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a b s t r a c t

Molecular sequences are shaped by selection, where the strength of selection relative to drift is
determined by effective population size (Ne). Populations with high Ne are expected to undergo
stronger purifying selection, and consequently to show a lower substitution rate for selected mutations
relative to the substitution rate for neutral mutations (ω). However, computational models based on
biophysics of protein stability have suggested that ω can also be independent of Ne. Together, the
response of ω to changes in Ne depends on the specific mapping from sequence to fitness. Importantly,
an increase in protein expression level has been found empirically to result in decrease of ω, an
observation predicted by theoretical models assuming selection for protein stability. Here, we derive a
theoretical approximation for the response of ω to changes in Ne and expression level, under an explicit
genotype-phenotype-fitness map. The method is generally valid for additive traits and log-concave
fitness functions. We applied these results to protein undergoing selection for their conformational
stability and corroborate out findings with simulations under more complex models. We predict a
weak response of ω to changes in either Ne or expression level, which are interchangeable. Based on
empirical data, we propose that fitness based on the conformational stability may not be a sufficient
mechanism to explain the empirically observed variation in ω across species. Other aspects of protein
biophysics might be explored, such as protein–protein interactions, which can lead to a stronger
response of ω to changes in Ne.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Molecular sequences differ across species due to the particular
istory of nucleotide substitutions along their respective lineages.
hese substitutions in turn are the result of the interplay between
volutionary forces such as mutation and selection, whose rela-
ive forces are determined by the amount of random genetic drift.
hese forces have effects at different levels: mutations are carried
y molecular sequences, selection is mediated at the level of
ndividuals, while random genetic drift is a population sampling
ffect. Yet, they jointly contribute to the long-term molecular
volutionary process. Thus, the challenge of the study of molecu-
ar evolution is to tease out their respective contributions, based
n comparative analyses.
One main aspect of this challenge is to correctly evaluate the

ole of random drift in the long term evolutionary process. Popu-
ation genetics theory implies that the strength of drift, due to the
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stochastic sampling of mutations, is less pronounced in lineages
with large effective population size (Ne), and as a consequence,
the purification by selection of weakly deleterious mutations is
more effective in large populations. This fundamental idea is at
the core of the nearly-neutral theory of evolution. This theory
posits that a substantial fraction of mutations are deleterious or
weakly deleterious, and as a result, predicts that the substitution
rate (relative to the neutral expectation), called ω, decreases
along lineages with higher Ne (Ohta, 1972, 1992).

This prediction has been more quantitatively examined under
the assumption that the selective effects of mutations are drawn
from a fixed distribution of fitness effects (DFE) (Kimura, 1979;
Welch et al., 2008). Assuming a gamma distribution for the DFE, a
key result obtained in this context is an approximate scaling of ω

as a function of Ne (i.e. ω ∼ N−k
e ), where k is the shape parameter

of the DFE. In practice, DFEs are strongly leptokurtic, which thus
predicts a weak negative relation between ω and Ne.

However, the DFE may not be fixed a priori, instead it may
naturally emerge from an underlying fitness landscape and thus
vary depending on the position of the population in the fitness
landscape (Lourenço et al., 2013). In an alternative approach,
based on genotype-fitness maps modelling the underlying fitness
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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andscape, the selective effect of a mutation depends on the
itness of both the source and the target amino acids involved
n the mutation event (Halpern and Bruno, 1998; Rodrigue et al.,
010; Tamuri and Goldstein, 2012). Even though this modelling
pproach differs substantially from the one assuming a fixed DFE,
t also predicts a negative correlation between ω and Ne, at least
hen the process is at equilibrium (Spielman and Wilke, 2015;
os Reis, 2015).
Conversely, one striking theoretical result was that ω is in

act predicted to be independent of Ne, whenever (i) the fitness
s a log-concave function of a phenotype and (ii) the phenotype
tself is equimutable. Equimutability states that the distribution
f phenotypic changes due to mutation is independent of the
urrent phenotype of individuals (Cherry, 1998). This general the-
retical argument was obtained using a heuristic derivation in the
eterministic limit, that is, ignoring the fluctuations at stationar-
ty. It has been invoked in the context of in silico experiments
f protein sequence evolution, assuming that proteins are under
election for their thermodynamic stability, with fitness being
roportional to the folding probability of the protein (Goldstein,
013). Thermodynamic stability is itself computed using a 3D
tructural model of the protein. These computational experiments
ave led to the observation that ω is essentially independent of
e. An explanation proposed for this result is that the distribution
f changes in free energy of folding (∆∆G) due to mutations is
pproximately independent of the current free energy (∆G), thus
aking the free energy of folding essentially equimutable.
However, the equimutability assumption is a relatively strong

ne, which also conflicts with combinatorial considerations about
he relation between sequence and phenotype (Serohijos et al.,
012). For example, if a protein sequence is already maximally
table, only destabilizing (or neutral) mutations can occur. More
enerally, assuming that the stability of a protein sequence re-
lects an underlying fraction of positions having already accepted
estabilizing amino acids, then the probability of destabilizing
utational events is in turn expected to directly depend on the
urrent stability of the protein.
Altogether, depending on the theoretical model mapping se-

uence to fitness, ω can be either independent or negatively cor-
elated to Ne, or even positively if considering adaptive evolution
nd environmental changes (Lanfear et al., 2014).
Empirically, variation in ω between lineages has been in-

erred using phylogenetic codon models applied to empirical
equences (Yang and Nielsen, 1998; Zhang and Nielsen, 2005).
onfronting branch-specific ω estimates to life-history traits such
s body mass or generation time uncovered a positive correla-
ion (Popadin et al., 2007; Nikolaev et al., 2007). Subsequently,
ntegrative inference methods combining molecular sequences
nd life-history traits have also found that ω correlates positively
ith traits such as longevity and body mass (Lartillot and Poujol,
011; Figuet et al., 2017). Since lineages with a large body size
nd extended longevity typically correspond to species with low
e (Romiguier et al., 2014), these empirical correlations suggest
negative correlation between ω and Ne, thus confirming the

heoretical prediction of the nearly-neutral theory of evolution.
owever, the universality and robustness of the correlation be-
ween ω and life-history traits is still debated. Results have not
een entirely consistent across independent studies. The correla-
ion was found to be either not statistically significant (Lartillot
nd Delsuc, 2012), or even in the opposite direction depending on
he specific clade under study or the potential biases taken into
ccount (Lanfear et al., 2010; Nabholz et al., 2013; Lanfear et al.,
014; Figuet et al., 2016).
If empirical evidence for a negative correlation of ω with

