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ARTICLE

Universal probabilistic programming offers a
powerful approach to statistical phylogenetics
Fredrik Ronquist 1,6✉, Jan Kudlicka 2,6, Viktor Senderov 1,6, Johannes Borgström2, Nicolas Lartillot3,

Daniel Lundén 4, Lawrence Murray5, Thomas B. Schön 2 & David Broman4

Statistical phylogenetic analysis currently relies on complex, dedicated software packages,

making it difficult for evolutionary biologists to explore new models and inference strategies.

Recent years have seen more generic solutions based on probabilistic graphical models, but

this formalism can only partly express phylogenetic problems. Here, we show that universal

probabilistic programming languages (PPLs) solve the expressivity problem, while still sup-

porting automated generation of efficient inference algorithms. To prove the latter point, we

develop automated generation of sequential Monte Carlo (SMC) algorithms for PPL

descriptions of arbitrary biological diversification (birth-death) models. SMC is a new infer-

ence strategy for these problems, supporting both parameter inference and efficient esti-

mation of Bayes factors that are used in model testing. We take advantage of this in

automatically generating SMC algorithms for several recent diversification models that have

been difficult or impossible to tackle previously. Finally, applying these algorithms to 40 bird

phylogenies, we show that models with slowing diversification, constant turnover and many

small shifts generally explain the data best. Our work opens up several related problem

domains to PPL approaches, and shows that few hurdles remain before these techniques can

be effectively applied to the full range of phylogenetic models.
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In statistical phylogenetics, we are interested in learning the
parameters of models in which evolutionary trees—phylogenies
—play an important part. Such analyses have a surprisingly

wide range of applications across the life sciences1–3. In fact, the
research front in many disciplines is partly defined today by our
ability to learn the parameters of realistic phylogenetic models.

Statistical problems are often analyzed using generic modeling
and inference tools. Not so in phylogenetics, where empiricists are
largely dependent on dedicated software developed by small teams
of computational biologists3. Even though these software packages
have become increasingly flexible in recent years, empiricists are
still limited to a large extent by predefined model spaces and
inference strategies. Venturing outside these boundaries typically
requires the help of skilled programmers and inference experts.

If it were possible to specify arbitrary phylogenetic models in
an easy and intuitive way, and then automatically learn the latent
variables (the unknown parameters) in them, the full creativity of
the research community could be unleashed, significantly accel-
erating progress. There are two major hurdles standing in the way
of such a vision. First, we must find a formalism (a language) that
can express phylogenetic models in all their complexity, while still
being easy to learn for empiricists (the modeling language
expressivity problem). Second, we need to be able to generate
computationally efficient inference algorithms from such model
descriptions, drawing from the full range of techniques available
today (the automated inference problem).

In recent years, there has been significant progress toward
solving the expressivity problem by adopting the framework of
probabilistic graphical models (PGMs)4,5. PGMs can express
many components of phylogenetic models in a structured way, so
that efficient Markov chain Monte Carlo (MCMC) samplers—the
current workhorse of Bayesian statistical phylogenetics—can be
automatically generated for them5. Other, more novel inference
strategies are also readily applied to PGM descriptions of phy-
logenetic model components, as exemplified by recent work using
STAN6 or the new Blang framework7.

Unfortunately, PGMs cannot express the core of phylogenetic
models: the stochastic processes that generate the tree, and any-
thing dependent on those processes. This is because the evolu-
tionary tree has variable topology, while a PGM expresses a fixed
topology. The problem even occurs on a fixed tree, if we need to
express the possible existence of unobserved side branches that
have gone extinct or have not been sampled. There could be any
number of those for a given observed tree, each corresponding to
a separate PGM instance.

Similar problems occur when describing evolutionary processes
occurring on the branches of the tree. Many of the standard models
considered today for trait evolution, such as continuous-time dis-
crete-state Markov chains, are associated with an infinite number of
possible change histories on a given branch. It is not always possible
to represent this as a single distribution with an analytical likelihood
that integrates out all change histories. Thus, it is sometimes
necessary to describe the model as an unbounded stochastic loop or
recursion over potential PGMs (individual change histories).

PGM-based systems may address these shortcomings by pro-
viding model components that hide underlying complexity. For
instance, a tree may be represented as a single stochastic variable
in a PGM-based model description5. An important disadvantage
of this approach is that it removes information about complex
model components from the model description. This forces users
to choose among predefined alternatives instead of enabling them
to describe how these model components are structured. Fur-
thermore, computers can no longer “understand” these compo-
nents from the model description, making it impossible to
automatically apply generic inference algorithms to them. Instead,
special-purpose code has to be developed manually for each of the

components. Finally, hiding a complex model component, such as
a phylogenetic tree, also makes dependent variables unavailable
for automated inference. In phylogenetics, for instance, a single
stochastic tree node makes it impossible to describe branch-wise
relations between the processes that generated the tree and other
model components, such as the rate of evolution, the evolution of
organism traits, or the dispersal of lineages across space.

Here, we show that the expressivity problem can be solved
using universal probabilistic programming languages (PPLs). A
“universal PPL” is an extension of a Turing-complete general-
purpose language, which can express models with an unbounded
number of random variables. This means that random variables
are not fixed statically in the model (as they are in a finite PGM)
but can be created dynamically during execution.

