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Abstract

Mutation–selection phylogenetic codon models are grounded on population genetics first principles and represent a
principled approach for investigating the intricate interplay between mutation, selection, and drift. In their current form,
mutation–selection codon models are entirely characterized by the collection of site-specific amino-acid fitness profiles.
However, thus far, they have relied on the assumption of a constant genetic drift, translating into a unique effective
population size (Ne) across the phylogeny, clearly an unrealistic assumption. This assumption can be alleviated by
introducing variation in Ne between lineages. In addition to Ne, the mutation rate (l) is susceptible to vary between
lineages, and both should covary with life-history traits (LHTs). This suggests that the model should more globally
account for the joint evolutionary process followed by all of these lineage-specific variables (Ne, l, and LHTs). In this
direction, we introduce an extended mutation–selection model jointly reconstructing in a Bayesian Monte Carlo frame-
work the fitness landscape across sites and long-term trends in Ne, l, and LHTs along the phylogeny, from an alignment
of DNA coding sequences and a matrix of observed LHTs in extant species. The model was tested against simulated data
and applied to empirical data in mammals, isopods, and primates. The reconstructed history of Ne in these groups
appears to correlate with LHTs or ecological variables in a way that suggests that the reconstruction is reasonable, at least
in its global trends. On the other hand, the range of variation in Ne inferred across species is surprisingly narrow. This last
point suggests that some of the assumptions of the model, in particular concerning the assumed absence of epistatic
interactions between sites, are potentially problematic.

Key words: phylogenetic, codon models, mutation–selection models, population genetic, population size, mutation
rate, life-history traits.

Introduction
Since the realization by Zuckerkandl and Pauling (1965) that
genetic sequences are informative about the evolutionary
history of the species, molecular phylogenetics has developed
into a mature and very active field. A broad array of models
and inference methods have been developed, using DNA
sequences for reconstructing the phylogenetic relationships
among species (Felsenstein 1981), for estimating divergence
times (Thorne and Kishino 2002), or for reconstructing the
genetic sequences of remote ancestors (Liberles 2007).
However, genetic sequences might contain information
about other aspects of the evolutionary history and, in par-
ticular, about past population-genetic regimes.

Interspecific divergence is the long-term outcome of
population-genetic processes, in which point mutations at
the level of individuals are then subjected to selection and
genetic drift, leading to substitutions at the level of the pop-
ulation. As a result, the substitution patterns that can be
reconstructed along phylogenies are modulated by the

underlying population-genetic parameters (mutation biases,
selective landscapes, effective population size), suggesting the
possibility to infer the past variation of these parameters over
the phylogeny. Independently, ecological properties, such as
phenotypic characters or life-history traits (LHTs) can be ob-
served in extinct or in present-day species. Using the com-
parative method (Felsenstein 1985), these traits can be
reconstructed for the unobserved ancestral species.
Combined together, genetic and phenotypic ancestral recon-
structions can then be used to unravel the interplay between
evolutionary and ecological mechanisms.

Practically, in order to disentangle mutation, selection and
genetic drift, we need to classify individual substitutions into
different categories, differing in the strength of mutation, se-
lection or genetic drift. In protein-coding DNA sequences, the
mutational process occurs at the nucleotide level. Assuming
that synonymous mutations are selectively neutral and that
selection mostly acts at the protein level, synonymous sub-
stitutions can be used to infer the patterns of mutation,
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without any interference contributed by selection. Then, by
comparing the nonsynonymous substitution rate relative to
the synonymous substitution rate (the ratio dN=dS), one can
estimate the global strength of selection acting on proteins.
This idea was formalized using phylogenetic codon models
(Goldman and Yang 1994; Muse and Gaut 1994). This led to a
broad range of applications, either to detect proteins under
adaptive selection (Kosiol et al. 2008), or to measure the
modulations of the strength of purifying selection between
sites (Echave et al. 2016), genes (Zhang and Yang 2015), or
lineages (Lartillot and Poujol 2011).

Concerning variation in dN=dS between lineages, and in a
context mostly characterized by purifying selection, the nearly
neutral theory predicts that changes in the global strength of
selection (measured as dN=dS) is related to changes in the
relative strength of genetic drift, which is in turn mediated by
changes in effective population size (Ne) (Ohta 1992).
Mechanistically, populations with high Ne are characterized
by more efficient purifying selection against mildly deleterious
mutations, resulting in lower dN=dS (Kimura 1979; Welch et
al. 2008).

Codon models allowing for variation in dN=dS across
branches (Yang and Nielsen 1998; Yang 1998, 2007; Dutheil
et al. 2012) have been used to empirically measure such
changes in the efficacy of purifying selection along phyloge-
nies. Alternatively, dN=dS can be modeled as a continuous
trait, varying along the phylogeny as a stochastic process,
splitting at each node of the tree into independent processes
(Seo et al. 2004). Once empirical estimates of the variation in
dN=dS between lineages or groups have been obtained, these
can be compared with changes in Ne across lineages, so as to
test the validity of the predictions of the nearly neutral theory.
Independent empirical estimation of Ne is usually done vie
proxies, such as the neutral diversity within species (Galtier
2016), or LHTs. For instance, animal species characterized by a
large body size or an extended longevity are typically expected
to also have a low Ne (Romiguier et al. 2014). Alternatively, a
Bayesian integrative framework has been proposed (Lartillot
and Poujol 2011), extending the approach of Seo et al. (2004),
in which the joint variation in dS, dN=dS and in LHTs or other
proxies of Ne is modeled as a multivariate Brownian process,
with a variance–covariance matrix capturing the signal of
their correlated evolution.

Analyses using these approaches and these proxies of Ne

have suggested a negative correlation between dN=dS and Ne

(Popadin et al. 2007; Lanfear et al. 2010; Lartillot and Poujol
2011; Lartillot and Delsuc 2012; Romiguier et al. 2014; Figuet
et al. 2017), thus confirming the theoretical prediction of the
nearly neutral theory. However, the universality and robust-
ness of the correlation between dN=dS and Ne is still debated
(Nabholz et al. 2013; Lanfear et al. 2014; Figuet et al. 2016;
Bol�ıvar et al. 2019), and further investigation might be re-
quired. Moreover, these analyses do not explicitly formalize
the quantitative relationship between Ne and dN=dS. This
relation is in principle dependent on the underlying fitness
landscape (Cherry 1998; Welch et al. 2008; Goldstein 2011),
and can show complicated behavior due to nonequilibrium
properties (Jones et al. 2017). These questions could be

addressed in the context of a mechanistic modeling
approach.

