
HAL Id: hal-03438339
https://hal.science/hal-03438339

Submitted on 2 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variants of derivation modes for which catalytic P
systems with one catalyst are computationally complete

Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan

To cite this version:
Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, Sergey Verlan. Variants of derivation modes for which
catalytic P systems with one catalyst are computationally complete. Journal of Membrane Computing,
2021, 3, pp.233-245. �10.1007/s41965-021-00085-z�. �hal-03438339�

https://hal.science/hal-03438339
https://hal.archives-ouvertes.fr

Vol.:(0123456789)1 3

Journal of Membrane Computing (2021) 3:233–245
https://doi.org/10.1007/s41965-021-00085-z

REGULAR PAPER

Variants of derivation modes for which catalytic P systems with one
catalyst are computationally complete

Artiom Alhazov1  · Rudolf Freund2  · Sergiu Ivanov3  · Sergey Verlan4 

Received: 9 July 2021 / Accepted: 12 October 2021 / Published online: 15 November 2021
© The Author(s) 2021

Abstract
Catalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems
also features some prominent computational complexity questions, and in particular the problem of using only one catalyst:
is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several additional ingredients
have been shown to be sufficient for obtaining even computational completeness with only one catalyst. Last year we could
show that the derivation mode maxobjects , where we only take those multisets of rules which affect the maximal number
of objects in the underlying configuration one catalyst is sufficient for obtaining computational completeness without any
other ingredients. In this paper we follow this way of research and show that one catalyst is also sufficient for obtaining
computational completeness when using specific variants of derivation modes based on non-extendable multisets of rules:
we only take those non-extendable multisets whose application yields the maximal number of generated objects or else
those non-extendable multisets whose application yields the maximal difference in the number of objects between the newly
generated configuration and the current configuration. A similar computational completeness result can even be obtained
when omitting the condition of non-extendability of the applied multisets when taking the maximal difference of objects or
the maximal number of generated objects. Moreover, we reconsider simple P system with energy control—both symbol and
rule energy-controlled P systems equipped with these new variants of derivation modes yield computational completeness.

1  Introduction

Two decades ago, membrane systems were introduced in
[35] as a multiset-rewriting model of computing inspired
by the structure and the functioning of the living cell. The

development of this fascinating area of biologically moti-
vated computing models is documented in two textbooks,
see [36] and [37]. For actual information see the P systems
webpage [39] and the issues of the Bulletin of the Interna-
tional Membrane Computing Society and of the Journal of
Membrane Computing.

One basic feature of P systems already presented in [35]
is the maximally parallel derivation mode, i.e., using non-
extendable multisets of rules in every derivation step. The
result of a computation can be extracted when the system
halts, i.e., when no rule is applicable any more. Catalysts are
special symbols which allow only one object to evolve in its
context (in contrast to promoters) and in their basic variant
never evolve themselves, i.e., a catalytic rule is of the form
ca → cv , where c is a catalyst, a is a single object and v is a
multiset of objects. In contrast, non-catalytic rules in cata-
lytic P systems are non-cooperative rules of the form a → v.

From the beginning, the question how many catalysts
are needed for obtaining computational completeness
has been one of the most intriguing challenges regard-
ing (catalytic) P systems. In [21] it has already been
shown that two catalysts are enough for generating any

 *	 Rudolf Freund
	 rudi@emcc.at

	 Artiom Alhazov
	 artiom@math.md

	 Sergiu Ivanov
	 sergiu.ivanov@ibisc.univ-evry.fr

	 Sergey Verlan
	 verlan@u-pec.fr

1	 Vladimir Andrunachievici Institute of Mathematics
and Computer Science, Academiei 5, Chişinău, MD 2028,
Moldova

2	 Faculty of Informatics, TU Wien, Favoritenstraße 9–11,
1040 Wien, Austria

3	 IBISC, Université Évry, Paris-Saclay, 23, boulevard de
France, 91034 Évry, France

4	 Univ. Paris Est Creteil, LACL, 94010 Creteil, France

http://orcid.org/0000-0002-6184-3971
http://orcid.org/0000-0003-1255-1953
http://orcid.org/0000-0002-6286-0917
http://orcid.org/0000-0001-7800-1618
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-021-00085-z&domain=pdf

234	 A. Alhazov et al.

1 3

recursively enumerable set of multisets, without any addi-
tional ingredients like a priority relation on the rules as
used in the original definition. As already known from
the beginning, without catalysts only regular (semi-lin-
ear) sets can be generated when using the standard maxi-
mal derivation mode and the standard halting mode, i.e.,
a result is extracted when the system halts with no rule
being applicable any more. As shown, for example, in
[26], using various additional ingredients, i.e., additional
control mechanisms, one catalyst can be sufficient: in P
systems with label selection, only rules from one set of
a finite number of sets of rules in each computation step
are used; in time-varying P systems, the available sets of
rules change periodically with time. For many other vari-
ants of P systems using specific control mechanism for the
application of rules the interested reader is referred to the
list of references, for example, see [1–14, 17–20, 23, 24,
26–29, 32, 33].

On the other hand, for such catalytic P systems with
only one catalyst and using the standard maximally paral-
lel derivation mode and the standard halting mode, a lower
bound has been established in [30]: P systems with one
catalyst can simulate partially blind register machines, i.e.,
they can generate more than just semi-linear sets.

In [6], we returned to the idea of using a priority rela-
tion on the rules, but took only a very weak form of such
a priority relation: we only required that overall in the sys-
tem catalytic rules have weak priority over non-catalytic
rules. This means that the catalyst c must not stay idle if
the current configuration contains an object a with which
it may cooperate in a rule ca → cv ; all remaining objects
evolve in the maximally parallel way with non-coopera-
tive rules. On the other hand, if the current configuration
does not contain an object a with which the catalyst c may
cooperate in a rule ca → cv , c may stay idle and all objects
evolve in the maximally parallel way with non-cooperative
rules. Even without using more than this weak priority
of catalytic rules over the non-catalytic (non-cooperative)
rules, we could establish computational completeness for
catalytic P systems with only one catalyst. Moreover, start-
ing from a result established in [6], an even stronger result
using a similar construction as in [6] has been established
in [9] where we show computational completeness for
catalytic P systems with only one catalyst using the deri-
vation mode maxobjects , i.e., we only take those multisets
of rules which affect the maximal number of objects in the
underlying configuration.

In this paper we now continue the research started in [9]
and investigate several variants of derivation modes based on
non-extendable multisets of rules and taking only those for
which the difference of objects between the underlying con-
figuration and the configuration after the application of the
multisets of rules is maximal. We also consider the variants

where the number of objects generated by the application of
a multiset of rules is maximal.

Finally, for the variants with maximal number of objects
we can also take these multisets of rules without request-
ing them to fulfill the condition of the multisets to be
non-extendable.

In this context, we also reconsider P systems with energy
control as first presented in [4] and then further developed
for spiking neural P systems in [25]. Equipped with each of
the newly defined derivation modes we obtain computational
completeness for both symbol and rule energy-controlled P
systems.

2 � Definitions

For an alphabet V, by V∗ we denote the free monoid gener-
ated by V under the operation of concatenation, i.e., contain-
ing all possible strings over V. The empty string is denoted
by �. A multiset M with underlying set A is a pair (A, f)
where f ∶ A → ℕ is a mapping. If M = (A, f) is a multiset
then its support is defined as supp(M) = {x ∈ A | f (x) > 0} .
A multiset is empty (respectively finite) if its support is the
empty set (respectively a finite set). If M = (A, f) is a finite
multiset over A and supp(M) = {a1,… , ak} , then it can also
be represented by the string af (a1)

1
… a

f (ak)

k
 over the alphabet

{a1,… , ak} , and, moreover, all permutations of this string
precisely identify the same multiset M. The set of all mul-
tisets over V is denoted by V◦ . The cardinality of a set or
multiset M is denoted by |M|. For further notions and results
in formal language theory we refer to textbooks like [16]
and [38].

