
S1. Balance of flame surface density transport equation

In the present paper, the approach consists in defining a progress variable

C as:

C = H(c− c∗), (1)

where H(c) is the Heaviside function giving C = 0 when c < c∗ and C = 1

otherwise. Following the work of [1], the filtered transport equations of the

CFM approach becomes:

∂ρC̃
∂t

+∇ · (ρũC̃) = −∇ ·
(
ρuC − ρũC̃

)
︸ ︷︷ ︸

T ′1

+ 〈ρSd〉s,c∗Σ∗︸ ︷︷ ︸
T ′2

, (2)

∂Σ
∗

∂t
+∇ · (ũΣ

∗
) = −∇ ·

(
uΣ∗ − ũΣ

∗
)

︸ ︷︷ ︸
T ′3

+ 〈∇ · u− nn : ∇u〉s,c∗Σ
∗︸ ︷︷ ︸

T ′4

+ 〈Sdκ〉s,c∗Σ
∗︸ ︷︷ ︸

T ′5

−∇ ·
(
〈Sdn〉s,c∗Σ

∗
)

︸ ︷︷ ︸
T ′6

,

(3)

where Σ
∗

= Σδ(c∗c) is the flame surface density (FSD) along the iso-surface

of the progress variable at c = c∗. In these equations, 6 terms need to be

closed:

1. The unresolved turbulent transport T ′1 = ∇ ·
(
ρuC − ρũC̃

)
in Eq. (2),

2. The surface averaged displacement speed weighted with density 〈ρSd〉s,c∗

involved in T ′2 (Eq. 2),

3. The unresolved turbulent transport T ′3 = ∇ ·
(
uΣ∗ − ũΣ

∗
)

in Eq. (3),
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4. The tangential strain rate 〈aT 〉s,c∗ involved in T ′4 (Eq. 3),

5. The stretch due to curvature 〈Sdκ〉s,c∗ involved in T ′5 (Eq. 3),

6. The normal propagation term T ′6 = ∇ ·
(
〈Sdn〉s,c∗Σ

∗
)

in Eq. (3).
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Figure S.1: Comparison of the source terms involved in Eq. (3) as functions of C̃. T ′3 is the

unresolved transport term ∇ ·
(
uΣ∗ − ũΣ

∗)
, T ′4 is the source term related to tangential

strain rate and T ′5 is the source term related to stretch due to curvature 〈Sdκ〉s,c∗ and T ′6

is the normal propagation term ∇ ·
(
〈Sdn〉s,c∗Σ

∗)
.

Figure S.1 shows the unresolved transport term T ′3, the flame surface

density source terms T ′4 and T ′5, and the normal propagation T ′6 as functions

of C̃ for cases A, B and E, extracted from DNS using the procedure presented

in Appendix C. In Fig. S.1, the terms T ′3 and T ′6 are approximately one order

of magnitude smaller than T ′4 and T ′5 for each case.

2



S2. Supplementary materials for tangential strain rate modeling

S2.1. Derivation of the implified formula for 〈aT 〉s,c∗

In the present paper, the model investigated for the tangential strain rate

〈aT 〉s,c∗ is the following:

〈aT 〉s,c∗ = αaT Γ
u′

lt
, (4)

where αaT is a modeling constant. Function Γ is defined from the relationship

existing between strain rate and energy spectrum in homogeneous turbulence:

(
Γ
u′

lt

)2

=

(
π

lt

)3 ∫ ∞
1

[C(k+)]2k2+E11(k+)dk+, (5)

where k+ = klt/π is the dimensionless wavenumber and C(k+) is an efficiency

function, which takes into account the ability of the turbulent eddies at scale

k to stretch the flame. E11(k+) is the one-dimensional (longitudinal) energy

spectrum in the direction of the wavenumber k, defined using the standard

longitudinal Kolmogorov spectrum with the Pao correction to account for

the viscous cut-off:

E11(k+) =
18

55

(
π
k+
lt

)−5/3
ε2/3exp

(
−3

2
Ck

(
πk+

η

lt

)4/3
)
, (6)

where Ck ≈ 1.5 is the universal Kolmogorov constant, η is the Kolmogorov

scale and ε is the rate of dissipation of TKE.