A first attempt in this direction was proposed by Nielsen
and Yang (2003), using a population-genetic argument to
relate the distribution of dN=dS across sites with the under-
lying distribution of fitness effects. This first approach assumes
that all nonsynonymous mutations at a given site have the
same selection coefficient. As a result of this assumption,
there is a simple, one-to-one mapping between the dN=dS

at a given site and the selection coefficient associated with all
nonsynonymous mutations at that site. In practice, different
nonsynonymous mutations are likely to have different fitness
effects. In this direction, an alternative mutation–selection
codon modeling approach originally proposed by Halpern
and Bruno (1998) explicitly assigns a fitness parameter to
each amino acid. As a result, the substitution rate between
each pair of codons can be predicted, as the product of the
mutation rate and the fixation probability of the new codon,
which is in turn dependent on the fitness of the initial and the
final codons. Since the strength of selection is typically not
homogeneous along the protein sequence, and depends on
the local physicochemical requirements (Echave et al. 2016;
Goldstein and Pollock 2016, 2017), local changes in selective
strength are usually taken into account by allowing for site-
specific amino-acid fitness profiles. Site-specific amino-acid
preferences are typically estimated either by penalized max-
imum likelihood (Tamuri et al. 2012, 2014), or in a Bayesian
context, using an infinite mixture based on a Dirichlet process
prior (Rodrigue et al. 2010; Rodrigue and Lartillot 2014). This
second approach is further considered below.

Although not directly expressed in terms of this variable,
the mutation–selection formalism induces an equilibrium
dN=dS, which is theoretically lower than 1, thus explicitly
modeling purifying selection (Dos Reis 2015; Spielman and
Wilke 2015). As a result, the mutation–selection codon
framework proved to be a valuable null (nearly neutral)
model, against which to compare the observed dN=dS by
classical codon models, so as to test for the presence of ad-
aptation (Rodrigue and Lartillot 2017; Bloom 2017).

However, these mutation–selection methods have so far
assumed the strength of genetic drift, or equivalently Ne, to be
constant across the phylogeny. This assumption is clearly not
realistic, as attested by the empirically measured variation in
dN=dS between lineages using classical codon models or,
more directly, by the broad range of synonymous neutral
diversity observed across species (Galtier 2016). The impact
of this assumption on the estimation of the fitness landscape
across sites (Rodrigue and Lartillot 2014; Tamuri et al. 2014),
or on the tests for the presence of adaptation (Rodrigue and
Lartillot 2017; Bloom 2017) is totally unknown. Relaxing this
assumption of a constant Ne is thus necessary.

Conversely, since the mutation–selection formalism explic-
itly incorporates Ne as a parameter of the model, extending the
model so as to let Ne vary across lineages is relatively straight-
forward, at least conceptually. This idea was previously explored
in the context of two mechanistic models, relying on the dis-
tribution of dN=dS across sites (Nielsen and Yang 2003) or
accounting for selection on codon usage (Nielsen et al. 2007).
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Doing this in the context of mutation–selection models with
site-specific amino-acid preferences would provide an occasion
to address several important questions: Do we have enough
signal in empirical sequence alignments, to estimate the evo-
lutionary history of Ne along a phylogeny? Can we more gen-
erally revisit the question of the empirical correlations between
Ne and ecological LHTs (longevity, maturity, weight, size, . . .),
previously explored using classical dN=dS based models, but
now in the context of this mechanistic framework?

New Approaches
To address these questions, here we introduce a variant of the
mutation–selection codon model, in which selection is mod-
ulated along the sequence (using site-specific amino-acid
profiles), whereas the mutation rate (l), the effective popu-
lation size (Ne), and LHTs are allowed to vary along the phy-
logeny (fig. 1). Methodologically, our model is fundamentally
an integration between the Bayesian nonparametric version
of the Halpern and Bruno (1998) mutation–selection model
(Rodrigue and Lartillot 2014), and the molecular comparative
framework modeling the joint evolution of life-history and
molecular traits (Lartillot and Poujol 2011).

Formally, the substitution rate (per unit of time) from
codon i to j, denoted Qi;j, is equal to the total rate of mutation
(per unit of time) at the level of the population (2Neli;j)
multiplied by the probability of fixation of the mutation
Pfixði; jÞ:

Qi;j ¼ 2Neli;jPfixði; jÞ: (1)

In the case of synonymous mutations, which we assumed
are neutral, the probability of fixation is independent of the
original and target codon, and equals 1=2Ne, such that Qi;j

simplifies to:

Qi;j ¼ li;j: (2)

In the case of nonsynonymous mutations, the probability
of fixation depends on the difference in fitness between the
amino acid encoded by the initial and final codons:

Qi;j ¼ li;j

4Ne

�
fAðjÞ � fAðiÞ

�

1� e
4Ne

�
fAðiÞ�fAðjÞ

� ; (3)

where f is a 20-dimensional vector specifying the log-fitness
for each amino acid, and AðiÞ is the amino acid encoded by
codon i.

In the model introduced here, Ne and l are allowed to vary
between species (among branches) as a multivariate geomet-
ric Brownian process, but are assumed constant along the
DNA sequence. Conversely, amino-acid fitness profiles f are
considered constant along the tree but are assumed to vary
across sites, being modeled as independent and identically
distributed random-effects from an unknown distribution
estimated using a Dirichlet process prior. Of note, since Ne

and f are confounded parameters (eq. 3), the effective pop-
ulation size at the root is set to 1 for identifiability of the
fitness profiles. As a result, all values of Ne along the phylogeny
are relative to that of the root, with a value of Ne > 1 reflect-
ing an increase in Ne along the branches (respectively a de-
crease for Ne < 1) compared with the Ne at the root.

This model was implemented in a Markov Chain Monte
Carlo (MCMC) framework, allowing for joint inference of site-
specific selection profiles and reconstruction of LHTs and
population-genetic regimes along the phylogeny. After vali-
dating our model and our inference framework against sim-
ulated data, we apply it to several cases of interest across
metazoans (placental mammals, primates and isopods), for
which some proxies of Ne are available.

A B

FIG. 1. Model summary. (A) Our method requires a (given) rooted tree topology, an alignment of protein-coding DNA and (optionally) quan-
titative life-history trait for the extant species. (B) Relying on a codon model based on the mutation–selection formalism, assuming an autocorre-
lated geometric Brownian process for the variation through time in effective population size (Ne), mutation rate (l), and life-history traits, our
Bayesian inference method estimates amino-acid fitness profiles across sites, variation in mutation rate and effective population size along the tree,
as well as the node ages and the nucleotide mutation rates.
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Results

Validation Using Simulations
The inference framework was first tested on independently
simulated multiple sequence alignments (MSAs) (see
Materials and Methods). With the aim of applying the infer-
ence method to empirical data sets, the simulation parame-
ters were chosen so as to match an empirically relevant
empirical regime. Thus, the tree topology and the branch
lengths were chosen based on a tree estimated on the mam-
malian data set further considered below. The other aspects
of the simulation model (fitness landscape, variation in Ne)
were then varied along a gradient of increasing complexity, so
as to test the inference framework under increasingly chal-
lenging conditions.