2.1 � Register machines

Register machines are well-known universal devices for
computing on (or generating or accepting) sets of vectors of
natural numbers. The following definitions and propositions
are given as in [9].

Definition 1  A register machine is a construct

where

–	 m is the number of registers,
–	 P is the set of instructions bijectively labeled by elements

of B,
–	 l0 ∈ B is the initial label, and
–	 lh ∈ B is the final label.

M =
(
m,B, l0, lh,P

)

235Variants of derivation modes for which catalytic P systems with one catalyst are computationally…

1 3

The instructions of M can be of the following forms:

–	 p ∶ (ADD(r), q, s) , with p ∈ B ⧵
{
lh
}
 , q, s ∈ B , 1 ≤ r ≤ m

.
	  Increase the value of register r by one, and non-

deterministically jump to instruction q or s.
–	 p ∶ (SUB(r), q, s) , with p ∈ B ⧵

{
lh
}
 , q, s ∈ B , 1 ≤ r ≤ m

.
	  If the value of register r is not zero then decrease the

value of register r by one (decrement case) and jump to
instruction q, otherwise jump to instruction s (zero-test
case).

–	 lh ∶ HALT .Stop the execution of the register machine.

A configuration of a register machine is described by the
contents of each register and by the value of the current
label, which indicates the next instruction to be executed.
M is called deterministic if the ADD-instructions all are
of the form p ∶ (ADD(r), q).

In the accepting case, a computation starts with the
input of an l-vector of natural numbers in its first l reg-
isters and by executing the first instruction of P (labeled
with l0 ); it terminates with reaching the HALT-instruction.
Without loss of generality, we may assume all registers to
be empty at the end of the computation.

In the generating case, a computation starts with all
registers being empty and by executing the first instruc-
tion of P (labeled with l0 ); it terminates with reaching the
HALT-instruction and the output of a k-vector of natural
numbers in its last k registers. Without loss of generality,
we may assume all registers except the last k output regis-
ters to be empty at the end of the computation.

In the computing case, a computation starts with the
input of an l-vector of natural numbers in its first l reg-
isters and by executing the first instruction of P (labeled
with l0 ); it terminates with reaching the HALT-instruction
and the output of a k-vector of natural numbers in its last
k registers. Without loss of generality, we may assume all
registers except the last k output registers to be empty at
the end of the computation.

For useful results on the computational power of register
machines, we refer to [34]; for example, to prove our main
theorem, we need the following formulation of results for
register machines generating or accepting recursively enu-
merable sets of vectors of natural numbers with k compo-
nents or computing partial recursive relations on vectors of
natural numbers:

Proposition 1  Deterministic register machines can accept
any recursively enumerable set of vectors of natural num-
bers with l components using precisely l + 2 registers. With-
out loss of generality, we may assume that at the end of an
accepting computation all registers are empty.

Proposition 2  Register machines can generate any recur-
sively enumerable set of vectors of natural numbers with k
components using precisely k + 2 registers. Without loss of
generality, we may assume that at the end of a generating
computation the first two registers are empty, and, moreo-
ver, on the output registers, i.e., the last k registers, no SUB
-instruction is ever used.

Proposition 3  Register machines can compute any par-
tial recursive relation on vectors of natural numbers with
l components as input and vectors of natural numbers with
k components as output using precisely l + 2 + k registers,
where without loss of generality, we may assume that at the
end of a successful computation the first l + 2 registers are
empty, and, moreover, on the output registers, i.e., the last k
registers, no SUB-instruction is ever used.

In all cases it is essential that the output registers never
need to be decremented.

Remark 1  For any register machine, without loss of gen-
erality we may assume that the first instruction is an
ADD-instruction on register 1: given a register machine
M =

(
m,B, l0, lh,P

)
 with having another instruction as its

first instruction, we can immediately construct an equivalent
register machine M′ which starts with an increment immedi-
ately followed by a decrement of the first register:

2.2 � Simple catalytic P systems

Taking into account the well-known flattening process, e.g.,
see [22], in this paper we only consider simple catalytic P
systems, i.e., with the simplest membrane structure of only
one membrane, and with only one catalyst:

Definition 2  A simple catalytic P system with only one cata-
lyst is a construct

where

–	 V is the alphabet of objects;
–	 c ∈ V is the single catalyst;
–	 T ⊆ (V ⧵ {c});
–	 w ∈ V◦ is the multiset of objects initially present in the

membrane region;

M� =
(
m,B�, l�

0
, lh,P

�
)
,

B� =B ∪ {l�
0
, l��
0
},

P� =P ∪ {l�
0
∶ (ADD(1), l��

0
, l��
0
), l��

0
∶ (SUB(1), l0, l0) }.

� = (V , {c}, T ,w,R)

236	 A. Alhazov et al.

1 3

–	 R is a finite set of evolution rules over V; these evolu-
tion rules are of the forms ca → cv or a → v , where c is
a catalyst, a is an object from V ⧵ {c} , and v is a multiset
over V ⧵ {c}.

The multiset in the single membrane region of � consti-
tutes a configuration of the P system. The initial configura-
tion is given by the initial multiset w; in case of accepting or
computing P systems the input multiset w0 is assumed to be
added to w, i.e., the initial configuration then is ww0.

A transition between configurations is governed by the
application of the evolution rules, which is done in a given
derivation mode. The application of a rule u → v to a mul-
tiset M results in subtracting from M the multiset identified
by u, and then in adding the multiset identified by v.

2.3 � Variants of derivation modes

The definitions and the corresponding notions used in this
subsection follow the definitions and notions elaborated in
[31] and extend them for the purposes of this paper.

Given a P system � = (V , {c}, T ,w,R) , the set of mul-
tisets of rules applicable to a configuration C is denoted by
Appl(� ,C) ; this set also equals the set Appl(� ,C, asyn) of
multisets of rules applicable in the asynchronous derivation
mode (abbreviated asyn).

Given a multiset R of rules in Appl(� ,C) , we write
C

R
������→ C′ if C′ is the result of applying R to C. The number of

objects affected by applying R to C is denoted by Aff(C,R ).
The number of objects generated in C′ by the right-hand
sides of the rules applied to C with the multiset of rules R is
denoted by Gen(C,R ). The difference between the number
of objects in C′ and C is denoted by �obj(C,R) . In all cases,
the catalysts are taken into account, too.

The set Appl(� ,C, sequ) denotes the set of multisets of
rules applicable in the sequential derivation mode (abbrevi-
ated sequ), where in each derivation step exactly one rule
is applied.

The standard parallel derivation mode used in P systems
is the maximally parallel derivation mode (max for short). In
the maximally parallel derivation mode, in any computation
step of � we choose a multiset of rules from R in such a way
that no further rule can be added to it so that the obtained
multiset would still be applicable to the existing objects in
the configuration, i.e., in simple P systems we only take
applicable multisets of rules which cannot be extended by
further (copies of) rules and are to be applied to the objects
in the single membrane region:

Appl(𝛱 ,C,max) ={R ∈ Appl(𝛱 ,C) ∣ there is no R� ∈ Appl(𝛱 ,C)

such that R�
⊃ R}.

As already introduced for multisets of rules in [15], we now
consider the variant where the maximal number of rules is
chosen. In the derivation mode maxrulesmax only a maximal
multiset of rules is allowed to be applied. But it can also be
seen as the variant of the basic mode max where we just take
a multiset of applicable rules with the maximal number of
rules in it, hence, we will also call it the maxrules derivation
mode. Formally we have:

We also consider the derivation mode maxobjectsmax where
from the multisets of rules in Appl(� ,C,max) only those are
taken which affect the maximal number of objects. As with
affecting the maximal number of objects, such multisets of
rules are non-extendable anyway, we will also use the nota-
tion maxobjects . Formally we may write:

and

As already mentioned, both definitions yield the same mul-
tiset of rules.

