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Abstract

An a priori model for premixed turbulent flame combustion in the thin reaction zone (TRZ) regime is presented.
This a priori model is deduced from the analysis of data from a series of direct numerical simulations (DNS) of
stoichiometric (φ = 1.0) premixed turbulent iso-octane flames, with Karlovitz number ranging from 2.9 to 46.2. For
each case two flames are considered: one with unity Lewis numbers to isolate the effect of turbulence on the flame,
and one with non-unity Lewis numbers to study the influence of differential diffusion. First the reaction zone is shown
to remain thin for each flame, leading to focus this study on a specific iso-surface in the reaction zone and how it is
affected by turbulence. Second, the displacement speed S d on this iso-surface shows a differentiate dependency on
tangential strain rate and curvature. This dependency is modeled through an expression of S d formally similar to the
ones used in laminar flame theories, but using two effective turbulent Markstein lengths in place of the laminar ones.
These lengths are shown to depend on the Lewis number and to decrease when the Karlovitz number increases, in
agreement with previous studies showing a reduction of the effective Lewis number with the Karlovitz. From these
DNS, an extension of the coherent flame model (CFM) to the TRZ regime is proposed, using a fine-grained flame
surface density (FSD) located in the reaction zone. Models for the displacement speed, the tangential strain rate, and
the stretch due to curvature are proposed. The a priori evaluation of these closures shows a significant improvement
compared to the flamelet formulations.

Keywords: High Karlovitz, Direct Numerical Simulation (DNS), Combustion modeling, Turbulent premixed flame,
Differential diffusion

1. Introduction

The challenges associated to the improvement of
vehicle power-train efficiency and the deployment of
ultra-low carbon technologies are presently driving a
significant amount of research. The increase of en-
gine efficiency, while preventing abnormal combustion
(knock and pre-ignition), can be obtained by increasing
the level of dilution and developing new aerodynamic
strategies allowing to increase the turbulence intensity
at spark-timing.
Operating with diluted combustion using burnt gases in-
creases the engine efficiency while maintaining low pol-
lutant emissions (e.g. NOx). Nevertheless, fundamental
issues are raised in terms of combustion regimes. In-
deed, diluted premixed flames tend to be thicker and
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propagate slower due to the lower flame temperature
and larger dilution.
A thicker and slower flame is more sensitive to stirring
by small turbulence structures. As a consequence the
flame shifts from the flamelet to the thin reaction zone
(TRZ) regime, where the smallest turbulent scales are
able to penetrate and thicken the preheat zone without
impacting the reaction zone as described by Peters in
the combustion regime diagram [1]. This shift is well il-
lustrated by Mounaı̈m-Rousselle et al. [2]. This change
of regime can be measured by the Karlovitz number Ka
comparing flame (τ f ) and Kolmogorov (τη) time-scales:

Ka =
τ f

τη
=

(
δL

η

)2

, (1)

where δL and η are the flame thickness and Kolmogorov
length-scales, respectively. The TRZ regime is then de-
fined by Ka > 1.
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Experimentally, premixed flames in the TRZ regime
have been studied for a long time. Lipatnikov and Cho-
miak [3] present a review of such experiments, which
shows that preferential diffusion plays a major role on
the turbulent flame speed S T , not only in the flamelet
regime, but also in the TRZ regime. This effect is mea-
sured by the Lewis number Le of species k defined as the
ratio of the thermal diffusivity Dth to the mass diffusiv-
ity Dk such that Le = Dth/Dk. Both in the flamelet and
in the TRZ regime, flames with Le < 1 show a larger S T

compared to flames with Le > 1 for the same turbulent
conditions and laminar flame speed [4, 5]. Preferential
diffusion also influences the rate of S T increase with u

′

and also the level of u
′

at which the so-called bending of
S T appears [4, 6–14], prior to the eventual extinction of
the flame. Gülder and Smallwood [9] and then Nivarti
et al. [15] deduced from experiments [8, 16] that while
the increase of S T in the flamelet regime is essentially
due to an increase of flame surface, in the TRZ regime
this increase might be primarily due to an increase of the
consumption speed S L. This increase of S L is explained
by the additional diffusivity brought by turbulent ed-
dies smaller than the flame thickness δL in the preheat
zone [15]. On the contrary, most DNS performed in
the TRZ regime [6, 11, 17, 18] found an opposite trend:
the average laminar flame speed remains close to S 0

L,
while the flame surface keeps increasing. This differ-
ence could be explained by the difficulty to accurately
measure flame surface and speed in such highly turbu-
lent experiments, but it could also be explained by the
artificial nature of the turbulence forcing technique in
DNS. This question is still open and requires further re-
search.

Usually, turbulent premixed flame combustion mod-
els are derived assuming a flamelet regime, where
the flame is viewed as a collection of infinitely thin
flamelets propagating locally at the laminar flame speed
S 0

L, as described by Peters [19]. These models for
large eddy simulations (LES) are based on various ap-
proaches, such as the thickened flame [20], the G-
equation [1, 21] or the flame surface density (FSD) [22–
24], which is the amount of flame surface per unit vol-
ume. Different approaches were developed for the lat-
ter, both algebraic [25] or using a transport equation of
the FSD [22]. However, these commonly used models
fail to predict accurately the behavior of flames in the
TRZ regime [10, 26], where the validity of the flamelet
hypothesis is questioned because of the thickening of
the preheat zone by the smallest turbulent eddies [1].
In addition, as reviewed in [3], these models also fail
to account for the strong effect of preferential diffusion
on S T . An exception is the leading point approach in

which the turbulent flame speed is piloted by the ex-
tremely stretched flame at the leading edge, thus making
the flame response to stretch a first order parameter in
the estimation of S T . This approach has received recent
support by the experimental study of Venkateswaran et
al. [5].

In order to suppress the limitations of previously
mentioned models, Peters [1] proposed a modified for-
mulation of the G-equation for the TRZ regime. For this
purpose he decomposed the displacement speed S d of
the flame front on a particular species iso-surface, into
two components. The first one, S r +S n, is the sum of the
reaction and normal diffusion components of S d, while
the second one −Dκ, where κ is the flame curvature, is
associated to tangential diffusion. This decomposition
is then applied to the stretch by curvature S dκ in the
G-equation, leading to a new “diffusive” term −Dκ|∇G|.
This term is found to be dominant in the TRZ regime. In
complement to Peters’ work, Dave and Chaudhuri [27]
proposed very recently to test the two Markstein lengths
expression of S d derived in [28] for laminar flames, on
turbulent flames located at the lower limit of the TRZ
regime. They showed that, with a modified expression
in which stretch by curvature S dκ is replaced by S 0

Lκ,
this expression agrees reasonably well with the DNS re-
sults, excepted on the burned gases side where flame
surface annihilation leads to much larger S d. In this
latter situation, they proposed a new expression for S d

which depends on temperature diffusivity and curvature,
in qualitative agreement with the expression proposed
by [1]. Another path towards the prediction of S d in
turbulent flows is to derive and analyze the transport
equation of S d as proposed in [29], with the objective
to propose an adequate model of this quantity in the fu-
ture.
The assumptions made by Peters in [1] are the start-
ing point for high Karlovitz flames modeling in vari-
ous studies on the subject. For instance, Hawkes and
Chen [30] evaluated these assumptions using direct nu-
merical simulations (DNS) of CH4-air and H2-air pre-
mixed flames interacting with decaying homogeneous
isotropic turbulence (HIT). Different models were com-
pared, such as a flamelet model, an asymptotic model
and a model taking into account the tangential diffu-
sion as suggested by Peters. The latter showed a priori
significant improvement on the prediction of the flame
stretch over the assumption of a constant flame speed.
However, using the species diffusivity showed to be in-
sufficient to correctly model the stretch of the flame and
the authors concluded that further research was needed.
This sensitivity to diffusion was well documented by
Chakraborty et al. in [31–33] where, in the context of
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the FSD transport equation approach, DNS of statisti-
cally planar developing turbulent premixed flames with
simplified chemistry and global Lewis numbers rang-
ing from Le = 0.8 to 1.2 were conducted. Chakraborty
stated that the effect of differential diffusion on the dis-
placement speed S d cannot be explained only with the
tangential diffusion component. The influence of cur-
vature on the displacement speed can be considered
through a Markstein length, which should depend on
the Lewis number, allowing to take into account differ-
ential diffusion. From these observations and the study
by Han and Huh [34], which were confirmed by several
studies such as [35–37], Katragadda et al. [38] proposed
a model for the stretch due to curvature for flames in the
TRZ regime. This model presents some encouraging
results allowing to reproduce this stretch for different
turbulent intensities.
Recently, Savard et al. in [18, 39–43] brought some new
insight on the TRZ regime and the role of preferen-
tial diffusion from the study of DNS of n-heptane tur-
bulent premixed flames with and without unity Lewis
numbers. Regarding the inner flame structure, DNS of
Caltech [18, 39–43] showed a decreasing role of prefer-
ential diffusion with increasing Karlovitz numbers, with
an asymptotic behavior similar to that of a unity Lewis
number flame. These authors interpreted this result
as a progressive predominance of turbulent diffusion
over molecular diffusion inside the preheat flame zone.
However, no convergence between unity and non-unity
Lewis flames was observed in terms of turbulent flame
speeds, evidencing that preferential diffusion still plays
a major role on S T , even at the largest Karlovitz num-
bers. From the perspective of flame modeling, Savard
and Blanquart [39] introduced a model for the effective
Lewis number that takes into account the effect of the
turbulence level through a Karlovitz number on prefer-
ential diffusion.
The aforementioned studies on the combustion analy-
sis of the TRZ regime and a recent review by Driscoll
et al. [44] highlighted major features of the flame char-
acteristics (flame thickness, conditional flame profiles,
etc...) in this regime but only a few a priori closures of
the source terms needed for turbulent combustion mod-
els were proposed.

Coherent flame model (CFM) is a flamelet model
based on transport equations for the progress variable
c and the flame surface density Σ. Closures for these
equations were first proposed in RANS [45] and then
in LES [22]. CFM has been extensively used in piston
engine applications for more than two decades. While
initially located in the flamelet regime, applications are
increasingly located in the TRZ regime as explained

previously. As CFM assumes that the flame is locally
identical to a laminar unstretched flame (flamelet as-
sumption), it explains why this model looses predic-
tivity in this regime. The aim of the present study is
to assess the possibility to extend the validity of CFM
to the TRZ regime. For this purpose, a series of iso-
octane/air premixed flame DNS is presented and used
to model a priori major source terms of the progress
variable and flame surface density (FSD) equations in
the TRZ regime. The major objectives of this work are
as follows:

1. To analyse the flame characteristics in the TRZ
regime in the context of the CFM approach, that
is, in terms of progress variable and FSD.