A first series of simulations was meant to test the sound-
ness of our inference framework, by simulating essentially
under the model used for inference, although with an inde-
pendently developed software. Thus, the mutation–selection
approximation was assumed to be valid, and sites were sim-
ulated under different fitness profiles empirically determined
(Bloom 2017), and finally, Ne was assumed to undergo dis-
crete shifts at the tree nodes but otherwise to remain con-
stant along each branch. In this context, branch lengths and
branch-specific values of Ne were accurately estimated by our
inference method (fig. 2A and D). Concerning Ne, the slope of
the linear regression between true and estimated branch-
specific Ne is 0.794 (r2 ¼ 0:915).

However, the assumptions made for this first round of
simulations are almost certainly violated in practice. First,

Ne is expected to undergo continuous changes along the
lineages of the phylogeny. Second, the diffusion approxima-
tion for the probability of fixation (eq. 3) may not hold in
small finite populations. Third, assuming a separate substitu-
tion process for each site is equivalent to assuming no linkage
between sites (free recombination). In practice, however,
there is limited recombination, at least within exons, and
this could induce deviations from the mutation–selection
approximation, due to Hill–Robertson effects.

The finite population was now modeled explicitly, using a
Wright–Fisher simulator, tracking the frequency of each allele
at the gene level and at each generation along the phylogeny.
No recombination was implemented within genes. These
more complex simulation settings account for small popula-
tion size effects, for hitchhiking of weakly deleterious muta-
tions during selective sweep and for background selection
due to linkage disequilibrium. In addition, the effective pop-
ulation size Ne and the mutation rate were allowed to fluc-
tuate continuously along the branches of the tree (changing
by a small amount after each generation of the underlying
Wright–Fisher process). Finally, short-term fluctuations of Ne,
of the order of 20% per generation, were accounted for by
adding a random noise to the Brownian process describing
the long-term evolution of Ne. In spite of these deviations
between the simulation and the inference models, branch
lengths and branch-specific effective population sizes could
again be robustly recovered by the inference framework
(slope of 0.868, r2 ¼ 0:919, fig. 2B and E).

These results are encouraging. However, they still rely on
the assumption of a site-independent fitness landscape,

A B C

D E F

FIG. 2. (A–C) Branch lengths in expected number of substitutions per site. (D–F) Ne values across nodes (including the leaves) relative to Ne at the
root. From left to right: Simulation under the mutation–selection approximation (A, D), under a Wright–Fisher model accounting for small
population size effects (5,000 individuals at the root), site linkage and short term fluctuation of Ne (B, E), and finally accounting for site epistasis in
the context of selection for protein stability (C, F). The tree root is 150 My old, where the initial population starts with a mutation rate of 10�8 per
site per generation and generation time of 10 years. These experiments confirm that signal in the placental mammalian tree can allow to reliably
infer the direction of change in Ne, even if linkage disequilibrium, short term fluctuation of Ne and finite population size effects are not accounted
for in the inference framework. However, the presence of epistasis between sites is a serious threat to the inference of Ne.
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which is equivalent to assuming no epistasis. Yet this assump-
tion is almost certainly violated in practice (Pollock and
Goldstein 2014; Shah et al. 2015). Accordingly, we imple-
mented a more complex, site-dependent fitness landscape
accounting for the selective interactions between sites in-
duced by the 3-dimensional structure of protein. In this
model, the conformational stability of the protein determines
its probability of being in the folded state, which is in turn
taken as a proxy for fitness (Williams et al. 2006; Goldstein
2011; Pollock et al. 2012). Under this evolutionary model, and
at any given time, the fitness landscape at a particular codon
site is dependent on the amino acids that are currently pre-
sent at those sites that are in the vicinity of the focal site in 3D
space (see supplementary, Supplementary Material online).
When applied to data simulated using this model, our infer-
ence framework could accurately recover the simulated
branch lengths (fig. 2D). On the other hand, the distribution
of Ne across the tree could not be accurately recovered (slope
of 0.0196, r2 ¼ 0:0122, fig. 2F). In fact, no meaningful varia-
tion in Ne is detected, and the little variation in Ne that is
inferred shows no correlation with the true branch-specific
mean Ne values. This effect can be explained by the predicted
independence of dN=dS, and more generally of the scaled
selection coefficients associated with nonsynonymous muta-
tions, to changes in Ne in this specific model of protein sta-
bility, as shown theoretically by Goldstein (2013).

As an alternative model of epistasis between sites, a Fisher
geometric model was also considered for the simulations (see
supplementary, Supplementary Material online). The results
under this model are intermediate between simulations with-
out epistasis and simulations under the biophysically inspired
model considered above. More specifically, under data simu-
lated using Fisher’s geometric model, the true and estimated
branch-specific Ne are strongly correlated with each other
(r2 ¼ 0:73). On the other hand, the slope of the correlation
is substantially <1 (0.571). In other words, the trends in Ne

across the tree are correctly recovered, but the range of the
variation in effective population size over the tree is substan-
tially underestimated. As for the branch lengths, they are
again correctly estimated. In summary, our simulation experi-
ments show that our inference framework is reliable in the
absence of model misspecification and is robust to violations
concerning short- versus long-term variation in Ne or to the
presence of empirically reasonable levels of Hill–Robertson
interference. On the other hand, and very importantly, epis-
tasis, which is ignored by the inference model, appears to lead
to a general underestimation of the true variation in Ne, to an
extent that depends on the exact epistatic model but can go
as far as completely obliterating any signal about the true
variation in Ne across the tree in the most extreme situations.

Empirical Experiments
We next applied our inference framework to a series of four
empirical data sets spanning different taxonomic groups
within metazoans. As a first empirical case, we considered a
data set of 77 placental mammals, for which complete ge-
nome sequences and information about LHTs is available.
Placental mammals offer an interesting example, for which

effective population size is likely to show substantial variation
across lineages. This variation in Ne is expected to covary with
LHTs, such that large-bodied species are expected to have
smaller effective population sizes, compared with small-
bodied species.

For computational reasons, we restricted our analyses to a
random set 18 of orthologous genes, which are then
concatenated into a single MSA for analysis. Of note, the
mutation–selection model considered here assumes that
the fitness profiles do not change with time. In contrast,
some genes might experience fluctuating fitness landscapes
through time. Such fluctuations are in fact one main cause of
ongoing adaptation (Mustonen and L€assig 2009; Rodrigue
and Lartillot 2017). For that reason, genes for which positive
selection was detected using a site codon model were ex-
cluded from the analysis. To assess the reproducibility of
our inference and check that the signal about variation in
Ne is not driven by particular genes, we analyzed in total four
different concatenated MSA each containing 18 randomly
sampled genes. The different concatenated MSA showed sim-
ilar trends in the change of l and Ne between pairs of rep-
licates (see supplementary, Supplementary Material online).