In addition to these well-known derivation modes, in this
paper we also consider several new variants of derivation
modes.

Remark 2  The inherent possibility of mimicking the weak
priority of catalytic rules over non-catalytic rules taken
from the set of applicable non-extendable multisets of rules
in simple catalytic P systems using the derivation mode
maxobjects allowed us to show that simple catalytic P systems
with only one catalyst are computationally complete when
using the derivation mode maxobjects , see [9] .

We now define new derivation modes starting from the
non-extendable multisets of rules applicable to the cur-
rent configuration C as for the derivation mode max, which
instead of looking at the number of affected objects taken
into account, the number of generated objects and the dif-
ference of objects between the derived configuration and the
current configuration, respectively.

maxGENobjectsmax 	� a non-extendable multiset of rules R
applicable to the current configuration

Appl(𝛱 ,C,maxrules) ={R ∈ Appl(𝛱 ,C, asyn) ∣

there is no R� ∈ Appl(𝛱 ,C, asyn)

such that |R�| > |R|}.

Appl(𝛱 ,C,maxobjectsmax) ={R ∈ Appl(𝛱 ,C,max) ∣

there is no R� ∈ Appl(𝛱 ,C,max)

such that Aff(C,R) < Aff(C,R�)}

Appl(𝛱 ,C,maxobjects) ={R ∈ Appl(𝛱 ,C, asyn) ∣

there is no R� ∈ Appl(𝛱 ,C, asyn)

such that Aff(C,R) < Aff(C,R�)}.

237Variants of derivation modes for which catalytic P systems with one catalyst are computationally…

1 3

C is only taken if the number of objects
generated by the application of the rules
in R to the configuration C is maximal
with respect to the number of objects
generated by the application of the rules
in any other non-extendable multiset of
rules R′ to the configuration C:

 max�objectsmax 	� a non-extendable multiset of rules R
applicable to the current configura-
tion C is only taken if the difference
�C = |C�| − |C| between the number of
objects in the configuration C′ obtained
by the application of R and the number
of objects in the underlying configura-
tion C is maximal with respect to the
differences in the number of objects
obtained by applying any other non-
extendable multiset of rules:

We illustrate the difference between these new derivation
modes in the following example:

Example 1  To i l lustrate the der ivat ion modes
maxGENobjectsmax as well as max�objectsmax , consider a sim-
ple P system with the initial configuration caa and the fol-
lowing rules:

1.	 a → b

2.	 ca → cd

In case of the derivation mode maxGENobjectsmax , only
the multiset of rules {ca → cd, a → b} can be applied,
as Gen(caa, {ca → cd})= 2 and Gen(cab, {a → b})= 1
and therefore Gen(caa, {ca → cd, a → b})= 3 , whereas
Gen(caa, {a → b, a → b})= 2 . Hence, the only possible
derivation with the derivation mode maxGENobjectsmax is
caa

{ca→cd,a→b}
��→ cdb . In this special case,

On the other hand, with the derivation mode max�objectsmax
both rules yield the same difference of 0, i.e.,

Appl(𝛱 ,C,maxGENobjectsmax)

= {R ∈ Appl(𝛱 ,C,max) ∣

there is no R� ∈ Appl(𝛱 ,C,max)

such that Gen(C,R) < Gen(C,R�)}.

Appl(𝛱 ,C,max𝛥objectsmax)

= {R ∈ Appl(𝛱 ,C,max) ∣

there is no R� ∈ Appl(𝛱 ,C,max)

such that 𝛥obj(C,R) < 𝛥obj(C,R�)}.

Appl(� , caa,maxGENobjectsmax) = Appl(� , caa,maxobjects).

which yields all two non-extendable multisets of rules
{ca → cd, a → b} and {a → b, a → b} to be applicable to
the underlying configuration caa, i.e.,

Now let us take a slightly different set of rules:

1.	 a → bb

2.	 ca → cd

O b s e r v i n g t h a t G e n (caa, {a → bb})= 2 a n d
�obj(caa, {a → bb}) = 1 , we obtain the following sets of
applicable multisets of rules in the two derivation modes
considered here in this example:

Finally, let us take the following set of rules:

1.	 a → �

2.	 ca → cd

O b s e r v i n g t h a t G e n (caa, {a → �})= 0 a n d
�obj(caa, {a → �}) = −1 , we obtain the following sets of
applicable multisets of rules in the two derivation modes
considered here in this example:

As for maxobjectsmax we now can also consider the
variants where the restriction maxobjects is imposed on the
applicable multisets without first requiring them to be
non-extendable:

maxGENobjects	� a multiset of rules R applicable to the cur-
rent configuration C is only taken if the
number of objects generated by the appli-
cation of the rules in R to the configuration
C is maximal with respect to the number of
objects generated by the application of the
rules in any other multiset of rules R′ to the
configuration C:

�obj(caa, {ca → cd}) = �obj(caa, {a → b}) = 0,

Appl(� , caa,max�objectsmax) = Appl(� , caa,max).

Appl(� , caa,maxGENobjectsmax) ={{a → bb, a → bb},

{a → bb, ca → cd}},

Appl(� , caa,max�objectsmax) ={{a → bb, a → bb}}.

Appl(� , caa,maxGENobjectsmax) ={{a → �, ca → cd}},

Appl(� , caa,max�objectsmax) ={{a → �, ca → cd}}.

238	 A. Alhazov et al.

1 3

max�objects	� a multiset of rules R applicable to the current
configuration C is only taken if the differ-
ence �C = |C�| − |C| between the number
of objects in the configuration C′ obtained
by the application of R and the number of
objects in the underlying configuration C is
maximal with respect to the differences in
the number of objects obtained by applying
any other multisets of rules:

Example 2  To illlustrate the derivation modes maxGENobjects
and max�objects , consider a simple P system with the initial
configuration caa and the following rules:

1.	 a → bb

2.	 ca → cdd

In case of the derivation mode maxGENobjects , only the
multiset of rules {ca → cdd, a → bb} can be applied, as
Gen(caa, {ca → cdd})= 3 and Gen(cab, {a → bb})= 2
and therefore Gen(caa, {ca → cdd, a → bb})= 5 , whereas
Gen(caa, {a → bb, a → bb})= 4 . Hence, the only pos-
sible derivation with the derivation mode maxGENobjects is
caa

{ca→cdd,a→bb}
��→ cddbb . In this special case,

On the other hand, with the derivation mode max�objects both
rules yield the same increase of one object, i.e.,

which yields all two non-extendable multisets of rules
{ca → cdd, a → bb} and {a → bb, a → bb} to be applicable
to the underlying configuration caa, i.e.,

2.4 � Computations in a P system

The P system continues with applying multisets of rules
according to the derivation mode until there remain no

Appl(𝛱 ,C,maxGENobjects)

= {R ∈ Appl(𝛱 ,C, asyn) ∣

there is no R� ∈ Appl(𝛱 ,C, asyn)

such that Gen(C,R) < Gen(C,R�)}.

Appl(𝛱 ,C,max𝛥objects)

= {R ∈ Appl(𝛱 ,C, asyn) ∣

there is no R� ∈ Appl(𝛱 ,C, asyn)

such that 𝛥obj(C,R) < 𝛥obj(C,R�)}.

Appl(� , caa,maxGENobjects) = Appl(� , caa,maxobjects).

�obj(caa, {ca → cdd}) = �obj(caa, {a → bb}) = 1,

Appl(� , caa,max�objects) = Appl(� , caa,max).

applicable rules in the single region of � , i.e., as usual,
with all these variants of derivation modes as defined
above, we consider halting computations.

We may generate or accept or even compute func-
tions or relations. The inputs/outputs may be multisets or
strings, defined in the well-known way. When the system
halts, in case of computing with multisets we consider
the number of objects from T contained in the membrane
region at the moment when the system halts as the result
of the underlying computation of �.

