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Abstract
Catalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems 
also features some prominent computational complexity questions, and in particular the problem of using only one catalyst: 
is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several additional ingredients 
have been shown to be sufficient for obtaining even computational completeness with only one catalyst. Last year we could 
show that the derivation mode maxobjects , where we only take those multisets of rules which affect the maximal number 
of objects in the underlying configuration one catalyst is sufficient for obtaining computational completeness without any 
other ingredients. In this paper we follow this way of research and show that one catalyst is also sufficient for obtaining 
computational completeness when using specific variants of derivation modes based on non-extendable multisets of rules: 
we only take those non-extendable multisets whose application yields the maximal number of generated objects or else 
those non-extendable multisets whose application yields the maximal difference in the number of objects between the newly 
generated configuration and the current configuration. A similar computational completeness result can even be obtained 
when omitting the condition of non-extendability of the applied multisets when taking the maximal difference of objects or 
the maximal number of generated objects. Moreover, we reconsider simple P system with energy control—both symbol and 
rule energy-controlled P systems equipped with these new variants of derivation modes yield computational completeness.

1  Introduction

Two decades ago, membrane systems were introduced in 
[35] as a multiset-rewriting model of computing inspired 
by the structure and the functioning of the living cell. The 

development of this fascinating area of biologically moti-
vated computing models is documented in two textbooks, 
see [36] and [37]. For actual information see the P systems 
webpage [39] and the issues of the Bulletin of the Interna-
tional Membrane Computing Society and of the Journal of 
Membrane Computing.

One basic feature of P systems already presented in [35] 
is the maximally parallel derivation mode, i.e., using non-
extendable multisets of rules in every derivation step. The 
result of a computation can be extracted when the system 
halts, i.e., when no rule is applicable any more. Catalysts are 
special symbols which allow only one object to evolve in its 
context (in contrast to promoters) and in their basic variant 
never evolve themselves, i.e., a catalytic rule is of the form 
ca → cv , where c is a catalyst, a is a single object and v is a 
multiset of objects. In contrast, non-catalytic rules in cata-
lytic P systems are non-cooperative rules of the form a → v.

From the beginning, the question how many catalysts 
are needed for obtaining computational completeness 
has been one of the most intriguing challenges regard-
ing (catalytic) P systems. In [21] it has already been 
shown that two catalysts are enough for generating any 
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recursively enumerable set of multisets, without any addi-
tional ingredients like a priority relation on the rules as 
used in the original definition. As already known from 
the beginning, without catalysts only regular (semi-lin-
ear) sets can be generated when using the standard maxi-
mal derivation mode and the standard halting mode, i.e., 
a result is extracted when the system halts with no rule 
being applicable any more. As shown, for example, in 
[26], using various additional ingredients, i.e., additional 
control mechanisms, one catalyst can be sufficient: in P 
systems with label selection, only rules from one set of 
a finite number of sets of rules in each computation step 
are used; in time-varying P systems, the available sets of 
rules change periodically with time. For many other vari-
ants of P systems using specific control mechanism for the 
application of rules the interested reader is referred to the 
list of references, for example, see [1–14, 17–20, 23, 24, 
26–29, 32, 33].

On the other hand, for such catalytic P systems with 
only one catalyst and using the standard maximally paral-
lel derivation mode and the standard halting mode, a lower 
bound has been established in [30]: P systems with one 
catalyst can simulate partially blind register machines, i.e., 
they can generate more than just semi-linear sets.

In [6], we returned to the idea of using a priority rela-
tion on the rules, but took only a very weak form of such 
a priority relation: we only required that overall in the sys-
tem catalytic rules have weak priority over non-catalytic 
rules. This means that the catalyst c must not stay idle if 
the current configuration contains an object a with which 
it may cooperate in a rule ca → cv ; all remaining objects 
evolve in the maximally parallel way with non-coopera-
tive rules. On the other hand, if the current configuration 
does not contain an object a with which the catalyst c may 
cooperate in a rule ca → cv , c may stay idle and all objects 
evolve in the maximally parallel way with non-cooperative 
rules. Even without using more than this weak priority 
of catalytic rules over the non-catalytic (non-cooperative) 
rules, we could establish computational completeness for 
catalytic P systems with only one catalyst. Moreover, start-
ing from a result established in [6], an even stronger result 
using a similar construction as in [6] has been established 
in [9] where we show computational completeness for 
catalytic P systems with only one catalyst using the deri-
vation mode maxobjects , i.e., we only take those multisets 
of rules which affect the maximal number of objects in the 
underlying configuration.

In this paper we now continue the research started in [9] 
and investigate several variants of derivation modes based on 
non-extendable multisets of rules and taking only those for 
which the difference of objects between the underlying con-
figuration and the configuration after the application of the 
multisets of rules is maximal. We also consider the variants 

where the number of objects generated by the application of 
a multiset of rules is maximal.

Finally, for the variants with maximal number of objects 
we can also take these multisets of rules without request-
ing them to fulfill the condition of the multisets to be 
non-extendable.

In this context, we also reconsider P systems with energy 
control as first presented in [4] and then further developed 
for spiking neural P systems in [25]. Equipped with each of 
the newly defined derivation modes we obtain computational 
completeness for both symbol and rule energy-controlled P 
systems.

2 � Definitions

For an alphabet V, by V∗ we denote the free monoid gener-
ated by V under the operation of concatenation, i.e., contain-
ing all possible strings over V. The empty string is denoted 
by �. A multiset M with underlying set A is a pair (A, f) 
where f ∶ A → ℕ is a mapping. If M = (A, f ) is a multiset 
then its support is defined as supp(M) = {x ∈ A | f (x) > 0} . 
A multiset is empty (respectively finite) if its support is the 
empty set (respectively a finite set). If M = (A, f ) is a finite 
multiset over A and supp(M) = {a1,… , ak} , then it can also 
be represented by the string af (a1)

1
… a

f (ak)

k
 over the alphabet 

{a1,… , ak} , and, moreover, all permutations of this string 
precisely identify the same multiset M. The set of all mul-
tisets over V is denoted by V◦ . The cardinality of a set or 
multiset M is denoted by |M|. For further notions and results 
in formal language theory we refer to textbooks like [16] 
and [38].