Ne is still not totally convincing, another empirical correlation

is known to be much more robust. Indeed, expression level or c

58
protein abundance is one of the best predictors of ω, with highly
expressed proteins typically having lower ω values, a correlation
learly significant although relatively weak (Duret and Mouchi-
oud, 2000; Rocha and Danchin, 2004; Drummond et al., 2005;
hang and Yang, 2015; Song et al., 2017). Theoretical models,
lso based on protein stability, have been invoked to explain
his negative correlation between ω and expression level (Wilke
nd Drummond, 2006; Drummond and Wilke, 2008). According
o this argument, selection against protein misfolding due to
oxicity, which is stronger for more abundant proteins, induces
bundant proteins to evolve toward greater stability, resulting
n a more constrained and more slowly evolving protein coding
equence (Serohijos et al., 2012).
The possibility that expression level and Ne might play similar

oles in the evolution of proteins has already been noticed. More
recisely, under models of selection against protein misfolding,
he free energy of folding ∆G is predicted to vary similarly along
gradient of either Ne or expression level (Serohijos et al., 2013).
s a corollary, under strict equimutability of ∆G, these com-

putational models imply that ω should also be independent of
expression level (Serohijos et al., 2012), akin to what is predicted
with regard to changes in Ne.

Altogether, both theoretical results and empirical analyses are
not yet conclusive about the question of how ω depends on Ne
and expression level. In particular, the theoretical response of ω

to changes in both Ne and expression level has not been quan-
tified and, most importantly, has not been related to the specific
map between genotype, phenotype and fitness. Such an analytical
development would be useful to more decisively confront the
theoretical predictions relating ω to both Ne and expression level
to empirical data. Ultimately, relating proteins structural param-
eters to the response of ω would help to bridge the gap between
protein thermodynamics on one side and comparative genomics
on the other side.

Lastly, the theoretical results discussed so far are valid only
at the mutation–selection–drift balance. In a non-equilibrium
regime, however, and at least under a model assuming a site-
independent genotype-fitness map, an increase in Ne first leads
to an increase in ω caused by adaptive substitutions, and sub-
sequently a decrease in ω due to stronger purifying selection
in the long term (Jones et al., 2017). Studying only equilibrium
properties can thus be misleading. For this reason, the dynamic
response of ω to changes in Ne must also be addressed, quantified,
and its connection with the underlying selective landscape better
characterized. Dynamic properties of ω to changes in Ne are of
theoretical interest but are also empirically relevant, such that,
if overlooked they could thwart the relation between theoretical
expectations and empirical estimates.

In this context, the aim of the present study is to characterize
the dynamics and equilibrium response of ω to changes in Ne and
expression level, and to relate this response to structural param-
eters of the model. To this effect, we develop a general mathe-
matical approach assuming a given genotype-phenotype-fitness
map. We determine an approximate solution to the equilibrium
phenotype, as in Charlesworth (2013), which is then related to
the substitution rate ω. Subsequently, we derive a quantitative
approximation of the response of ω to changes in Ne and ex-
pression level, as depicted in Fig. 1. We apply our mathematical
approach to fitness models based on protein thermodynamics. In
the light of previously published empirical estimates from pro-
tein thermodynamics and comparative genomics, we discuss the
articulation between empirical data and our mechanistic model.
We also discuss some of the alternative biophysical mechanisms
that could determine the selective landscape on protein-coding
sequences, and how they would modulate the response of ω to

hanges in Ne and expression level.
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Fig. 1. Outline of the theoretical results. The genotype to fitness relationship is depicted in the left panel. The phenotype (x) is a real-valued function of the genotype
i.e. the amino-acid sequence), and is defined in our model as the fraction of destabilizing amino acids in the sequence. Fitness is a decreasing log-concave function
f the phenotype, depending on structural parameters of the model. Once the relation from genotype to fitness is defined, the substitution process proceeds as
resented in the middle panel. For a given effective population size Ne , the evolutionary process results in an average value of the phenotype x∗ and an average
ubstitution rate (relative to the neutral rate) ω. Averaging over time is equivalent to determining the statistical equilibrium, by ergodicity of the stochastic process.
he slope of the scaling of the equilibrium ω as a function of log-Ne defines the susceptibility χ , which is a function of the structural parameters defined by the
henotype-fitness map.
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. Results

.1. Models of evolution

The results that are presented below are valid for a general
ategory of models of sequence evolution, based on an additive
rait x, such that the coding positions of the sequence contribute
dditively to the trait. The trait is under directional selection
pecified by a decreasing and log-concave fitness function W (x).
s a specific example, we more specifically consider a model of
rotein evolution under the constraint of thermodynamic sta-
ility, as depicted in the left panel of Fig. 1. This model is in-
pired from previous work (Williams et al., 2006; Goldstein, 2011;
ollock et al., 2012), except that we make several simplifying
ssumptions, allowing us to derive analytical equations.
In the original biophysical model, protein stability is deter-

ined by the difference in free energy between the folded and
nfolded conformations, called ∆G and measured in kcal/mol.
echnically, free energy is computed based on the 3D conforma-
ion of the protein and using statistical potentials. As a result,
he stabilizing or destabilizing effect of an amino acid at a par-
icular site depends on amino acids present in the vicinity in 3D
onformation, thus implementing what has been called specific
pistasis (Starr and Thornton, 2016).
Here, we approximate this model such that the (de-)stabilizing

