S1. Balance of flame surface density transport equation

In the present paper, the approach consists in defining a progress variable \mathcal{C} as:

$$\mathcal{C} = \mathcal{H}(c - c^*),\tag{1}$$

where $\mathcal{H}(c)$ is the Heaviside function giving $\mathcal{C} = 0$ when $c < c^*$ and $\mathcal{C} = 1$ otherwise. Following the work of [1], the filtered transport equations of the CFM approach becomes:

$$\frac{\partial \overline{\rho} \mathcal{C}}{\partial t} + \nabla \cdot (\overline{\rho} \widetilde{\mathbf{u}} \widetilde{\mathcal{C}}) = -\underbrace{\nabla \cdot \left(\overline{\rho \mathbf{u}} \overline{\mathcal{C}} - \overline{\rho} \widetilde{\mathbf{u}} \widetilde{\mathcal{C}}\right)}_{T_1'} + \underbrace{\langle \rho S_d \rangle_{s,c^*} \overline{\Sigma^*}}_{T_2'}, \tag{2}$$

$$\frac{\partial \overline{\Sigma}^{*}}{\partial t} + \nabla \cdot (\widetilde{\mathbf{u}} \overline{\Sigma}^{*}) = -\underbrace{\nabla \cdot \left(\overline{\mathbf{u}} \overline{\Sigma}^{*} - \widetilde{\mathbf{u}} \overline{\Sigma}^{*}\right)}_{T'_{3}} + \underbrace{\langle \nabla \cdot \mathbf{u} - \mathbf{nn} : \nabla \mathbf{u} \rangle_{s,c^{*}} \overline{\Sigma}^{*}}_{T'_{4}} + \underbrace{\langle S_{d} \kappa \rangle_{s,c^{*}} \overline{\Sigma}^{*}}_{T'_{5}} - \underbrace{\nabla \cdot \left(\langle S_{d} \mathbf{n} \rangle_{s,c^{*}} \overline{\Sigma}^{*}\right)}_{T'_{6}},$$
(3)

where $\overline{\Sigma}^* = \overline{\Sigma\delta(c_c^*)}$ is the flame surface density (FSD) along the iso-surface of the progress variable at $c = c^*$. In these equations, 6 terms need to be closed:

- 1. The unresolved turbulent transport $T'_1 = \nabla \cdot \left(\overline{\rho \mathbf{u} \mathcal{C}} \overline{\rho} \widetilde{\mathbf{u}} \widetilde{\mathcal{C}}\right)$ in Eq. (2),
- 2. The surface averaged displacement speed weighted with density $\langle \rho S_d \rangle_{s,c^*}$ involved in T'_2 (Eq. 2),
- 3. The unresolved turbulent transport $T'_3 = \nabla \cdot \left(\overline{\mathbf{u}\Sigma^*} \widetilde{\mathbf{u}}\overline{\Sigma}^*\right)$ in Eq. (3),

- 4. The tangential strain rate $\langle a_T \rangle_{s,c^*}$ involved in T'_4 (Eq. 3),
- 5. The stretch due to curvature $\langle S_d \kappa \rangle_{s,c^*}$ involved in T'_5 (Eq. 3),

6. The normal propagation term $T'_6 = \nabla \cdot \left(\langle S_d \mathbf{n} \rangle_{s,c^*} \overline{\Sigma}^* \right)$ in Eq. (3).

Figure S.1: Comparison of the source terms involved in Eq. (3) as functions of $\widetilde{\mathcal{C}}$. T'_3 is the unresolved transport term $\nabla \cdot \left(\overline{\mathbf{u}\Sigma^*} - \widetilde{\mathbf{u}}\overline{\Sigma}^*\right)$, T'_4 is the source term related to tangential strain rate and T'_5 is the source term related to stretch due to curvature $\langle S_d \kappa \rangle_{s,c^*}$ and T'_6 is the normal propagation term $\nabla \cdot \left(\langle S_d \mathbf{n} \rangle_{s,c^*} \overline{\Sigma}^*\right)$.