2.1 � Register machines

Register machines are well-known universal devices for 
computing on (or generating or accepting) sets of vectors of 
natural numbers. The following definitions and propositions 
are given as in [9].

Definition 1  A register machine is a construct

where

–	 m is the number of registers,
–	 P is the set of instructions bijectively labeled by elements 

of B,
–	 l0 ∈ B is the initial label, and
–	 lh ∈ B is the final label.

M =
(
m,B, l0, lh,P

)



235Variants of derivation modes for which catalytic P systems with one catalyst are computationally…

1 3

The instructions of M can be of the following forms:

–	 p ∶ (ADD(r), q, s) , with p ∈ B ⧵
{
lh
}
 , q, s ∈ B , 1 ≤ r ≤ m

.
	   Increase the value of register r by one, and non-

deterministically jump to instruction q or s.
–	 p ∶ (SUB(r), q, s) , with p ∈ B ⧵

{
lh
}
 , q, s ∈ B , 1 ≤ r ≤ m

.
	   If the value of register r is not zero then decrease the 

value of register r by one (decrement case) and jump to 
instruction q, otherwise jump to instruction s (zero-test 
case).

–	 lh ∶ HALT .Stop the execution of the register machine.

A configuration of a register machine is described by the 
contents of each register and by the value of the current 
label, which indicates the next instruction to be executed. 
M is called deterministic if the ADD-instructions all are 
of the form p ∶ (ADD(r), q).

In the accepting case, a computation starts with the 
input of an l-vector of natural numbers in its first l reg-
isters and by executing the first instruction of P (labeled 
with l0 ); it terminates with reaching the HALT-instruction. 
Without loss of generality, we may assume all registers to 
be empty at the end of the computation.

In the generating case, a computation starts with all 
registers being empty and by executing the first instruc-
tion of P (labeled with l0 ); it terminates with reaching the 
HALT-instruction and the output of a k-vector of natural 
numbers in its last k registers. Without loss of generality, 
we may assume all registers except the last k output regis-
ters to be empty at the end of the computation.

In the computing case, a computation starts with the 
input of an l-vector of natural numbers in its first l reg-
isters and by executing the first instruction of P (labeled 
with l0 ); it terminates with reaching the HALT-instruction 
and the output of a k-vector of natural numbers in its last 
k registers. Without loss of generality, we may assume all 
registers except the last k output registers to be empty at 
the end of the computation.

For useful results on the computational power of register 
machines, we refer to [34]; for example, to prove our main 
theorem, we need the following formulation of results for 
register machines generating or accepting recursively enu-
merable sets of vectors of natural numbers with k compo-
nents or computing partial recursive relations on vectors of 
natural numbers:

Proposition 1  Deterministic register machines can accept 
any recursively enumerable set of vectors of natural num-
bers with l components using precisely l + 2 registers. With-
out loss of generality, we may assume that at the end of an 
accepting computation all registers are empty.

Proposition 2  Register machines can generate any recur-
sively enumerable set of vectors of natural numbers with k 
components using precisely k + 2 registers. Without loss of 
generality, we may assume that at the end of a generating 
computation the first two registers are empty, and, moreo-
ver, on the output registers, i.e., the last k registers, no SUB
-instruction is ever used.

Proposition 3  Register machines can compute any par-
tial recursive relation on vectors of natural numbers with 
l components as input and vectors of natural numbers with 
k components as output using precisely l + 2 + k registers, 
where without loss of generality, we may assume that at the 
end of a successful computation the first l + 2 registers are 
empty, and, moreover, on the output registers, i.e., the last k 
registers, no SUB-instruction is ever used.

In all cases it is essential that the output registers never 
need to be decremented.

Remark 1  For any register machine, without loss of gen-
erality we may assume that the first instruction is an 
ADD-instruction on register 1: given a register machine 
M =

(
m,B, l0, lh,P

)
 with having another instruction as its 

first instruction, we can immediately construct an equivalent 
register machine M′ which starts with an increment immedi-
ately followed by a decrement of the first register:

2.2 � Simple catalytic P systems

Taking into account the well-known flattening process, e.g., 
see [22], in this paper we only consider simple catalytic P 
systems, i.e., with the simplest membrane structure of only 
one membrane, and with only one catalyst:

Definition 2  A simple catalytic P system with only one cata-
lyst is a construct

where

–	 V is the alphabet of objects;
–	 c ∈ V  is the single catalyst;
–	 T ⊆ (V ⧵ {c});
–	 w ∈ V◦ is the multiset of objects initially present in the 

membrane region;

M� =
(
m,B�, l�

0
, lh,P

�
)
,

B� =B ∪ {l�
0
, l��
0
},

P� =P ∪ {l�
0
∶ (ADD(1), l��

0
, l��
0
), l��

0
∶ (SUB(1), l0, l0) }.

� = (V , {c}, T ,w,R)
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–	 R is a finite set of evolution rules over V; these evolu-
tion rules are of the forms ca → cv or a → v , where c is 
a catalyst, a is an object from V ⧵ {c} , and v is a multiset 
over V ⧵ {c}.

The multiset in the single membrane region of � consti-
tutes a configuration of the P system. The initial configura-
tion is given by the initial multiset w; in case of accepting or 
computing P systems the input multiset w0 is assumed to be 
added to w, i.e., the initial configuration then is ww0.

A transition between configurations is governed by the 
application of the evolution rules, which is done in a given 
derivation mode. The application of a rule u → v to a mul-
tiset M results in subtracting from M the multiset identified 
by u, and then in adding the multiset identified by v.