2. To analyse the role of preferential diffusion which
is known to be a major parameter, as observed in
the present DNS, controlling the turbulent flame
speed.

3. To propose a model for the flame displacement
speed which enters the progress variable source
term and stretch by curvature in the FSD equation.

4. To propose a model for the turbulent strain rate
term in the FSD equation, which is the major
source term of FSD.

The paper is organised as follows. The necessary math-
ematical background on CFM and details on the DNS
set-up are given in sections 2 and 3, respectively. Sec-
tion 4 introduces the results, including an analysis and
discussion on the displacement speed. Finally, the com-
plete model is presented and compared to the DNS in
section 5.

2. Mathematical Background

The CFM approach describes the gases state thanks
to a progress variable c, that goes from c = 0 in the
fresh gases to c = 1 in the fully burnt gases. There
exist several ways to define this variable, as discussed
by Chakraborty and Cant in [33]. In the present study it
is defined as the reduced temperature:

c =
T − Tu

Tb − Tu
, (2)

where subscripts u and b stand for unburned and burnt
gases states, respectively. Note that some of the analysis
carried out in this study were repeated with a progress
variable defined thanks to the fuel mass fraction (not
shown here), and showed similar results. This indicates
that for the quantities studies, the choice of the progress
variable is not fundamental.
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From Eq. (2) and from the conservation of total energy,
a balance equation is derived for the progress variable
c. Then, in the large eddy simulation (LES) context,
this equation is space filtered [46] giving Eq. (3):

∂ρc
∂t

+ ∇ · (ρũ̃c) = −∇ ·
(
ρuc − ρũ̃c

)︸             ︷︷             ︸
T1

+∇ ·
(
ρD∇c

)
+ ω̇c,

(3)
D being the thermal diffusivity D = λ/(ρCp), with ρ the
density, λ the thermal conductivity, Cp the heat capacity
at constant pressure and ω̇c the chemical source term.
The filtered quantity Q is then defined as: Q(x, t) =∫
V

Q(x′, t)G∆(x − x′)dx′, whereV is the simulation do-
main, ∆ the filter width and x the location vector. In
finite volume codes the filter size is set to be the cell
size and no explicit filtering is performed.
The displacement speed S d of each progress variable
iso-surface relatively to the local flow velocity is often
used to characterize the propagation of the flame front.
In the present study S d is deduced from the exact bal-
ance equation of the progress variable c expressed as:

S d =
1

ρ|∇c|
Dρc
Dt

. (4)

Defining the generalized FSD [47] Σ = |∇c|, and the
surface averaging operation 〈Q〉s = Q|∇c|/|∇c| where Q
is a general quantity, the right hand side (RHS) term in
Eq. (3) is written:

∇ ·
(
ρD∇c

)
+ ω̇c = ρS d |∇c| = 〈ρS d〉s Σ︸   ︷︷   ︸

T2

. (5)

The closure of the RHS term in Eq. (5) requires the
modeling of 〈ρS d〉s and of the filtered FSD. In the CFM
approach, the filtered FSD is computed through a trans-
port equation as proposed in [24, 25]:

∂Σ

∂t
+ ∇ · (̃uΣ) = −∇ ·

(
〈u〉sΣ − ũΣ

)︸              ︷︷              ︸
T3

+ 〈∇ · u − nn : ∇u〉s,c∗Σ︸                     ︷︷                     ︸
T4

+ 〈S d∇ · n〉sΣ︸        ︷︷        ︸
T5

−∇ · (〈S dn〉sΣ)︸          ︷︷          ︸
T6

,

(6)

where n = −∇c/|∇c| is the local flame normal vector
pointing towards the reactants, 〈∇ · u − nn : ∇u〉s is the
tangential strain rate acting on the flame surface which
will be called 〈aT 〉s in the following, 〈S d∇ · n〉s is the
stretch due to curvature and ∇ · (〈S dn〉sΣ) is a propaga-
tion term.

From Eqs. (3) and (6), six terms need to be closed:

1. The turbulent transport T1 = ∇ ·
(
ρuc

)
− ∇ ·

(
ρũ̃c

)
.

2. The displacement speed weighted by the density
〈ρS d〉s in T2 = 〈ρS d〉sΣ

3. The turbulent transport of FSD T3 = ∇ ·(
〈u〉sΣ − ũΣ

)
4. The tangential strain rate 〈aT 〉s in T4 = 〈aT 〉sΣ

5. The stretch due to curvature 〈S d∇ · n〉s in T5 =

〈ρS d∇ · n〉sΣ
6. The propagation term T6 = ∇ · (〈S dn〉sΣ)

Many studies [1, 18, 30, 34, 36, 37, 39–43][Wang.2017]
suggest that the key parameters to be modeled at high
turbulence intensities are terms T2, T4 and T5, which are
the focus of this study. The turbulent transport term T1
is commonly closed under a gradient assumption and is
written as a turbulent diffusion. Rymer [48] showed that
in laminar cases T1 is non zero and tends to −ρuS 0

L∇ ·[
(c − c̃)n

]
. Based on this consideration and on the work

of Richard et al. [22], the following closures for T1, T3
and T6 will be retained in a first step:

T1 = −∇ ·

[
ρ
νt

S ct
∇c̃

]
− ρuS 0

L∇ ·
[
(c − c̃)n

]
, (7)

T3 = −∇ ·

(
νt

S ct
∇Σ

)
+ ∇ ·

(
τS 0

Lc̃〈n〉sΣ
)
, (8)

T6 = ∇ ·

(
ρu

ρ
S 0

L〈n〉sΣ
)
, (9)

where νt and S ct are the turbulent viscosity and a tur-
bulent Schmidt number, respectively. τ = ρu/ρb − 1 is
the thermal expansion rate across the flame front and
ρb is the burned gases density. T6 does not act as a
source term but it describes the planar propagation of
iso-surfaces of the progress variable at the laminar flame
speed with a correction to take into account thermal ex-
pansion across the flame front. This term becomes neg-
ligible in very turbulent flows.

The displacement speed S d given by Eq. (4) can be
decomposed into three components [1, 49], as S d = S r+

S n + S t. These terms correspond to the contributions of
reaction S r, normal diffusion S n and tangential diffusion
S t, respectively, and are defined as:

S r =
ω̇c

ρ|∇c|
, (10)

S n = −
1

ρ|∇c|
n · ∇(ρD|∇c|), (11)

S t = −Dκ, (12)
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where κ = ∇ ·n measures the local flame curvature. The
statistical behavior of the three components of the dis-
placement speed are discussed in detail in section 4.5,
while models for the displacement speed (T2) and for
the stretch due to curvature (T5) are proposed and dis-
cussed in section 5.1.

3. Direct numerical simulation set-up

For this study, the DNS computations were conducted
using the AVBP code [50], which was already used for
DNS in [51]. It solves the three-dimensional compress-
ible Navier-Stokes equations on unstructured and hybrid
meshes. The AVBP numerical schemes are based on the
cell-vertex method. The convective scheme used in this
study is the finite-volume Lax-Wendroff scheme (LW),
2nd order in space and time. In order to make sure the
limited order of LW does not alter the flame statistics,
one simulation was run with the 3rd order space and time
finite-element Tayor-Galerkin scheme [52]. As no sig-
nificant difference in the flame statistics was observed,
the LW scheme was preferred for its lower CPU cost.
The flow configuration is first introduced with a de-
scription of the chemistry. Then, the turbulence forcing
method is described. Finally, the different cases simu-
lated are presented.

3.1. Flow configuration and chemistry
Figure 1 presents a schematic view of the com-

putational domain, which is similar to that of Savart
et al. [39–41] or Aspden et al. [53, 54]. A statistically-
flat flame interacting with a turbulent field is chosen,
using a forcing method described in section 3.2. In
this configuration the inlet and outlet boundaries are
specified in the direction of the mean flame propaga-
tion. The transverse boundaries are considered to be
periodic. The outflow boundary is taken to be partially
non-reflecting and specified according to the Navier-
Stokes Characteristic Boundary Conditions (NSCBC)
technique [55]. For each simulation, the inflow velocity
Uin is constant throughout the simulation and selected
to match the turbulent flame speed S T . In practice,
the flame drifts slightly, but the velocity of the drift
Uin − S T is small and constant in average. This allows
to compute the flame statistics considering at each in-
stant t the space origin as x0(t) = x0(t = 0)+ (Uin−S T )t.

The domain width is chosen as L ≈ 15δL, where
δL = (Tb − Tu)/max(|∇T |) is the thermal flame thick-
ness with Tu and Tb the temperature in the fresh and
burnt gases, respectively. The cell size ∆x used is cho-
sen for each simulation as the minimum length allowing

to get at least 20 grid points within the thermal thickness
and to get at least a length ratio ηk/∆x ≥ 0.5 (where ηk

is the Kolmogorov length scale).
The iso-octane/air kinetics are described by a two-step
Arrhenius mechanism with 6 species:

C8H18 + 8.5O2 → 8CO + 9H2O, (13)

CO +
1
2

O2 
 CO2. (14)

This scheme was developed for piston engine simula-
tions and validated using both the laminar flame speed
S 0

L and the laminar flame thickness δ0
L for the follow-

ing fresh gases conditions: 323 K, a constant pressure
of 1 atm and an equivalence ratio ranging between 0.5
and 1.2 [56]. The forward reaction rates k f 1 and k f 2 for
C8H18 oxidation and for CO-CO2 equilibrium, respec-
tively, are expressed below.

k f 1 = A1T b1 e−
Ea,1
RT [C8H18]nC8H18 [O2]nO2 ,1 , (15)

k f 2 = A2T b2 e−
Ea,2
RT [CO]nCO [O2]nO2 ,2 . (16)

Ai is the pre-exponential factor, bi is the temperature ex-
ponent, Ea,i is the activation energy of reaction i, and
nk,i are the reaction exponents for species k in reac-
tion i (Table 1). R is the ideal gas constant equal to
8.314 J.K−1.mol−1.
Using a simplified mechanism with only few species
might alter the effect of differential diffusion. For
this reason, the influence of the chemical mechanism
was investigated by performing a simulation of case
B (see below for cases description) with an analyti-
cally reduced chemistry (ARC) mechanism: from a re-
duced synthetic paraffinic kerosene (SPK) mechanism
(48 species and 416 reactions) offering the possibil-
ity to model lean premixed combustion of air and iso-
octane, a reduction procedure was applied using the
YARK tool [57] which includes skeletal reductions and
quasi-steady state (QSS) approximations. The final
mechanism, called ISOOCT18, contains 18 transported
species and 13 QSS species [58]. It has been validated
for the following fresh gases conditions: temperature
300-450 K, equivalent ratio 0.7-1.0 and ambient pres-
sure of 1 atm. Validation was performed using laminar
flame speeds computed with the SPK mechanism [59]
using Cantera.
Finally, the effect of preferential diffusion in the TRZ
regime is investigated conducting simulations twice for
each turbulence level, as proposed in Savard et al.
in [18, 39–42]: once considering differential diffusion
with non-unity Lewis numbers (Le > 1) and once
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Figure 1: Schematic view of the flow configuration of the DNS for forced turbulence simulations.

