloud compression (DPCC) methods have been proposed and shown to provide significant coding gains compared to traditional methodologies [START_REF] Quach | Learning convolutional transforms for lossy point cloud geometry compression[END_REF][START_REF]Improved deep point cloud geometry compression[END_REF][START_REF] Guarda | Deep learning-based point cloud coding: A behavior and performance study[END_REF][START_REF] Wang | Lossy point cloud geometry compression via end-to-end learning[END_REF].

In this paper, we focus on the compression of point cloud geometry, and we review two recently proposed learning-based methods for lossy and lossless coding. We consider the case of voxelized point clouds. Voxelization is the process that quantizes the coordinates of a point cloud to integer precision prior to the coding process and is typically applied in most codecs to discretize the geometry. We also make the implicit hypothesis that the point cloud is dense enough to exhibit local correlations among neighboring points on the voxel grid -in other terms, we assume there is not too much "empty space" between points. This enables us to employ deep neural networks with voxelbased 3D convolutions (see, e.g., [START_REF] Quach | Learning convolutional transforms for lossy point cloud geometry compression[END_REF]), which have been shown to be particularly effective in point cloud compression. On the other hand, point-based convolutions [START_REF] Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF][START_REF] Qi | Pointnet++: Deep hierarchical feature learning on point sets in a metric space[END_REF] are also possible [START_REF] Yan | Deep autoencoderbased lossy geometry compression for point clouds[END_REF], but their performance in PCC is still lagging behind traditional hand-crafted methods such as those used in MPEG G-PCC.

When a point cloud is voxelized, its geometry can be expressed as a binary signal over the voxel grid. In particular, a voxel is consider occupied if it contains at least one point, and is non occupied otherwise. Based on this observation, learning-based methods for geometry coding typically cast decoding as a binary classification problem, see Section 2. Instead, in lossless compression an explicit, accurate estimation of the likelihood of voxel occupancy is necessary: in this case, the decoding can be interpreted as a voxel generation process, as we will see in Section 3.

Lossy compression

Our lossy compression scheme is inspired by the success of variational auto-encoder (VAE) methods for image compression [START_REF] Ballé | End-to-end optimized image compression[END_REF][START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF]. The general architecture of a VAE-based codec is illustrated in Figure 1. An input signal x (pixels for the case of 2D images, binary voxel occupancies for 3D PCs) is transformed by an analysis network f a into a latent representation y and quantized into ỹ. This is later used as input to a synthesis network, producing an approximated reconstruction x of the original signal. The quantizer Q represents the main difference with respect to a conventional VAE, in which the latent space is typically continuous. Since quantization is not differentiable, several approximations have been proposed; in this work, we replace quantization noise by uniform noise during training, as initially suggested in [START_REF] Ballé | End-to-end optimized image compression[END_REF]. Quantization, along with the fact that y has smaller dimensionality compared to x, contribute both to achieve compression. The quantized latent code ỹ is entropy coded and transmitted as bitstream. A basic version of the VAE-based codec assumes that the components of ỹ are i.i.d. and computes symbol probabilities for entropy coding accordingly. However, this has been shown to be suboptimal, and later versions introduce a hyperprior model [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF], where the probability of the quantized latent variables is also modeled through a VAE. This allows the codec to capture the residual spatial dependencies among voxels.

The model is trained end-to-end using a D + λR loss function, for a given value of λ. The rate term includes both the bits for the latent variables ỹ and z, which are approximated by their differential entropy at training time. The D part is computed using the focal loss, a variant of the binary cross-entropy loss [START_REF] Lin | Focal loss for dense object detection[END_REF] used in classification, which has been shown to be more effective when the class distribution is strongly unbalanced (in the case of PC, most of the voxels are empty). The output of the VAE is The choice of the threshold is of paramount importance for coding performance. We choose to optimize this threshold at the encoder side and transmit it as a side information into the bitstream. Our codec operates on a block-by-block basis, in such a way that all decisions are taken locally and adapted to the spatially varying density in the point cloud. Further details about the architecture of the codec are reported in [START_REF]Improved deep point cloud geometry compression[END_REF], and the code is publicly available as a toolbox [START_REF] Quach | A Deep Point Cloud Geometry Coding Toolbox[END_REF].

Performance evaluation

We report RD performance on a subset of four dense point clouds. Details about the training dataset, as well as the training hyperparameters, are given in [START_REF]Improved deep point cloud geometry compression[END_REF]. We evaluate the different conditions using G-PCC trisoup and octree as baselines. The octree is the basic coding structure of G-PCC: the point cloud is recursively subdivided into octants, and only those nodes that contain at least a point are further split. On top of the basic vanilla octree, G-PCC adds a number of additional modes and optimizations, including direct coding for isolated points, planar modes and sophisticated contexts for entropy coding (see [START_REF] Cao | Compression of sparse and dense dynamic point clouds-methods and standards[END_REF] for a survey). The triangle soup (trisoup) mode, in particular, adds local triangular approximations at the octree leaves, and is typically included in PC compression benchmarks (although it is not included in the released standard). The distortion metrics D1 and D2 are obtained, respectively, from symmetrized point-to-point and point-to-distance mean squared errors, which are converted to PSNR using the original PC bit depth as peak error [START_REF] Tian | Geometric distortion metrics for point cloud compression[END_REF].