We would like to emphasize that as results we only take
the objects from the terminal alphabet T, especially the
catalyst is not counted to the result of a computation. On
the other hand, with all the proofs given in this paper,
except for the single catalyst no other garbage remains in
the membrane region at the end of a halting computation.

As already mentioned earlier, the following result was
shown in [30], establishing a lower bound for the computa-
tional power of catalytic P systems with only one catalyst:

Proposition 4  Catalytic P systems with only one catalyst
working in the derivation mode max have at least the com-
putational power of partially blind register machines.

Example 3  In [30] it was shown that the vector set

(which is not semi-linear) can be generated by a P system
working in the derivation mode max with only one catalyst
and 19 rules.

2.5 � Two variants of energy control

We now recall the definitions from [4] introducing two
variants of energy-controlled P systems. Yet in contrast to
the general definitions given in [4] again we will restrict
ourselves to simple P systems � = (V , {c}, T ,w,R).

The first variant assigns fixed integer values of energy
to each symbol in the system, i.e., instead of V we con-
sider the set VE consisting of pairs

[
x, f (x)

]
 with x ∈ V and

f ∶ V → ℤ being a function assigning a unique energy
value to each symbol in V. We extend f in the natural way
to strings or multisets over V. The energy balance of a rule
u → v then is f (v) − f (u) . Such variants of P systems will
be called symbol energy-controlled P systems.

In the second variant, the energy is directly assigned to
the rules only. Such variants of P systems will be called
rule energy-controlled P systems.

S = {(n,m) ∣ 0 ≤ n, n ≤ m ≤ 2n}

239Variants of derivation modes for which catalytic P systems with one catalyst are computationally…

1 3

3 � Computational completeness for simple P
systems working in the derivation modes
maxGENobjectsmax and max�objectsmax

As already mentioned earlier, in [9] we have already
shown that we can obtain computational completeness
with simple P systems and only one catalyst when using
the derivation mode maxobjects instead of max.

In this section we now study simple P systems with only
one catalyst using the derivation modes maxGENobjectsmax
and max�objectsmax , respectively.

Theorem 1  For any register machine with at least two decre-
mentable registers we can construct a simple catalytic P sys-
tem with only one catalyst, working in the derivation mode
max�objectsmax or in the derivation mode maxGENobjectsmax ,
which can simulate every step of the register machine in n
steps where n is the number of decrementable registers.

Proof   G iven an a rb i t r a r y r eg i s t e r mach ine
M =

(
m,B, l0, lh,P

)
 we will construct a corresponding

catalytic P system with one membrane and one catalyst
� = (V , {c}, T ,w,R) simulating M. Without loss of gen-
erality, we may assume that, depending on its use as an
accepting or generating or computing device, the register
machine M, as stated in Propositions 1, 2, and 3, fulfills
the condition that on the output registers we never apply any
SUB-instruction.

The following proof is given for the most general case
of a register machine computing any partial recursive rela-
tion on vectors of natural numbers with l components as
input and vectors of natural numbers with k components
as output using precisely l + 2 + k registers, where without
loss of generality, we may assume that at the end of a suc-
cessful computation the first l + 2 registers are empty, and,
moreover, on the output registers, i.e., the last k registers, no
SUB-instruction is ever used. The proof works for any num-
ber n ≥ 2 of decrementable registers, no matter how many
of them are the l input registers and the working registers,
respectively.

The main idea behind our construction is that all the
objects except the catalyst c and the output objects (rep-
resenting the contents of the output registers) go through a
cycle of length n where n is the number of decrementable
registers of the simulated register machine. When the objects
are traversing the r-th section of the n sections, they “know”
that they are to probably simulate a SUB-instruction on reg-
ister r of the register machine M.

As in our construction the simulation of a SUB-instruc-
tion takes two steps, the second simulation step in the case
of a SUB-instruction on register n is shifted to the first step
of the next cycle. Yet in this case we have to guarantee that

after a SUB-instruction on register n the next instruction to
be simulated is not a SUB-instruction on register 1. Hence,
we use a similar trick as already elaborated in Remark 1:
we not only do not start with a SUB-instruction, but we also
change the register machine program in such a way that after
a SUB-instruction on register n two intermediate instructions
are introduced, i.e., as in Remark 1, we use an ADD-instruc-
tion on register 1 immediately followed by a SUB-instruction
on register 1, whose simulation will end at most in step n, as
we have assumed n ≥ 2.

The following construction is elaborated in such a way
that it works both for the derivation mode max�objectsmax and
the derivation mode maxGENobjectsmax.

We now simulate the resulting register machine ful-
filling these additional constraints M =

(
m,B, l0, lh,P

)

by a corresponding simple P system with one catalyst
� = (V , {c}, T , c(l0, 1),R).

The construction includes the dummy object d which is
erased by the rule d → � . The effect of applying these rules
due to the requirement of the chosen multisets of rules to be
non-extendable will be ignored in the following calculations
for �obj(C,R) and Gen(C,R).

The objects ar , n + 1 ≤ r ≤ m , represent the output reg-
isters. For the decrementable registers, we use the objects
(ar, i) , 1 ≤ r ≤ n, 1 ≤ i ≤ n , which go through a loop of n
steps. The main idea now is that the only case when such an
object can be used to decrement register r is when i = r , i.e.,
in the r-th step of the simulation cycle.

In the same way as the register objects ar , the program
objects (p, i) representing the label p from B undergo the
same cycle of length n.

For simulating ADD-instructions we need the following
rules:

Increment p ∶ (ADD(r), q, s):

The catalyst has to be used with the program object which
otherwise would stay idle when the catalyst is used with
a register object, and the difference of objects �obj(C,R�)
for this other non-extendable multiset of rules R′ would be
0 whereas when using the program object for the catalyst,
we obtain �obj(C,R)= 1 because of the additional dummy
object d.

V = {ar ∣ n + 1 ≤ r ≤ m}

∪ {(ar, i) ∣ 1 ≤ r ≤ n, 1 ≤ i ≤ n}

∪ {(p, i) ∣ p ∈ BADD, 1 ≤ i ≤ n}

∪ {(p, i) ∣ p ∈ BSUB(r), 1 ≤ i ≤ r + 1}

∪ {(p, i)−, (p, i)0 ∣ p ∈ BSUB(r), r + 2 ≤ i ≤ n}

∪ {c, e, d}.

(1)(ar, i) → (ar, i + 1), 1 ≤ r < n; (ar, n) → (ar, 1).

(2)c(p, i) → c(p, i + 1)d, 1 ≤ i < n.

240	 A. Alhazov et al.

1 3

In a similar way we can argue that in the case of the
derivation mode maxGENobjectsmax the number of generated
objects is maximal when using the catalyst together with the
program object; in fact, if N is the total number of register
objects for decrementable registers in the underlying con-
figuration C, then with applying the set of rules R described
so far we get Gen(C,R)= N + 3 in contrast to Gen(C,R′

)= N − 1 + 3 = N + 2 where using the catalyst with the rule
c(ar, r) → ced , as described below for the simulation of the
SUB-Instruction, results in the multiset of rules R′.

If r is a decrementable register, we end the simulation
using one of the following rules:

If r is an output register, we end the simulation using one
of the following rules introducing output objects not to be
changed any more:

As in both cases, together with the program object a new
register object is generated, we again have �obj(C,R) = 1 ,
thus guaranteeing that the catalyst must take (p, n) and can-
not take (an, n) instead.

A similar argument again holds in the case of the deri-
vation mode maxGENobjectsmax as the number of generated
objects is only maximal when using the catalyst together
with the program object; again we have Gen(C,R)= N + 3
with this multiset of rules R in contrast to Gen(C,R′

)= N − 1 + 3 = N + 2 when using the catalyst with the rule
c(ar, r) → ced results in the multiset of rules R′.