ffect at a particular site, such as measured by the ∆∆G of the
utation, does not depend on other neighbouring residues, thus
isregarding specific epistasis (Dasmeh et al., 2014). Instead, each
ite contributes independently and additively to ∆G. In addition,
e assume that, for each site of the sequence, only one amino
cid is stabilizing the protein. All 19 other amino acids are equally
estabilizing. Each site bearing a destabilizing amino acid con-
ributes an excess of ∆∆G > 0 (in kcal/mol) to the total ∆G. The
mallest achievable value of ∆G, obtained when all amino acids
f the sequence are stabilizing, is noted ∆Gmin < 0. In this model,
he most succinct phenotype of a given genotype (i.e. sequence) is
ust the proportion of destabilizing amino acids in the sequence,
efined as 0 ≤ x ≤ 1. Thus ∆G is a linear function of x:

G(x) = ∆Gmin + n∆∆Gx, (1)

here n is the number of sites in the sequence.
For a given ∆G, thermodynamic equations allow one to derive

he proportion of protein molecules that are in the native (folded)
onformation in the cytoplasm. This fraction is assumed to be
proxy for fitness, motivated in part by the fact that a protein
ust be folded to perform its function. A slightly different model
59
ill be considered below, in order to take into account protein
xpression level (see Section 2.3).
Analytically, the fitness function is given by the Fermi Dirac

istribution (Goldstein, 2011) and is typically close to 1 (Serohijos
nd Shakhnovich, 2014), leading to a first-order approximation:

(x) =
1

1 + eβ(∆Gmin+n∆∆Gx) , (2)

⇒ W (x) ≃ 1 − eβ(∆Gmin+n∆∆Gx), (3)

⇒ f (x) = ln(W (x)) ≃ −eβ(∆Gmin+n∆∆Gx), (4)

where W is the Wrightian fitness for a given phenotype and f is
the Malthusian fitness (or log-fitness). Here, ∆Gmin and ∆∆G are
defined as above, and the parameter β is 1.686 mol/kcal at 25 ◦C
(or 298.2K).

Of note, even though the phenotypic effect of a mutation
at a given site does not depend on the amino-acids that are
present at other sites (i.e. the trait is additive), the fitness effect
of a mutation still depends on other sites (i.e. the log-fitness
is not additive). As a result, the molecular evolutionary pro-
cess is site-interdependent, a property referred to as non-specific
epistasis (Starr and Thornton, 2016; Dasmeh and Serohijos, 2018).

2.2. Response of ω to changes in Ne. Analytical approximation

For a given effective population size Ne, the evolutionary pro-
cess reaches an equilibrium (Fig. 1, middle panel). This substitu-
tion rate at this equilibrium, normalized by the substitution rate
of neutral of mutations to discard the influence of the underlying
mutation rate, is denoted ω. This relative rate can also be inter-
preted as the mean fixation probability of mutations scaled by
the fixation probability of neutral alleles p = 1/2Ne, the mean
being weighted by the probability of occurrence of mutations in
the population. As a result, an ω < 1 indicates that mutations are
negatively selected on average, and ω decreases with increasing
trength of purifying selection.
In this section we present an analytical approximate solution

or the response of ω after a change in Ne (in log space), as
depicted in the right panel of Fig. 1. We call this response the
susceptibility of ω to changes in Ne, and denote it as χ :

χ =
dω

d ln(Ne)
(5)

Deriving χ is done in two steps. First, we determine the mean
phenotype at equilibrium, when evolutionary forces of muta-
tion, selection and genetic drift compensate each other. Subse-
quently, differential calculus is used to compute the response of
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he equilibrium phenotype to a change in Ne, which allows us
o ultimately derive an equation for χ . The main results of our
erivation are given both in the general case of any (log-concave)
henotype-fitness map, and in the specific case of the biophysical
odel introduced above. A more detailed derivation is available

n the supplementary materials.
For a given genotype, mutations can have various effects: they

an increase or decrease the proportion of destabilizing amino
cids, or do nothing if the mutation is between two destabilizing
mino acids. To derive the probabilities of such events to occur,
e assume that the state of each site is one of the 20 amino-acids,
onsidered equivalent, and also make the simplifying assumption
hat all transitions between the amino acids are equiprobable.
ltogether, any mutation in the sequence can then have a phe-
otypic effect of 0 or δx = 1/n, with probabilities of transitions
rom x to x′ equal to:

P(x′
= x + δx) = 1 − x,

P(x′
= x) =

18x
19 ,

P(x′
= x − δx) =

x
19 .

(6)

In the extreme case of an optimal phenotype (x = 0), only
destabilizing mutations are proposed. Moreover, the probability
to propose a stabilizing mutation (effect −δx), or a neutral muta-
tion (effect 0), is proportional to x. Conversely, the probability to
propose a destabilizing mutation is equal to (1 − x). As a result,
the mutation bias is proportional to (1− x)/x. This mutation bias
fundamentally reflects a combinatorial effect, due to the number
of mutational opportunities available in either direction.

Second, we need to determine the strength of selection acting
on mutations. Destabilizing mutations are selected against with a
negative selection coefficient which can be approximated by:

s ≃
1
n

∂ f (x)
∂x

(7)

⇒ s ≃ −β∆∆Geβ(∆Gmin+n∆∆Gx), (8)

where f = ln(W ) is the log-fitness (or Malthusian fitness).
Conversely, stabilizing mutations will be under positive selection
with opposite sign but same absolute value. It is important to
realize that the selective effect is dependent on x. Furthermore,
because the fitness function is log-concave, the absolute value of
s increases with x.