PPLs have a long history in computer science8, but until recently
they have been largely of academic interest because of the difficulty of
generating efficient inference machinery from model descriptions
using such expressive languages. This is now changing rapidly thanks
to improved methods of automated inference for PPLs9–14, and the
increased interest in more flexible approaches to statistical modeling
and analysis. Current PPL inference algorithms provide state-of-the-
art performance for many models but they are still quite inefficient
for others. Improving PPL algorithms so that they can compete with
manually engineered solutions for more problem domains is cur-
rently a very active research area.

To demonstrate the potential of PPLs in statistical phyloge-
netics, we tackle a tough problem domain: models that accom-
modate variation across lineages in diversification rate. These
include the recent cladogenetic diversification rate shift (ClaDS)
(ClaDS0–ClaDS2)15, lineage-specific birth–death-shift (LSBDS)16,
and Bayesian analysis of macroevolutionary mixtures (BAMM)17

models, attracting considerable interest among evolutionary biol-
ogists despite the difficulties in developing good inference algo-
rithms for some of them18.

Using WebPPL—an easy-to-learn PPL9—and Birch—a lan-
guage with a more computationally efficient inference machin-
ery14—we develop techniques that allow us to automatically
generate efficient sequential Monte Carlo (SMC) algorithms from
short descriptions of these models (~100 lines of code each).
Although we found it convenient to work with WebPPL and
Birch for this paper, we emphasize that similar work could have
been done using other universal PPLs. Adopting the PPL
approach allows us generate the first efficient SMC algorithms for
these models, and the first asymptotically exact inference
machinery for the full BAMM model. Among other benefits,
SMC inference allows us to directly estimate the marginal like-
lihoods of the models, so that we can assess their performance in
explaining empirical data using rigorous Bayesian model com-
parison. Taking advantage of this, we show that models with
slowing diversification, constant turnover and many small shifts
(all combined in ClaDS2) generally explain the data from 40 bird
phylogenies better than alternative models. We end the paper by
discussing a few problems, all seemingly tractable, which remain
to be solved before PPLs can be used to address the full range of
phylogenetic models. Solving them would facilitate the adoption
of a wide range of novel inference strategies that have seen little
or no use in phylogenetics before.

Results
Probabilistic programming. Consider one of the simplest of all
diversification models, constant rate birth–death (CRBD), in which
lineages arise at a rate λ and die out at a rate μ, giving rise to a
phylogenetic tree τ. Assume that we want to infer the values of λ and
μ given some phylogenetic tree τobs of extant (now living) species that
we have observed (or inferred from other data). In a Bayesian ana-
lysis, we would associate λ and μ with prior distributions, and then
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learn their joint posterior probability distribution given the observed
value of τ.

Let us examine a PGM description of this model, say in
RevBayes5 (Algorithm 1). The first statement in the description
associates an observed tree with the variable myTree. The priors
on lambda and mu are then specified, and it is stated that the
tree variable tau is drawn from a birth–death process with
parameters lambda and mu and generating a tree with leaves
matching the taxa in myTree. Finally, tau is associated with
(clamped to) the observed value myTree.

Algorithm 1
PGM description of the CRBD model

1 myTree = readTrees("treefile.nex")
2
3 lambda ~ dnGamma(1, 1)
4 mu ~ dnGamma(1, 1)
5
6 tau ~ dnBirthDeath(lambda, mu, myTree.taxa)
7 tau.clamp(myTree)

There is a one-to-one correspondence between these state-
ments and elements in the PGM graph describing the conditional
dependencies between the random variables in the model (Fig. 1).
Given that the conditional densities dnGamma and dnBirth-
Death are known analytically, along with good samplers, it is
now straightforward to automatically generate standard inference
algorithms, such as MCMC, for this problem.

Unfortunately, a PGM cannot describe from first principles
(elementary probability distributions) how the birth–death process
produces a tree of extant species. The PGM has a fixed graph
structure, while the probability of a surviving tree is an integral over
many outcomes with varying topology. Specifically, the computation
of dnBirthDeath requires integration over all possible ways in
which the process could have generated side branches that
eventually go extinct, each of these with a unique configuration of
speciation and extinction events (Fig. 2). The integral must be
computed by special-purpose code based on analytical or numerical
solutions specific to the model. For the CRBD model, the integral is
known analytically, but as soon as we start experimenting with more
sophisticated diversification scenarios, as evolutionary biologists
would want to do, computing the integral is likely to require
dedicated numerical solvers, if it can be computed at all.

Universal PPLs solve the expressivity problem by providing
additional expressive power over PGMs. A PPL model description
is essentially a simulation program (or generative model). Each
time the program runs, it generates a different outcome. If it is
executed an infinite number of times, we obtain a probability
distribution over outcomes. Thus, a PPL provides “a program-
matic model description”14.

A universal PPL provides two special constructs, one for
drawing a random variable from a probability distribution, and
one for conditioning a random variable on observed data. These
special constructs are used by the PPL inference algorithms to
manipulate executions of the program during inference. Many
PPLs are embedded in existing programming languages, with
these two special constructs added.