2.3 � Variants of derivation modes

The definitions and the corresponding notions used in this 
subsection follow the definitions and notions elaborated in 
[31] and extend them for the purposes of this paper.

Given a P system � = (V , {c}, T ,w,R) , the set of mul-
tisets of rules applicable to a configuration C is denoted by 
Appl(� ,C) ; this set also equals the set Appl(� ,C, asyn) of 
multisets of rules applicable in the asynchronous derivation 
mode (abbreviated asyn).

Given a multiset R of rules in Appl(� ,C) , we write 
C

R
������→ C′ if C′ is the result of applying R to C. The number of 

objects affected by applying R to C is denoted by Aff(C,R ). 
The number of objects generated in C′ by the right-hand 
sides of the rules applied to C with the multiset of rules R is 
denoted by Gen(C,R ). The difference between the number 
of objects in C′ and C is denoted by �obj(C,R) . In all cases, 
the catalysts are taken into account, too.

The set Appl(� ,C, sequ) denotes the set of multisets of 
rules applicable in the sequential derivation mode (abbrevi-
ated sequ), where in each derivation step exactly one rule 
is applied.

The standard parallel derivation mode used in P systems 
is the maximally parallel derivation mode (max for short). In 
the maximally parallel derivation mode, in any computation 
step of � we choose a multiset of rules from R in such a way 
that no further rule can be added to it so that the obtained 
multiset would still be applicable to the existing objects in 
the configuration, i.e., in simple P systems we only take 
applicable multisets of rules which cannot be extended by 
further (copies of) rules and are to be applied to the objects 
in the single membrane region:

Appl(𝛱 ,C,max) ={R ∈ Appl(𝛱 ,C) ∣ there is no R� ∈ Appl(𝛱 ,C)

such that R�
⊃ R}.

As already introduced for multisets of rules in [15], we now 
consider the variant where the maximal number of rules is 
chosen. In the derivation mode maxrulesmax only a maximal 
multiset of rules is allowed to be applied. But it can also be 
seen as the variant of the basic mode max where we just take 
a multiset of applicable rules with the maximal number of 
rules in it, hence, we will also call it the maxrules derivation 
mode. Formally we have:

We also consider the derivation mode maxobjectsmax where 
from the multisets of rules in Appl(� ,C,max) only those are 
taken which affect the maximal number of objects. As with 
affecting the maximal number of objects, such multisets of 
rules are non-extendable anyway, we will also use the nota-
tion maxobjects . Formally we may write:

and

As already mentioned, both definitions yield the same mul-
tiset of rules.

In addition to these well-known derivation modes, in this 
paper we also consider several new variants of derivation 
modes.

Remark 2  The inherent possibility of mimicking the weak 
priority of catalytic rules over non-catalytic rules taken 
from the set of applicable non-extendable multisets of rules 
in simple catalytic P systems using the derivation mode 
maxobjects allowed us to show that simple catalytic P systems 
with only one catalyst are computationally complete when 
using the derivation mode maxobjects , see [9] .

We now define new derivation modes starting from the 
non-extendable multisets of rules applicable to the cur-
rent configuration C as for the derivation mode max, which 
instead of looking at the number of affected objects taken 
into account, the number of generated objects and the dif-
ference of objects between the derived configuration and the 
current configuration, respectively. 

maxGENobjectsmax 	� a non-extendable multiset of rules R 
applicable to the current configuration 

Appl(𝛱 ,C,maxrules) ={R ∈ Appl(𝛱 ,C, asyn) ∣

there is no R� ∈ Appl(𝛱 ,C, asyn)

such that |R�| > |R|}.

Appl(𝛱 ,C,maxobjectsmax) ={R ∈ Appl(𝛱 ,C,max) ∣

there is no R� ∈ Appl(𝛱 ,C,max)

such that Aff(C,R) < Aff(C,R�)}

Appl(𝛱 ,C,maxobjects) ={R ∈ Appl(𝛱 ,C, asyn) ∣

there is no R� ∈ Appl(𝛱 ,C, asyn)

such that Aff(C,R) < Aff(C,R�)}.
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C is only taken if the number of objects 
generated by the application of the rules 
in R to the configuration C is maximal 
with respect to the number of objects 
generated by the application of the rules 
in any other non-extendable multiset of 
rules R′ to the configuration C: 

 max�objectsmax 	� a non-extendable multiset of rules R 
applicable to the current configura-
tion C is only taken if the difference 
�C = |C�| − |C| between the number of 
objects in the configuration C′ obtained 
by the application of R and the number 
of objects in the underlying configura-
tion C is maximal with respect to the 
differences in the number of objects 
obtained by applying any other non-
extendable multiset of rules: 

We illustrate the difference between these new derivation 
modes in the following example:

Example 1  To i l lustrate the der ivat ion modes 
maxGENobjectsmax as well as max�objectsmax , consider a sim-
ple P system with the initial configuration caa and the fol-
lowing rules: 

1.	 a → b

2.	 ca → cd

In case of the derivation mode maxGENobjectsmax , only 
the multiset of rules {ca → cd, a → b} can be applied, 
as Gen(caa, {ca → cd})= 2 and Gen(cab, {a → b})= 1 
and therefore Gen(caa, {ca → cd, a → b})= 3 , whereas 
Gen(caa, {a → b, a → b})= 2 . Hence, the only possible 
derivation with the derivation mode maxGENobjectsmax is 
caa

{ca→cd,a→b}
����������������������������������������������→ cdb . In this special case,

On the other hand, with the derivation mode max�objectsmax 
both rules yield the same difference of 0, i.e.,

Appl(𝛱 ,C,maxGENobjectsmax)

= {R ∈ Appl(𝛱 ,C,max) ∣

there is no R� ∈ Appl(𝛱 ,C,max)

such that Gen(C,R) < Gen(C,R�)}.