Table 1: Arrhenius parameters for the C8H18 2-step mechanism. The activation energy Ea,i is expressed in [cal/mol].

Case LeFuel reaction Ai bi Ea,i nk

Le > 1 2.9

C8H18 5.443 · 1012 0.1 3.6 · 104 nC8H18 = 1.1
oxidation nO2,1 = 0.54
CO-CO2 2.0 · 109 0 1.4 · 104 nCO = 1.0
equilibrium nO2,2 = 0.5

Le = 1 1.0

C8H18 9.150 · 1012 0.1 3.6 · 104 nC8H18 = 1.1
oxidation nO2,1 = 0.54
CO-CO2 3.327 · 109 0 1.4 · 104 nCO = 1.0
equilibrium nO2,2 = 0.5

with the Lewis number for all the species set to unity
(Le = 1). The same laminar flame speed and thickness
for both cases were achieved adapting the Arrhenius co-
efficients of the 2-step mechanism for the Le = 1 case
as shown in Table 1.
For the whole study, a stoichiometric (Φ = 1) C8H18/air
mixture is considered, at a temperature Tu = 300 K
and a pressure Pu = 1 atm, leading to a laminar flame
speed S 0

L = 0.366 m/s and a thermal flame thickness
δL = (Tb − Tu)/max(|∇T |) = 385 µm. Note that the
laminar flame thickness δL computed using ISOOCT18
mechanism is larger (560 µm).

3.2. Turbulence forcing method

In this study turbulence is supposed to be homoge-
neous and isotropic. In the absence of velocity field
forcing, the decay of the turbulent kinetic energy (TKE),
k, can be estimated from theory considering dk/dt =

−k/τt, with τt the eddy turnover time (τt = lt/u′ with u′

the characteristic velocity of the integral scale and lt the
longitudinal length of the integral scale). As reported
in Table 2, the Damköhler number Da = τt/τ f (where
τ f = δL/S 0

L is the flame characteristic time) is quite in-

ferior to unity for most cases considered here. As a con-
sequence, a decaying turbulence set-up would not allow
the flame to adapt to turbulence, therefore leading to un-
realistic statistics. For this reason, as done previously
by many authors [39–41, 53, 54], a forced turbulence
is considered, allowing to reach a statistically steady
state flame and thus meaningful flame statistics. In this
study, a spectral forcing method proposed by Eswaran
and Pope [60] is used to offset the decay of TKE and
maintain the turbulence characteristics.
This method generates a stochastic time-evolving forc-
ing vector f. This vector, introduced as a source term
in the momentum equation, ρf, generates energy at the
largest scales of the domain. When the rate of energy
introduced by the forcing technique equals the rate of
dissipation, a statistically steady state is reached, with
a full spectrum of scales ranging from the forcing one
down to the Kolmogorov scale. However, this forcing
term introduces some heating by viscous dissipation of
the turbulent kinetic energy, which should be avoided.
For this purpose a modified energy source term S e is de-
fined, according to the study of Paoli and Shariff [61],
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with:
S e = ρf · u − 〈ρf · u〉V , (17)

where 〈〉V is the averaging operator over the whole do-
main.
With the forcing method used, HIT is imposed in the
volume defined in Fig. 1 where the flame is contained. It
can be argued that this forcing term being artificial and
imposed at the flame location, this approach might lead
to erroneous flame statistics. For this purpose, one ad-
ditional simulation was performed suppressing the forc-
ing for c < 0.05, as suggested in [62]. This means that
a large part of the preheat zone and the whole heat re-
lease region are free of forcing in these simulations. A
comparison of the two forcing methods is presented in
Appendix A.

3.3. Simulation parameters

Three cases A, B and E are investigated with increas-
ing Karlovitz number while keeping a nearly constant
integral length scale. This point is important as it means
that the flame will see the same largest scales, while the
Kolmogorov scale decreases from A to E, therefore in-
creasing the range of scales interacting with the flame
structure.

The Karlovitz number, defined as Ka =

(u′/S 0
L)3/2(lt/δL)−1/2, varies from 2.9 to 46.2 as seen in

Table 2. Case A is expected to be representative of the
upper part of the flamelet regime. Cases B and E were
selected to fall inside the TRZ regime. These cases are
performed with differential diffusion (Le > 1) and the
2-step chemistry presented in section 3.1. According
to Matalon et al. [63], the effective Lewis number of
a stoichiometric mixture is Lemix = (LeOx + LeFuel)/2,
where LeOx and LeFuel are Lewis numbers of the oxi-
dant and fuel, respectively. So, considering LeOx = 1.1
and LeFuel = 2.9, the stoichiometric C8H18/air mixture
has an effective Lewis number Lemix = 2. Cases A1,
B1 and E1 are performed with the same turbulence forc-
ing parameters as A, B and E, but using unity Lewis
numbers for all species (Le = 1) and the modified 2-
step chemistry. The integral length scale and the turbu-
lence intensity reported in Table 2 are computed from
the turbulent kinetic energy (TKE) k and the dissipation
rate ε, extracted from DNS averaging fresh gas charac-

teristics: k = 〈u′iu
′
i〉/2 = 3u′2/2 and ε = 2ν

〈
S i j

∂u′i
∂x j

〉
with S i j =

(
∂u′i
∂x j

+
∂u′i
∂xi

)
. Assuming isotropic turbulence,

the characteristic velocity of the integral scale is com-
puted as u′ =

√
2k/3. Then, the integral length scale

can be estimated as lt = u′3/ε. This definition for the

integral length scale is related to the longitudinal inte-
gral lengths Li

ii as follows [64]: Li
ii = (βnlt/3)

√
2/π,

where n is the dimension of the simulation equal to 3,
and β = π/2 when n = 3. This leads to Li

ii ≈ 0.4lt.
As seen in Table 2, the turbulence intensity and integral
length scale slightly differ between unity and non-unity
Lewis number cases. Case B-ARC is identical to case
B but performed with the ARC mechanism in place of
the simplified 2-step mechanism in order to evaluate the
importance of the chemistry description on flame statis-
tics. All these cases are represented with plain symbols
in the Peters-Borghi diagram in Fig. 2 along with previ-
ous DNS of the literature.

0.1 1 10 100 1000

t
/Sl

1

10

100

1000

u
’ t
/S
L0

L

0

Figure 2: Some direct numerical simulations (DNS) of high Karlovitz
turbulent premixed flames: � DNS from [11], ♦ DNS from [53, 54,
65–68], 4 DNS from [34], . DNS from [30, 69], O DNS from [6],
/ DNS from [36], ∗ DNS by [17, 70], and + DNS from [18, 39–43].
Plain symbols represent the DNS conducted in the current study: •
Le > 1 and � Le = 1 cases.

4. DNS analysis

4.1. Global flame properties

Fig. 3 presents instantaneous color fields of the heat
release rate (ω̇′T ) normalized by its maximum value and
iso-contours of c on two-dimensional slices in the x-
y mid-plane. The heat release rate is defined follow-
ing [46] as ω̇′T = −

∑N
k=1 hkω̇k with ω̇k the reaction

rate of species k and hk the mass enthalpy of species
k. For the unity Lewis number simulations, the heat re-
lease rate shows qualitatively weak variations along the
flame front, even for cases B1 and E1. At the same time
these cases present c iso-contours that are not parallel
to each other for c values approximately smaller than
0.4, corresponding to the preheat zone. An increase of
the Karlovitz number (case A1 to E1) seems to slightly
thicken the preheat zone when preferential diffusion is
not accounted for.
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Table 2: The DNS set-up for the simulations of the interaction between a planar flame and forced homogeneous isotropic turbulence.

Case LeFuel u′/S0
L lt/δL Ret Ka Da δL/∆x ηk/∆x

A 2.9 3.0 3.3 89.6 2.9 1.1 20 1.7
B 2.9 12.5 4.3 489.0 21.4 0.3 20 0.6
E 2.9 21.1 4.4 833.2 46.2 0.2 31 0.7
A1 1.0 2.5 5.1 74.8 2.7 1.0 20 1.8
B1 1.0 11.9 4.9 530.7 18.5 0.4 20 0.7
E1 1.0 22.1 5.1 1016.1 46.2 0.2 31 0.7
B-ARC 2.9 12.6 4.4 501.3 21.2 0.4 31 0.6

subscript 1 designates simulation with unity Lewis numbers.