The reconstructed long-term changes in effective popula-
tion size (Ne) is displayed in figure 3. We visually observe a
global trend of increasing Ne throughout the tree around 90
and 60 My. We also observe Ne to be lower in some clades,
such as Cetacea and Camelidae, whereas being higher in other
clades, such as Rodentia and Pecora. In some cases, a decrease
in Ne can be observed along an isolated branch of the tree, for
example on the branches leading to the Alpaca (Vicugna
pacos) or the cheetah (Acinonyx jubatus).

The estimated covariance matrix (table 1) gives a global
synthetic picture of the patterns of covariation between the
mutation rate per unit of time l, the effective population size
Ne and the three LHTs. First, l covaries negatively with body
mass, age at sexual maturity and longevity (table 1). These
correlations, which were previously reported (Lartillot and
Delsuc 2012; Nabholz et al. 2013) probably reflect generation
time effects (Lanfear et al. 2010; Gao et al. 2016). Similarly, and
more interestingly in the present context, Ne covaries nega-
tively with LHTs (table 1). This is consistent with the expec-
tation that small-sized and short-lived species tend to be
characterized by larger effective population sizes (Romiguier
et al. 2014). Of note, these results mirror previous findings,
based on classical codon models, showing that dN=dS tends
to be positively correlated with LHTs (Lartillot and Delsuc
2012; Nabholz et al. 2013; Figuet et al. 2017). This positive
correlation between dN=dS and LHTs was also recovered on
the present data set, using a classical dN=dS based codon
model (supplementary materials, Supplementary Material
online). Interestingly, the correlation between dN=dS and
LHTs is weaker than the correlation between our inferred
Ne and LHTs, as expected if the variation in dN=dS indirectly
(and imperfectly) reflects the underlying variation in Ne.
Finally, Ne and l are positively correlated in their variation
(q ¼ 0:44), which might simply reflect the fact that both
covary negatively with LHTs. The partial-correlation coeffi-
cients (see supplementary, Supplementary Material online)
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between Ne and LHTs are not significantly different from 0.
However, this might simply be due to the very strong corre-
lation between the three LHTs considered here, such that
controlling for any one of them removes most of the signal
contributed by the empirically available variation between
species.

Thus, altogether, the inferred trends in Ne across species
appear to be as expected, based on considerations about life-
history evolution. On the other hand, the total range of the
inferred variation in Ne across the entire extant taxa is sur-
prisingly narrow, with one order of magnitude (9.2) at most
between high and low Ne (see supplementary,
Supplementary Material online). This almost certainly repre-
sents an underestimate of the true range of variation across
placental mammals.

As another case study, we analyzed a group of isopod
species that have made multiple independent transitions to
subterranean environments. The transition from a terrestrial
to a subterranean lifestyle is typically associated with a global
life-history and ecological syndrome characterized by a loss of
vision, longer generation times and, most interestingly,
smaller population sizes, due to a lower carrying capacity of
the subterranean environment (Capderrey et al. 2013).
Protein coding DNA sequence alignments and qualitative
LHTs, such as habitat (surface or underground), pigmentation
(depigmented, partially depigmented or pigmented), and oc-
ular structure (anophthalmia, microphthalmia, or ocular) are
available for these species (Eme et al. 2013; Saclier et al. 2018).
The assumption of a Brownian autocorrelated process for
describing the changes in Ne along the tree may not be so

FIG. 3. Inferred phylogenetic history of Ne (left) and l (right) across placental mammals (posterior mean estimate), based on an analysis of a
concatenation of 18 genes randomly chosen among single-copy orthologs putatively under an exclusively purifying selection regime. Ne estimates
are relative to the value of Ne at the root. The scale for l is per nucleotide site and per total tree depth (i.e., total time from the most recent common
ancestor to the present). If we assume the root to be 105 My old (Meredith et al. 2011; Kumar et al. 2017), the rescaled mutation rate per site per
year in extant species is between 1:1� 10�10 and 7:8� 10�9. Icons are adapted from http://phylopic.org.

Table 1. Correlation Coefficients between Effective Population Size (Ne), Mutation Rate per Site per Unit of Time (l), and Life-History Traits
(maximum longevity, adult weight, and female maturity).

Correlation (q) Ne l Maximum Longevity Adult Weight Female Maturity

Ne — 0.439* –0.525* –0.544* –0.47*
l — — –0.832* –0.835* –0.833*
Maximum longevity — — — 0.827* 0.845*
Adult weight — — — — 0.809*
Female maturity — — — — —

*NOTE.—Asterisks indicate strength of support of the posterior probability to be different than 0 (pp) as pp > 0:975.
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well adapted to the present case, since the changes in Ne

associated with the transition to a subterranean environment
are likely to correspond to relatively sudden shifts, rather than
continuous variation, and the ecological correlate (subterra-
nean vs. terrestrial) is not a quantitative trait. However, the
data set considered here contains independent transitions to
a subterranean lifestyle, thus offering an opportunity to test
for a potential correlation between inferred Ne variation and
terrestrial versus subterranean lifestyles over the terminal
branches.

To assess the reproducibility of our inference, we analyzed
in total six different concatenated MSA each containing 12
randomly sampled genes. The six different concatenated
MSA showed similar trends in the change of l and Ne be-
tween pairs of replicates (see supplementary, Supplementary
Material online). A statistical analysis performed on the
pooled estimation of Ne across the six different concatenated
MSA exhibits a statistically significant reduction in Ne for
underground or depigmented species, or for species with vi-
sual impairment (see fig. 4). Of note, the species that did not
undergo a transition to subterranean environments feature a
relative Ne close to 1, meaning that Ne has not changed much
along the lineages (since the root of the tree). Again, the total
range of the inferred variation in Ne across the entire extant
taxa is surprisingly narrow, with ratio of 3.3 at most between
high and low Ne (see supplementary, Supplementary Material
online).

Next, our empirical framework was also applied on a set of
genes sampled across primates, taken from Perelman et al.
(2011) and reanalyzed in Brevet and Lartillot (2021). In addi-
tion to LHTs (mass, female maturity, generation time and
longevity), information about nuclear synonymous diversity
(pS) and nonsynonymous over synonymous diversity
(pN=pS), are available for 10 species across the data set and
are expected to correlate with Ne according to population
genetics (Eyre-walker and Keightley 2007; Galtier 2016).
However, the correlation coefficient between our inferred
Ne and pS or pN=pS and LHTs are not statistically significant,
nor with LHTs (see supplementary, Supplementary Material
online). Again, the total range of the inferred variation in Ne

across the entire tree is narrow, with ratio of 6.4 at most
between high and low Ne. These results contrast with the

finding of Brevet and Lartillot (2021) on the same data set
based on dN=dS-based codon models, where the estimated
Ne was found to span several orders of magnitude, and cor-
related positively with pS.