Appl(𝛱 ,C,max𝛥objectsmax)

= {R ∈ Appl(𝛱 ,C,max) ∣

there is no R� ∈ Appl(𝛱 ,C,max)

such that 𝛥obj(C,R) < 𝛥obj(C,R�)}.

Appl(� , caa,maxGENobjectsmax) = Appl(� , caa,maxobjects).

which yields all two non-extendable multisets of rules 
{ca → cd, a → b} and {a → b, a → b} to be applicable to 
the underlying configuration caa, i.e.,

Now let us take a slightly different set of rules: 

1.	 a → bb

2.	 ca → cd

O b s e r v i n g  t h a t  G e n (caa, {a → bb})= 2  a n d 
�obj(caa, {a → bb}) = 1 , we obtain the following sets of 
applicable multisets of rules in the two derivation modes 
considered here in this example:

Finally, let us take the following set of rules: 

1.	 a → �

2.	 ca → cd

O b s e r v i n g  t h a t  G e n ( caa, {a → �})= 0  a n d 
�obj(caa, {a → �}) = −1 , we obtain the following sets of 
applicable multisets of rules in the two derivation modes 
considered here in this example:

As for maxobjectsmax we now can also consider the 
variants where the restriction maxobjects is imposed on the 
applicable multisets without first requiring them to be 
non-extendable: 

maxGENobjects	� a multiset of rules R applicable to the cur-
rent configuration C is only taken if the 
number of objects generated by the appli-
cation of the rules in R to the configuration 
C is maximal with respect to the number of 
objects generated by the application of the 
rules in any other multiset of rules R′ to the 
configuration C: 

�obj(caa, {ca → cd}) = �obj(caa, {a → b}) = 0,

Appl(� , caa,max�objectsmax) = Appl(� , caa,max).

Appl(� , caa,maxGENobjectsmax) ={{a → bb, a → bb},

{a → bb, ca → cd}},

Appl(� , caa,max�objectsmax) ={{a → bb, a → bb}}.

Appl(� , caa,maxGENobjectsmax) ={{a → �, ca → cd}},

Appl(� , caa,max�objectsmax) ={{a → �, ca → cd}}.
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max�objects	� a multiset of rules R applicable to the current 
configuration C is only taken if the differ-
ence �C = |C�| − |C| between the number 
of objects in the configuration C′ obtained 
by the application of R and the number of 
objects in the underlying configuration C is 
maximal with respect to the differences in 
the number of objects obtained by applying 
any other multisets of rules: 

Example 2  To illlustrate the derivation modes maxGENobjects 
and max�objects , consider a simple P system with the initial 
configuration caa and the following rules: 

1.	 a → bb

2.	 ca → cdd

In case of the derivation mode maxGENobjects , only the 
multiset of rules {ca → cdd, a → bb} can be applied, as 
Gen(caa, {ca → cdd})= 3 and Gen(cab, {a → bb})= 2 
and therefore Gen(caa, {ca → cdd, a → bb})= 5 , whereas 
Gen(caa, {a → bb, a → bb})= 4 . Hence, the only pos-
sible derivation with the derivation mode maxGENobjects is 
caa

{ca→cdd,a→bb}
������������������������������������������������������→ cddbb . In this special case,

On the other hand, with the derivation mode max�objects both 
rules yield the same increase of one object, i.e.,

which yields all two non-extendable multisets of rules 
{ca → cdd, a → bb} and {a → bb, a → bb} to be applicable 
to the underlying configuration caa, i.e.,

2.4 � Computations in a P system

The P system continues with applying multisets of rules 
according to the derivation mode until there remain no 

Appl(𝛱 ,C,maxGENobjects)

= {R ∈ Appl(𝛱 ,C, asyn) ∣

there is no R� ∈ Appl(𝛱 ,C, asyn)

such that Gen(C,R) < Gen(C,R�)}.

Appl(𝛱 ,C,max𝛥objects)

= {R ∈ Appl(𝛱 ,C, asyn) ∣

there is no R� ∈ Appl(𝛱 ,C, asyn)

such that 𝛥obj(C,R) < 𝛥obj(C,R�)}.

Appl(� , caa,maxGENobjects) = Appl(� , caa,maxobjects).

�obj(caa, {ca → cdd}) = �obj(caa, {a → bb}) = 1,

Appl(� , caa,max�objects) = Appl(� , caa,max).

applicable rules in the single region of � , i.e., as usual, 
with all these variants of derivation modes as defined 
above, we consider halting computations.

We may generate or accept or even compute func-
tions or relations. The inputs/outputs may be multisets or 
strings, defined in the well-known way. When the system 
halts, in case of computing with multisets we consider 
the number of objects from T contained in the membrane 
region at the moment when the system halts as the result 
of the underlying computation of �.

We would like to emphasize that as results we only take 
the objects from the terminal alphabet T, especially the 
catalyst is not counted to the result of a computation. On 
the other hand, with all the proofs given in this paper, 
except for the single catalyst no other garbage remains in 
the membrane region at the end of a halting computation.

As already mentioned earlier, the following result was 
shown in [30], establishing a lower bound for the computa-
tional power of catalytic P systems with only one catalyst:

Proposition 4  Catalytic P systems with only one catalyst 
working in the derivation mode max have at least the com-
putational power of partially blind register machines.

Example 3  In [30] it was shown that the vector set

(which is not semi-linear) can be generated by a P system 
working in the derivation mode max with only one catalyst 
and 19 rules.

2.5 � Two variants of energy control

We now recall the definitions from [4] introducing two 
variants of energy-controlled P systems. Yet in contrast to 
the general definitions given in [4] again we will restrict 
ourselves to simple P systems � = (V , {c}, T ,w,R).