When differential diffusion is taken into account, the
thickening of the flame front with increasing Ka is
much more pronounced than in unity Lewis number
cases. Indeed, for case A, which is at the upper limit
of the flamelet regime (Ka = 2.9), the contours of
progress variable are wrinkled but remain parallel to
each other. For cases B and E, which are in the TRZ
regime (Ka = 21.4 and Ka = 46.2, respectively), c
iso-contours on the unburned gases side of the flame
are qualitatively more wrinkled than the ones close to
the burnt gases side. Moreover, they remain globally
parallel to each other for c values approximately larger
than 0.7, that is, in the heat release region. In addi-
tion, the fluctuations of heat release rate in cases B and
E are much larger than in cases B1, E1 and A, where
ω̇′T /ω̇

′ max
T decreases down to 0.1. Previous DNS in the

literature [36, 37, 40–42, 44, 53, 65, 66] also observed
such events. The Klimov-Williams criterion states that
for Ka > 1, flames are subject to extinction. As present
regimes go well above Ka > 1, it is not surprising that
locally in the turbulent flow, a strain rate larger than
this quenching rate is observed and induces local ex-
tinctions.
Thus, this qualitative analysis shows that an increase of
the turbulent intensity first increases the wrinkling of
the flame. As already observed by many authors [39–
41, 53, 54], the second consequence is a thickening of
the preheat zone of the flame, which appears more im-
portant when the differential diffusion is taken into ac-
count. In addition, turbulence also seems to impact the
heat release rate by increasing its fluctuations, also ob-
served by Savard et al. [40–42]. As for the thickening,
this last effect is less important for unity Lewis num-
bers.
Figure 4 shows the temporal evolution of the flame sur-

face defined as AT =
∫
V
|∇c|dV . This surface is well

defined and commonly used to compute the total flame
surface in the flamelet regime. Its relevance in the TRZ
regime is questionable but AT is used in the present

study as a reference allowing comparison of flames in
the flamelet and TRZ regimes.

As expected, each case shows a transitory phase
followed by a quasi steady-state with AT oscillating
around an average value. To verify that the flames
are stationary, the temporal averaged rate of change
of the flame surface (1/AT )dAT /dt was verified to
be close to zero. Additionally, the temporal evolution
of the mean flame brush thickness, δT , is shown in
Fig. 5. This thickness is approximated, as suggested
by Lipatnikov and Chomiak [3], as δT = max(|∇c̃|)−1,
where c̃ is the y-z averaged progress variable at a given
instant evaluated following the procedure in Appendix
D. Figure 5 shows that each case presents a transitory
phase followed by a quasi steady-state with δT oscil-
lating around an average value. This observation is
not consistent with experimental studies reported by
Lipatnikov and Chomiak [3], where δT increased with
time. However, Poludnenko and Oran [17, 70] observed
in their DNS study, similar results as those in Fig. 5
when turbulence forcing is used.

From these observations, the quantities of interest ex-
tracted from DNS results are temporally averaged start-
ing from the physical time when the coefficient of varia-
tion of the flame surface, which is the standard deviation
divided by the mean value has reached 90% of its final
value. Statistics are computed after the transient phase
using at least 15 eddy turnover times τt = lt/u′, to get
sufficient convergence.

4.2. Analysis of the turbulent flame velocity and wrin-
kling

From a macroscopic point of view the main effect of
turbulence on the flame is to increase the propagation
speed S T defined as:

S T =
1

ρuA0

∫
V

ω̇cdV, (18)
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(a) Case A1

(b) Case B1

(c) Case E1

(d) Case A

(e) Case B

(f) Case E

0 0.2 0.4 0.6 0.8 1

Figure 3: Two-dimensional slices in x-y mid-plane of the flames colored with the heat release rate normalized by its maximum value (ω̇′T /ω̇
′ max
T )

and with contours of the progress variable from c = 0.1 to c = 0.9 (white lines), defined as the reduced temperature: (a) to (c) for unity Lewis
number cases, and (d) to (f) for non-unity Lewis number cases.

where ω̇c = ω̇′T /(〈Cp〉(Tb − Tu)) is the chemical source
term with ω̇′T the heat release rate, ρu the density
of the fresh gases, 〈Cp〉 is the mean heat capacity
within the flame front and A0 the laminar flame sur-
face corresponding to the y-z cross section of surface L2.
Damköhler attributed this acceleration to the increase in
the flame front surfaceAT by wrinkling, leading to:

S T

S 0
L

∝
AT

A0
, (19)

The proportionality between the increase of the propa-
gation speed and the flame wrinkling Ξ = AT /A0, is
often quantified through the effect of the flame stretch

using the stretch factor defined by:

I0 =
S T

S 0
LΞ
, (20)

The evolution of the flame wrinkling (circles) and
propagation speed (plain triangles) are plotted as func-
tions of Ka in Figs. 6b and 6a, for Le > 1 and Le = 1
cases, respectively. For Le > 1 cases, Ξ and S T reach
saturation simultaneously at a Ka corresponding to case
B, while for Le = 1 cases the quantities even decrease
between B and E. Such an effect of the Lewis number
was for instance observed in the experiment of Yang et
al. [4]. The maximum wrinkling and turbulent flame
speed of Le = 1 cases are also approximately 3.5 larger
than that of Le > 1 cases. This can be considered
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Figure 4: Temporal evolution of the turbulent flame surface AT nor-
malized with the laminar flame surface A0 (a) for cases with Le = 1
and (b) for cases with Le > 1.

the major impact of preferential diffusion on turbulent
flames in the TRZ regime as mentioned in [3], and jus-
tifies the need to include preferential diffusion in the
modeling of this regime, as shown by many previous
experimental [12–14] and DNS [42, 67] studies. Note
that S T differs for Le = 1 and Le > 1 cases even for
the flamelet cases. This might be due to the fact that
case A is at the upper limit of flamelet regime, showing
a Karlovitz number of 2.9. Such a value implies that the
flame is subject to a stretch sufficiently intense to alter
its displacement speed. Nevertheless, case A is still in
the flamelet regime as its structure still corresponds to
that of a disturbed laminar flame, as defined by Lipat-
nikov and Chomiak [3].

The evolution of the stretch factor I0 with Ka is
shown in Fig. 6c. For unity Lewis number cases, I0
remains close to unity, even at the largest Ka, which
corresponds to the proximity of Ξ and S T /S L in Fig. 6a.
For non-unity Lewis cases, I0 is already smaller than
unity (0.7) for case A and decreases only slightly down
to 0.6 for case E. These results indicate, in line with pre-
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(b) Le > 1
Figure 5: Temporal evolution of the mean flame brush thicknessδT
normalized with the laminar flame thickness δL (a) for cases with Le =

1 and (b) for cases with Le > 1.

vious DNS [18, 40, 42, 66] that the local consumption
speed of unity Lewis number flames is weakly affected
by stretch, even in the TRZ regime, while flames show-
ing preferential diffusion are affected in a larger extent.
This difference of behavior is illustrated by the larger
fluctuations of the heat release rate for Le > 1 cases
compared to Le = 1 cases, as observed in Fig. 3. These
fluctuations indicate that the local stretch rate strongly
impacts the consumption speed. This aspect will be
studied in the present paper considering the statistics of
the displacement speed S d. At the same time, although
the average displacement (or consumption) speed is not
that of the laminar flame, it still remains close to it. This
result, in agreement with previous DNS [6, 11, 18] does
not agree with recent analysis of experimental results
[15] which conclude that this speed strongly increases
in the TRZ regime. As discussed in the introduction,
this topic requires further research.

The evolution of the wrinkling Ξ∗ on an iso-surface
c∗ = 0.8, corresponding to the reaction zone, is also
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Figure 6: Evolutions of Ξ, Ξ∗ and S T /S 0

L with Ka using circle, square and triangle symbols, respectively, (a) for cases with Le = 1 and (b) for
cases with Le > 1. (c) Evolutions of the stretch factor I0 with Ka for Le > 1 and Le = 1 cases in triangle and diamond symbols, respectively.

plotted in Figs. 6b and 6a. This wrinkling is defined as:

Ξ∗ =
A∗T

A0
, (21)

where A∗T = (1/τ)
∫ τ

0

∫
V
|∇c(t, x)|δ (c(t, x) − c∗) dxdt is

the area of the iso-surface c∗ = 0.8, with τ the period of
the quasi-steady state phase retained for statistics com-
putation. At the beginning of this phase, the time is set
to 0.

As expected from previous DNS [18, 40, 42, 66],
when Le = 1 and for case A, Ξ∗ and Ξ are almost sim-
ilar. This is in agreement with the flamelet assumption
considering the flame infinitely thin, leading to a gen-
eralized flame surface AT close to the area of any iso-
surface of progress variable. Figure 6b shows a much
better agreement of Ξ∗ with S T than Ξ for high Ka,
which suggests that in the reaction zone the flamelet as-
sumption is still valid.

4.3. Analysis of the thickening of the flame front

To quantify the apparent thickening of the flame, the
thickening factor Θ introduced by Aspden et al. [53] is

examined.

Θ(c) =
〈|∇c|〉re f

c

〈|∇c|〉c
, (22)

where 〈|∇c|〉c is the mean value of the progress variable
gradient conditioned at c. In this study the normaliza-
tion is made using the gradient of the laminar flame for
both non-unity and unity Lewis number cases, while
in [53] the normalization is performed using the con-
ditional mean of the gradient for the case Ka = 1.

In Fig. 7a, the evolution of Θ with the progress vari-
able is shown for unity Lewis number cases. Case A1
shows an almost constant value equal to 1.5, which in-
dicates that the flame is uniformly thickened compared
to the laminar flame. Cases B1 and E1 present a thick-
ening on the fresh gases side (c < 0.5) up to a factor
2 compared to case A1, but Θ converges to the value
of case A1 when c > 0.5. This observation was already
made by Aspden et al. in [53], where the thickening fac-
tor of a methane flame collapsed to that of a flame in the
flamelet regime. So, when Ka increases, the flame is
thickened on the fresh gases side but remains thin for
c > 0.5 for unity Lewis number cases as observed in
experimental studies [71, 72].
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Figure 7: Thickening factor Θ(c) (a) for cases with Le = 1 and (b) for
cases with Le > 1.

The same quantity is shown for non-unity Lewis
number simulations in Fig. 7b. For case A, Θ reaches
values close to 5-6 for c < 0.3 and c > 0.7, but remains
close to 2 elsewhere. The unexpected thickening ob-
served on the fresh gases side might be due to the fact
that case A is at the upper limit of the flamelet regime.
Thus, the difference in thickness is attributed to the fact
that even for case A, the flame is highly stretched, which
will be shown in the next section through its displace-
ment speed S d different from S 0

d. As a consequence,
its thickness is not expected to correspond to that of a
laminar unstretched flame. Compared to case A, cases
B and E present an even larger thickening on the fresh
and burnt gases sides, which is coherent with the ob-
served non-parallel progress variable iso-surfaces in the
preheat zone (Fig. 3). However, in the reaction zone
(0.5 < c < 0.9 as seen in Fig. 8) the increase of the
thickening compared to case A is relatively low, approx-
imately 2.4 for case B and 2.6 for case E.