To use this approach, we need to write a PPL program so that
the distribution over outcomes corresponds to the posterior
probability distribution of interest. This is straightforward if we
understand how to simulate from the model, and how to insert
the constraints given by the observed data.

Assume, for instance, that we are interested in computing the
probability of survival and extinction under CRBD for specific
values of λ and μ, given that the process started at some time t in
the past. We will pretend that we do not know the analytical

solution to this problem; instead we will use a PPL to solve it.
WebPPL9 is an easy-to-learn PPL based on JavaScript, and we
will use it here for illustrating PPL concepts. WebPPL can be run
in a web browser at http://webppl.org or installed locally
(Supplementary Note Section 2.1). In WebPPL, the two special
constructs mentioned above are: (1) the sample statement,
which specifies the prior distributions from which random
variables are drawn; and (2) the condition statement,
conditioning a random variable on an observation. WebPPL
provides a couple of alternatives to the condition statement,
namely, the observe and factor statements. These are
explained in Supplementary Note Section 3.3.

In WebPPL, we define a function goesExtinct, which takes
the values of time, lambda, and mu corresponding to variables
t, λ, and μ, respectively (Algorithm 2). It returns true if the
process does not survive until the present (that is, goes extinct)
and false otherwise (survives to the present).

Algorithm 2
Basic birth-death model simulation in WebPPL

1 var goesExtinct = function(time, lambda, mu) {
2 var waitingTime = sample(
3 Exponential({a: lambda + mu})
4 )
5
6 if (waitingTime > time) { return false }
7
8 var isSpeciation = sample(
9 Bernoulli({p: lambda / (lambda + mu)})
10 )
11
12 if (isSpeciation == false) { return true }
13
14 return goesExtinct(time - waitingTime, lambda, mu)
15 && goesExtinct(time - waitingTime, lambda, mu)
16 }

1 1 1 1

� �

�

Fig. 1 A probabilistic graphical model describing constant rate
birth–death (CRBD). The square boxes are fixed nodes (parameters of the
gamma distributions) and the circles are random variables. The shaded
variable (τ) is observed, and λ, μ are latent variables to be inferred.

Fig. 2 Phylogenetic trees generated by a birth–death process. Two trees
with extinct side branches (thin lines), each corresponding to the same
observed phylogeny of extant species (thick lines). The trees illustrate just
two examples of an infinite number of possible PGM expansions of the
τ node in Fig. 1.
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The function starts at some time > 0 in the past. The
waitingTime until the next event is drawn from an
exponential distribution with rate lambda+ mu and compared
with time. If waitingTime > time, the function returns
false (the process survived). Otherwise, we flip a coin (the
Bernoulli distribution) to determine whether the next event
is a speciation or an extinction event. If it is a speciation,
the process continues by calling the same function recursively
for each of the daughter lineages with the updated time time -
waitingTime. Otherwise the function returns true (the
lineage went extinct).

If executed many times, the goesExtinct function defines a
probability distribution on the outcome space {true, false}
for specific values of t, λ, and μ. To turn this into a Bayesian
inference problem, let us associate λ and μ with gamma priors,
and then infer the posterior distribution of these parameters
assuming that we have observed a group originating at time t=
10 and surviving to the present. To do this, we combine the prior
specifications and the conditioning on survival to the present with
the goesExtinct function into a program that defines the
distribution of interest (Algorithm 3).

Algorithm 3
CRBD model description in WebPPL

1 var model = function() {
2 var lambda = sample(
3 Gamma({shape: 1, scale: 1})
4 )
5 var mu = sample(
6 Gamma({shape: 1, scale: 1})
7 )
8 var t = 10
9
10 condition(goesExtinct(t, lambda, mu) == false)
11
12 return [lambda, mu]
13 }

The goesExtinct function described above (Algorithm 2)
uses unbounded stochastic recursion: the tree that we simulate
in the program can in principle grow to infinite size. This
effectively proves that the PPL defining this model, if it is to be
used to simulate extinct side branches, must be a universal PPL.
This, in turn, implies that a language that solves the expressivity
problem in phylogenetics can also describe any phylogenetic
model from which we can simulate using an algorithm.
Adopting this approach thus allows a clean separation of model
specification from inference. Of course, automated inference
procedures now face the problem of executing complex
universal PPL models on hardware with physical constraints,
such as limited memory size. However, these challenges can
typically be addressed using generic approaches that apply to
arbitrary model descriptions, relieving both empiricists and
algorithm developers from such concerns over technical
implementation details.

Because of the popularity of PPLs in recent years, the term
“probabilistic programming” is now often used to refer to the
entire range of platforms, from universal PPLs to simple PGM
frameworks. Unless we explicitly say otherwise, however, we will
henceforth reserve “probabilistic programming” and “PPL” for
platforms that implement universal modeling languages.

Inference in PPLs is typically supported by constructs that take
a model description as input. Returning to the previous example,
the joint posterior distribution is inferred by calling the built-in
Infer function with the model, the desired inference algorithm,
and the inference parameters as arguments (Algorithm 4).