The first variant assigns fixed integer values of energy 
to each symbol in the system, i.e., instead of V we con-
sider the set VE consisting of pairs 

[
x, f (x)

]
 with x ∈ V  and 

f ∶ V → ℤ being a function assigning a unique energy 
value to each symbol in V. We extend f in the natural way 
to strings or multisets over V. The energy balance of a rule 
u → v then is f (v) − f (u) . Such variants of P systems will 
be called symbol energy-controlled P systems.

In the second variant, the energy is directly assigned to 
the rules only. Such variants of P systems will be called 
rule energy-controlled P systems.

S = {(n,m) ∣ 0 ≤ n, n ≤ m ≤ 2n}
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3 � Computational completeness for simple P 
systems working in the derivation modes 
maxGENobjectsmax and max�objectsmax

As already mentioned earlier, in [9] we have already 
shown that we can obtain computational completeness 
with simple P systems and only one catalyst when using 
the derivation mode maxobjects instead of max.

In this section we now study simple P systems with only 
one catalyst using the derivation modes maxGENobjectsmax 
and max�objectsmax , respectively.

Theorem 1  For any register machine with at least two decre-
mentable registers we can construct a simple catalytic P sys-
tem with only one catalyst, working in the derivation mode 
max�objectsmax or in the derivation mode maxGENobjectsmax , 
which can simulate every step of the register machine in n 
steps where n is the number of decrementable registers.

Proof   G iven  an  a rb i t r a r y  r eg i s t e r  mach ine 
M =

(
m,B, l0, lh,P

)
 we will construct a corresponding 

catalytic P system with one membrane and one catalyst 
� = (V , {c}, T ,w,R) simulating M. Without loss of gen-
erality, we may assume that, depending on its use as an 
accepting or generating or computing device, the register 
machine M, as stated in Propositions 1,  2, and  3, fulfills 
the condition that on the output registers we never apply any 
SUB-instruction.

The following proof is given for the most general case 
of a register machine computing any partial recursive rela-
tion on vectors of natural numbers with l components as 
input and vectors of natural numbers with k components 
as output using precisely l + 2 + k registers, where without 
loss of generality, we may assume that at the end of a suc-
cessful computation the first l + 2 registers are empty, and, 
moreover, on the output registers, i.e., the last k registers, no 
SUB-instruction is ever used. The proof works for any num-
ber n ≥ 2 of decrementable registers, no matter how many 
of them are the l input registers and the working registers, 
respectively.

The main idea behind our construction is that all the 
objects except the catalyst c and the output objects (rep-
resenting the contents of the output registers) go through a 
cycle of length n where n is the number of decrementable 
registers of the simulated register machine. When the objects 
are traversing the r-th section of the n sections, they “know” 
that they are to probably simulate a SUB-instruction on reg-
ister r of the register machine M.

As in our construction the simulation of a SUB-instruc-
tion takes two steps, the second simulation step in the case 
of a SUB-instruction on register n is shifted to the first step 
of the next cycle. Yet in this case we have to guarantee that 

after a SUB-instruction on register n the next instruction to 
be simulated is not a SUB-instruction on register 1. Hence, 
we use a similar trick as already elaborated in Remark 1: 
we not only do not start with a SUB-instruction, but we also 
change the register machine program in such a way that after 
a SUB-instruction on register n two intermediate instructions 
are introduced, i.e., as in Remark 1, we use an ADD-instruc-
tion on register 1 immediately followed by a SUB-instruction 
on register 1, whose simulation will end at most in step n, as 
we have assumed n ≥ 2.

The following construction is elaborated in such a way 
that it works both for the derivation mode max�objectsmax and 
the derivation mode maxGENobjectsmax.

We now simulate the resulting register machine ful-
filling these additional constraints M =

(
m,B, l0, lh,P

)
 

by a corresponding simple P system with one catalyst 
� = (V , {c}, T , c(l0, 1),R).

The construction includes the dummy object d which is 
erased by the rule d → � . The effect of applying these rules 
due to the requirement of the chosen multisets of rules to be 
non-extendable will be ignored in the following calculations 
for �obj(C,R) and Gen(C,R).

The objects ar , n + 1 ≤ r ≤ m , represent the output reg-
isters. For the decrementable registers, we use the objects 
(ar, i) , 1 ≤ r ≤ n, 1 ≤ i ≤ n , which go through a loop of n 
steps. The main idea now is that the only case when such an 
object can be used to decrement register r is when i = r , i.e., 
in the r-th step of the simulation cycle.

In the same way as the register objects ar , the program 
objects (p, i) representing the label p from B undergo the 
same cycle of length n.

For simulating ADD-instructions we need the following 
rules:

Increment p ∶ (ADD(r), q, s):

The catalyst has to be used with the program object which 
otherwise would stay idle when the catalyst is used with 
a register object, and the difference of objects �obj(C,R�) 
for this other non-extendable multiset of rules R′ would be 
0 whereas when using the program object for the catalyst, 
we obtain �obj(C,R)= 1 because of the additional dummy 
object d.

V = {ar ∣ n + 1 ≤ r ≤ m}

∪ {(ar, i) ∣ 1 ≤ r ≤ n, 1 ≤ i ≤ n}

∪ {(p, i) ∣ p ∈ BADD, 1 ≤ i ≤ n}

∪ {(p, i) ∣ p ∈ BSUB(r), 1 ≤ i ≤ r + 1}

∪ {(p, i)−, (p, i)0 ∣ p ∈ BSUB(r), r + 2 ≤ i ≤ n}

∪ {c, e, d}.

(1)(ar, i) → (ar, i + 1), 1 ≤ r < n; (ar, n) → (ar, 1).