Figure 8 shows the conditional mean of the progress
variable chemical source term ω̇c, normalized by the
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Figure 8: Conditional means of the chemical source term ω̇c(c), nor-
malized by the peak chemical source term of the 1D laminar flame, as
a function of progress variable: (a) for cases with Le = 1, and (b) for
Le > 1 cases.

peak chemical source term of the 1D laminar flame, as a
function of the progress variable c for each case. As de-
scribed in section 3, the flames with unity Lewis number
and non-unity Lewis number have the same S 0

L and δL.
As a consequence, they present similar laminar chemi-
cal source term profiles as seen in Fig. 8. The profiles
of cases A1, B1 and E1 are very close to those of the
1D laminar flame, as observed in previous DNS stud-
ies. This suggests that with unity Lewis numbers, al-
though the flame is slightly thickened, turbulence does
not impact the inner flame structure significantly. It
is noteworthy that, as turbulence intensity is increased,
the fluctuations of the progress variable chemical source
term are significantly enhanced, as observed in Fig. 3.

On the contrary, the non-unity Lewis number cases
show a decrease of the chemical source term when Ka
increases, from a maximum of 0.55 for case A down to
0.43 for case B. However, when Ka increases further,
the inverse tendency is observed with an increase of
ω̇c/max(ω̇lam

c ) up to 0.48 for case E. But the number
of studied cases here is too low to provide a clear view
on the evolution of this maximum as a function of
Ka. This phenomenon was also observed by Lapointe
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et al. [42], who suggested that as turbulent mixing is
enhanced, differential diffusion effects are reduced. It
can also be remarked that although peak values are
slightly different for cases A, B and E, the chemical
source term assumes very similar shapes for the three
cases when c > cpeak, with cpeak ≈ 0.7 corresponding to
the maximum reaction rate. As observed by Lapointe
et al. [42], cpeak of the turbulent flames shifts from 0.8
to 0.7 for Le > 1, which is due to preferential diffusion
effects. This suggests that the inner structure of high
Karlovitz flames B and E remains close to the structure
of a flame in the flamelet regime (A) on the burnt gases
side, in line with the definition of the TRZ regime. The
broadening of the thickening factor on the burnt gases
side, in Fig. 7b, may be due to the normalization by the
laminar case for which the temperature profile has a
short tail (high gradients), resulting in higher Θ values.
These observations are in good agreement with the
two-dimensional fields of Fig. 3.

The analysis proposed by Peters [1] considering a
thin reaction zone for the TRZ regime is globally ver-
ified in the present DNS, but the impact of the Lewis
number needs to be added: when Le = 1 perturbations
of the reaction zone can be neglected, while the flame
is strongly thickened and the reactivity decreased for
Le > 1.

4.4. modeling implications

The progress variable source term corresponding to
the RHS of Eq. (3) is the first quantity of interest for
modeling. Its integral over the whole domain Ωtot, is
given by Eq. (23):

Ωtot =

∫
V

ρS d |∇c|dV = 〈ρS d〉sAT , (23)

where 〈ρS d〉s is the surface averaged displacement
speed and AT is the flame surface, both defined with
the generalized approach of the CFM model.
Although Ωtot is related to the flame displacement speed
S d, it equals the total progress variable reaction rate∫
V
ω̇cdV because the integral of the diffusive contribu-

tion ∇·
(
ρD∇c

)
to the displacement speed, Eq. (5), sums

to zero. This equality was verified in the present study.
As shown in previous sections, for Le > 1 cases, the

flame structure is very perturbed in the preheat zone
while only moderately in the reaction zone. This sug-
gests that modeling a particular c iso-surface located on
the reaction zone might be more relevant than consid-
ering all iso-surfaces. This is why we compare Ωtot to

the progress variable source term Ωc∗ conditioned on a
c∗ iso-surface:

Ωc∗ =

∫
V

ρS d |∇c|δ(c − c∗)dV = 〈(ρS d)∗〉sA∗T . (24)

In Eq. (24), δ(c) is the Dirac function, 〈(ρS d)∗〉s andA∗T
are the surface averaged density weighted displacement
speed at c = c∗ and the area of the c∗ iso-surface, re-
spectively. Note that Ωc∗ is not equal to the reaction rate
on the iso-surface c = c∗ (

∫
V
ω̇cδ(c − c∗)dV).
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Figure 9: The evolution Ωc∗ , 〈ρS d〉
∗
s and A∗T normalized by Ωtot ,

〈ρS d〉s andAT , respectively, as functions of the progress variable for
case B.

Figure 9 presents the evolution of Ωc∗ , 〈(ρS d)∗〉s and
A∗T normalized by Ωtot, 〈ρS d〉s andAT , respectively, as
functions of c∗ for case B. The stretch factor I∗0 at c∗,
defined using Eq. (25), is also plotted in Fig. 9.

I∗0 =
〈(ρS d)∗〉
ρuS 0

L

. (25)

The first observation is that Ωc∗ is equal to Ωtot for all
iso-surfaces. This result is in fact expected because the
flame being statistically stationary, all iso-surfaces need
to advance at the same velocity. On the other hand, A∗T
decreases substantially with increasing c∗. This result is
consistent with Fig. 3 which shows a strong distortion
of c∗ iso-surfaces towards c∗ = 0, corresponding to a
strong increase of the flame surfaceA∗T . This illustrates
once again that in the TRZ regime, c∗ iso-surfaces are
not parallel to each other for low values of c∗. As shown
by Eq. (24) larger values of A∗T at small c∗ need to be
compensated by smaller displacement speeds, i.e., by
smaller values of I∗0 .

These results show that the modeling of A∗T and
〈(ρS d)∗〉s will depend on the choice of c∗ in the TRZ
regime. Figure 9 shows that I∗0 increases significantly
when c∗ increases from 0.2 to 0.8 and that it seems to
reach a plateau, indicating again that in the reaction
zone, progress variable iso-surfaces remains approxi-
mately parallel, unlike in the preheat zone. This is why
in the rest of this study the flame will be studied through
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an iso-surface c∗ = 0.8, close to the maximum heat re-
lease rate iso-surface.
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Figure 10: Evolutions of 〈K∗〉s = (1/A∗) (dA∗/dt), 〈a∗T 〉s and
〈(S dκ)∗〉s with Ka using plus, circle and triangle symbols, respec-
tively: (a) for cases with Le = 1 and (b) for cases with Le > 1.

To check the equilibrium state on this particular iso-
surface, the flame stretch balance at c∗ = 0.8 is shown
in Fig. 10. For each simulation the rate of change ofA∗

is close to zero. This figure also shows that the source
terms of flame surface, the tangential strain rate 〈a∗T 〉s,
and the stretch due to curvature 〈(S dκ)∗〉s compensate
exactly, and show a quasi linear increase with Ka.

As seen in Fig. 6, the values of the wrinkling Ξ∗ are
smaller than Ξ and closer to S T /S 0

L. This is coherent
with the fact that I∗0 is closer to unity than I0, and justi-
fies the choice of the iso-surface c∗ = 0.8 for modelling,
rather than the generalized flame surface.

4.5. Analysis of the displacement speed on an iso-
surface

A more thorough analysis of the displacement speed
is now presented with a priori modeling as an objective.
In the following, the exponent ∗ refers to the value of
variables on the iso-surface c∗ = 0.8.
Fig. 11 presents the mean displacement speed 〈S ∗d〉κ∗
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Figure 11: Evolution of the conditional mean of the displacement
speed 〈S ∗d〉κ∗ , normalized by the laminar flame speed S 0

d at c = c∗,
with curvature κ∗: (a) for cases with Le = 1 and (b) for cases with
Le > 1. The error bars represent the standard deviation of S ∗d from the
DNS.

conditioned on κ∗, the flame curvature. The displace-
ment speed is normalized with S 0

d = ρuS 0
L/ρ

∗, the dis-
placement speed of the planar laminar flame at c = c∗.
The standard deviation of S ∗d from the DNS is also re-
ported by error bars. As observed in previous studies
for Le > 1 [7, 30, 34, 35, 73], Fig. 11b shows a negative
correlation between displacement speed and curvature.
It also shows an increase of the slope with the Karlovitz
number. Case B-ARC performed using an ARC mech-
anism is seen to be very close to case B performed with
the 2-step mechanism. This indicates that the influence
of curvature on the displacement speed is hardly sensi-
tive to the level of chemistry description. In Fig. 11a the
same results are presented for Le = 1 cases: the nega-
tive correlation is also observed but the slope is smaller,
and is marginally affected by the increase of the turbu-
lence intensity.
To further analyze the displacement speed, the condi-
tional statistics of the different contributions to S ∗d, as
defined in Eqs. (10) to (12), are plotted as a function
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Figure 12: Evolution of the conditional mean of the components of the displacement speed, normalized with the laminar flame speed S 0

d at c = c∗,
with curvature κ∗: (a) 〈−D∗thκ〉κ∗ for all the cases, (b) 〈S ∗r + S ∗n〉κ∗ for cases with Le = 1 and (c) 〈S ∗r + S ∗n〉κ∗ for cases with Le > 1. The error bars
display the standard deviation of S ∗r + S ∗n from the DNS.

of curvature in Fig. 12. Fig. 12a shows the tangential
diffusion 〈S ∗t 〉κ∗ = −D∗κ∗. The thermal diffusivity D∗

depends on the mixture composition and temperature
but is assumed to be the same for Le = 1 and Le > 1
flames. With this reasonable hypothesis, differences ob-
served on 〈S ∗d〉κ∗ are entirely due to the sum of 〈S ∗r 〉κ∗
and 〈S ∗n〉κ∗ .
Figs. 12c and 12b present the sum 〈S ∗r + S ∗n〉κ∗ as a func-
tion of curvature for the same flames. The evolution of
〈S ∗r +S ∗n〉κ∗ differs from 〈S ∗d〉κ∗ mainly for positive curva-
ture where the correlation is positive between 〈S ∗r +S ∗n〉κ∗
and κ∗. However, it can be observed that as for 〈S ∗d〉κ∗ ,
non-unity Lewis number flames show increasing slopes
for increasing Ka, while Le = 1 flames show weak sen-
sitivity to Ka.
At κ∗ = 0, we could expect 〈S ∗d〉κ∗/S

0
d to be close to

unity, which is not the case: for Le > 1, it ranges be-
tween 0.37 and 0.8, while for Le = 1 flames, it takes
larger values close to 0.85. Figure 13 shows that the
mean tangential strain rate conditioned with curvature,
〈a∗T 〉κ∗ , is not zero at κ∗ = 0 meaning that the flame is
positively strained. Moreover, the standard deviation of
a∗T from the DNS reported as error bars in Fig. 13 are
very large, particularly for cases E and E1, and might
also be a reason for 〈S ∗d〉κ∗ to be far from S 0

d at κ∗ = 0.