Algorithm 4
Specifying inference strategy in WebPPL

1 Infer({model: model, method: ’SMC’, particles: 10000})

To develop this example into a probabilistic program
equivalent to the RevBayes model discussed previously (Algo-
rithm 1), we just need to describe the CRBD process along the
observed tree, conditioning on all unobserved side branches going
extinct (Supplementary Note Algorithms 2 and 3). The PPL
specification of the CRBD inference problem is longer than the
PGM specification because it does not use the analytical
expression for the CRBD density. However, it exposes all the
details of the diversification process, so it can be used as a
template for exploring a wide variety of diversification models,
while relying on the same inference machinery throughout. We
will take advantage of this in the following.

Diversification models. The simplest model describing biological
diversification is the Yule (pure birth) process19,20, in which
lineages speciate at rate λ but never go extinct. For consistency,
we will refer to it as constant rate birth (CRB). The CRBD
model21 discussed in the examples above adds extinction to the
process, at a per-lineage rate of μ.

An obvious extension of the CRBD model is to let the
speciation and/or extinction rate vary over time instead of being
constant22, referred to as the generalized birth–death process.
Here, we will consider variation in birth rate over time, keeping
turnover (μ/λ) constant, and we will refer to this as the time-
dependent birth–death (TDBD) model, or the time-dependent
birth (TDB) model when there is no extinction. Specifically, we
will consider the function:

λðtÞ ¼ λ0e
zðt0�tÞ; ð1Þ

where λ0 is the initial speciation rate at time t0, t is current time,
and z determines the nature of the dependency. When z > 0, the
birth rate grows exponentially and the number of lineages
explodes. The case z < 0 is more interesting biologically; it
corresponds to a niche-filling scenario. This is the idea that an
increasing number of lineages leads to competition for resources
and—all other things being equal—to a decrease in speciation
rate. Other potential causes for slowing speciation rates over time
have also been considered23.

The four basic diversification models—CRB, CRBD, TDB, and
TDBD—are tightly linked (Fig. 3). When z= 0, TDBD collapses
to CRBD, and TDB to CRB. Similarly, when μ= 0, CRBD
becomes equivalent to CRB, and TDBD to TDB.

In recent years, there has been a spate of work on models that
allow diversification rates to vary across lineages. Such models
can accommodate diversification processes that gradually change
over time. They can also explain sudden shifts in speciation or
extinction rates, perhaps due to the origin of new traits or other
factors that are specific to a lineage.

One of the first models of this kind to be proposed was
BAMM17. The model is a lineage-specific, episodic TDBD model.
A group starts out evolving under some TDBD process, with
extinction (μ) rather than turnover (ϵ) being constant over time.
A stochastic process running along the tree then changes the
parameters of the TDBD process at specific points in time.
Specifically, λ0, μ, and z are all redrawn from the priors at these
switch points. In the original description, the switching process
was defined in a statistically incoherent way; here, we assume that
the switches occur according to a Poisson process with rate η,
following a previous analysis of the model18.

The BAMM model has been implemented in dedicated
software using a combination of MCMC sampling and other
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numerical approximation methods17,24. The implementation has
been criticized because it can result in severely biased inference18.
To date, it has not been possible to provide asymptotically exact
inference machinery for BAMM.

In a recent contribution, a simplified version of BAMM was
introduced: the LSBDS model16. LSBDS is an episodic CRBD
model, that is, it is equivalent to BAMM when z= 0. Inference
machinery for the LSBDS model has been implemented in
RevBayes5 based on numerical integration over discretized prior
distributions for λ and μ, combined with MCMC. The
computational complexity of this solution depends strongly on
the number of discrete categories used. If k categories are used for
both λ and μ, computational complexity is multiplied by a factor
k2. Therefore, it is tempting to simplify the model. We note that,
in the empirical LSBDS examples given so far, μ is kept constant
and only λ is allowed to change at switch points16. When z= 0,
BAMM collapses to LSBDS, and when η→ 0 it collapses to
TDBD (Fig. 3). When η→ 0, LSBDS collapses to CRBD.

A different perspective is represented by the ClaDS models15.
They map diversification rate changes to speciation events,
assuming that diversification rates change in small steps over the
entire tree. After speciation, each descendant lineage inherits its
initial speciation rate λi from the ending speciation rate λa of its
ancestor through a mechanism that includes both a deterministic
long-term trend and a stochastic effect. Specifically:

log λi � N log ðαλaÞ; σ2
� �

: ð2Þ

The α parameter determines the long-term trend, and its
effects are similar to the z parameter of TDBD and BAMM.
When α < 1, that is, log α< 0, the speciation rate of a lineage tends
to decrease over time. The standard deviation σ determines the
noise component. The larger the value, the more stochastic
fluctuation there will be in speciation rates.

The original ClaDS paper15 focuses on the rate multiplier m ¼
α ´ expðσ2=2Þ rather than on α, but we prefer the α parameteriza-
tion mainly because it allows us to specify a conjugate prior that
makes SMC inference more efficient (Supplementary Note
Section 3). As pointed out elsewhere25, the dynamics of the ClaDS
models is complex and differs considerably from superficially similar

models, such as the BAMM, TDBD, and TDB models (for further
discussion of this point, see Supplementary Note Section 3).