Based on these expressions for the mutational and selective
pressures, one can then study the trajectory followed by the
evolutionary process. Starting from an optimal sequence, mostly
destabilizing mutations will occur, some of which may reach
fixation and accumulate until selection coefficients against new
deleterious mutations are too strong, at which point the protein
will reach a point of equilibrium called marginal stability (Tav-
erna and Goldstein, 2002; Bloom et al., 2007). Most importantly,
the probability of fixation of mutations is affected by genetic
drift, and thus depends on the effective population size (Ne).
At the equilibrium between mutation, selection and drift, the
process fluctuates through the occurrence of advantageous and
deleterious substitutions compensating each other. Under the
assumption that fluctuations around the equilibrium value are
small (in supplementary materials), the equilibrium distribution
of trait can be approximated by an equilibrium trait value, thus
using a deterministic approximation, as in Cherry (1998). This
equilibrium value can be determined by expressing the constraint
that the selection coefficient of substitutions is expected to be
null on average (Goldstein, 2013). Formally, and after simplifica-
tion, the equilibrium phenotype denoted x∗ is given in the general
case by:

ln
(
1 − x∗

∗

)
+ ln(19) ≃ −

4Ne ∂ f (x∗)
∗

(9)

x n ∂x

60
⇒ ln
(
1 − x∗

x∗

)
+ ln(19) ≃ 4Neβ∆∆Geβ(∆Gmin+n∆∆Gx∗), (10)

in the more specific case of the biophysical model. This equa-
tion essentially expresses the mutation–selection equilibrium:
the left-hand side of the equation is the log of the mutation bias
at x, while the right-hand side is simply 4Nes, the scaled selection
coefficient.

This equation cannot be solved explicitly for x∗, but a qual-
itative intuition on the consequences of change in Ne to the
equilibrium phenotype x∗ is given in Fig. 2. Intuitively, an in-
crease in Ne results in a more optimal phenotype, closer to 0.
The mutation bias (left-hand side of Eq. (10)) decreases with
x while the strength of selection (right-hand side of Eq. (10))
increases with x, and the equilibrium phenotype is obtained at
their intersection. An increase in Ne leads to shifting the selective
response upward, which then results in a leftward shift of the
equilibrium phenotype (i.e. closer to 0). The leftward shift is
smaller for selective strengths characterized by a steeper curve,
resulting in qualitatively weaker susceptibility of the equilibrium
phenotype to changes in Ne

The results obtained thus far only relate the equilibrium phe-
notype (x∗) to Ne. To capture how ω varies with Ne, we also need
to obtain an expression for ω as a function of x∗. At equilibrium
we can derive (supplementary materials) the expected substitu-
tion rate of mutations, and thus ω, which simply approximates
to:

ω ≃ x∗ (11)

This simple approximation is due to the fact that the substitu-
tions between two destabilizing amino acids (which are neutral)
compose the largest proportion of proposed mutations having a
substantial probability of fixation (Eq. (6)). In contrast, stabilizing
mutations toward an optimal amino acid are rare, while on the
other hand destabilizing mutations from an optimal to a non-
optimal amino acid have a low probability of fixation. Since
there is a fraction x∗ of sites already occupied by a destabilizing
amino-acid, these neutral substitutions occur at rate x∗.

Combined together, these analytical approximations yield the
susceptibility (Eq. (5)) of ω to a change in Ne:

χ =
dω

d ln(Ne)
≃ −

∂ f (x∗)
∂x∗

n
4Ne

∂ ln[(1−x∗)/x∗]

∂x∗ +
∂2f (x∗)
∂x∗2

. (12)

he two terms of the denominator correspond to the derivative
f the mutational bias and the scaled selection coefficient, re-
pectively. However, the mutational bias decreases weakly with
(blue curve on Fig. 2) while the strength of selection increases
harply with x (red and green curves). As a consequence, the
erivative of the mutational bias is much lower than the deriva-
ive of the selection coefficient around the equilibrium point
i.e. the phenotype is nearly equimutable). The first term can
therefore be ignored, which leads to a very compact equation for
susceptibility χ in the general case:

χ ≃ −

∂ f (x∗)
∂x∗

∂2f (x∗)
∂x∗2

(13)

he susceptibility is thus equal to the inverse of the relative
urvature, i.e. the ratio of the second to the first derivatives, of the
og-fitness function, taken at the equilibrium phenotype. Of note,
his susceptibility is strictly negative for decreasing log-concave
itness functions, asserting that ω is a decreasing function of Ne.
n addition, the susceptibility itself is low in absolute value (i.e. ω
responds more weakly) for strongly concave log-fitness functions.
This equation quantitatively captures the intuition developed in
Fig. 2, namely that the response of ω is very weak if the selection
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Fig. 2. Response of the equilibrium phenotype (x∗) after a change in effective population size (Ne). The equilibrium phenotype x∗ is obtained when the selective
pressure equals the mutational pressure (vertical grey dotted lines, Eq. (10)). The selective pressure (right-hand side of Eq. (10)) increases exponentially with x where
βn∆∆G is the exponential growth rate (yellow and green curves). When βn∆∆G is large, increasing Ne by an order of magnitude (yellow dotted curves) shifts the
equilibrium phenotype by a small amount ∆x∗ . In contrast, for small βn∆∆G (green curves), x∗ is more strongly shifted (large ∆x∗) by a change in Ne . Finally,
response of x∗ to changes in Ne reflects the response of ω since both are approximately equal (Eq. (11)).
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curve is very steep around the equilibrium set point (red curve
compared to green curve).

In the specific case of the biophysical model, the susceptibility
(χ ) further simplifies to:

χ ≃ −
1

βn∆∆G
, (14)

eaning that ω is linearly decreasing with Ne (in log scale) since
χ is independent of x∗, or, in other words, that the exact value of
the equilibrium phenotype has no impact on the slope. Moreover,
only the compound parameter βn∆∆G has an impact on the
lope of the linear relationship. Thus, in particular, the slope of
he linear relationship between ω and Ne is affected by ∆∆G but
ot by ∆Gmin. Of note, empirically, only relative values of Ne (up
o a multiplicative constant) are required to obtain an estimate
f χ .