Discussion
Mechanistic phylogenetic codon models express the substi-
tution rates between codons as a function of the mutation
rates at the nucleotide level, selection over amino-acid
sequences and effective population size. Thus far, the devel-
opment of mutation–selection models of the Halpern and
Bruno (1998) family (Rodrigue et al. 2010; Tamuri et al. 2012)
has mostly focused on the question of fully accounting for the
fine-scale modulations of selection between amino-acids and
across sites (Rodrigue et al. 2010; Tamuri et al. 2012).
However, the issue of the variation in the global
population-genetic regime between species has received
much less attention. In particular, effective population size
(Ne) is expected to vary substantially over the species of a
given clade, yet current mutation–selection models all invari-
ably assume Ne to be constant across the phylogeny.

Here, we have introduced an extension of the mutation–
selection model that accounts for this variation. When ap-
plied to an alignment of protein coding sequences, this mech-
anistic model returns an estimate of the modulations of
amino-acid preferences across sites. Simultaneously, it recon-
structs the joint evolution of LHTs and molecular and
population-genetic parameters (mutation rate l and effective
population size Ne) along the phylogeny, whereas estimating
the correlation matrix between these variables, intrinsically
accounting for phylogenetic inertia.

Reliability of the Inference of the Phylogenetic History
of Ne

The reconstructions obtained on several empirical data sets,
in particular in mammals and in isopods, suggest that the
method is able to correctly infer the directional trends of the
changes in Ne across species. In particular, in mammals, the
inferred variation in Ne correlates negatively with body size
and, more generally, with LHTs, as expected under the rea-
sonable assumption that large-bodied mammals would tend

A B C

FIG. 4. Ne estimation for extant isopods species sorted according to their habitat (A), pigmentation (B), and ocular structure (C). Estimated Ne are
pooled across six different multiple sequence alignments (MSA) each containing 12 randomly sampled genes in isopods species. All three
qualitative traits statistically correlate with changes in Ne in the terminal branches.
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to have smaller effective population sizes (Popadin et al. 2007;
Lartillot and Delsuc 2012; Nabholz et al. 2013; Figuet et al.
2017). Similarly, in isopods, smaller effective population sizes
are inferred in subterranean species, again, as expected
(Capderrey et al. 2013).

However, although the changes in Ne are in the expected
direction (negative correlation with body size, weight, and
maturity) (Romiguier et al. 2014), the magnitude of the
changes inferred across the phylogeny is surprisingly narrow
(at most a factor 9.2 in mammals). This range does not match
independent empirical estimates of the variation in mam-
mals, where synonymous diversity varies by a factor at least
10 between species (Galtier 2016). In animals, the synony-
mous diversity roughly spans two orders of magnitude,
whereas Ne varies considerably more across species, by a fac-
tor of 103 (Galtier and Rousselle 2020). For instance, effective
population sizes estimated based on population genomic
data are of the order of 10,000 in humans (Li and Durbin
2011), and 100,000 in mice (Geraldes et al. 2008). Thus, clearly,
our approach underestimates the true variation. Different
mechanisms not accounted for by the model could explain
this result.

First, genetic hitchhiking, Hill–Robertson interference, and
short-term fluctuations of Ne could generate this effect.
However, inference conducted on alignments simulated un-
der a Wright–Fisher model accounting for linkage and for
short-term variation in Ne suggests that empirically reason-
able levels of Hill–Robertson interferences are not strong
enough to explain this observation, at least in the regimes
explored. Second, l and Ne could also be fluctuating along
the genome (Ellegren et al. 2003; Gossmann et al. 2011; Eyre-
Walker and Eyre-Walker 2014). This assumption needs to be
tested, though we expect that relaxing this assumption would
not change drastically the magnitude of inferred Ne since
some of this fluctuation should be absorbed by the inferred
site-specific fitness profiles. Third, the DNA sequences could
also be misaligned at some sites. However, we observe the
same magnitude of inferred Ne for different sets of genes
indicating this might not be the primary reason. Fourth, the
genes selected in our alignments could be under adaptive
evolution, or their function could have changed. However,
at least in mammals, the impact of this potential problem was
minimized by the use of genes for which no positive selection
was detected using standard phylogenetic codon site models.

Finally, one key assumption of the mutation–selection
model that is likely to be violated in practice is the assump-
tion of site-independence. In reality, epistasis might be prev-
alent in protein coding sequence evolution (Pollock and
Goldstein 2014; Shah et al. 2015). Our simulations under an
epistatic landscape point to epistasis being a major factor to
be investigated. Indeed, Ne could not be appropriately esti-
mated under these simulation settings, although the out-
come more specifically depends on the exact model for the
fitness landscape. An extreme case is obtained using a bio-
physically inspired model, assuming purifying selection for
conformational stability. This model was previously explored
using simulations and theoretical developments Goldstein
(2013), and it was shown that, under this model, dN=dS

and more generally the substitution process is virtually insen-
sitive to Ne. This is confirmed by our experiments, showing
that the mutation–selection approach explored here cannot
infer the true variation in Ne under this model.

A less extreme outcome is obtained under an alternative
model also implementing epistatic interactions between sites
via Fisher’s geometric model (Tenaillon 2014; Blanquart and
Bataillon 2016). Interestingly, under this model, our inference
framework is able to infer the correct trends of Ne, although
with a substantially underestimated range of inferred varia-
tion, thus mirroring the results obtained on placental mam-
mals. Of note, these results do not necessarily imply that
models based on biophysics are empirically less relevant
than Fisher’s geometric model. Instead, they might just betray
that the response of the substitution process to changes in Ne

may be sensitive to the exact quantitative details of the un-
derlying fitness landscape. More work is probably needed here
to characterize these exact conditions. Nevertheless, our sim-
ulation experiments suggest a global pattern: Epistatic inter-
actions induce a buffering of the response of the substitution
process to changes in Ne. The meaningful correlation patterns
observed with LHTs in the case of placental mammals suggest
that this buffering is not complete. Nevertheless, ignoring
epistatic interactions at the inference level appears to result
in a substantial underestimation of the range over which Ne

varies across species.
Interestingly, the magnitude of the inferred range of Ne

variation is similar for the placental and the primate data sets
(with a 9-fold and 6-fold variation in mammals and primates,
respectively), whereas one would have expected a much
larger range of variation over the broader phylogenetic scale
of placental mammals, compared with primates. An explana-
tion could be that the effects of epistasis are more apparent at
longer time-scales. Indeed, the total number of substitutions
from root to leaves is greater, and as a result, the local envi-
ronment, and therefore the fitness landscape at the level of
each site, has been less stable across the phylogeny.

Although modeling epistasis in an inference framework is a
complex biological, mathematical and computational prob-
lem, our work points to a potential signal of epistasis that
could be retrieved in a phylogenetic context. More specifi-
cally, since the slope of the response of the substitution pro-
cess to changes in Ne appears to be informative about the
epistatic regime, then, conversely, by relying on independent
estimates of Ne (e.g., using polymorphism), this effect could
be used to leverage a quantitative estimate of the statistical
distribution of epistatic effects.