There are three different versions of ClaDS, characterized by
how they model μ. In ClaDS0, there is no extinction, that is, μ=
0. In ClaDS1, there is a constant extinction rate μ throughout the
tree. Finally, in ClaDS2, it is the turnover rate ϵ= μ/λ that is kept
constant over the tree. All ClaDS models collapse to CRB or
CRBD models when α= 1 and σ→ 0 (Fig. 3). The ClaDS models
were initially implemented in the R package RPANDA26, using a
combination of advanced numerical solvers and MCMC simula-
tion15. A new implementation of ClaDS2 in Julia instead relies on
data augmentation25.

In contrast to previous work, where these models are
implemented independently in complex software packages, we
used PPL model descriptions (~100 lines of code each) to
generate efficient and asymptotically correct inference machinery
for “all” diversification models described above. The machinery
we generate relies on SMC algorithms which, unlike classical
MCMC, can also estimate the marginal likelihood (the normal-
ization constant of Bayes theorem).

Estimating the marginal likelihood of a probability distribu-
tion that is only known up to a constant of proportionality is a
hard problem in general. However, if we know how to sample
from a similar distribution, classical importance sampling can
provide a good estimate. The SMC algorithm is based on
consecutive importance sampling from a series of probability
distributions that change slowly toward the posterior distribution
of interest. Thus, by piecing together the normalization constant
estimates obtained in each of these steps, a good estimate of the
marginal likelihood of the model is obtained essentially as a
byproduct in the SMC algorithm27,28. Such series of similar
probability distributions are not available naturally in the
MCMC algorithm, but have to be constructed in more involved,
computationally complex procedures, such as thermodynamic
integration29,30, annealed importance sampling31, or stepping-
stone sampling32.

Using the SMC machinery, we then compared the performance
of the different diversification models on empirical data by
inferring the posterior distribution over the parameters of interest,
and by conducting model comparison based on the marginal
likelihood (Bayes factors). Specifically, we implemented the CRB,
CRBD, TDB, TDBD, BAMM, LSBDS, and ClaDS0–ClaDS2 models
in WebPPL and Birch. The model descriptions are provided at
https://github.com/phyppl/probabilistic-programming. They are
similar in structure to the CRBD program presented above.

Inference strategies. We used inference algorithms in the SMC
family, an option available in both WebPPL and Birch. An SMC
algorithm33–35 runs many simulations (called particles) in parallel,
and stops them when some new information, like the time of a
speciation event or extinction of a side lineage, becomes available.
At such points, the particles are subjected to “resampling”, that is,
sampling (with replacement) based on their likelihoods. SMC
algorithms work particularly well when the model can be written
such that the information derived from observed data can suc-
cessively be brought to bear on the likelihood of a particle during
the simulation. This is the case when simulating a diversification
process along a tree of extant taxa, because we know that each
“hidden” speciation event must eventually result in extinction of
the unobserved side lineage. That is, we can condition the simu-
lation on extinction of the side branches that arise (Supplementary
Note Algorithm 3). Similarly, we can condition the simulation on
the times of the speciation events leading to extant taxa.

Despite this, standard SMC (the bootstrap particle filter)
remains relatively inefficient for these models, and is unlikely to

Fig. 3 Relations between the diversification models considered in the
paper. Arrows and symbols mark the variable transformations needed to
convert one diversification model into another.
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yield adequate samples of the posterior for real problems given
realistic computational budgets. Therefore, we employed three
new PPL inference techniques that we developed or extended as
part of this study: alignment36, delayed sampling13, and the alive
particle filter37 (see “Methods”).

Empirical results. To demonstrate the power of the approach, we
applied PPLs to compare the performance of the nine diversifi-
cation models discussed above for 40 bird clades (see “Methods”
and Supplementary Note Table 6). The results (Supplementary
Note Figs. 13–22) are well summarized by the four cases pre-
sented in Fig. 4. Focusing on marginal likelihoods (top row), we
observe that the simplest models (CRB and CRBD), without any
variation through time or between lineages, provide an adequate
description of the diversification process for around 40% of the
trees (Fig. 4, Alcedinidae). In the remaining clades, there is almost
universal support for slowing diversification rates over time.
Occasionally, this is not accompanied by strong evidence for
lineage-specific effects (Fig. 4, Muscicapidae) but usually it is
(Fig. 4, Accipitridae and Lari). In the latter case, the ClaDS
models always show higher marginal likelihoods than BAMM
and LSBDS, and this even for trees on which the latter do detect
rate shifts (Fig. 4, Lari). Interestingly, ClaDS2 rarely outperforms
ClaDS0, which assumes no extinction. More generally, models
assuming no extinction often have a higher marginal likelihood
than their counterparts allowing for it.