.3. Response of ω to changes in protein expression level

Effective population size is not the sole predictor of ω, and ex-
ression level (or protein abundance) is also negatively correlated
o ω. However, our previous model, which assumes that fitness
s proportional to the folded fraction, and is thus independent
f protein abundance, does not express the fact that selection is
ypically stronger for proteins characterized by higher levels of
xpression. An alternative biophysical model is to assume that
ach misfolded protein molecule has the same relative effect
n fitness, caused by its toxicity for the cell (Drummond et al.,
005; Wilke and Drummond, 2006; Drummond and Wilke, 2008;
erohijos et al., 2012).
Our general derivation can be directly applied to this case. For

given protein with expression level y and a cost A representing
he selective cost per misfolded molecule (positive constant), the
itness and selection coefficient can be defined as follows:

(x) ≃ −Ayeβ(∆Gmin+n∆∆Gx) (15)

s ≃ −β∆∆GAyeβ(∆Gmin+n∆∆Gx). (16)

nder this model, the total selective cost of a destabilizing muta-
ion is now directly proportional to the total amount of misfolded
roteins. This fitness function leads to the following expression
or the mutation–selection–drift equilibrium:

n
(
1 − x∗

∗

)
+ ln(19) = 4NeyAβ∆∆Geβ(∆Gmin+n∆∆Gx∗). (17)
x
61
Importantly, in this equation, Ne and y are confounded factors
appearing only as a product. This means that increasing either Ne
or y leads to same change in equilibrium phenotype, and hence
he same change in ω. In other words, the susceptibility of the
esponse to changes in either Ne or expression level is the same:

χ =
dω∗

d ln(Ne)
=

dω∗

d ln(y)
≃ −

1
βn∆∆G

. (18)

A similar result can be obtained under other models relating
henotype to fitness, for example if the selective cost is due
o translational errors (supplementary materials). Alternatively if
he protein is assumed to be regulated such as to reach a specific
evel of functional protein abundance under a general cost-benefit
rgument (Cherry, 2010; Gout et al., 2010), a multiplicative factor
epending solely on the expression level is prefixed (supplemen-
ary materials). Moreover, our theoretical results can be applied
ore broadly to protein–protein interactions using a mean-field
rgument (supplementary materials). Altogether, we theoretically
btain the same linear decrease of ω with regard to either ef-

fective population size or expression level (in log space) under a
broad variety of hypotheses.

2.4. Simulation experiments

Our theoretical derivation of the susceptibility of ω to changes
in Ne (and expression level) is based on several simplifying as-
sumptions about the evolutionary model and makes multiple
approximations. In order to test the robustness of our main re-
sult, we therefore conducted systematic simulation experiments,
relaxing several of these assumptions. In each case, simulations
were conducted under a broad range of values of Ne, monitoring
the average ω observed at equilibrium and plotting the scaling of
these measured equilibrium ω as a function of Ne.

Specifically, with respect to mutations, our derivation assumes
that all amino-acid transitions are equiprobable, or in other
words, the complexity of the genetic code is not taken into
account. Simulating evolution of DNA sequence and invoking a
matrix of mutation rates between nucleotide allows us to test
the robustness of our results to this assumption. Furthermore,
with regard to the phenotypic effects of amino-acid changes, in
our derivation, we assumed that all destabilizing amino acids
have an identical impact on protein stability. In reality, one
would expect conservative amino-acid replacements to be less
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Fig. 3. Scaling of equilibrium substitution rate (ω) as a function of effective population size (Ne) in log scale, under the additive phenotype model using Grantham
istances (A,B,D) or the explicit biophysical model using a statistical potential (C), with n = 300 and β = 1.686. 200 replicates per Ne value are shown (dots). Solid
ines are average over replicates, and shaded areas are 90% inter-quantile range across the different replicates. The slope (or susceptibility (χ̂ ), is estimated by linear
egression (dashed lines). (A): the optimal free energy of folding ∆Gmin are given in the legend, and the destabilizing effect of mutations ∆∆G = 1. Decreasing ∆Gmin
to more negative values) increases ω but does not impact the slope. (B): ∆∆G is increased and ∆Gmin is changed accordingly such that the equilibrium value x∗ is
ept constant, by solving numerically Eq. (10). The estimated susceptibility (χ̂ ) decreases proportionally to the inverse of ∆∆G, as predicted by our theoretical model.
C): Stability of the folded native state is computed using 3D structural conformations and pairwise contact potentials. (D): Additive model with ∆Gmin = −118
cal/mol and ∆∆G = 1 kcal/mol matches structural model shown in C (although with less variance).
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estabilizing than radical changes. This assumption is relaxed in
ur simulation, such that destabilizing mutations in each position
re now proportional to the Grantham distance (Grantham, 1974)
etween the optimal amino acid in this position and the amino
cid proposed by the non-synonymous mutation. Finally, our
erivation assumes that the number of sites in the sequence (n) is
arge, such that the selection coefficient is well approximated by
he fitness derivative (Eq. (7)). The robustness of this approxima-
ion was tested by conducting simulations with finite sequences
f realistic length (n = 300 coding positions).
These simulation experiments illustrate, first, that the relation

etween ω and log-Ne is indeed linear, at least in the range
xplored here, and that the slope of the linear regression matches
he expected theoretical value (Fig. 3A). Secondly, we observe that
he parameter ∆Gmin has virtually no effect on the slope of the
inear regression, as also expected theoretically (Fig. 3B). Instead,
ecreasing ∆Gmin (to more negative values) merely results in an
verall increase in ω over the whole range of Ne (i.e. has an impact
n the intercept, not on the slope of the relation). This is due to
he fact that decreasing ∆Gmin shifts the equilibrium to higher
∗, since more destabilizing sites can then reach fixation before
eaching the point of marginal stability.