Figure S.1 shows the unresolved transport term T'_3 , the flame surface density source terms T'_4 and T'_5 , and the normal propagation T'_6 as functions of $\tilde{\mathcal{C}}$ for cases A, B and E, extracted from DNS using the procedure presented in Appendix C. In Fig. S.1, the terms T'_3 and T'_6 are approximately one order of magnitude smaller than T'_4 and T'_5 for each case.

S2. Supplementary materials for tangential strain rate modeling

S2.1. Derivation of the implified formula for $\langle a_T \rangle_{s,c^*}$

In the present paper, the model investigated for the tangential strain rate $\langle a_T \rangle_{s,c^*}$ is the following:

$$\langle a_T \rangle_{s,c^*} = \alpha_{a_T} \Gamma \frac{u'}{l_t},\tag{4}$$

where α_{a_T} is a modeling constant. Function Γ is defined from the relationship existing between strain rate and energy spectrum in homogeneous turbulence:

$$\left(\Gamma \frac{u'}{l_t}\right)^2 = \left(\frac{\pi}{l_t}\right)^3 \int_1^\infty [C(k_+)]^2 k_+^2 E_{11}(k_+) dk_+,\tag{5}$$

where $k_{+} = kl_t/\pi$ is the dimensionless wavenumber and $C(k_{+})$ is an efficiency function, which takes into account the ability of the turbulent eddies at scale k to stretch the flame. $E_{11}(k_{+})$ is the one-dimensional (longitudinal) energy spectrum in the direction of the wavenumber k, defined using the standard longitudinal Kolmogorov spectrum with the Pao correction to account for the viscous cut-off:

$$E_{11}(k_{+}) = \frac{18}{55} \left(\pi \frac{k_{+}}{l_{t}} \right)^{-5/3} \varepsilon^{2/3} \exp\left(-\frac{3}{2} C_{k} \left(\pi k_{+} \frac{\eta}{l_{t}} \right)^{4/3} \right), \quad (6)$$

where $C_k \approx 1.5$ is the universal Kolmogorov constant, η is the Kolmogorov scale and ε is the rate of dissipation of TKE.

When a unit constant is used for the efficiency function $C(k_{+})$ in Eq. (5),

the integration of Eq. (5) combined with Eq. (6) leads to :

$$\Gamma^2 = \left(\frac{9}{55}\right) \left(\frac{Re_t}{C_k}\right) \exp\left(-\frac{3}{2}C_k\frac{\pi^{4/3}}{Re_t}\right) \tag{7}$$

Then this expression of Γ is introduced in Eq. (4) leading to:

$$\langle a_T \rangle_{s,c^*} = \alpha_{a_T} \left(\frac{3}{\sqrt{55}} \right) \sqrt{\frac{Re_t}{C_k}} \sqrt{\exp\left(-\frac{3}{2}C_k \frac{\pi^{4/3}}{Re_t}\right)} \left(\frac{u'}{l_t}\right). \tag{8}$$

Yet, $(u'/l_t)\sqrt{Re_t} = (u'/l_t)DaKa = (S_L^0/\delta_L^0)Ka$. In addition, by assuming that Re_t is sufficiently large, exp $(-(3/2)C_k\pi^{4/3}/Re_t)$ is close to 1. Thus, by combining α_{a_T} and $1/\sqrt{C_k}$, the model for the tangential strain rate is:

$$\langle a_T \rangle_{s,c^*} = \alpha_{a_T} \frac{3}{\sqrt{55}} K a \frac{S_L^0}{\delta_L}.$$
(9)

Similarly, introducing a Heaviside function with a cut-off scale δ_c as an efficiency function $C(k_+)$ in Eq. (5) leads to:

$$\Gamma^{2} = \left(\frac{9}{55}\right) \left(\frac{Re_{t}}{C_{k}}\right) \left[\exp\left(-\frac{3}{2}C_{k}\frac{\pi^{4/3}}{Re_{t}}\right) - \exp\left(-\frac{3}{2}C_{k}\frac{\pi^{4/3}}{Re_{t}}\left(\frac{l_{t}}{\delta_{L}^{0}}\right)^{4/3}\right)\right].$$
(10)