The parameter estimates (Fig. 4) show the conservative nature
of the Bayes factor tests, driven by the relatively vague priors we
chose on the additional parameters of the more complex models
(Supplementary Note Fig. 2). However, even when complex
models are marginally worse than simple or no-extinction
models, there is evidence of the kind of variation they allow.
For instance, the posterior distributions on z and log α suggest
that negative time dependence is quite generally present.
Similarly, more sophisticated models usually detect low levels of
extinction when they are outperformed by extinction-free
counterparts. For a more extensive discussion of these and other
results, see Supplementary Note Section 10.

Discussion
Universal PPLs provide stochastic recursion and dynamic creation
of an unbounded number of random variables, which makes it
possible to express virtually any interesting phylogenetic model.
The expressiveness of PPLs is liberating for empiricists but it forces
statisticians and computer scientists to approach the inference
problem from a more abstract perspective. This can be challenging
but also rewarding, as inference techniques for PPLs are so broadly
applicable. Importantly, expressing phylogenetic models as PPLs
opens up the possibility to apply a wide range of inference stra-
tegies developed for scientific problems with no direct relation to
phylogenetics. Another benefit is that PPLs reduce the amount of
manually written code for a particular inference problem, facil-
itating the task and minimizing the risk of inadvertently introdu-
cing errors, biases or inaccuracies. Our verification experiments
(Supplementary Note Section 7) suggest that the light-weight PPL
implementations of ClaDS1 and ClaDS2 provide more accurate
computation of likelihoods than the thousands of lines of code
developed in the initial implementation of these models15.

Previous discussion on the relative merits of diversification
models have centered around the results of simulations and
arguments over biological realism15–18,38, and it has been com-
plicated by the lack of asymptotically correct inference machinery
for BAMM18,38. Our most important contribution in this context
is the refinement of PPL techniques so that it is now possible to
implement correct and efficient parameter inference under a wide

range of diversification models, and to compare their perfor-
mance on real data using rigorous model testing procedures.

The PPL analyses of bird clades confirm previous claims that
the ClaDS models provide a better description of lineage-specific
diversification than BAMM15. Even when simpler models have
higher likelihoods, the ClaDS models seem to pick up a consistent
signal across clades of small, gradual changes in diversification
rates. Like many previous studies39, our analyses provide little or
no support for extinction rates above 0. This might be due in part
to systematic biases in the sampling of the leaves in the observed
trees40,41, a problem that could be addressed by extending our
PPL model scripts (Supplementary Note Section 10.6). Such
sampling biases can also give the impression of slowing diversi-
fication rates even when rates are constant, potentially explaining
some of the support for negative values of z and logα in our
posterior estimates. We want to emphasize, however, that there is
a range of other possible explanations for these patterns23. The
idea that lineage-specific variation in diversification rates might
be responsible for low estimates of extinction rates in analyses
using simpler models42,43 finds little support in our results but we
cannot exclude the possibility that even more sophisticated
lineage-specific models than the ones considered here might
provide evidence in favor of this hypothesis. An interesting
observation is that models with constant turnover (as in ClaDS2)
appear to fit empirical data better than those with constant
extinction (as in ClaDS1), even though constant extinction has
been commonly assumed in previous studies. A fascinating
question that is now open to investigation is whether there
remains evidence of occasional major shifts in diversification
rates once the small gradual changes have been accounted for,
something that could be addressed by a model that combines
ClaDS- and BAMM-like features.

Our results show that PPLs can already now compete suc-
cessfully with dedicated special-purpose software in several phy-
logenetic problem domains. Separately, we show how PPLs can be
applied to models where diversification rates are dependent on
observable traits of organisms (so-called state-dependent specia-
tion and extinction models)37. Other problem domains that may
benefit from the PPL approach already at this point include epi-
demiology44, host-parasite co-evolution45, and biogeography46–49.

What is missing before it becomes possible to generate efficient
inference machinery for the full range of phylogenetic models
from PPL descriptions? Assume, for instance, that we would like
to do joint inference of phylogeny (say from DNA sequence data)
and diversification processes, instead of assuming that the extant
tree is observed. This would seem to touch on the major obstacles
that remain. We then need to extend our current PPL models so
that they also describe the nucleotide substitution process along
the tree, and condition the simulation on the observed sequences.
To generate the standard MCMC machinery for sampling across
trees from such descriptions, delayed sampling needs to be
extended to summarize over ancestral sequences (Felsenstein’s
pruning algorithm)50, and it should be applied statically through
analysis of the script before the MCMC starts rather than dyna-
mically. State-of-the-art MCMC algorithms for PPLs12 must then
be extended to generate computationally efficient tree samplers,
such as stochastic nearest neighbor interchange51. Applying SMC
algorithms for sampling across trees52 is even simpler, it just
requires delayed sampling to summarize over ancestral sequences.
To facilitate the use of PPLs, we think it will also be important to
provide a domain-specific PPL that is easy to use, while sup-
porting both automatic state-of-the-art inference algorithms for
phylogenetic problems as well as manual composition of novel
inference strategies suited for this application domain. These all
seem to be tractable problems, which we aim to address within
the TreePPL project (treeppl.org).
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As the field of probabilistic programming is currently in a
phase of intense experimentation, new PPL platforms—both
universal and nonuniversal—are continuously presented and
many existing ones are actively developed. Several of these

platforms are likely to be useful for phylogenetic problems, not
the least since they explore novel inference algorithms—such as
automatic variational inference53, adaptive Hamiltonian Monte
Carlo54, nonreversible parallel tempering55 or sequential change