Finally, we relaxed our assumption that each site of the se-
uence contributes independently to ∆G, by taking into account
he 3D structure of protein and using a statistical potential to es-
imate ∆G (supplementary materials). We implemented the orig-
nal model considered in Williams et al. (2006), Goldstein (2011)
nd Pollock et al. (2012), in which the free energy is computed
ased on the 3D conformation using pairwise contact potential
nergies between neighbouring amino-acid residues (Miyazawa
nd Jernigan, 1985). The original works showed that under this
odel, ω is approximately independent of Ne (Goldstein, 2013).
sing extensive simulations in order to obtain sufficient resolu-
ion, we observe that ω is in fact weakly dependent on Ne, being
gain approximately linear with log-Ne (Fig. 3C). Moreover, the
bserved slope (χ̂ = −0.00117) matches the slope obtained

nder the model of additive ∆G (χ̂ = −0.00125, Fig. 3D),
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onsidering an empirical ∆∆G = 1.0 kcal/mol for destabilizing
utations and n = 300. In this experiment (Fig. 3D), ∆Gmin was
et to −118 kcal/mol, which is the ∆G of the optimal (maximally
table) sequence of 300 sites (Goldstein, 2011).

.5. Time to relaxation

Although the equilibrium value of ω after changes in Ne is an
mportant feature of the ω-Ne relationship, another characteristic
hat is scarcely studied is the dynamic aspect (Jones et al., 2017),
articularly the relaxation time to reach the new equilibrium
. We thus performed simulations on which we tracked ω as
function of time after a sudden change in Ne, allowing us

o observe the non-equilibrium behaviour, as well as the time
ecessary to reach the new equilibrium ω.
A characteristic observed in these non-equilibrium experi-

ents is the discontinuity of ω after a change in Ne (Fig. 4A),
hich can be explained mechanistically. Under low Ne, the phe-
otype is far away from the optimal phenotype because the
fficacy of selection is weaker. A sudden increase in Ne results
irst in a short traction toward a more optimal phenotype, which
esults in a suddenly higher ω, caused by a transient adaptation
f the protein toward a higher stability. Subsequent to the tran-
ient adaptation, under the higher Ne the phenotype is closer to
ptimal and the purification of deleterious mutations is stronger,
esulting in lower ω. Conversely, the reaction to a decrease in
e is a relaxation of the purification and thus an ω closer to
he neutral case, which results in higher ω until reaching the
ew equilibrium. To note, an increase in Ne can theoretically and
ossibly lead to an ω that is temporarily greater than 1 due to
daptive evolution (Jones et al., 2017), while a decrease in Ne
lways imply an ω < 1, as it gives at most a neutral regime of
elaxed selection.

Within our simulation setup, we also observed that the de-
ermining factor of the relaxation time to reach the new equi-
ibrium is the number of sites n (Fig. 4A), such that the return
o equilibrium is faster for longer sequences. This observation
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Fig. 4. Relaxation of the substitution rate (ω) after a change in effective population size (Ne). Solid line corresponds to the average over 1000 replicates and the
haded area corresponds to the 90% inter-quantile range among replicates. The mutation rate (µ) is 10−8 per year per site, and the total evolutionary period is 700
million years. (A): β = 1.686 for all simulations. The DNA sequence of 500 sites is divided into exons of equal size. However the number of sites per exon (n)
changes between simulations from n = 5 to n = 500. Moreover, the destabilizing effect of mutations (∆∆G) is changed according to the exon size such that n∆∆G
and as a result, the susceptibility) are kept constant, and ∆Gmin is changed accordingly such that the equilibrium value x∗ is kept constant, by solving numerically
q. (10). Thus, regardless of exon size, x∗ and χ are kept constant and thus the observed effect is due to the number of sites in the exon. We observe that increasing
he number of sites leads to a reduced time to reach the new equilibrium. (B): In the context of a time-independent fitness landscape (yellow curve), where each
mino acid has different fitness (site-specific profiles), the time taken to reach the new equilibrium value of ω after a change in Ne is long. In the context of a fixed
istribution of fitness effects (blue curve), the relaxation time is non-existent and the new equilibrium value of ω is reached instantaneously.
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atches the theoretical prediction that more mutational oppor-
unities are available for longer sequences, driving the trait close
o equilibrium at a faster rate.

It may be useful to compare the relaxation pattern observed
ere with the predictions under two alternative models of se-
uence evolution, representing two extreme scenarios. On one
and, having fitness modelled at the level of sites, such as con-
emplated by many phylogenetic mutation–selection models
Halpern and Bruno, 1998; Rodrigue et al., 2010; Tamuri and
oldstein, 2012), leads to a situation where every site has to
dapt on its own to the new change in Ne. The relaxation time
s then very long, on the order of the inverse of the per-site
ubstitution rate. On the other hand, assuming a fixed distribution
f fitness effect (DFE) as in Welch et al. (2008), the response of
is instantaneous (Fig. 4B). Our model is effectively in between

hese two extreme scenarios.

. Discussion

In the context of directional selection under a given genotype-
henotype-fitness map, we derive an approximation for the equi-
ibrium phenotype at equilibrium (Charlesworth, 2013). We
elate the equilibrium phenotype to the substitution rate of
elected mutations, ω, which identifies in phylogenetics with
he ratio of non-synonymous over synonymous substitutions
called dN/dS). We provide a compact analytical result for the
quilibrium response (which, by analogy with thermodynamics,
e call the susceptibility) of ω to changes in effective population
ize (Ne), and we relate this response to the parameterization of
he genotype-phenotype-fitness map. An application to a model
f selection against protein misfolding shows that the response of
to variation in Ne (in log space) is linear, with a negative slope.

urthermore, this application illustrates that effective population
ize and protein expression level are interchangeable with respect
o their impact on the response of ω. Our compact theoretical
pproximations, which were obtained by making several simpli-
ying assumptions, are supported by more complex simulations of
rotein evolution relaxing these assumptions. In particular, our
heoretical predictions are verified under a numerical model of
rotein evolution in which the free energy is computed based on
he 3D structure.