This dependency of 〈S ∗r +S ∗n〉κ∗ to turbulence intensity is
in agreement with previous studies [30, 34–37, 73]. Fig-
ure 12 suggests that analyzing the response of the cur-
vature alone is not sufficient and a double conditioning
on both curvature and strain is required, as presented in
Fig. 14. The joint probability density function of curva-
ture and strain rate is also plotted in this figure by black
solid lines.
The correlation of a∗T and κ∗ is reported in Table 3. It
is evaluated using Pearson’s correlation coefficient [74],
defined as:

rX,Y =

∑n
i=1 (Xi − 〈X〉) (Yi − 〈Y〉)√
(Xi − 〈X〉)2

√
(Yi − 〈Y〉)2

, (26)

where (Xi,Yi) is a sample pair of data, 〈〉 denotes the
sample mean, and n is the sample size. As already ob-

Table 3: Pearson’s correlation coefficient, ra∗T ,κ
∗ , between strain rate

a∗T and curvature κ∗ for the flames presented in this paper.

Case A B E A1 B1 E1

Ka 2.9 21.4 46.2 2.7 18.5 46.2
ra∗T ,κ

∗ -0.75 -0.42 -0.23 -0.61 -0.43 -0.32

served in the literature [75], the correlation of a∗T and
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Figure 13: Evolution of the conditional mean of tangential strain
〈a∗T 〉κ∗ with curvature κ∗:(a) for cases with Le = 1 and (b) for cases
with Le > 1. The error bars display the standard deviation of a∗T from
the DNS.

κ∗ is negative and decreases as Ka increases. At low
Ka, the correlation is still strong for case A and al-
ready weaker for case A1. As the Karlovitz number in-
creases, the correlation decreases similarly for Le = 1
and Le > 1 flames.
Figure 14 illustrates the complexity of the dependency
of the displacement speed with strain and curvature.
The evolution of 〈S ∗r + S ∗n〉(a∗T ,κ∗) with κ∗ (not displayed
for the sake of brevity) presents the same trend as
the evolution of the conditional mean 〈S ∗r + S ∗n〉κ∗ in
Figs. 12c and 12b but the slopes depend on the value
of a∗T . The evolution of 〈S ∗r + S ∗n〉(a∗T ,κ∗) with a∗T seems
linear with a slope that depends on Ka and differential
diffusion (through the Lewis number). Thus, when the
flame is stretched, the displacement speed responds dif-
ferently to tangential strain and curvature.
Figure 14 shows that a model for S ∗d needs to account
for both strain rate a∗T and curvature κ∗. An expres-
sion of S ∗d accounting for both strain and curvature has
been proposed for a long time for laminar flames [76],
and was more recently adapted for turbulent flames by
Dave and Chaudhuri [27]. We propose an expression
for S ∗d adapted from the work of Peters [1] for the TRZ

regime. Peters [1] modelled the laminar flame speed as
S L = S ∗L−Dκ, where D is the diffusion coefficient of the
deficient species. Peters [1] argues that S ∗L, which cor-
responds to S ∗r +S ∗n, can be approximated as S 0

d in a first
step, but should account for curvature, while D should
also depend on curvature. The observations of Fig. 14
lead to the conclusion that specific Markstein lengths
for strain rate and curvature should be introduced like in
laminar flame expressions for S ∗r + S ∗n. Although there
is no theoretical justification for that, previous studies
[31–33, 40–42] developed the idea that the flame struc-
ture under strong turbulent conditions might be repre-
sented in average as that of a laminar flame with modi-
fied diffusivities and Markstein lengths. Following this
idea, the following expression for S ∗d = S ∗r + S ∗n − D∗κ∗

is retained:

S ∗d = S 0
d − L

t
aT

a∗T − L
t
κ(S dκ)∗ − D∗κ∗, (27)

where Lt
aT

and Lt
κ are turbulent Markstein lengths for

strain and curvature that need to be defined. Note that
the Markstein lengths used in Eq. (27) play the same
role as the Markstein lengths used in the theory of per-
turbed laminar flames, but they are evidently not ob-
tained in the limit of asymptotically small strain rate
or curvature like laminar values. In particular, while in
laminar asymptotic theories, this limit is reached by in-
creasing the perturbation length scale, this length scale
is here dictated by turbulence and can therefore be of the
order or even smaller than the laminar flame thickness.
To avoid confusion, we note these lengths Lt

aT
and Lt

κ,
whereas laminar values are noted Ll

aT
and Ll

κ.
Dave and Chaudhuri [27] used a similar model for S d

(Eq. (1.6) in their paper) based on the one proposed by
Giannakopoulos et al. [28] for laminar flames. Expres-
sion (27) differs from that of Dave and Chaudhuri [27]
because the influence of strain rate and curvature is ac-
counted for on S r + S n and not on S d, which also means
the term −Dκ is retained. Besides, while in [27], laminar
Markstein lengths are conserved, they are here shown
to be strongly dependent on the Karlovitz number. This
difference might be explained by the larger Karlovitz
considered in this study.

Equation (27) is implicit as the stretch due to curva-
ture is based on (S dκ)∗. It can be rearranged in an ex-
plicit form as:

S ∗d =
S 0

d − L
t
aT

a∗T − D∗κ∗

1 +Lt
κκ∗

(28)

In this study, values for (Lt
aT

, Lt
κ) are first determined

from a least square method to best fit the results of
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Figure 14: Evolution of the conditional mean of 〈S ∗r + S ∗n〉(a∗T ,κ∗) with a∗T and κ∗ normalized respectively by the flame time-scale and the laminar
flame thickness for: (a to (c) the cases with Le = 1 and (d) to (f) the cases with Le > 1. Black lines are contours of the joint probability density
function (PDF) of a∗T and κ∗. The solid white line is the iso-contour 〈S ∗r + S ∗n〉(a∗T ,κ∗) = ρuS L/ρ

∗ and the dashed white line is the iso-contour
〈S ∗r + S ∗n〉(a∗T ,κ∗) = 0.
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Figure 15: Evolution of effective Markstein numbers with Ka: (a) for
Mt

aT
= Lt

aT
/δL and (b) forMt

κ = Lt
κ/δL. The values computed from

stretched laminar flame and from the optimization methods are shown
with markers and the dashed lines represent the models in Eqs. (30)
and (31).

Fig. 14 for each case. In addition, the difference ∆S be-
tween the DNS and the model values given by Eq. (27)
is weighted by the joint PDF of a∗T and κ∗ following
Eq. (29) to avoid edge effects and to give more impor-
tance to the most probable strain and curvature values:

∆S = p(a∗T , κ
∗)

(
〈S ∗r + S ∗n〉(a∗T ,κ∗) −

[
S 0

d − L
t
aT

a∗T − L
t
κ(S dκ)∗

])
,

(29)
where p(a∗T , κ

∗) is the joint PDF of a∗T and κ∗.
The evolution of Mt

aT
= Lt

aT
/δL and Mt

κ = Lt
κ/δL

with turbulent intensity are plotted in Fig. 15 for all
cases. The values of Ll

aT
and Ll

κ for Ka = 0 are ob-
tained using stretched laminar flames simulations (de-
tailed in Appendix B): a counter-flow premixed flame
to evaluate Ll

aT
using the open-source solver Cantera,

and a spherical flame for Ll
κ using the AVBP code.

For Le > 1 flames, it can be observed that Mt
aT

and
Mt

κ decrease with the Karlovitz number as expected
from previous studies [18, 39–43, 77–79], and that their
value becomes much smaller than their laminar value
(approximately one third at Ka = 46). Savard et al.

[18, 39–43] suggest that when turbulence is sufficiently
intense, the turbulent diffusivity DT becomes dominant
compared to thermal or mass diffusivities. This leads
them to define an effective Lewis number which tends
toward unity when Ka increases. In this study, a similar
effect is observed through the effective Markstein num-
bers which tend toward zero when Ka increases. The
values obtained for case A are also seen to be already
quite smaller than the laminar ones (at Ka = 0), par-
ticularly for curvature. This might indicate that the cur-
vature effect on the flame displacement speed decreases
more rapidly than the strain effect when Ka increases.

Concerning the effect of strain, Fig. 15 shows that
Le = 1 and Le > 1 cases present a similar decrease
of Lt

aT
with Ka. For laminar (Ka = 0) and turbulent

conditions, Lt
aT

for Le = 1 flames is approximately half
the value of Le > 1 cases. This indicates that although
thermo-diffusive effects are absent at Le = 1, the ef-
fect of strain rate on the local displacement speed can-
not be neglected. Concerning curvature, Lt

κ for Le = 1
cases shows an almost constant value close to the lam-
inar one, which indicates the sensitivity to curvature is
not altered by turbulence when differential diffusion is
absent. For Le > 1 cases, Lt

κ shows on the contrary
a decrease with Ka qualitatively similar to the one ob-
served for Lt

aT
. These observations might be specific to

the present fuel, thermodynamic conditions and chem-
ical mechanism and cannot be generalized to all unity
and larger than unity Lewis number flames. It is shown
in Appendix C that the prediction of strain effect on
laminar premixed flames depends quantitatively on the
choice of the chemical mechanism but the response of
turbulent flames to strain rate only slightly differs be-
tween the mechanisms. However a similar evolution
was described by Savard and Blanquart [39] for the ef-
fective Lewis number they introduced. Using DNS of
lean premixed turbulent hydrogen flames they observed
that the flame tends to behave like a unity Lewis num-
ber flame when the turbulence intensity increases suffi-
ciently. From this observation, an expression for the ef-
fective Lewis number was proposed, the form of which
is here retained for both Lt

aT
and Lt

κ:

Lt
aT

δL
=

1
1 + αKaa

Ll
aT

δL
+ (1 −

1
1 + αKaa )M∞aT

, (30)

Lt
κ

δL
=

1
1 + βKab

Ll
κ

δL
+ (1 −

1
1 + βKab )M∞κ , (31)

where Ll
aT

, Ll
κ are the laminar values while M∞aT

and
M∞κ are asymptotic Markstein numbers at the upper
range of the TRZ regime, and α, β, a and b are model
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parameters. These parameters, reported in Table 4, are
chosen using a least square method to best fit the evolu-
tion of Lt

aT
and Lt

κ. Note thatM∞aT
andM∞κ take small

values in the present DNS. It is important to note that
the proposed correlations for the effective Markstein
lengths don’t pretend to be universal. First, their math-
ematical form is only intended to reproduce the present
DNS and is not based on physical arguments, excepted
for the exponent a which should be of the order of unity
following the arguments of Savard and Blanquart [39].
Secondly, the present DNS results assess the influence
of Ka with only three Karlovitz values, for given mix-
ture and thermodynamic conditions. It is thus possible
that other parameters would affect these effective Mark-
stein lengths. In addition, Markstein lengths are known
to be strongly dependent on the chosen iso-surface [3],
making Eqs. (30) and (31) only meaningful for the iso-
surface c∗ = 0.8. All these remarks indicate that future
research is needed on this topic.