Other methods have recently been developed to recon-
struct phylogenetic changes in Ne. For example, a method
recently developed uses polymorphism and generation time
for some present-day species to reconstruct Ne along the
phylogeny, based on a classical (dN=dS-based) codon model
(Brevet and Lartillot 2021). This method implicitly relies on a
nearly neutral model, assuming a fixed and gamma-shaped
distribution of fitness effects across nonsynonymous muta-
tions. The approach is calibrated using fossils, and as a result,
returns estimates of the absolute value of Ne and of its phy-
logenetic variation. Here, in contrast, our method requires
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neither generation times nor polymorphism data, and the
fitness effects are not constrained to a specific distribution.
On the other hand, the inferred effective population sizes are
only relative.

Potential Applications and Future Developments
Apart from reconstructing the phylogenetic history of Ne and
investigating its causes and covariates, another potentially
interesting application of our approach is in detecting adap-
tation. In this direction, mutation–selection models represent
a useful null nearly neutral model, explicitly modeling the
background of purifying selection acting over protein coding
genes. Adaptation can then be detected by measuring the
deviation from this null model (Rodrigue and Lartillot 2017;
Bloom 2017).

However, by assuming a constant Ne along a phylogeny,
the statistical power of this approach to detect sites under
adaptive evolution may not be optimal. In particular, the site-
specific fitness profiles inferred by the model are averaged
along the phylogeny and are seemingly more diffuse than
those estimated profiles under our present framework (see
supplementary materials, Supplementary Material online).
Thus, our method should provide a better null model of
purifying selection against which to test for the presence of
adaptive evolution.

This approach can be further extended in other directions.
First, the mutation rate (l) is considered site-invariant, an
assumption which could be relaxed by introducing site-
specific mutation rate to account for variation in mutation
rate along the sequence.

Second, currently, our model also assumes no selection on
codon usage. In the case of primates or placental mammals,
this assumption is probably reasonable (Yang and Nielsen
2008), although it is more questionable for other groups, in
particular Drosophila (Duret and Mouchiroud 1999; Plotkin
and Kudla 2011). In principle, this assumption can be relaxed
by implementing selective codon preferences that are shared
across all sites (Nielsen et al. 2007). Such an implementation
would provide the advantage of estimating codon usage
biases, whereas simultaneously accounting for its confound-
ing effect when estimating selection on amino-acids and in-
terspecific variation in Ne.

Third, providing a computationally more efficient imple-
mentation of the model would be important for broader
application. Currently, running the program on an MSA of
18 mammals genes (77 extant species, and on the order of
15,000 nucleotide sites) for 4,000 iterations of the chain (1,000
are left as burn-in) takes approximately 2–4 weeks of compu-
tations, which is quite long although still accessible for rea-
sonably small data sets. Increasing the computational
efficiency could be achieved by several means: First, parallel-
izing the program could be achieved by dispatching genes
over multiple cores. Second, a large fraction of the computing
time is spent in updating the fitness profiles, and thus, fixing
them to empirical values or using pre-estimated profiles un-
der a constant Ne would lead to a substantial acceleration.

Finally, estimating Ne in a mutation–selection phyloge-
netic model relies on the relation between Ne and the relative

strength of drift, in a context where, ultimately, the signal
about the intensity of drift comes from the rate of nonsynon-
ymous substitutions relative to that of synonymous substitu-
tions. However, this purely phylogenetic approach does not
leverage a second aspect of Ne at the population level,
namely, the fact that Ne also determines the levels of neutral
genetic diversity that can be maintained (p ¼ 4Neu, where u
is the mutation rate per generation). Hence, neutral diversity
yields an independent empirical estimate of Ne. In principle,
our mechanistic model could be extended so as to incorpo-
rate polymorphism data within species at the tips of the
phylogeny. A similar method has been previously pioneered
in the case of three species and using a distribution of fitness
effect (Wilson et al. 2011). More generally, the nearly neutral
theory of evolution defines a long-term Ne, which might be
different from the short-term definition of Ne (Platt et al.
2018). Thus we could ask if empirical independent estima-
tions of Ne from within species (based on genetic diversity)
and between species (based on the substitution process) are
congruent, and if not, what are the mechanisms responsible
for this discrepancy.

Notwithstanding theoretical considerations on the nearly
neutral theory of evolution, empirical clues about the long-
term trends in the modulations of the intensity of genetic
drift opens up a large diversity of ecological and evolutionary
questions. Spatial and temporal changes of genetic drift along
ecological niches and events can now be investigated, so as to
disentangle the underlying evolutionary and ecological
pressures.

Materials and Methods
In the model presented here, Ne and l and quantitative traits
are allowed to vary between species (among branches) as a
multivariate geometric Brownian process, but assumed con-
stant along the DNA sequence. Conversely, amino-acid fitness
profiles are assumed to vary across sites, but are considered
constant along the tree. The model makes several assump-
tions about the evolutionary process generating the observed
alignment. First, the species tree topology is supposed to be
known, and each gene should match the species tree, mean-
ing genes are strict orthologs (no paralogs and no horizontal
transfers). Second, there is no epistasis (interaction between
sites), such that any position of the sequence has its own
independent evolutionary process and a substitution at one
position does not affect the substitution process at other
positions. Third, from a population genetics perspective, we
assumed sites of the protein to be unlinked, or equivalently
the mutation rate is low enough such that there is neither
Hill–Robertson interference nor genetic hitchhiking. Fourth,
polymorphism is ignored in extant species.

The parameterization of the models is described as a
Bayesian hierarchical model, including the prior distributions
and the parameters of the model. This hierarchical model is
formally represented as directed acyclic graph, depicted in
figure 5.
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Nucleotide Mutation Rates
The generalized time-reversible nucleotide mutation rate ma-
trix R is a function of the nucleotide frequencies r and the
symmetric exchangeability rates q (Tavar�e 1986). r ¼ ðrA;
rC; rG; rTÞ is the equilibrium base frequency vector, giving
the frequency at which each base occurs at each site. q ¼ ð
qAC; qAG; qAT; qCG; qCT; qGTÞ is the vector of exchangeabil-
ities between nucleotides. Altogether, the rate matrix is:

R ¼

A

C

G

T

� qACrC qAGrG qATrT

qACrA � qCGrG qCTrT

qAGrA qCGrC � qGTrT

qATrA qCTrC qGTrG �

0
BBBBBBBB@

1
CCCCCCCCA
: (4)

By definition, the sum of the entries in each row of the
nucleotide rate matrix R is equal to 0, giving the diagonal entries:

Ra;a ¼ �
X

b6¼a;b2fA;C;G;Tg
Ra;b: (5)

The prior on the exchangeabilities q is a uniform Dirichlet
distribution of dimension 6:

q � Dirð1; 1; 1; 1; 1; 1Þ: (6)

The prior on the equilibrium base frequencies r is a uni-
form Dirichlet distribution of dimension 4:

r � Dirð1; 1; 1; 1Þ: (7)

The general time-reversible nucleotide matrix is normal-
ized such that the total flow equals to 1:X

a2fA;C;G;Tg
�raRa;a ¼ 1: (8)

Site-Dependent Selection
Site-specific amino-acid fitness profiles are assumed i.i.d. from
a mixture model, itself endowed with a truncated Dirichlet
process prior. Specifically, the mixture has K components
(K ¼ 50 by default). The prior on component weights (h)
is modeled using a stick-breaking process, truncated at K and
of parameter b:

heStickBreakingðK; bÞ () hk ¼ wk �
Yk�1

a¼1

ð1� waÞ; k

2 f1; . . . ; Kg;
(9)

where wk are i.i.d. from a beta distributioN

wk � Betað1; bÞ; k 2 f1; . . . ; Kg: (10)

Of note, the weights decrease geometrically in expectation,
at rate b, such that lower values of b induce more heteroge-
neous distributions of weights.