For simulating SUB-instructions we need the following
rules:

Decrement and zero-test p ∶ (SUB(r), q, s):

For 1 ≤ i < r , we again use the dummy object d to obtain
�C = 1 and thus also having one more object generated, to
enforce the catalyst to take the program object.

In case that register r is empty, i.e., there is no object (ar, r) ,
then the catalyst will stay idle as in this step there is no
other object with which it could react. In case that register
r is not empty, i.e., there is at least one object (ar, r) , then
one of these objects (ar, r) must be used with the catalyst
c as the rule c(ar, r) → ced implies �obj(C,R)= 1 , whereas
otherwise, if all register objects are used with the rule
(ar, r) → (ar, r + 1) , then �obj(C,R)= 0.

In the same way we argue that with using the rule
c(ar, r) → ced we get one object generated more than if we
use the rule (ar, r) → (ar, r + 1) for that object (ar, r) , i.e.,
Gen(C,R)= N − 1 + 3 = N + 2 in contrast to Gen(C,R′)= N.

(3)c(p, n) → c(q, 1)(ar, 1), c(p, n) → c(s, 1)(ar, 1).

(4)c(p, n) → c(q, 1)ar, c(p, n) → c(s, 1)ar.

(5)c(p, i) → c(p, i + 1)d, 1 ≤ i < r.

(6)(p, r) → (p, r + 1), c(ar, r) → ced.

If r < n − 1:

If in the first step of the simulation phase the catalyst did
manage to decrement the register, it produced e. Thus, in
the second simulation step, the catalyst has three choices:

1.	 the catalyst c correctly “erases" e using the rule
ce → cdddd , and to the program object (p, r + 1) the
rule (p, r + 1) → (p, r + 2)− must be applied due to
the fact that both derivation modes max�objectsmax and
maxGENobjectsmax only allow for non-extendable multi-
sets of rules; all register objects evolve in the usual way;
in total we get �obj(C,R)= 3 and Gen(C,R)= N + 6;

2.	 the catalyst c takes the program object (p, r + 1) using the
rule c(p, r + 1) → c(p, r + 2)0dd , and all register objects
evolve in the usual way; in total we get �obj(C,R)= 2
and Gen(C,R)= N + 4;

3.	 the catalyst c takes a register object, the program object
(p, r + 1) evolves with the rule (p, r + 1) → (p, r + 2)− ,
and all other register objects evolve in the usual
way; in total we get �obj(C,R)= 1 and Gen(C,R
)= (N − 1 + 3) + 1 = N + 3.

In total, only variant 1 fulfills the condition given by the
derivation mode max�objectsmax that �obj(C,R) is maximal,
and therefore is the only possible continuation of the com-
putation if register r is not empty.

A similar argument holds for the derivation mode
maxGenobjectsmax with respect to the number of generated
objects �obj(C,R).

On the other hand, if register r is empty, no object e is
generated, and the catalyst c has only two choices:

1.	 the catalyst c takes the program object (p, r + 1) using the
rule c(p, r + 1) → c(p, r + 2)0dd , and all register objects
evolve in the usual way; in total we get �obj(C,R)= 2
and Gen(C,R)= N + 4;

2.	 the catalyst c takes a register object (ar+1, r + 1) thereby
generating ed, the program object (p, r + 1) evolves with
the rule (p, r + 1) → (p, r + 2)− , and all other register
objects evolve in the usual way; this variant leads to
�obj(C,R)= 1 and Gen(C,R)= (N − 1 + 3) + 1 = N + 3.

In total, variant 1 is the only possible continuation of the
computation if register r is empty.

(7)
ce → cdddd, (p, r + 1) → (p, r + 2)−;

c(p, r + 1) → c(p, r + 2)0dd.

(8)

c(p, i)− → c(p, i + 1)−d, r + 2 ≤ i < n, c(p, n)− → c(q, 1)d,

c(p, i)0 → c(p, i + 1)0d, r + 2 ≤ i < n, c(p, n)0 → c(s, 1)d.

241Variants of derivation modes for which catalytic P systems with one catalyst are computationally…

1 3

Again the catalyst has to be used with the program object to
get �obj(C,R)= 1 and Gen(C,R)= N + 3 , which otherwise
would stay idle when the catalyst is used with a register
object, and the multiset of rules applied in this way would
only yield �obj(C,R)= 0 and Gen(C,R′)= N − 1 + 3 = N + 2

.
If r = n − 1:

In this case, we directly go to the first step of the next cycle.
If r = n:

In this case, the second step of the simulation is already the
first step of the next cycle, which means that in this case of
r = n the next instruction to be simulated is an ADD-instruc-
tion on register 1.

To complete the proof we have to implement the final
HALT-instruction lh ∶ HALT . In an easy way, we can do this
by introducing d instead of (lh, 1) or (lh, 2) as done for other
labels. In this way, finally no program object is present any
more in the configuration. As we have assumed all decre-
mentable registers to be empty when the register machine
halts, this means the constructed simple P system will also
halt after having erased the dummy objects d in the next step.

We finally observe that the proof construction given above
is even deterministic if the underlying register machine to be
simulated is deterministic. 	� ◻

As the number of decrementable registers in generating
register machines needed for generating any recursively enu-
merable set of (vectors of) natural numbers is only two, from
the theorem above we obtain the following result:

Corollary 1  For any generating register machine with two
decrementable registers we can construct a simple P system
with only one catalyst and working in the derivation mode
max�objectsmax or in the derivation mode maxGENobjectsmax
which can simulate every step of the register machine in 2
steps, and therefore such catalytic P systems with only one
catalyst and working in the derivation mode max�objectsmax
or in the derivation mode maxGENobjectsmax can generate any
recursively enumerable set of (vectors of) natural numbers.

For accepting register machines, in addition to the two
working registers, we have at least one input register and
therefore immediately infer the following result:

Corollary 2  For any recursively enumerable set of d-vec-
tors of natural numbers given by a register machine with

(9)
ce → cdddd, (p, n) → (q, 1),

c(p, n) → c(s, 1)dd.

(10)
ce → cdddd,

(p, n + 1) → (q, 2), c(p, n + 1) → c(s, 2)dd.

d + 2 decrementable registers we can construct an accept-
ing simple P system with only one catalyst and working
in the derivation mode max�objectsmax or in the derivation
mode maxGENobjectsmax which can simulate every step of the
register machine in d + 2 steps, and therefore such cata-
lytic P systems with only one catalyst and working in the
derivation mode max�objectsmax or in the derivation mode
maxGENobjectsmax can accept any recursively enumerable set
of (vectors of) natural numbers.

In a similar way, assuming at least one input register to be
present, we also infer a similar result for register machines
computing partial recursive relations on natural numbers and
therefore computational completeness in its widest sense:

Corollary 3  For any partial recursive relation f ∶ ℕ
d
⟶ ℕ

k
on vectors of natural numbers (i.e., with d components
as input and k components as output) given by a register
machine with d + 2 decrementable registers we can con-
struct a simple P system with only one catalyst and working
in the derivation mode max�objectsmax or in the derivation
mode maxGENobjectsmax which can simulate every step of the
register machine in d + 2 steps, and therefore such cata-
lytic P systems with only one catalyst and working in the
derivation mode max�objectsmax or in the derivation mode
maxGENobjectsmax can compute any partial recursive relation
f ∶ ℕ

d
⟶ ℕ

k on vectors of natural numbers.

4 � Computational completeness for simple P
systems working in the derivation modes
maxGENobjects and max�objects

In this section we show the rather astonishing results that
simple P systems with only one catalyst using the derivation
modes maxGENobjects and max�objects are computationally com-
plete for themselves without a priori needing the condition
that the applied multisets of rules are non-extendable, which
condition can be mimicked using a suitable additional num-
ber of dummy objects on the right-hand side of the rules.