As observed in Fig. 15, the proposed correlation re-
covers qualitatively the evolution of Lt

aT
and Lt

κ with
Ka, although at low Ka the error is quite important for
Lt
κ.

Table 4: Fitted parameters for modeling the Markstein numbers with
Eqs. (30) and (31).

α a β b M∞aT
M∞κ

0.04 1.2 0.3 0.7 0.08 0.14

The behavior of Eq. (27) is assessed on 〈S ∗r +S ∗n〉(a∗T ,κ∗),
using the correlations in Eqs. (30) and (31) for the tur-
bulent Markstein lengths, for each case in Figs. 16 and
17.

Figure 16 shows the evolution of 〈S ∗r + S ∗n〉(a∗T ,κ∗) with
a∗T for the DNS and Eq. (27), considering a fixed κ∗

corresponding to the maximum of the joint PDF of a∗T
and κ∗. In the same figure is plotted the PDF of a∗T
when κ∗ is fixed. For Le = 1 cases, Eq. (27) allows
to predict properly the DNS results in Figs. 16a to 16c.
For Le > 1 cases, Eq. (27) well reproduces the behav-
ior of 〈S ∗r + S ∗n〉(a∗T ,κ∗) in Figs. 16d to 16f. However,
〈S ∗r + S ∗n〉(a∗T ,κ∗) is overestimated (underestimated), when
the tangential strain rate is strongly negative (positive).
Fortunately, these over and under-estimations occur at
extreme values of a∗T corresponding to very low proba-
bilities according to the joint PDF.

Figure 17 shows the evolution of 〈S ∗r + S ∗n〉(a∗T ,κ∗) with
κ∗ for the DNS and Eq. (27), considering a fixed a∗T cor-
responding to the maximum of joint PDF of a∗T and κ∗.
In the same figure is plotted the PDF of κ∗ when a∗T is
fixed. For Le > 1 cases in Figs. 17d to 17f, Eq. (27) is in
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Figure 16: Evolution of 〈S ∗r +S ∗n〉(a∗T ,κ∗) from DNS and from Eqs. (27)
and (28) with a∗T at a fixed κ∗ for: (a) to (c) the cases with Le = 1 and
(d) to (f) the cases with Le > 1. The values of κ∗ chosen correspond
to the maxima of joint PDF. The PDF of a∗T is shown in grey dot lines.
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Figure 17: Evolution of 〈S ∗r +S ∗n〉(a∗T ,κ∗) from DNS and from Eqs. (27)
and (28) with κ∗ at a fixed a∗T for: (a) to (c) the cases with Le = 1 and
(d) to (f) the cases with Le > 1. The values of a∗T chosen correspond
to the maxima of joint PDF. The PDF of κ∗ is shown in grey dot lines.
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good agreement with DNS except for strongly negative
and positive curvatures. For these extreme curvatures,
Eq. (27) overestimates the velocity 〈S ∗r +S ∗n〉(a∗T ,κ∗). How-
ever, these over-estimations occur at extreme values of
κ∗, corresponding to very low probabilities. Thus, these
marginal values are rare and do not impact significantly
the statistics of the displacement speed. For Le = 1
cases in Figs. 17a and 17c, the predictions of Eq. (27)
are in good agreement with the DNS for negative cur-
vatures. However, when the curvature becomes posi-
tive, Eq. (27) underpredicts the increase observed in the
DNS. This leads to an underprediction of 〈S ∗r +S ∗n〉(a∗T ,κ∗)
by a factor close to 2 for κ∗δL ≥ 2. Even if this underpre-
diction is observed for curvature values corresponding
to relatively low probabilities of p(aT , κ), it is expected
that its impact on the mean prediction of S ∗d by Eq. (27)
will not be negligible.

In Figs. 16 and 17 the error bars correspond to the
RMS of 〈S ∗r + S ∗n〉 in the DNS, at constant strain and
curvature respectively. Unlike for the single condition-
ing on curvature shown in Fig. 12, these fluctuations
remain very moderate, excepted at extreme strain and
curvature values. This result justifies that 〈S ∗r + S ∗n〉 can
be accurately modeled thanks to a function depending
on curvature and strain, as proposed in Eq. (27).

5. A priori modeling

5.1. Presentation of the model

Section 4.4 suggests to model the progress variable
and FSD source terms on a specific c iso-surface. For
this purpose we first define an adequate progress vari-
able linked to the sole iso-surface c = c∗ as proposed by
Knudsen and Pitsch [80]:

C = H(c − c∗), (32)

where H(c) is the Heaviside function giving C =

0 when c < c∗ and C = 1 otherwise. Knudsen
and Pitsch [80] derived the transport equation for this
progress variable:

∂ρC̃

∂t
+ ∇ · (ρuC) = 〈ρS d〉s,c∗Σ

∗
, (33)

where the flame surface density is defined as Σ
∗

=

|∇C| = |∇c|δ(c − c∗) corresponding to the fine-grained
FSD in [81]. The transport equation of the FSD then

becomes:

∂Σ
∗

∂t
+ ∇ · (〈u〉s,c∗Σ

∗
) = 〈aT 〉s,c∗Σ

∗
+ 〈S d∇ · n〉s,c∗Σ

∗

− ∇ · (〈S dn〉s,c∗Σ
∗
),

(34)

where 〈Q〉s,c∗ = Q|∇C|/Σ
∗

indicates surface averag-
ing of any quantity Q on the iso-surface c = c∗, and
〈aT 〉s,c∗ = 〈∇ · u − nn : ∇u〉s,c∗ is the tangential strain
rate.
The terms 〈u〉s,c∗Σ

∗
and ρuC in Eqs. (33) and (34) are

not investigated here as this paper focuses on the source
terms of Σ

∗
. In addition, ∇ ·

(
〈S dn〉s,c∗Σ

∗)
denoting a

laminar propagation term is expected to play a smaller
role compared to turbulent strain rate, curvature and dis-
placement speed in highly turbulent flows. This term is
therefore not considered here either.
Starting from Eq. (28) we propose to express the mean
displacement speed as the average over all possible cur-
vature values:

〈ρS d〉s,c∗ = ρ∗
∫ +∞

κmin

S 0
d − L

t
aT
〈aT 〉s,c∗ − D∗κ

1 +Lt
κκ

p(κ)dκ,

(35)
where p(κ) is the PDF of κ defined later. As the inte-
gral in Eq. (35) is divergent at κ = −1/Lt

κ, the lower
bound κmin needs to be properly defined. The following
expression is proposed:

κmin = max
(
ε − 1
Lt
κ

,−
2
δL

)
(36)

where 0 < ε � 1. This limitation of the integral means
that the effect of curvatures κ < κmin is not accounted
for. Figure 18 presents the integral of the pdf p(κ) from
κ = κmin to +∞ for ε =0.1 and 0.01. As can be seen this
integral is always very close to unity on the unburned
side, and never goes below 0.98 on the burned gases
side, which confirms that curvatures smaller than κmin

are rare.

The first limit in Eq. (36) is numerical: at κ = (ε −
1)/Lt

κ, the denominator in the integral is ε, chosen equal
to 0.01 in the present study. This leads to very large val-
ues of S d/S 0

d which are far from the domain of validity
of Eq. (28), but which reflect the order of magnitude
of S d that can be found on the burnt gases side of the
flame when flame annihilation occurs as shown in [27].
The second limit is physical. It simply states that below
a critical vortex size close to the inverse of the flame
thickness, the flame cannot be curved anymore. Such
a limit was proposed among others in the studies by
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Figure 18: Evolution of the integral

∫ +∞

κmin
p(κ)dκ with C̃: (a) for case A, (b) for case B, and (c) for case E.

Poludnenko et al. [17] and Dave and Chaudhuri [27].
The former suggested that for local flame collisions the
curvature is approximately 1/δL. For the present turbu-
lent flames, we observed that −2/δL = −5194 m−1, cor-
responds roughly to the minimum curvature observed
on the DNS in Fig. 20, which justifies the choice of this
limit. Dave and Chaudhuri [27] proposed to model the
effect of flame collisions on the displacement speed by
analyzing the theoretical case of an inwardly propagat-
ing cylindrical flame. A new expression of S d was de-
rived from this analysis. This expression could be used
in future studies to model this quantity when large neg-
ative curvatures are found, replacing Eq. (28).

In order to evaluate the influence of the numeri-
cal bound, Fig. 19 presents 〈S d〉s,c∗ for all cases, for
ε = 0.01 and for 0.1, that is, when a much larger frac-
tion of negative curvatures are discarded from the in-
tegral. As seen in this figure, 〈S d〉s,c∗ remains very
close for both values for cases B and E because we
have (ε − 1)/Lt

κ < −2/δL = −5194 m−1 leading to
κmin = −2/δL, while for case A, an acceptable variation
is observed on the burned gases side. This result shows

that the integration over curvatures larger than κmin is
quite robust from a modelling perspective.