(2)c(p, i) → c(p, i + 1)d, 1 ≤ i < n.
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In a similar way we can argue that in the case of the 
derivation mode maxGENobjectsmax the number of generated 
objects is maximal when using the catalyst together with the 
program object; in fact, if N is the total number of register 
objects for decrementable registers in the underlying con-
figuration C, then with applying the set of rules R described 
so far we get Gen(C,R)= N + 3 in contrast to Gen(C,R′

)= N − 1 + 3 = N + 2 where using the catalyst with the rule 
c(ar, r) → ced , as described below for the simulation of the 
SUB-Instruction, results in the multiset of rules R′.

If r is a decrementable register, we end the simulation 
using one of the following rules:

If r is an output register, we end the simulation using one 
of the following rules introducing output objects not to be 
changed any more:

As in both cases, together with the program object a new 
register object is generated, we again have �obj(C,R) = 1 , 
thus guaranteeing that the catalyst must take (p, n) and can-
not take (an, n) instead.

A similar argument again holds in the case of the deri-
vation mode maxGENobjectsmax as the number of generated 
objects is only maximal when using the catalyst together 
with the program object; again we have Gen(C,R)= N + 3 
with this multiset of rules R in contrast to Gen(C,R′

)= N − 1 + 3 = N + 2 when using the catalyst with the rule 
c(ar, r) → ced results in the multiset of rules R′.

For simulating SUB-instructions we need the following 
rules:

Decrement and zero-test p ∶ (SUB(r), q, s):

For 1 ≤ i < r , we again use the dummy object d to obtain 
�C = 1 and thus also having one more object generated, to 
enforce the catalyst to take the program object.

In case that register r is empty, i.e., there is no object (ar, r) , 
then the catalyst will stay idle as in this step there is no 
other object with which it could react. In case that register 
r is not empty, i.e., there is at least one object (ar, r) , then 
one of these objects (ar, r) must be used with the catalyst 
c as the rule c(ar, r) → ced implies �obj(C,R)= 1 , whereas 
otherwise, if all register objects are used with the rule 
(ar, r) → (ar, r + 1) , then �obj(C,R)= 0.

In the same way we argue that with using the rule 
c(ar, r) → ced we get one object generated more than if we 
use the rule (ar, r) → (ar, r + 1) for that object (ar, r) , i.e., 
Gen(C,R)= N − 1 + 3 = N + 2 in contrast to Gen(C,R′)= N.

(3)c(p, n) → c(q, 1)(ar, 1), c(p, n) → c(s, 1)(ar, 1).

(4)c(p, n) → c(q, 1)ar, c(p, n) → c(s, 1)ar.

(5)c(p, i) → c(p, i + 1)d, 1 ≤ i < r.

(6)(p, r) → (p, r + 1), c(ar, r) → ced.

If r < n − 1:

If in the first step of the simulation phase the catalyst did 
manage to decrement the register, it produced e. Thus, in 
the second simulation step, the catalyst has three choices: 

1.	 the catalyst c correctly “erases" e using the rule 
ce → cdddd , and to the program object (p, r + 1) the 
rule (p, r + 1) → (p, r + 2)− must be applied due to 
the fact that both derivation modes max�objectsmax and 
maxGENobjectsmax only allow for non-extendable multi-
sets of rules; all register objects evolve in the usual way; 
in total we get �obj(C,R)= 3 and Gen(C,R)= N + 6;

2.	 the catalyst c takes the program object (p, r + 1) using the 
rule c(p, r + 1) → c(p, r + 2)0dd , and all register objects 
evolve in the usual way; in total we get �obj(C,R)= 2 
and Gen(C,R)= N + 4;

3.	 the catalyst c takes a register object, the program object 
(p, r + 1) evolves with the rule (p, r + 1) → (p, r + 2)− , 
and all other register objects evolve in the usual 
way; in total we get �obj(C,R)= 1 and Gen(C,R
)= (N − 1 + 3) + 1 = N + 3.

In total, only variant 1 fulfills the condition given by the 
derivation mode max�objectsmax that �obj(C,R) is maximal, 
and therefore is the only possible continuation of the com-
putation if register r is not empty.

A similar argument holds for the derivation mode 
maxGenobjectsmax with respect to the number of generated 
objects �obj(C,R).

On the other hand, if register r is empty, no object e is 
generated, and the catalyst c has only two choices: 

1.	 the catalyst c takes the program object (p, r + 1) using the 
rule c(p, r + 1) → c(p, r + 2)0dd , and all register objects 
evolve in the usual way; in total we get �obj(C,R)= 2 
and Gen(C,R)= N + 4;

2.	 the catalyst c takes a register object (ar+1, r + 1) thereby 
generating ed, the program object (p, r + 1) evolves with 
the rule (p, r + 1) → (p, r + 2)− , and all other register 
objects evolve in the usual way; this variant leads to 
�obj(C,R)= 1 and Gen(C,R)= (N − 1 + 3) + 1 = N + 3.

In total, variant 1 is the only possible continuation of the 
computation if register r is empty.

(7)
ce → cdddd, (p, r + 1) → (p, r + 2)−;

c(p, r + 1) → c(p, r + 2)0dd.

(8)

c(p, i)− → c(p, i + 1)−d, r + 2 ≤ i < n, c(p, n)− → c(q, 1)d,

c(p, i)0 → c(p, i + 1)0d, r + 2 ≤ i < n, c(p, n)0 → c(s, 1)d.
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Again the catalyst has to be used with the program object to 
get �obj(C,R)= 1 and Gen(C,R)= N + 3 , which otherwise 
would stay idle when the catalyst is used with a register 
object, and the multiset of rules applied in this way would 
only yield �obj(C,R)= 0 and Gen(C,R′)= N − 1 + 3 = N + 2

.
If r = n − 1:

In this case, we directly go to the first step of the next cycle.
If r = n:

In this case, the second step of the simulation is already the 
first step of the next cycle, which means that in this case of 
r = n the next instruction to be simulated is an ADD-instruc-
tion on register 1.