Fig. 4 Comparison of diversification models for four bird clades exemplifying different patterns. Alcedinidae: simple models are adequate;
Muscicapidae: slowing diversification but no or weak lineage-specific effects; Accipitridae: gradual (ClaDS) lineage-specific changes in diversification; and
Lari: evidence for both gradual (ClaDS) and for punctuated (BAMM and LSBDS) lineage-specific changes in diversification. The top row shows the
estimated marginal likelihoods (log scale; violin plots with a dot marking the median estimate). A difference of 5 units (scale bar) is considered strong
evidence in favor of the better model67. The remaining rows show estimated posterior distributions for different model parameters specified along the left
margin. The μ distributions are shown with dashed lines, all other distributions with unbroken lines. The colors represent different models (see legend).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01753-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:244 | https://doi.org/10.1038/s42003-021-01753-7 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


of measure56—that have only recently started to find their way
into statistical phylogenetics6,57,58. Interesting platforms include
not only RevBayes5, specifically designed for phylogenetics, but
also more general platforms such as STAN59, Anglican10,
PyMC360, Edward61, Pyro62, and Blang7. We think that evolu-
tionary biologists exploring these new tools will be excited by the
expressivity of universal PPLs and the generality across model
space of the automated inference solutions designed for them.
With this in mind, we invite readers with an interest in compu-
tational methods to join us and others in developing languages
and inference strategies supporting this powerful new approach
to statistical phylogenetics.

Methods
PPL software and model scripts. All PPL analyses described here used WebPPL
version 0.9.15, Node version 12.13.19 and the most recent development version of
Birch (as of June 12, 2020)14. We implemented all models (CRB, CRBD, TDB,
TDBD, ClaDS0–ClaDS2, LSBDS, and BAMM) as explicit simulation scripts that
follow the structure of the CRBD example discussed in the main text (Supple-
mentary Note Section 5). We also implemented compact simulations for the four
simplest models (CRB, CRBD, TDB, and TDBD) using the analytical equations for
specific values of λ, μ, and z to compute the probability of the observed trees.

In the PPL model descriptions, we account for incomplete sampling of the tips
in the phylogeny based on the ρ sampling model63. That is, each tip is assumed to
be sampled with a probability ρ, which is specified a priori. To simplify the
presentation in this paper, we usually assume ρ= 1. However, the model scripts we
developed support ρ < 1, and in the empirical analyses we set ρ for each bird tree to
the proportion of the known species included in the tree.

We standardized prior distributions across models to facilitate model
comparisons (Supplementary Note Section 4, Supplementary Note Fig. 2). To
simplify the scripts, we simulated outcomes on ordered but unlabeled trees, and
reweighted the particles so that the generated density was correct for labeled and
unordered trees (Supplementary Note Section 3.2). We also developed an efficient
simulation procedure to correct for survivorship bias, that is, the fact that we can
only observe trees that survive until the present (Supplementary Note Section 5.3).

Inference strategies. To make SMC algorithms more efficient on diversification
model scripts, we applied three new PPL inference techniques: alignment, delayed
sampling, and the alive particle filter. “Alignment”36,64 refers to the synchroniza-
tion of resampling points across simulations (particles) in the SMC algorithm. The
SMC algorithms previously used for PPLs automatically resample particles when
they reach observe or condition statements. Diversification simulation
scripts will have different numbers and placements of hidden speciation events on
the surviving tree (Fig. 2), each associated with a condition statement in a naive
script. Therefore, when particles are compared at resampling points, some may
have processed a much larger part of the observed tree than others. Intuitively, one
would expect the algorithm to perform better if the resampling points were aligned,
such that the particles have processed the same portion of the tree when they are
compared. This is indeed the case; alignment is particularly important for efficient
inference on large trees (Supplementary Note Fig. 3). Alignment at code branching
points (corresponding to observed speciation events in the diversification model
scripts) can be generated automatically through static analysis of model scripts36.
Here, we manually aligned the scripts by replacing the statements that normally
trigger resampling with code that accumulate probabilities when they did not occur
at the desired locations in the simulation (Supplementary Note Section 6.1).

“Delayed sampling”13 is a technique that uses conjugacy to avoid sampling
parameter values. For instance, the gamma distribution we used for λ and μ is a
conjugate prior to the Poisson distribution, describing the number of births or
deaths expected to occur in a given time period. This means that we can
marginalize out the rate, and simulate the number of events directly from its
marginal (gamma-Poisson) distribution, without having to first draw a specific
value of λ or μ. In this way, a single particle can cover a portion of parameter space,
rather than just single values of λ and μ. Delayed sampling is only available in
Birch; we extended it to cover all conjugacy relations relevant for the diversification
models examined here.

The “alive particle filter”37 is a technique for improving SMC algorithms when
some particles can “die” because their likelihood becomes 0. This happens when
SMC is applied to diversification models because simulations that generate hidden
side branches surviving to the present need to be discarded. The alive particle filter
is a generic improvement on SMC, and it collapses to standard SMC with negligible
overhead when no particles die. This improved version of SMC, partly inspired by
our work on state-dependent speciation-extinction models37, is only available
in Birch.