When a unit constant is used for the efficiency function C(k+) in Eq. (5),
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the integration of Eq. (5) combined with Eq. (6) leads to :

Γ2 =

(
9

55

)(
Ret
Ck

)
exp

(
−3

2
Ck
π4/3

Ret

)
(7)

Then this expressionof Γ is introduced in Eq. (4) leading to:

〈aT 〉s,c∗ = αaT

(
3√
55

)√
Ret
Ck

√
exp

(
−3

2
Ck
π4/3

Ret

)(
u′

lt

)
. (8)

Yet, (u′/lt)
√
Ret = (u′/lt)DaKa = (S0

L/δ
0
L)Ka. In addition, by assuming

that Ret is sufficiently large, exp
(
−(3/2)Ckπ

4/3/Ret
)

is close to 1. Thus, by

combining αaT and 1/
√
Ck, the model for the tangential strain rate is:

〈aT 〉s,c∗ = αaT

3√
55
Ka

S0
L

δL
. (9)

Similarly, introducing a Heaviside function with a cut-off scale δc as an

efficiency function C(k+) in Eq. (5) leads to:

Γ2 =

(
9

55

)(
Ret
Ck

)[
exp

(
−3

2
Ck
π4/3

Ret

)
− exp

(
−3

2
Ck
π4/3

Ret

(
lt
δ0L

)4/3
)]

.

(10)

With the same assumption on Ret and similarly to Eq. (9), this expression

of Γ leads to:

〈aT 〉s,c∗ = αaT

3√
55
Ka

S0
L

δL

[
1− exp

(
−3

2
Ck

1

Ret

(
πlt
δc

)4/3
)]1/2

. (11)
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S2.2. Sensitivity of LPF model to the cut-off scale

Equation (11) presents two modelling parameters, which gives more lati-

tude to fit the model to DNS results. Figure S.2 shows the sensitivity to δc

of Eq. (11) by choosing δc between (1/2)δ0L and 2δ0L. This range for the cut-

off length correspond to realistic values. As for the results presented in the

present paper, the values of the model parameter αaT used are adjusted to fit

the lowest Karlovitz nulmber cases using the model proposed by Charlette

et al. [2]. This figure shows that choosing δc between (1/2)δ0L and 2δ0L still
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Figure S.2: Tangential strain rate 〈aT 〉∗s from DNS compared to LPF model using (1/2)δ0L,
δ0L and 2δ0L: (a) for cases with Le = 1 and (b) for cases with Le > 1.

gives the best results without adjusting constant αaT . In addition, this shows
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that the model sensitivity to δc is low.

S2.3. αaT tuning

In the present paper, the different models investigated for tangential

strain rate 〈aT 〉s,c∗ are compared by tuning the model parameter αaT on

cases A and A1 using Charlette’s model [2].

A comparison of 〈aT 〉∗s extracted from the DNS with the models is then

presented in Fig. S.3 for all DNS cases but by tuning for each model the

parameter αaT to fit the strain rate obtained at the lowest Karlovitz numbers

(i.e., cases A and A1). This tuned parameter is reported in Table S.1 for each

model.

Table S.1: Tuned model parameter αaT
for each model.

Bougrine Cant Charlette HK2D LPF

Lek 6= 1 10.6 0.8 1.7 1.2 1.4
Lek = 1 7.1 1.6 2.8 1.1 2.4

Figure S.3 shows that tuning αaT for each model improves significantly the

predictions. The conclusions drawn in the analysis presented in the current

paper are still valid when αaT is tuned for each model. Figure S.3 shows that

the best model is the LPF model and choosing δ0L as the cut-off scale seems

appropriate.
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Figure S.3: Tangential strain rate 〈aT 〉∗s from DNS compared to Bougrine’s model [3],
Cant’s model [4], Charlette’s model [2] and LPF model: (a) for cases with Le = 1 and (b)
for cases with Le > 1. Each model is tuned to fit the lowest Karlovitz number case.
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