Each component of the mixture defines a 20-dimensional
fitness profile /ðkÞ (summing to 1), for k 2 f1; . . . ; Kg. These
fitness profiles are i.i.d. from a Dirichlet of center c and con-
centration a:

FIG. 5. Directed acyclic graph (DAG) of dependencies between variables. Nodes of the directed acyclic graph are the variables, and edges are the
functions. Hyper-parameters are depicted in red circles, random variables in blue circles, and transformed variables in black. Blue dashed line
denotes a drawing from a random distribution, and black solid lines denote a function. All the nodes pointing toward a given node (upstream) are
its dependencies which determine its distribution. The other way around, following the arrows in the DAG (downstream), simple prior
distributions are combined together to form more complex joint prior distribution which ultimately defines the prior distribution of the model.
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/ðkÞ � Dirðc; aÞ; k 2 f1; . . . ; Kg: (11)

Site allocations to the mixture components
jðzÞ 2 f1; . . . ; Kg, for z 2 f1; . . . ; Zg running over the Z
sites of the alignment, are i.i.d. multinomial of parameter h:

m � MultinomialðhÞ; (12)

wheremk ¼
X

z2f1; ...; Zg
1jðzÞ¼k: (13)

For a given parameter configuration for the mixture, the
Malthusian fitness selection coefficients f ðzÞ at site z, is
obtained by taking the logarithm of the fitness profile
assigned to this site:

f ðzÞ ¼ lnð/

�
jðzÞÞ
Þ; z 2 f1; . . . ; Zg: (14)

Dated Tree
The topology of the rooted phylogenetic tree is supposed to
be known and is not estimated by the model. The model
estimates the dates at which branches split, thus the dated
tree requires P� 2 internal node ages that are free parame-
ters, where P is the number of extant taxa (leaves of the tree).
By definition, leaf ages are all set to 0. The root age is set
arbitrarily to 1, but if fossils data are also available the dated
tree can be rescaled into absolute time using cross-
multiplication. A uniform prior is assumed over internal
node ages TðnÞ; n 2 fPþ 1; . . . ; 2P� 2g.

The duration DTðbÞ represented by a given branch b, for
b 2 f1; . . . ; 2P� 2g is defined as the difference in ages be-
tween the oldest node at the tip of the branch Tðb

"Þ, and the
youngest node Tðb

#Þ:

DTðbÞ ¼ Tðb
"Þ � Tðb

#Þ: (15)

Branch Dependent Traits
The effective population size Ne and mutation rate per unit of
time l are assumed to evolve along the phylogeny, and to be
correlated. If quantitative LHTs are also available for some
nodes of the tree (leaves and/or internal nodes), they are
also assumed to evolve along the phylogeny and to be cor-
related between them, and with Ne and l. The total number
of traits is noted L, when counting Ne, l and all user-defined
LHT (denoted X). Their variation through time is modeled by
an L-dimensional geometric Brownian process B. By conven-
tion, the first component of the log-Brownian corresponds to
Ne, and the second component to l. Thus:

B1ðtÞ ¼ lnNeðtÞ;

B2ðtÞ ¼ lnlðtÞ;

Bkþ2ðtÞ ¼ lnXkðtÞ; k 2 f1; . . . ; Lg:

8>><
>>: (16)

The effective population size at the root is set to 1 for
identifiability of the fitness profiles.

Along a branch b 2 f1; . . . ; 2P� 2g of the tree, a geo-
metric Brownian process starts at the oldest node at the tip of
the branch (b"), and ends at the youngest node (b#). The rate
of change of the geometric Brownian process per unit of time
is constant and determined by the positive semidefinite and
symmetric covariance matrix R. Thus the distribution at node
b# of Bðb

#Þ is multivariate Gaussian, with mean equals to the
Brownian process sampled at the oldest node Bðb

"Þ, and var-
iance DTðbÞR:

Bðb
#ÞeNðBðb"Þ;DTðbÞRÞ; b 2 f1; . . . ; 2P� 2g: (17)

The Brownian process at the root of the tree is uniformly
distributed, except for the first component fixed to 0 for
identifiability (see above). The prior on the covariance matrix
is an inverse Wishart distribution, parameterized by j¼ 1 and
with q ¼ Lþ 1 degrees of freedom:

R � Wishart�1ðjI; qÞ: (18)

We are interested in approximating the expected substi-
tution rates between codons over the branch. Ideally, under
the Brownian process just described, the rates of substitution
between codons are continuously changing through time.
Also, even conditional on the value of Ne at both ends, the
Brownian path along the branch entails a random compo-
nent, leading to complicated integral expressions for substi-
tution rates (Horvilleur and Lartillot 2014). Here, a branchwise
approximation is used (Lartillot and Poujol 2011), which con-
sists of first deriving an approximation for the mean Ne along
the branch, conditional on the values of Ne at both ends, and
then using this mean branchwise Ne to define the codon
substitution rates.