Verification. To verify that the model scripts and the automatically generated
inference algorithms are correct, we performed a series of tests focusing on the
normalization constant (Supplementary Note Section 7). First, we checked that the

model scripts for simple models (CRB(D) and TDB(D)) generated normalization
constant estimates that were consistent with analytically computed likelihoods for
specific model parameter values (Supplementary Note Fig. 4). Second, we used the
fact that all advanced diversification models (ClaDS0–2, LSBDS, and BAMM)
collapse to the CRBD model under specific conditions, and verified that we
obtained the correct likelihoods for a range of parameter values (Supplementary
Note Fig. 6). Third, we verified for the advanced models that the independently
implemented model scripts and the inference algorithms generated for them by
WebPPL and Birch, respectively, estimated the same normalization constant for a
range of model parameter values (Supplementary Note Fig. 7). Fourth, we checked
that our normalization constant estimates were consistent with the RPANDA
package15,26 for ClaDS0–ClaDS2, and with RevBayes for LSBDS5,16. For these tests,
we had to develop specialized PPL scripts emulating the likelihood computations of
RPANDA and RevBayes. The normalization constant estimates matched for
LSBDS (Supplementary Note Fig. 9) and for ClaDS0 (Supplementary Note Fig. 8);
for ClaDS1 and ClaDS2, they matched for low values of λ and μ (or ϵ) but not for
larger values (Supplementary Note Fig. 8). Our best-effort interpretation at this
point is that the PPL estimates for ClaDS1 and ClaDS2 are more accurate than
those obtained from RPANDA for these values (Supplementary Note Section 7.4).
Finally, as there is no independent software that computes BAMM likelihoods
correctly yet, we checked that our BAMM scripts gave the same normalization
constant estimates as LSBDS under settings where the former model collapses to
the latter (Supplementary Note Fig. 10).

Data. We applied our PPL scripts to 40 bird clades derived from a previous
analysis of divergence times and relationships among all bird species65. The
selected clades are those with more than 50 species (range 54–316) after outgroups
had been excluded (Supplementary Note Table 6). We followed the previous
ClaDS2 analysis of these clades15 in converting the time scale of the source trees to
absolute time units. The clade ages range from 12.5 to 66.6 Ma.

Bayesian inference. Based on JavaScript, WebPPL is comparatively slow, making
it less useful for high-precision computation of normalization constants or esti-
mation of posterior probability distributions using many particles. WebPPL is also
less efficient than Birch because it does not yet support delayed sampling and the
alive particle filter. Delayed sampling, in particular, substantially improves the
quality of the posterior estimates obtained with a given number of particles.
Therefore, we focused on Birch in computing normalization constants and pos-
terior estimates for the bird clades.

For each tree, we ran the programs implementing the ClaDS, BAMM, and
LSBDS models using SMC with delayed sampling and the alive particle filter as the
inference method. We ran each program 500 times and collected the estimates of
log Z from each run together with the information needed to estimate the posterior
distributions. The quality of the normalization constant estimates (on the log scale)
from these 500 runs was estimated using the standard deviation, as well as the
relative effective sample size and the conditional acceptance rate (Supplementary
Note Section 9). We initially set the number of SMC particles to 5000, which was
sufficient to obtain high-quality estimates for all models except BAMM
(Supplementary Note Table 7). We increased the number of particles to 20000 for
BAMM to obtain estimates of acceptable quality for this model.

For CRB, CRBD, TDB, and TDBD, we exploited the closed form for the
likelihood in the programs. We used importance sampling with 10,000 particles as
the inference method, and ran each program 500 times. This was sufficient to
obtain estimates of very high accuracy for all models (Supplementary Note
Table 7). The computational resources we used to obtain the results are specified in
Supplementary Note Table 8.

Visualization. Visualizations were prepared with Matplotlib66. We used the col-
lected data from all runs to draw violin plots for log bZ as well as the posterior
distributions for λ, μ (for all models), z (for TDB, TDBD, and BAMM), log α and σ2

(for the ClaDS models), and η (for LSBDS and BAMM). By virtue of delayed
sampling, the posterior distributions for λ and μ for all ClaDS models, as well as for
BAMM and LSBDS, were calculated as mixtures of gamma distributions, the
posterior distribution for log α and σ2 for all ClaDS models as mixtures of normal
inverse gamma and inverse gamma distributions, and the posterior distribution for
η for BAMM and LSBDS as a mixture of gamma distributions. For the remaining
model parameters, we used the kernel density estimation method. Exact plot set-
tings and plot data are provided in the code repository accompanying the paper.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The dated phylogenetic trees used to compare the diversification models, together with
full literature references, can be found at https://github.com/phyppl/probabilistic-
programming, under the directory data. Supplementary information is available at
https://github.com/phyppl/probabilistic-programming under the directory
supplementary.
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Code availability
The WebPPL and Birch models can be found in the same repository, https://github.com/
phyppl/probabilistic-programming, under the directories webppl and birch.
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