Theorem 2  For any register machine with n ≥ 2 decre-
mentable registers we can construct a simple catalytic P sys-
tem with only one catalyst, working in the derivation mode
max�objects or in the derivation mode maxGENobjects , which can
simulate every step of the register machine in n steps where
n is the number of decrementable registers.

Proof  We use a similar construction as in the proof of Theo-
rem 1. To mimick the non-extendability of the multisets of
rules to be applied, we simply add one more dummy object

242	 A. Alhazov et al.

1 3

d on the right-hand side of every rule constructed in that
proof, except for the erasing rule d → �.

For example, the cycling rules for the register objects
now are as follows:

No register object can stay idle, as the application of a rule
given above increases �obj(C,R) by 1 and the number of
generated objects by 2.

All the other arguments for �obj(C,R) and Gen(C,R ) as
explained in in the proof of Theorem 1 can be taken over
as they are given there, with re-calculating the values for
�obj(C,R) and for Gen(C,R ), the number of generated
objects, always adding 1 for every rule which is applied.

For example, we re-investigate the possible variants
for the simulation of a SUB-instruction on register r, for
r < n − 1 ; in the following, N is the total number of reg-
ister objects for decrementable registers in the underlying
configuration C:

We start with

From the list of rules in Eq. (7) we obtain the following list
of rules:

If in the first step of the simulation phase the catalyst did
manage to decrement the register, it produced e. Thus, in
the second simulation step, the catalyst has three choices:

1.	 the catalyst c correctly “erases" e using the rule
ce → cd5 , and to the program object (p, r + 1) the rule
(p, r + 1) → (p, r + 2)−d must be applied due to the fact
that both derivation modes max�objects and maxGENobjects
mimick the non-extendability of the applied multiset of
rules by the additional object d on the right-hand side
of the rules, i.e., every object which can evolve must
evolve; all register objects evolve in the usual way; in
total we get �obj(C,R)= N + 5 and Gen(C,R)= 2N + 8;

2.	 the catalyst c takes the program object (p, r + 1) using
the rule c(p, r + 1) → c(p, r + 2)0d3 , and all regis-
ter objects evolve in the usual way; in total we get
�obj(C,R)= N + 3 and Gen(C,R)= 2N + 5;

3.	 the catalyst c takes a register object, the program object
(p, r + 1) evolves with the rule (p, r + 1) → (p, r + 2)−d ,
and all other register objects evolve in the usual way; in
total we get �obj(C,R)= (N − 1) + 2 + 1 = N + 2 and
Gen(C,R)= 2(N − 1) + 4 + 2 = 2N + 4.

(11)(ar, i) → (ar, i + 1)d, 1 ≤ r < n; (ar, n) → (ar, 1)d.

(12)(p, r) → (p, r + 1)d, c(ar, r) → cedd.

(13)

ce → cd5, (p, r + 1) → (p, r + 2)−d;

c(p, r + 1) → c(p, r + 2)0d3.

In total, only variant 1 fulfills the condition given by the
derivation mode max�objects that �obj(C,R) is maximal, and
therefore is the only possible continuation of the computa-
tion if register r is not empty. A similar argument holds for
the derivation mode maxGENobjects with respect to the number
of generated objects, Gen(C,R).

In case register r is empty, we have the following
possibilities:

1.	 catalyst c takes the program object (p, r + 1) using
the rule c(p, r + 1) → c(p, r + 2)0ddd , and all regis-
ter objects evolve in the usual way; in total we get
�obj(C,R)= N + 3 and Gen(C,R)= 2N + 5;

2.	 the catalyst c takes a register object (ar+1, r + 1) thereby
generating edd, the program object (p, r + 1) evolves
with the rule (p, r + 1) → (p, r + 2)−d , and all other reg-
ister objects evolve in the usual way; this variant leads
to �obj(C,R)= N − 1 + 2 + 1 = N + 2 and Gen(C,R
)= (2(N − 1) + 4) + 2 = 2N + 4.

In case of the derivation mode max�objects , the erasing rule
d → � can never be applied together with the other rules, as
it would diminish �obj(C,R) . Hence, the garbage of objects
d remains until the simulated register machine has halted,
and then the dummy objects d are eliminated in a sequential
way.

On the other hand, in case of the derivation mode
maxGENobjects the value of Gen(C,R ) does not change
with the application of any number of rules d → � , as
Gen(C, {d → �})= 0 . Remaining dummy objects d finally
are eliminated in an asynchronous way.

We leave all the remaining technical details to the inter-
ested reader. 	� ◻

5 � Connection to energy‑controlled P
systems

Adapting the proofs elaborated in the preceding section we
can immediately show equivalent results for energy-con-
trolled P systems using the derivation mode maxenergymax
instead of the derivation modes maxobjectsmax.

Theorem 3  For any register machine with at least two decre-
mentable registers we can construct a simple symbol energy-
controlled P system with only one catalyst and working in
the derivation mode maxenergymax which can simulate every
step of the register machine in n steps where n is the number
of decrementable registers.

Proof  We can verbatim take over the proof given for Theo-
rem 2 by taking VE instead of V consisting of pairs [x, 1]

243Variants of derivation modes for which catalytic P systems with one catalyst are computationally…

1 3

assigning the unique energy value 1 to each symbol in V. In
that way, all arguments referring to the number of objects
in a (multiset of) rule(s) can immediately be taken over as
analog arguments referring to the amount of energy repre-
sented by the objects.

As an example, let us consider the rule ce → cdddd which
yields �objects = 5 − 2 = 3 for the difference of the num-
ber of objects and as well �energy = 3 for the difference of
energy.

On the other hand, for the rule d → � we get
�objects = −1 for the difference of the number of objects
and as well �energy = −1 . 	� ◻

Corollary 4  For any register machine with at least two dec-
rementable registers we can construct a simple rule energy-
controlled P system with only one catalyst and working in
the derivation mode maxenergymax which can simulate every
step of the register machine in n steps where n is the number
of decrementable registers.

Proof  Again we take over the proof given for Theorem 2 and
now define the energy assigned to a rule as the difference of
the number of objects on the left-hand side and the number
of objects on the right-hand side of a rule.

Like in the proof of Theorem 3, as an example, let
us again consider the rule ce → cdddd which yields
�objects = 3 for the difference of the number of objects and
thus the energy 3 for the energy to be assigned to this rule.
As in [4], we may write

to specify that the rule ce → cdddd has energy 3.
On the other hand, for the rule d → � we get

�objects = −1 for the difference of the number of objects
and therefore:

The arguments for the sum of energies assigned to the rules
in the applied multiset of rules now run as for the number
of objects.

Yet now in the case of rule energy-controlled P systems
we can even avoid the use of the dummy object d: we simply
may omit the object in every rule obtained in that way, but
still keep the original amount of energy assigned to the rule;
for example, instead of

we now may take

although the difference of objects now would be −1.
Finally, of course, we have to eliminate the rule

ce → cdddd < 3 >

d → 𝜆 < −1 >

ce → cdddd < 3 >

ce → c < 3 >

as it is not needed any more. 	� ◻

6 � Conclusion

In this paper we have continued our research on revisiting
a classic problem of computational complexity in mem-
brane computing: can catalytic P systems with only one
catalyst already generate all recursively enumerable sets
of multisets? This problem has been standing tall for many
years, and nobody has yet managed to give it a positive or
a negative answer. Already in [6] and in [9] we could show
that adding the ingredient of weak priority of catalytic
rules over non-catalytic rules or only taking the derivation
mode maxobjects we can obtain computational completeness
with only one catalyst.

In this paper, we have added some similar results how
to obtain computational completeness with only one
catalyst when using one of the newly defined derivation
modes max�objectsmax and maxGENobjectsmax or max�objects
and maxGENobjects , respectively. We especially empha-
size that computational completeness for max�objects and
maxGENobjects can be obtained without requiring the chosen
multisets of rules to be non-extendable.