With the same assumption on Re_t and similarly to Eq. (9), this expression of Γ leads to:

$$\langle a_T \rangle_{s,c^*} = \alpha_{a_T} \frac{3}{\sqrt{55}} K a \frac{S_L^0}{\delta_L} \left[1 - \exp\left(-\frac{3}{2} C_k \frac{1}{Re_t} \left(\frac{\pi l_t}{\delta_c}\right)^{4/3}\right) \right]^{1/2}.$$
 (11)

S2.2. Sensitivity of LPF model to the cut-off scale

Equation (11) presents two modelling parameters, which gives more latitude to fit the model to DNS results. Figure S.2 shows the sensitivity to δ_c of Eq. (11) by choosing δ_c between $(1/2)\delta_L^0$ and $2\delta_L^0$. This range for the cutoff length correspond to realistic values. As for the results presented in the present paper, the values of the model parameter α_{a_T} used are adjusted to fit the lowest Karlovitz nulmber cases using the model proposed by Charlette *et al.* [2]. This figure shows that choosing δ_c between $(1/2)\delta_L^0$ and $2\delta_L^0$ still

Figure S.2: Tangential strain rate $\langle a_T \rangle_s^*$ from DNS compared to LPF model using $(1/2)\delta_L^0$, δ_L^0 and $2\delta_L^0$: (a) for cases with Le = 1 and (b) for cases with Le > 1.

gives the best results without adjusting constant α_{a_T} . In addition, this shows

that the model sensitivity to δ_c is low.

S2.3. α_{a_T} tuning

In the present paper, the different models investigated for tangential strain rate $\langle a_T \rangle_{s,c^*}$ are compared by tuning the model parameter α_{a_T} on cases A and A₁ using Charlette's model [2].

A comparison of $\langle a_T \rangle_s^*$ extracted from the DNS with the models is then presented in Fig. S.3 for all DNS cases but by tuning for each model the parameter α_{a_T} to fit the strain rate obtained at the lowest Karlovitz numbers (i.e., cases A and A₁). This tuned parameter is reported in Table S.1 for each model.

	Table 5.1. Tuned model parameter α_{a_T} for each model.				
	Bougrine	Cant	Charlette	$\mathrm{HK}_{\mathrm{2D}}$	LPF
$Le_k \neq 1$	10.6	0.8	1.7	1.2	1.4
$Le_k = 1$	7.1	1.6	2.8	1.1	2.4

Table S.1: Tuned model parameter α_{a_T} for each model

Figure S.3 shows that tuning α_{a_T} for each model improves significantly the predictions. The conclusions drawn in the analysis presented in the current paper are still valid when α_{a_T} is tuned for each model. Figure S.3 shows that the best model is the LPF model and choosing δ_L^0 as the cut-off scale seems appropriate.

(b) Le > 1Figure S.3: Tangential strain rate $\langle a_T \rangle_s^*$ from DNS compared to Bougrine's model [3], Cant's model [4], Charlette's model [2] and LPF model: (a) for cases with Le = 1 and (b) for cases with Le > 1. Each model is tuned to fit the lowest Karlovitz number case.

References

- [1] E. Knudsen, H. Pitsch, A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion, Combustion and Flame 154 (4) (2008) 740-760. doi:10.1016/j.combustflame.2008. 05.024.
 URL https://doi.org/10.1016/j.combustflame.2008.05.024
- [2] F. Charlette, C. Meneveau, D. Veynante, A power-law flame wrinkling model for les of premixed turbulent combustion part i: Non-dynamic formulation and initial tests, Combustion and Flame 131 (1-2) (2002) 159–180. doi:10.1016/S0010-2180(02)00400-5.
- [3] S. Bougrine, S. Richard, O. Colin, D. Veynante, Fuel composition effects on flame stretch in turbulent premixed combustion: Numerical analysis of flame-vortex interaction and formulation of a new efficiency function, Flow, turbulence and combustion 93 (2) (2014) 259–281.
- [4] R. Cant, S. Pope, K. Bray, Modelling of flamelet surface-to-volume ratio in turbulent premixed combustion, Symposium (International) on Combustion 23 (1) (1991) 809–815.