Table 1 reports Bjontegaard Delta PSNR of the proposed scheme compared to G-PCC trisoup and octree: the coding gains are significant for all the considered point clouds, demonstrating the potential of voxel-based convolutions in the compression of dense point clouds.

Lossless compression

Voxel-based convolutional architectures can be successfully used also for lossless geometry coding of dense point clouds. Compared to lossy compression, the goal here is to estimate accurately the voxel occupancy probabilities for entropy coding, rather than handling class imbalance to favor a precise binary reconstruction. In the following, we present briefly the VoxelDNN codec we proposed in [START_REF] Nguyen | Lossless Coding of Point Cloud Geometry using a Deep Generative Model[END_REF], whose general architecture is illustrated in Figure 2.

The basic element of the codec is the context model, which is based on an auto-regressive generative model inspired by PixelCNN [START_REF] Van Den Oord | Pixel RNN[END_REF]. Specifically, let v i denote the binary occupancy of a voxel i. We factorize the joint distribution p(v) of a block of voxels v as a product of conditional distributions p(v i |v i-1 , . . . , v 1) over the voxel volume:

p(v) = N i=1 p(v i |v i-1 , v i-2 , . . . , v 1), with N the number of voxels in a block. Each term p(v i |v i-1 , . . . , v 1)
is the probability of the voxel v i being occupied given the occupancy of all previous voxels. An illustration is given in Figure 2(c). We approximate p(v i |v i-1 , . . . , v 1) using a convolutional neural network, which we train by minimizing the binary cross-entropy E v∼p(v) N i=1 -log p(v i) . This is equivalent to minimize the distance between the estimated conditional distributions and the real data distribution, yielding accurate context distributions for arithmetic coding. This process can be carried out on blocks of different sizes (typically, N ranges between 8 3 and 64 3), using a rate-optimization algorithm. Since empty blocks in a point cloud do not bring any useful context, we apply an octree-based partitioning to pre-process the PC and remove the non-occupied space. Further details about Vox-elDNN are available in [START_REF] Nguyen | Lossless Coding of Point Cloud Geometry using a Deep Generative Model[END_REF].

Performance evaluation

A comparison of the bitrates of VoxelDNN and G-PCC (v. 12) for various PC categories is reported in Table 2. We observe that VoxelDNN achieves significant gains of up to 37% on dense point clouds (MVUB and 8i). On sparser point clouds the gains are smaller, but still competitive compared to G-PCC. The only exception is the PC "Arco Valentino", which has large density variations and very sparse regions where context modeling is ineffective.

Notice that a drawback of VoxelDNN is the sequential decoding of voxels, which is equivalent to a sequential sampling from the voxel occupancy distribution. As a result, the decoding times are significantly higher than G-PCC. In a follow-up work [START_REF] Nguyen | Multiscale deep context modeling for lossless point cloud geometry compression[END_REF], we propose a partial solution consisting in breaking some dependencies to parallelize decoding, achieving execution times withing one order of magnitude from G-PCC.

Conclusion and perspectives

We have described two deep learning-based architectures for point cloud geometry compression (lossy and lossless).

In both cases, the use of voxel-based convolutions provides significant gains over the reference G-PCC solution for dense point clouds. We believe this advantage is given by the ability to represent the underlying geometric structure (local surfaces, objects, etc.), which is not captured by simple octree-based approaches. On the other hand, when the point cloud is sparser or scant (as for LiDAR data), voxel-based techniques break down, and other kinds of approaches are more suitable, such as point-based and graph convolutions [START_REF] Wang | Dynamic graph CNN for learning on point clouds[END_REF]. Compression of very sparse PC is still an open challenge.

Figure 1 :

 1 Figure 1: Scheme of a VAE-based codec with hyperprior.

Figure 2 :

 2 Figure 2: General architecture of the VoxelDNN codec, composed by a high-level octree partitioning part; a multiresolution encoder; and the basic context model unit.

Table 1 :

 1

	Point cloud	Metric	BD-PSNR
	loot	D1 D2	5.91 / 6.99 6.87 / 6.13
	redandblack	D1 D2	5.01 / 6.48 5.93 / 5.63
	longdress	D1 D2	5.55 / 6.94 6.60 / 6.01
	soldier	D1 D2	5.57 / 6.93 6.57 / 6.04
	Average	D1 D2	5.51 / 6.83 6.50 / 5.95

RD performance of the proposed VAE-based codec compared to G-PCC (version 10.00). We specify BD-PSNR values (dB) compared to G-PCC trisoup and G-PCC octree in each cell (trisoup BD-PSNR / octree BD-PSNR).

Table 2 :

 2 Average rate in bits per occupied voxel (bpov) of proposed method and percentage reductions compared with MPEG G-PCC.