Moreover, based on the results for simple P sys-
tems with only one catalyst using the derivation modes
max�objectsmax , we could show the corresponding com-
putational completeness for simple energy-controlled P
systems working in the corresponding derivation mode
maxenergymax.

The results obtained in this paper can also be extended
to P systems dealing with strings. Following the defini-
tions and notions used in [30], computational complete-
ness for computing with strings can be shown.

Acknowledgements  The authors gratefully thank the referees for their
useful comments. Rudolf Freund acknowledges the TU Wien support-
ing the open access publishing of this paper.

Funding  Open access funding provided by TU Wien (TUW). Artiom
Alhayov acknowledges project 20.80009.5007.22 “Intelligent informa-
tion systems for solving ill-structured problems, processing knowledge
and big data” by the National Agency for Research and Development.

Sergiu Ivanov is partially supported by the Paris region via the
project DIM RFSI n ◦2018-03 “Modèles informatiques pour la repro-
grammation cellulaire”.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

d → 𝜆 < −1 >

244	 A. Alhazov et al.

1 3

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Alhazov, A., Aman, B., Freund, R. (2014). P systems with anti-
matter. In: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík,
C. Zandron (eds.) Membrane Computing – 15th International
Conference, CMC 2014, Prague, Czech Republic, August
20–22, 2014, Revised Selected Papers, Lecture Notes in Com-
puter Science, vol. 8961, pp. 66–85. Springer https://​doi.​org/​10.​
1007/​978-3-​319-​14370-5_5

	 2.	 Alhazov, A., Aman, B., Freund, R., Păun, Gh. (2014). Mat-
ter and anti-matter in membrane systems. In: H. Jürgensen,
J. Karhumäki, A. Okhotin (eds.) Descriptional complexity of
formal systems – 16th International Workshop, DCFS 2014,
Turku, Finland, August 5–8, 2014. Proceedings, Lecture Notes
in Computer Science, vol. 8614, pp. 65–76. Springer https://​doi.​
org/​10.​1007/​978-3-​319-​09704-6_7

	 3.	 Alhazov, A., Freund, R. (2014). P systems with toxic objects.
In: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sosík, C. Zan-
dron (eds.) Membrane Computing – 15th International Con-
ference, CMC 2014, Prague, Czech Republic, August 20–22,
2014, Revised Selected Papers, Lecture Notes in Computer Sci-
ence, vol. 8961, pp. 99–125. Springer https://​doi.​org/​10.​1007/​
978-3-​319-​14370-5_7

	 4.	 Alhazov, A., Freund, R., Ivanov, S. (2016). Variants of energy-
controlled P systems. In: Proceedings of NIT 2016

	 5.	 Alhazov, A., Freund, R., & Ivanov, S. (2019). Variants of P
systems with activation and blocking of rules. Nat. Comput.,
18(3), 593–608. https://​doi.​org/​10.​1007/​s11047-​019-​09747-5

	 6.	 Alhazov, A., Freund, R., Ivanov, S. (2020). Catalytic P systems
with weak priority of catalytic rules. In: R. Freund (ed.) Pro-
ceedings ICMC 2020, September 14–18, 2020, pp. 67–82. TU
Wien

	 7.	 Alhazov, A., Freund, R., Ivanov, S. (2020). P systems with lim-
iting the number of objects in membranes. In: R. Freund (ed.)
Proceedings ICMC 2020, September 14–18, 2020, pp. 83–98.
TU Wien

	 8.	 Alhazov, A., Freund, R., & Ivanov, S. (2021). P systems with
limited number of objects. Journal of Membrane Computing,
3, 1–9. https://​doi.​org/​10.​1007/​s41965-​020-​00068-6

	 9.	 Alhazov, A., Freund, R., & Ivanov, S. (2021). When catalytic
P systems with one catalyst can be computationally complete.
Journal of Membrane Computing. https://​doi.​org/​10.​1007/​
s41965-​021-​00079-x

	10.	 Alhazov, A., Freund, R., Ivanov, S., Verlan, S. (2017). (Tis-
sue) P systems with vesicles of multisets. In: E. Csuhaj-Varjú,
P. Dömösi, Gy. Vaszil (eds.) Proceedings 15th International
Conference on Automata and Formal Languages, AFL 2017,
Debrecen, Hungary, September 4–6, 2017, EPTCS, vol. 252,
pp. 11–25. https://​doi.​org/​10.​4204/​EPTCS.​252.6

	11.	 Alhazov, A., Freund, R., Leporati, A., Oswald, M., & Zan-
dron, C. (2006). (Tissue) P systems with unit rules and energy
assigned to membranes. Fundam. Informaticae, 74(4), 391–408.

	12.	 Alhazov, A., Freund, R., Oswald, M., & Verlan, S. (2009).
Partial halting and minimal parallelism based on arbitrary rule
partitions. Fundam. Inform., 91(1), 17–34. https://​doi.​org/​10.​
3233/​FI-​2009-​0031

	13.	 Alhazov, A., Freund, R., & Sosík, P. (2015). Small P systems
with catalysts or anti-matter simulating generalized register
machines and generalized counter automata. Comput. Sci. J.
Moldova, 23(3), 304–328.

	14.	 Alhazov, A., Freund, R., & Verlan, S. (2017). P systems working
in maximal variants of the set derivation mode. In: A. Lepo-
rati, G. Rozenberg, A. Salomaa, C. Zandron (eds.) Membrane
Computing – 17th International Conference, CMC 2016, Milan,
Italy, July 25–29, 2016, Revised Selected Papers, Lecture Notes
in Computer Science, vol. 10105, pp. 83–102. Springer https://​
doi.​org/​10.​1007/​978-3-​319-​54072-6_6

	15.	 Ciobanu, G., Marcus, S., & Păun, Gh. (2009). New strategies of
using the rules of a P system in a maximal way. power and com-
plexity. Romanian Journal of Information Science and Technol-
ogy 12(2), 21–37

	16.	 Dassow, J., & Păun, Gh. (1989). Regulated Rewriting in Formal
Language Theory. Springer

	17.	 Freund, R. (2003). Energy-controlled P systems. In: Gh. Păun,
G. Rozenberg, A. Salomaa, C. Zandron (eds.) Membrane Com-
puting, pp. 247–260. Springer

	18.	 Freund, R. (2013). Purely catalytic P systems: two catalysts can
be sufficient for computational completeness. In A. Alhazov,
S. Cojocaru, M. Gheorghe, Yu. Rogozhin (Eds.), CMC14 Pro-
ceedings 14th International Conference on Membrane Comput-
ing, Chişinău, August 20–23, 2013 (pp. 153–166). Academy of
Sciences of Moldova: Institute of Mathematics and Computer
Science.

	19.	 Freund, R. (2016). P automata: New ideas and results. In:
H. Bordihn, R. Freund, B. Nagy, Gy. Vaszil (eds.) Eighth Work-
shop on Non-Classical Models of Automata and Applications,
NCMA 2016, Debrecen, Hungary, August 29–30, 2016. Pro-
ceedings, books@ocg.at, vol. 321, pp. 13–40. Österreichische
Computer Gesellschaft

	20.	 Freund, R. (2020). How derivation modes and halting conditions
may influence the computational power of P systems. Journal
of Membrane Computing, 2(1), 14–25. https://​doi.​org/​10.​1007/​
s41965-​019-​00028-9

	21.	 Freund, R., Kari, L., Oswald, M., & Sosík, P. (2005). Compu-
tationally universal P systems without priorities: two catalysts
are sufficient. Theoretical Computer Science, 330(2), 251–266.
https://​doi.​org/​10.​1016/j.​tcs.​2004.​06.​029.