Overall, the susceptibility (χ ) is a function of the structural
arameters of the protein and takes a very simple analytical

orm, being inversely proportional to the product of three terms: a
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he sequence size, the inverse temperature (β), and the aver-
ge change in conformational energy of destabilizing mutations
∆∆G). Quantitatively, this product can be several orders of mag-
itude greater than 1 in practice, such that the susceptibility of ω,
hich is its inverse, is typically small. Previous studies using this
odel presented an apparent lack of response of ω to changes

n Ne (Goldstein, 2013). We refine this result, by observing that
here is in fact a very subtle and weak relation, which requires
xtensive computation to be detected, but which is well predicted
y our theoretical derivation. Based on empirical estimates of the
tructural parameters β = 1.686, n = 300 sites and ∆∆G =

.0 kcal/mol for destabilizing mutations (Zeldovich et al., 2007),
he estimated susceptibility is χ̂ ≃ −0.002. In other words,
or a relative increase in Ne or expression level of 6 orders of
agnitude, a factor approximately equal to 0.01 is subtracted

rom ω, a subtle relationship that requires laborious effort to be
etected in simulated data.

.1. Adequacy to empirical data

Empirically, variation in ω along the branches of phylogenetic
rees has been inferred and correlated to proxies of Ne, such as
ody size or other life-history traits. These analyses showed mit-
gated support for a negative relation between ω and Ne (Lanfear
t al., 2014). More recently, phylogenetic integrative methods re-
ined the estimate of covariation between ω and Ne along lineages
y leveraging polymorphism data (Brevet and Lartillot, 2021).
his approach gives an estimate of χ̂ ≃ 0.02 in primates (supple-
entary materials) at least one order of magnitude greater than

he quantitative estimate obtained above from the biophysical
odel. More empirical data across different clades would be

equired to robustly consolidate such empirical estimates, but
s of yet, these results are challenging the idea of a very weak
esponse.

The relation between ω and expression level provides an in-
ependent, and potentially more robust, source of empirical ob-
ervation. Our theoretical results suggest that, under relatively
eneral conditions, the response of ω to expression level should
e of the same magnitude than the response to Ne. Empirically,
he protein expression level is one of the best predictors of ω
nd the empirical estimation of χ in fungi, archaea and bacteria
aries in the range [−0.046; −0.021] (supplementary materials)
xtracted from Zhang and Yang (2015). Estimation in animals

nd plants gives somewhat lower estimates, in the range of
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−0.026; −0.004], although still higher (in absolute value) than
−0.002.

Additionally, another empirical observation is the negative re-
lation between the mean destabilizing effect of mutations (mean
∆∆G) and the ∆G of the protein. Such a relation is empirically
observed in Serohijos et al. (2012), where the slope of the linear
regression is −0.13 (r2 = 0.04). The slope of the linear correlation
bserved in our simulations is weaker, with an observed slope of
0.01 (r2 = 0.29) under the 3D biophysical model, and −0.003

r2 = 0.33) under the model of additive phenotype parameter-
zed by ∆∆G = 1 and n = 300 (supplementary materials). This
bservation also sheds light on the correlation between ω and
e in empirical data and in our model. Indeed, equimutability, or
amely that the distribution of ∆∆G of mutations is independent
f ∆G is a necessary condition to observe independence between
and Ne (Cherry, 1998). In our model, the average ∆∆G of

mutations at equilibrium depends on ∆G due to combinatorial
considerations, but this dependence is weaker than empirically
observed, which also translates into a weaker susceptibility of ω

to changes in Ne or expression level than empirically observed.
Thus, overall, the response of ω to either Ne or expression

level predicted by the biophysical model considered above seems
lower than what is empirically observed. There are several possi-
ble explanations for this discrepancy. First, the biophysical model
might be valid, but the numerical estimates used for n or ∆∆G
could be inadequate. A ∆∆G of 1.0 kcal/mol for destabilizing
mutations seems to correspond to empirical estimates (Zeldovich
et al., 2007). On the other hand, the effective number of positions
implicated in the trait might be smaller than the total number
of residues in the protein. In our model, all positions in the
protein can in principle compensate for the destabilizing effect
of a mutation at a particular position. In practice, the number of
sites susceptible to compensate each other is probably smaller,
resulting in a stronger departure from equimutability.

Alternatively, the biophysical model considered here might be
too restrictive. Recent empirical studies have provided evidence
against the hypothesis that the rate of sequence evolution is
driven solely by the toxicity effect of unfolded proteins (Plata and
Vitkup, 2017; Razban, 2019; Biesiadecka et al., 2020). Notably,
the response of ω to changes in expression level has also been
found theoretically to arise as a consequence of protein–protein
interactions, where protein may either be in free form or engaged
in non-specific interactions (Yang et al., 2012; Zhang et al., 2013).
In non-specific interactions at the protein surface, stabilizing
amino acids are hydrophilic and destabilizing amino acids are
hydrophobic, sticking to hydrophobic residues at the surface of
other proteins (Dixit and Maslov, 2013; Manhart and Morozov,
2015).

Our theoretical results can be applied more broadly to protein–
protein interactions using a mean-field argument (supplemen-
tary materials). Fitting this model with empirical structural esti-
mates (Janin, 1995; Zhang et al., 2008), we obtain a susceptibility
of χ ≃ −0.2 thus a much stronger response than under the
model based on conformational stability. This much stronger
response is due to fewer sites in the protein being involved
in protein–protein interaction than for conformational stability,
in addition to a lower free energy engaged in contact between
residues.

Altogether, fitness based on protein stability is a compelling
model of molecular evolution, but may not be a sufficiently com-
prehensive model to explain the amplitude of variation of ω

empirically observed along a gradient of either effective popu-
lation size or protein expression level. The net response of ω to
changes in Ne or expression level could have several biophysical
causes, which in the end would imply a weak but still empirically

measurable response.
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3.2. The statistical mechanics of molecular evolution

This study describes the signature imprinted on DNA se-
quences by an evolutionary process by merging equations from
population genetics and from structural physicochemical first
principles. More generally, it outlines a general approach for
deriving quantitative predictions about the observable macro-
scopic properties of the molecular evolutionary process based
on an underlying microscopic model of the detailed relation be-
tween sequence, phenotype and fitness. In this respect, it borrows
from statistical mechanics, attempting approximations to derive
analytically tractable results (Sella and Hirsh, 2005; Mustonen
and Lässig, 2009; Bastolla et al., 2012, 2017) The robustness
of results can be assessed by computational implementations
and simulations. Computational models offer a means to test
the validity and robustness, while mathematical models offer an
intuitive mechanistic mental analogy.