To complete the proof we have to implement the final 
HALT-instruction lh ∶ HALT . In an easy way, we can do this 
by introducing d instead of (lh, 1) or (lh, 2) as done for other 
labels. In this way, finally no program object is present any 
more in the configuration. As we have assumed all decre-
mentable registers to be empty when the register machine 
halts, this means the constructed simple P system will also 
halt after having erased the dummy objects d in the next step.

We finally observe that the proof construction given above 
is even deterministic if the underlying register machine to be 
simulated is deterministic. 	�  ◻

As the number of decrementable registers in generating 
register machines needed for generating any recursively enu-
merable set of (vectors of) natural numbers is only two, from 
the theorem above we obtain the following result:

Corollary 1  For any generating register machine with two 
decrementable registers we can construct a simple P system 
with only one catalyst and working in the derivation mode 
max�objectsmax or in the derivation mode maxGENobjectsmax 
which can simulate every step of the register machine in 2 
steps, and therefore such catalytic P systems with only one 
catalyst and working in the derivation mode max�objectsmax 
or in the derivation mode maxGENobjectsmax can generate any 
recursively enumerable set of (vectors of) natural numbers.

For accepting register machines, in addition to the two 
working registers, we have at least one input register and 
therefore immediately infer the following result:

Corollary 2  For any recursively enumerable set of d-vec-
tors of natural numbers given by a register machine with 

(9)
ce → cdddd, (p, n) → (q, 1),

c(p, n) → c(s, 1)dd.

(10)
ce → cdddd,

(p, n + 1) → (q, 2), c(p, n + 1) → c(s, 2)dd.

d + 2 decrementable registers we can construct an accept-
ing simple P system with only one catalyst and working 
in the derivation mode max�objectsmax or in the derivation 
mode maxGENobjectsmax which can simulate every step of the 
register machine in d + 2 steps, and therefore such cata-
lytic P systems with only one catalyst and working in the 
derivation mode max�objectsmax or in the derivation mode 
maxGENobjectsmax can accept any recursively enumerable set 
of (vectors of) natural numbers.

In a similar way, assuming at least one input register to be 
present, we also infer a similar result for register machines 
computing partial recursive relations on natural numbers and 
therefore computational completeness in its widest sense:

Corollary 3  For any partial recursive relation f ∶ ℕ
d
⟶ ℕ

k 
on vectors of natural numbers (i.e., with d components 
as input and k components as output) given by a register 
machine with d + 2 decrementable registers we can con-
struct a simple P system with only one catalyst and working 
in the derivation mode max�objectsmax or in the derivation 
mode maxGENobjectsmax which can simulate every step of the 
register machine in d + 2 steps, and therefore such cata-
lytic P systems with only one catalyst and working in the 
derivation mode max�objectsmax or in the derivation mode 
maxGENobjectsmax can compute any partial recursive relation 
f ∶ ℕ

d
⟶ ℕ

k on vectors of natural numbers.

4 � Computational completeness for simple P 
systems working in the derivation modes 
maxGENobjects and max�objects

In this section we show the rather astonishing results that 
simple P systems with only one catalyst using the derivation 
modes maxGENobjects and max�objects are computationally com-
plete for themselves without a priori needing the condition 
that the applied multisets of rules are non-extendable, which 
condition can be mimicked using a suitable additional num-
ber of dummy objects on the right-hand side of the rules.

Theorem 2  For any register machine with n ≥ 2 decre-
mentable registers we can construct a simple catalytic P sys-
tem with only one catalyst, working in the derivation mode 
max�objects or in the derivation mode maxGENobjects , which can 
simulate every step of the register machine in n steps where 
n is the number of decrementable registers.

Proof  We use a similar construction as in the proof of Theo-
rem 1. To mimick the non-extendability of the multisets of 
rules to be applied, we simply add one more dummy object 
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d on the right-hand side of every rule constructed in that 
proof, except for the erasing rule d → �.

For example, the cycling rules for the register objects 
now are as follows:

No register object can stay idle, as the application of a rule 
given above increases �obj(C,R) by 1 and the number of 
generated objects by 2.

All the other arguments for �obj(C,R) and Gen(C,R ) as 
explained in in the proof of Theorem 1 can be taken over 
as they are given there, with re-calculating the values for 
�obj(C,R) and for Gen(C,R ), the number of generated 
objects, always adding 1 for every rule which is applied.

For example, we re-investigate the possible variants 
for the simulation of a SUB-instruction on register r, for 
r < n − 1 ; in the following, N is the total number of reg-
ister objects for decrementable registers in the underlying 
configuration C:

We start with

From the list of rules in Eq. (7) we obtain the following list 
of rules:

If in the first step of the simulation phase the catalyst did 
manage to decrement the register, it produced e. Thus, in 
the second simulation step, the catalyst has three choices: 

1.	 the catalyst c correctly “erases" e using the rule 
ce → cd5 , and to the program object (p, r + 1) the rule 
(p, r + 1) → (p, r + 2)−d must be applied due to the fact 
that both derivation modes max�objects and maxGENobjects 
mimick the non-extendability of the applied multiset of 
rules by the additional object d on the right-hand side 
of the rules, i.e., every object which can evolve must 
evolve; all register objects evolve in the usual way; in 
total we get �obj(C,R)= N + 5 and Gen(C,R)= 2N + 8;

2.	 the catalyst c takes the program object (p, r + 1) using 
the rule c(p, r + 1) → c(p, r + 2)0d3 , and all regis-
ter objects evolve in the usual way; in total we get 
�obj(C,R)= N + 3 and Gen(C,R)= 2N + 5;

3.	 the catalyst c takes a register object, the program object 
(p, r + 1) evolves with the rule (p, r + 1) → (p, r + 2)−d , 
and all other register objects evolve in the usual way; in 
total we get �obj(C,R)= (N − 1) + 2 + 1 = N + 2 and 
Gen(C,R)= 2(N − 1) + 4 + 2 = 2N + 4.