	22.	 Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Ver-
lan, S., Zandron, C. (2014). Flattening in (tissue) P systems.
In: A. Alhazov, S. Cojocaru, M. Gheorghe, Yu. Rogozhin,
G. Rozenberg, A. Salomaa (eds.) Membrane Computing,
Lecture Notes in Computer Science, vol. 8340, pp. 173–188.
Springer https://​doi.​org/​10.​1007/​978-3-​642-​54239-8_​13

	23.	 Freund, R., & Oswald, M. (2007). Partial halting in P systems.
Int. J. Found. Comput. Sci., 18(6), 1215–1225. https://​doi.​org/​
10.​1142/​S0129​05410​70052​61

	24.	 Freund, R., Oswald, M. (2013). Catalytic and purely catalytic
P automata: Control mechanisms for obtaining computational
completeness. In: S. Bensch, F. Drewes, R. Freund, F. Otto
(eds.) Fifth Workshop on Non-Classical Models for Automata
and Applications – NCMA 2013, Umeå, Sweden, August 13
– August 14, 2013, Proceedings, books@ocg.at, vol. 294, pp.
133–150. Österreichische Computer Gesellschaft

	25.	 Freund, R., Oswald, M. (2017). Variants of spiking neural P
systems with energy control. In: Proceedings of ICAROB 2017

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-14370-5_5
https://doi.org/10.1007/978-3-319-14370-5_5
https://doi.org/10.1007/978-3-319-09704-6_7
https://doi.org/10.1007/978-3-319-09704-6_7
https://doi.org/10.1007/978-3-319-14370-5_7
https://doi.org/10.1007/978-3-319-14370-5_7
https://doi.org/10.1007/s11047-019-09747-5
https://doi.org/10.1007/s41965-020-00068-6
https://doi.org/10.1007/s41965-021-00079-x
https://doi.org/10.1007/s41965-021-00079-x
https://doi.org/10.4204/EPTCS.252.6
https://doi.org/10.3233/FI-2009-0031
https://doi.org/10.3233/FI-2009-0031
https://doi.org/10.1007/978-3-319-54072-6_6
https://doi.org/10.1007/978-3-319-54072-6_6
https://doi.org/10.1007/s41965-019-00028-9
https://doi.org/10.1007/s41965-019-00028-9
https://doi.org/10.1016/j.tcs.2004.06.029
https://doi.org/10.1007/978-3-642-54239-8_13
https://doi.org/10.1142/S0129054107005261
https://doi.org/10.1142/S0129054107005261

245Variants of derivation modes for which catalytic P systems with one catalyst are computationally…

1 3

	26.	 Freund, R., Oswald, M., & Păun, Gh. (2015). Catalytic and
purely catalytic P systems and P automata: control mechanisms
for obtaining computational completeness. Fundam. Inform.,
136(1–2), 59–84. https://​doi.​org/​10.​3233/​FI-​2015-​1144.

	27.	 Freund, R., Păun, Gh. (2013). How to obtain computational
completeness in P systems with one catalyst. In: T. Neary, M.
Cook (eds.) Proceedings Machines, Computations and Univer-
sality 2013, MCU 2013, Zürich, Switzerland, September 9–11,
2013. EPTCS, vol. 128, pp. 47–61 https://​doi.​org/​10.​4204/​
EPTCS.​128.​13

	28.	 Freund, R., Păun, Gh., Pérez-Jiménez, M.J. (2007). Polariza-
tionless P systems with active membranes working in the mini-
mally parallel mode. In: S.G. Akl, C.S. Calude, M.J. Dinneen,
G. Rozenberg, T. Wareham (eds.) Unconventional Computa-
tion, 6th International Conference, UC 2007, Kingston, Canada,
August 13-17, 2007, Proceedings, Lecture Notes in Computer
Science, vol. 4618, pp. 62–76. Springer https://​doi.​org/​10.​1007/​
978-3-​540-​73554-0_8

	29.	 Freund, R., Rogozhin, Yu., Verlan, S. (2012). P systems with
minimal left and right insertion and deletion. In: J. Durand-Lose,
N. Jonoska (eds.) Unconventional Computation and Natural Com-
putation – 11th International Conference, UCNC 2012, Orléan,
France, September 3–7, 2012. Proceedings, Lecture Notes in Com-
puter Science, vol. 7445, pp. 82–93. Springer https://​doi.​org/​10.​
1007/​978-3-​642-​32894-7_9

	30.	 Freund, R., Sosík, P. (2015). On the power of catalytic P systems
with one catalyst. In: G. Rozenberg, A. Salomaa, J.M. Sempere,
C. Zandron (eds.) Membrane Computing – 16th International
Conference, CMC 2015, Valencia, Spain, August 17–21, 2015,
Revised Selected Papers, Lecture Notes in Computer Science, vol.
9504, pp. 137–152. Springer https://​doi.​org/​10.​1007/​978-3-​319-​
28475-0_​10

	31.	 Freund, R., Verlan, S. (2007). A formal framework for static
(tissue) P systems. In: G. Eleftherakis, P. Kefalas, Gh. Păun,
G. Rozenberg, A. Salomaa (eds.) Membrane Computing, Lecture
Notes in Computer Science, vol. 4860, pp. 271–284. Springer
https://​doi.​org/​10.​1007/​978-3-​540-​77312-2_​17

	32.	 Freund, R., & Verlan, S. (2011). (Tissue) P systems working
in the k-restricted minimally or maximally parallel transition
mode. Nat. Comput., 10(2), 821–833. https://​doi.​org/​10.​1007/​
s11047-​010-​9215-z

	33.	 Krithivasan, K., Păun, Gh., & Ramanujan, A. (2014). On con-
trolled P systems. Fundam. Inform. 131(3–4), 451–464 https://​
doi.​org/​10.​3233/​FI-​2014-​1025

	34.	 Minsky, M. L. (1967). Computation. Englewood Cliffs: Finite and
Infinite Machines. Prentice Hall.

	35.	 Păun, Gh. (2000). Computing with membranes. Journal of Com-
puter and System Sciences, 61(1), 108–143. https://​doi.​org/​10.​
1006/​jcss.​1999.​1693

	36.	 Păun, Gh. (2002). Membrane Computing: An Introduction.
Springer. https://​doi.​org/​10.​1007/​978-3-​642-​56196-2

	37.	 Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) (2010). The Oxford
Handbook of Membrane Computing. Oxford University Press

	38.	 Rozenberg, G., Salomaa, A. (eds.): Handbook of For-
mal Languages. Springer (1997). https://​doi.​org/​10.​1007/​
978-3-​642-​59136-5

	39.	 The P Systems Website. http://​ppage.​psyst​ems.​eu/

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3233/FI-2015-1144
https://doi.org/10.4204/EPTCS.128.13
https://doi.org/10.4204/EPTCS.128.13
https://doi.org/10.1007/978-3-540-73554-0_8
https://doi.org/10.1007/978-3-540-73554-0_8
https://doi.org/10.1007/978-3-642-32894-7_9
https://doi.org/10.1007/978-3-642-32894-7_9
https://doi.org/10.1007/978-3-319-28475-0_10
https://doi.org/10.1007/978-3-319-28475-0_10
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/s11047-010-9215-z
https://doi.org/10.1007/s11047-010-9215-z
https://doi.org/10.3233/FI-2014-1025
https://doi.org/10.3233/FI-2014-1025
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/978-3-642-59136-5
http://ppage.psystems.eu/

	Variants of derivation modes for which catalytic P systems with one catalyst are computationally complete
	Abstract
	1 Introduction
	2 Definitions
	2.1 Register machines
	2.2 Simple catalytic P systems
	2.3 Variants of derivation modes
	2.4 Computations in a P system
	2.5 Two variants of energy control

	3 Computational completeness for simple P systems working in the derivation modes and
	4 Computational completeness for simple P systems working in the derivation modes and
	5 Connection to energy-controlled P systems
	6 Conclusion
	Acknowledgements
	References