In the case of geometric Brownian process, the most likely
path (or geodesic) from Bðb

"Þ to Bðb
#Þ is the straight line, and

therefore, it would make sense to take the mean value of eBðnÞ

along this geodesic. We then have N
ðbÞ
e and lðbÞ for each

branch b 2 f1; . . . ; 2P� 2g of the tree:

N
ðbÞ
e ¼

eB
ðb#Þ
1 � eB

ðb"Þ
1

B
ðb#Þ
1 � B

ðb"Þ
1

;

lðbÞ ¼ eB
ðb#Þ
2 � eB

ðb"Þ
2

B
ðb#Þ
2 � B

ðb"Þ
2

:

8>>>>><
>>>>>:

(19)

Codon Substitution Rates
The mutation rate between codons i and j, denoted li;j

depends on the underlying nucleotide change between the
codons. First, if codons i and j are not nearest-neighbors, li;j is
equal to 0. Second, if codons i and j are only one mutation
away, Mði; jÞ denotes the nucleotide change (e.g.,
MðAAT;AAGÞ ¼ TG), and li;j is given by the underlying
nucleotide relative rate (RMði;jÞ) scaled by the mutation
rate per time (l). Technically, the 4-dimensional nucleotide
relative rate matrix (R) is normalized such that we expect one
substitution per unit of time, hence the scaling by l.
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For a given branch b and a given site z, the codon substi-
tution rate (per unit of branch lenght) matrix Qðb;zÞ is given
by:

Q
ðb;zÞ
i;j ¼ 0 if codons i and j are not nearest� neighbors;

Q
ðb;zÞ
i;j ¼ RMði;jÞ if codons i and j are synonymous;

Q
ðb;zÞ
i;j ¼ RMði;jÞ

4N
ðbÞ
e ðf ðzÞAðjÞ � f

ðzÞ
AðiÞÞ

1� e
4N
ðbÞ
e ðf

ðzÞ
AðiÞ�f

ðzÞ
AðjÞÞ

if i and j are nonsynonymous;

Q
ðb;zÞ
i;i ¼ �

X61

j 6¼i;j¼1

Q
ðb;zÞ
i;j :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(20)

We see from this equation that, f and Ne are confounded,
such that increasing the effective population size whereas
decreasing the fitnesses by the same factor leads to the
same substitution rate.

The branch lengths lðbÞ are defined as the expected num-
ber of neutral substitutions per DNA site along a branch:

lðbÞ ¼ lðbÞDTðbÞ: (21)

Together, the probability of transition between codons for
a given branch b and site z is:

Pðb;zÞ ¼ elðbÞQðb;zÞ ; (22)

which are the matrices necessary to compute the likelihood
of the data (D) given the parameters of the model using the
pruning algorithm.

Bayesian Implementation
Bayesian inference was conducted using MCMC. Most phy-
logenetic MCMC samplers target the distribution over the
model parameters given the sequence alignment, which
means that they have to repeatedly invoke the pruning algo-
rithm to recalculate the likelihood which is most often the
limiting step of the MCMC. An alternative, which is used here,
is to do the MCMC conditionally on the detailed substitution
history H, thus doing the MCMC over the augmented con-
figuration (H, D), under the target distribution obtained by
combining the mapping-based likelihood with the prior over
model parameters.

The key idea that makes this strategy efficient is that the
mapping-based likelihood depends on compact summary
statistics ofH, leading to very fast evaluation of the likelihood.
On the other hand, this requires to implement more complex
MCMC procedures that have to alternate between:

(1) samplingH conditionally on the data and the current
parameter configuration.

(2) resampling the parameters conditionally on H.

To implement the mapping-based MCMC sampling strat-
egy, we first sample the detailed substitution historyH for all
sites along the tree. Several methods exist for doing this
(Nielsen 2002; Rodrigue et al. 2008), which are used here in
combination (first trying the accept-reject method of Nielsen,

then switching to the uniformization approach of Rodrigue
et al. if the first round has failed).

Then, we write down the probability of H given the
parameters, and finally, we collect all factors that depend
on some parameter of interest and make some simplifica-
tions. This ultimately leads to relatively compact sufficient
statistics (see supplementary, Supplementary Material online)
allowing for fast numerical evaluation of the likelihood
(Irvahn and Minin 2014; Davydov et al. 2017). As an example,
making an MCMC move on the Ne at a given node of the tree
is faster since only the mapping-based likelihood (using path
sufficient statistics) at the neighboring branches of the node is
necessary, instead of computing the likelihood for the entire
tree.

MCMC are run for 4,000 points and the first 1,000 points
are discarded as burn-in. Convergence is then assessed (see
supplementary, Supplementary Material online) by compar-
ing two independent chains, checking that both site-specific
fitness and branch Ne have the same posterior mean.

Correlation between Traits
The correlation between trait a and trait b 2 f1; . . . ; Lg can
be obtained from the covariance matrix R:

qa;b ¼
Ra;bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra;aRb;b

p : (23)

This correlation coefficient is then averaged over the pos-
terior distribution, and statistical support is assessed based on
the posterior probability of having a positive (or negative)
value for the coefficient.

Simulations
To test the robustness of the model, four parameterized
simulators were developed: SimuDiv, SimuPoly, SimuFold, &
SimuGeo. All four simulators use a geometric Brownian mul-
tivariate process to model the changes in the mutation rate
per generation, the generation time and Ne along the lineages.
SimuDiv, SimuFold, & SimuGeo all simulate point substitu-
tions along the phylogenetic tree. In our simulations, the tree
is composed of 77 species (see supplementary,
Supplementary Material online), the tree root is 150 million
years old, the initial mutation rate is 10�8 per site per gener-
ation and the initial generation time is 10 years. The simulator
starts from an initial sequence at equilibrium, composed of
15,000 codon sites. The change in fitness is computed for all
possible mutations, hence computing all strictly positive sub-
stitution rates. At each point, the next substitution is chosen
proportional to these rates using in Gillespie’s algorithm
(Gillespie 1977). At each node, the process is split, and finally
stopped at the leaves of the tree. SimuPoly simulates explicitly
each generation along the phylogeny under a Wright–Fisher
population, consisting of three steps: Mutation, selection and
genetic drift of currently segregating alleles. Mutations are
drawn based on a user-defined nucleotide matrix, where
our simulations used a symmetric time-reversible mutation
matrix. Drift is induced by the multinomial resampling of the
currently segregating alleles. We assume that the DNA
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sequence is composed of exons, with no linkage between
exons, and total linkage of sites within an exon. Moreover,
in SimuPoly, the instant value of log-Ne can also be modeled
as a sum of a geometric Brownian process and an Ornstein–
Uhlenbeck process. The geometric Brownian motion
accounts for long-term fluctuations, whereas the Ornstein–
Uhlenbeck introduces short-term fluctuations. In SimuDiv
and SimuPoly, each codon site contributes independently
to the fitness depending on the encoded amino acids,
through site-specific amino-acid fitness profiles experimen-
tally determined (Bloom 2017). In SimuFold, the fitness of a
sequence is computed as the probability of the protein to be
in the folded state. SimuFold is a Cþþ adaptation of a Java
code previously published (Goldstein and Pollock 2016, 2017),
where we also allow for changes in Ne and l along a phylo-
genetic tree. Supplementary materials, Supplementary
Material online describe the simulations in more details,
with parameters and configurations used to produce align-
ments, as well as performance of the inference model against
them.

Empirical Data
For placental mammals, alignments were extracted from
OrthoMam database (Ranwez et al. 2007; Scornavacca et al.
2019). LHTs for longevity, age at maturity and weight were
obtained from AnAge database (De Magalh~aes and Costa
2009; Tacutu et al. 2012). We focused our analysis on 77
taxa for which information is available for at least one LHT.
The list of conserved genes putatively not under positive se-
lection is available in supplementary materials,
Supplementary Material online.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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