Ultimately, the approach could be generalized to other aspects
of the evolutionary process. Beyond ω, other macroscopic ob-
servables could be of interest, for example site entropy, i.e. the
effective number of observed amino acids per site at equilib-
rium (Goldstein and Pollock, 2016; Jimenez et al., 2018; Jiang
et al., 2018), or the nucleotide or amino-acid composition. In
addition to Ne, other evolutionary forces could also be considered,
for instance the mutational bias or GC-biased gene conversion.
The susceptibility of the macroscopic observables to changes in
the strength of these underlying forces could then more generally
be investigated. As such, the framework outlined here could
foster a better understanding of observable signatures of the
long-term evolutionary process emerging from ecological param-
eters and molecular physico-chemical first principles, by carefully
teasing out the combined effects of mutation, selection and drift.
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ppendix A

Protein sequence evolution is simulated under an origin-
ixation model (McCandlish and Stoltzfus, 2014), i.e. the whole
opulation is considered monomorphic and only the succession
f fixation events is modelled. Given the currently fixed sequence
, we define M (S) as the set of all possible mutant that are one
ucleotide away from S. Non-sense mutants are not considered.

For a protein of n amino-acid sites, |M (S)| ≤ 9n, since each
odon has a maximum of 9 possible nearest neighbours that are
ot stop codons. For each mutant sequence S′

∈ M (S), we
compute its fitness and subsequently the selection coefficient of
the mutant:

s
(
S, S′

)
=

W
(
S′

)
− W (S)

W (S)
, (19)

s
(
S, S′

)
≃ f

(
S′

)
− f

(
S′

)
, (20)

here W is the Wrightian fitness for a given phenotype and f is
the Malthusian fitness (or log-fitness).

The waiting time before the next mutant invading the pop-
ulation, and the specific mutation involved in this event, are
chosen using Gillespie’s algorithm (Gillespie, 1977), according to
the rates of substitution between S and each S′

∈ M (S), which
re given by:

S,S′ = µS,S′

4Nes
(
S, S′

)
1 − e−4Nes(S,S′)

, (21)

here µS,S′ is the mutation rate between S and S′, determined by
the underlying 4x4 nucleotide mutation rate matrix, and QS,S′ =

S,S′ in the case of synonymous substitutions. Various optimiza-
ions are implemented to reduce the computation time of mutant
itness. The simulation starts with a burn-in period to reach
utation–selection–drift equilibrium.

.1. Models of the fitness function

Under the additive model for the free energy, the difference in
ree energy between folded and unfolded state is assumed to be
iven by:

G (S) = ∆Gmin + n∆∆G ∗ x (S) ,

where 0 ≤ x (S) ≤ 1 is the distance of S to the optimal sequence
(i.e. the fraction of sites occupied by a destabilizing amino-acid).
For each site of the sequence, the optimal amino acids are chosen
randomly at initialization, and the distance between the current
amino acid and the optimal is scaled by the Grantham amino-acid
distance (Grantham, 1974). The Wrightian fitness is defined as the
probability of our protein to be in the folded state, given by the
Fermi–Dirac distribution:

W (S) =
e−β∆G(S)

1 + e−β∆G(S) =
1

1 + eβ∆G(S) , (22)

here β is the inverse of the temperature (β = 1/kT ).
For simulations under a 3D model of protein conformations,

e adapted the model developed in Goldstein and Pollock (2017)
o our C++ simulator (see supplementary materials).

For simulations under a site-independent fitness landscape,
ith site-specific fitness profiles, the protein log-fitness is com-
uted as the sum of amino-acid log-fitness coefficients along the
equence. In this model, each codon site i has its own fitness
rofile, denoted φ(i)

= {φ
(i)
a , 1 ≤ a ≤ 20}, a vector of 20 amino-

cid scaled (Wrightian) fitness coefficients. Since S[i] is the codon

t site i, the encoded amino acid is A (S[i]), hence the fitness at
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ite i is φ
(i)
A(S[i]). Altogether, the selection coefficient of the mutant

S′ is:

s
(
S, S′

)
=

n∑
i=1

ln

⎛⎝φ
(i)
A(S′[i])

φ
(i)
A(S[i])

⎞⎠ , (23)

The fitness vectors φ(i) used in this study are extracted from
Bloom (2017). They were experimentally determined by deep
mutational scanning.

For simulations assuming a fixed distribution of fitness ef-
fects (DFE), the selection coefficient of the mutant S′ is gamma
distributed (shape k > 0):

−s
(
S, S′

)
∼ Gamma

(
¯|s|, k

)
(24)

A.2. Computing ω along the simulation

From the set of mutants M (S) that are one nucleotide away
from S, we define the subsets N (S) of non-synonymous and syn-
onymous mutants (N (S) ⊆ M (S)). The ratio of non-synonymous
over synonymous substitution rates, given the sequence S at time
t is defined as (Spielman and Wilke, 2015; Dos Reis, 2015; Jones
et al., 2017):

ω(t) =

∑
S′∈N (S) µS,S′

4Nes
(
S, S′

)
1 − e−4Ne(S,S′)∑

S′∈N (S) µS,S′

(25)

veraged over the simulation, ω is:

ω = ⟨ω(t)⟩ , (26)

=

∫
t
ω(t)dt, (27)

where the integral is taken over the complete simulation, while
the integrand ω(t) is a piece-wise function changing after every
point substitution event.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.tpb.2021.09.005.
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