(11)(ar, i) → (ar, i + 1)d, 1 ≤ r < n; (ar, n) → (ar, 1)d.

(12)(p, r) → (p, r + 1)d, c(ar, r) → cedd.

(13)

ce → cd5, (p, r + 1) → (p, r + 2)−d;

c(p, r + 1) → c(p, r + 2)0d3.

In total, only variant 1 fulfills the condition given by the 
derivation mode max�objects that �obj(C,R) is maximal, and 
therefore is the only possible continuation of the computa-
tion if register r is not empty. A similar argument holds for 
the derivation mode maxGENobjects with respect to the number 
of generated objects, Gen(C,R).

In case register r is empty, we have the following 
possibilities: 

1.	 catalyst c takes the program object (p, r + 1) using 
the rule c(p, r + 1) → c(p, r + 2)0ddd , and all regis-
ter objects evolve in the usual way; in total we get 
�obj(C,R)= N + 3 and Gen(C,R)= 2N + 5;

2.	 the catalyst c takes a register object (ar+1, r + 1) thereby 
generating edd, the program object (p, r + 1) evolves 
with the rule (p, r + 1) → (p, r + 2)−d , and all other reg-
ister objects evolve in the usual way; this variant leads 
to �obj(C,R)= N − 1 + 2 + 1 = N + 2 and Gen(C,R
)= (2(N − 1) + 4) + 2 = 2N + 4.

In case of the derivation mode max�objects , the erasing rule 
d → � can never be applied together with the other rules, as 
it would diminish �obj(C,R) . Hence, the garbage of objects 
d remains until the simulated register machine has halted, 
and then the dummy objects d are eliminated in a sequential 
way.

On the other hand, in case of the derivation mode 
maxGENobjects the value of Gen(C,R ) does not change 
with the application of any number of rules d → � , as 
Gen(C, {d → �})= 0 . Remaining dummy objects d finally 
are eliminated in an asynchronous way.

We leave all the remaining technical details to the inter-
ested reader. 	�  ◻

5 � Connection to energy‑controlled P 
systems

Adapting the proofs elaborated in the preceding section we 
can immediately show equivalent results for energy-con-
trolled P systems using the derivation mode maxenergymax 
instead of the derivation modes maxobjectsmax.

Theorem 3  For any register machine with at least two decre-
mentable registers we can construct a simple symbol energy-
controlled P system with only one catalyst and working in 
the derivation mode maxenergymax which can simulate every 
step of the register machine in n steps where n is the number 
of decrementable registers.

Proof  We can verbatim take over the proof given for Theo-
rem 2 by taking VE instead of V consisting of pairs [x, 1] 
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assigning the unique energy value 1 to each symbol in V. In 
that way, all arguments referring to the number of objects 
in a (multiset of) rule(s) can immediately be taken over as 
analog arguments referring to the amount of energy repre-
sented by the objects.

As an example, let us consider the rule ce → cdddd which 
yields �objects = 5 − 2 = 3 for the difference of the num-
ber of objects and as well �energy = 3 for the difference of 
energy.

On the other hand, for the rule d → � we get 
�objects = −1 for the difference of the number of objects 
and as well �energy = −1 . 	�  ◻

Corollary 4  For any register machine with at least two dec-
rementable registers we can construct a simple rule energy-
controlled P system with only one catalyst and working in 
the derivation mode maxenergymax which can simulate every 
step of the register machine in n steps where n is the number 
of decrementable registers.

Proof  Again we take over the proof given for Theorem 2 and 
now define the energy assigned to a rule as the difference of 
the number of objects on the left-hand side and the number 
of objects on the right-hand side of a rule.

Like in the proof of Theorem  3, as an example, let 
us again consider the rule ce → cdddd which yields 
�objects = 3 for the difference of the number of objects and 
thus the energy 3 for the energy to be assigned to this rule. 
As in [4], we may write

to specify that the rule ce → cdddd has energy 3.
On the other hand, for the rule d → � we get 

�objects = −1 for the difference of the number of objects 
and therefore:

The arguments for the sum of energies assigned to the rules 
in the applied multiset of rules now run as for the number 
of objects.

Yet now in the case of rule energy-controlled P systems 
we can even avoid the use of the dummy object d: we simply 
may omit the object in every rule obtained in that way, but 
still keep the original amount of energy assigned to the rule; 
for example, instead of

we now may take

although the difference of objects now would be −1.
Finally, of course, we have to eliminate the rule

ce → cdddd < 3 >

d → 𝜆 < −1 >

ce → cdddd < 3 >

ce → c < 3 >

as it is not needed any more. 	�  ◻

6 � Conclusion

In this paper we have continued our research on revisiting 
a classic problem of computational complexity in mem-
brane computing: can catalytic P systems with only one 
catalyst already generate all recursively enumerable sets 
of multisets? This problem has been standing tall for many 
years, and nobody has yet managed to give it a positive or 
a negative answer. Already in [6] and in [9] we could show 
that adding the ingredient of weak priority of catalytic 
rules over non-catalytic rules or only taking the derivation 
mode maxobjects we can obtain computational completeness 
with only one catalyst.

In this paper, we have added some similar results how 
to obtain computational completeness with only one 
catalyst when using one of the newly defined derivation 
modes max�objectsmax and maxGENobjectsmax or max�objects 
and maxGENobjects , respectively. We especially empha-
size that computational completeness for max�objects and 
maxGENobjects can be obtained without requiring the chosen 
multisets of rules to be non-extendable.

Moreover, based on the results for simple P sys-
tems with only one catalyst using the derivation modes 
max�objectsmax , we could show the corresponding com-
putational completeness for simple energy-controlled P 
systems working in the corresponding derivation mode 
maxenergymax.

The results obtained in this paper can also be extended 
to P systems dealing with strings. Following the defini-
tions and notions used in [30], computational complete-
ness for computing with strings can be shown.
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