At high Karlovitz numbers, strain rate and curvature
become uncorrelated as shown in section 4.5. We then
assume that in Eq. (35) 〈aT 〉s,c∗ does not depend on cur-
vature. At low Karlovitz numbers on the other hand,
the impact of strain on the displacement speed becomes
small as it becomes nearly uniform and close to S 0

d.
Therefore, although less justified, assuming a constant
turbulent strain rate in Eq. (35) should not significantly
alter the prediction of the model in this regime.
The PDF p(κ) is now presumed to follow a Gaussian
distribution:

p(κ) =
1

√
2σ2π

exp
(
−

(κ − µ)2

2σ2

)
, (37)

where µ = 〈κ〉s,c∗ is the surface average of κ and
σ2 = (〈κ2〉s,c∗ − 〈κ〉

2
s,c∗ ) the corresponding variance.

Figure 20 compares the PDF extracted from the DNS
and the modeled one, using 〈κ〉s,c∗ and 〈κ2〉s,c∗ extracted
from the DNS to compute µ and σ2, for cases B and
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Figure 19: Evolution of the displacement speed 〈S d〉s,c∗ with C̃: (a) for case A, (b) for case B, and (c) for case E.

B1 at three positions in the flame front corresponding to
C̃ = 0.2, 0.5 and 0.8. The agreement is good although
the model tends to over-predict the PDF width.
A model for 〈S dκ〉s,c∗ is simply deduced from that of
〈S d〉s,c∗ by multiplying the integral of Eq. (35) by κ:

〈S dκ〉s,c∗ =

∫ +∞

− 1
Lt
κ

+ε

S 0
dκ − L

t
aT
〈aT 〉s,c∗κ − D∗κ2

1 +Lt
κκ

p(κ)dκ.

(38)

To close Eqs. (35), (37) and (38), models are needed for
〈κ〉s,c∗ and 〈κ2〉s,c∗ :

• The curvature is modeled using the model pro-
posed by Rymer [48] (see also [22]) adapted to
Eqs. (33) and (34).

〈κ〉s,c∗ = β1
c1 − C

C(1 − C)

(
Σ
∗
− |∇C|

)
, (39)

where β1 = 4/3 and c1 = 0.5 are the model param-
eters used in [22].

• For 〈κ2〉s,c∗ an expression similar to Eq. (39) is pro-

posed:

〈κ2〉s,c∗ = β2
1

C
2
(1 − C)2

(
Σ
∗
− |∇C|

)2
, (40)

where β2 is a model parameter set to 1.

5.2. A priori tests of models for tangential strain rate
In this section, existing models for the tangential

strain rate in the flamelet regime are evaluated against
the present DNS. Cant and Pope [82], suggest that strain
rate is inversely proportional to the Kolmogorov time
scale τη. Considering the definition of the Karlovitz
number as the ratio of chemical time scale to Kol-
mogorov time scale, the strain rate can be expressed as
a function of Ka:

〈aT 〉s,c∗ = αCantKa
S 0

L

δL
, (41)

where αCant is a model parameter.
Another approach consists in modeling the turbulent
strain rate thanks to 2D DNS of flame/vortex interac-
tions, following Meneveau and Poinsot [83]. Using this
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Figure 20: Probability density function of κ in solid line compared to a presumed Gaussian PDF, defined in Eq. (37) in dashed line: (a) for C̃ = 0.2,
(b) for C̃ = 0.5 and (c) for C̃ = 0.8. The vertical dotted line represents the value of κ where 1 +Lκκ is zero for the case B (for the case B1 this value
is approximately −20000 m−1).

approach, Charlette et al. [84] expressed the turbulent
strain rate as the product of the strain at the integral
scale u′/lt by a factor Γ accounting for the efficiency
of all turbulent scales:

〈aT 〉s,c∗ = αaT Γ
u′

lt
, (42)

where αaT is a modeling constant. Function Γ is defined
from the relationship existing between strain rate and
energy spectrum in homogeneous turbulence:(

Γ
u′

lt

)2

=

(
π

lt

)3 ∫ ∞

1
[C(k+)]2k2

+E11(k+)dk+, (43)

where k+ = klt/π is the dimensionless wavenumber and
C(k+) is an efficiency function, which takes into account
the ability of the turbulent eddies at scale k to stretch the
flame. E11(k+) is the one-dimensional (longitudinal) en-
ergy spectrum in the direction of the wavenumber k, de-
fined using the standard longitudinal Kolmogorov spec-
trum with the Pao correction to account for the viscous

cut-off:

E11(k+) =
18
55

(
π

k+

lt

)−5/3

ε2/3exp

−3
2

Ck

(
πk+

η

lt

)4/3 ,
(44)

where Ck ≈ 1.5 is the universal Kolmogorov constant, η
is the Kolmogorov scale and ε is the rate of dissipation
of TKE.
Thus, in Charlette’s approach, the key parameter to
model is the efficiency C(k+). A first assumption is to
consider that all scales stretch the flame front with the
same efficiency, which reads C(k+) constant chosen here
as C(k+) = 1. Equation (42) then becomes, by combin-
ing Eqs. (43) and (44):

〈aT 〉s,c∗ = αaT

(
3
√

55

) √
Ret

Ck

√
exp

(
−

3
2

Ck
π4/3

Ret

) (
u′

lt

)
.

(45)
Yet, (u′/lt)

√
Ret = (u′/lt)DaKa = (S 0

L/δL)Ka. In
addition, by assuming that Ret is sufficiently large,
exp

(
−(3/2)Ckπ

4/3/Ret

)
is close to 1. Thus, by combin-

ing αaT and 1/
√

Ck, the model for the tangential strain
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rate is:

〈aT 〉s,c∗ = αaT

3
√

55
Ka

S 0
L

δL
. (46)

Equation (46) shows that Charlette’s model becomes
equivalent to Cant’s model when all scales are consid-
ered to have the same efficiency. However, as already
demonstrated by several authors [20, 83–85], assuming
a constant efficiency is not realistic because turbulent
scales smaller than the flame thickness δL might be too
small to strain the flame significantly.
This is why Charlette et al. [84] and Bougrine et al. [85]
proposed algebraic expressions for C(k+) (not shown
here) based on a best-fit of their flame/vortex DNS.
Their models for strain are commonly used in engine
applications using CFM as a combustion model.
Here, an alternative solution is proposed: C(k+) is mod-
eled as an Heaviside function with a cut-off scale δc, so
that C(k+) = 1 when k+ < lt/δc and C(k+) = 0 other-
wise. Similarly to C(k+) = 1, this function allows to
simplify Eq. (43) leading to the following, when com-
bined with Eq. (42):

〈aT 〉s,c∗ = αaT

3
√

55
Ka

S 0
L

δL

1 − exp

−3
2

Ck
1

Ret

(
πlt
δc

)4/31/2

.

(47)
This approach considers the flame as a low-pass filter
(LPF) in term of turbulence wavenumber. The cut-off

scale δc is identified to the laminar flame thickness in
the following. This value has been chosen to best repro-
duce the tangential strain rate of the DNS. This model
is designated in the rest of this study as the LPF model.

A comparison of 〈aT 〉s,c∗ extracted from the DNS
with Cant’s (Eq. (41)), Charlette’s [84] and Bougrine’s
models [85] and with the LPF model (Eq. (47)) is shown
in Fig. 21 for all DNS cases. The model parameter
αaT appearing in each model is fixed using Charlette’s
model [84]. This parameter is adjusted to fit the strain
rate obtained at the lowest Karlovitz numbers (i.e., cases
A and A1). The values of αaT used are 1.65 and 2.81 for
Le > 1 and Le = 1, respectively. The same factors
are applied to the other models for consistency, except
for Bougrine’s model. Indeed Bougrine’s function is the
only one to include Lewis number effect through a cor-
rective function. Therefore a unique parameter is used
for all cases which is the one set for Charlette on Le = 1.
In addition, the values predicted by Bougrine’s function
being much smaller than the other models, they are mul-
tiplied by a factor 2.5 in Fig. 21 for better visibility.

First looking at Le > 1 cases in Fig. 21b, Cant’s
model presents a linear increase of 〈aT 〉s,c∗ with Ka, as
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Figure 21: Tangential strain rate 〈aT 〉s,c∗ from DNS compared to
Bougrine’s model [85], Cant’s model [82], Charlette’s model [84] and
LPF model: (a) for cases with Le = 1 and (b) for cases with Le > 1.

expected from Eq. (46), in agreement with the DNS.
The turbulent strain rate predicted in case A is twice
as large as that of the DNS. In addition, the slope of
this line is too steep compared to the DNS. As a conse-
quence, very large discrepancies are observed for high
Karlovitz numbers. For instance the predicted strain
rate in case E is almost four times larger than that of
the DNS. Charlette’s model over-predicts the turbulent
strain rate for high Karlovitz numbers, with up to 64%
relative error in case B. Nevertheless, the general trend
with Ka seems to be well reproduced, contrary to Cant’s
model. Surprisingly, Bougrine’s model significantly
under-predicts strain rates: for each case the predicted
strain rate is about half the one of the DNS. This might
be due to the strong decrease of the efficiency function
for small turbulent structures, as seen in [85]. Never-
theless, the relative evolution of Bougrine’s model is in
good agreement with the DNS. Note that Bougrine’s tur-
bulent strain rate flattens with increasing Ka, while the
DNS strain remains quasi-linear with Ka. This might
be explained by a too strong decrease of Bougrine’s effi-
ciency function with the vortex velocity [85]. The Lewis
number dependence of Bougrine’s function is not suffi-
cient to recover the Lewis number influence in DNS re-
sults. LPF model is the only one to accurately predicts
the turbulent strain rate for each case, with a maximum
relative error of 25% for case E.

For Le = 1 cases shown in Fig. 21a, the predictions
of each model are similar to non-unity Lewis number
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cases. As for Le > 1 cases, Bougrine’s model strongly
underestimates 〈aT 〉s,c∗ by a factor 2.5 and up to a factor
5 for cases A1 and E1, respectively. Note that predic-
tions of Cant’s and Charlette’s models are deteriorated
compared to Le > 1 cases. The latter presents a relative
error of 150% for the highest Karlovitz number. Nev-
ertheless, the main conclusions here are the same as for
the non-unity Lewis number simulations.

Present results obtained with Charlette’s and
Bougrine’s models at high Karlovitz confirm that the
inability of small eddies to stretch the flame needs to
be included in turbulent strain models at all turbulence
levels. It also shows that choosing δL as the cut-off

scale seems appropriate for the LPF model. From these
cases, the LPF model seems to give the better prediction
for 〈aT 〉s,c∗ with a maximum error always smaller than
25%. Nevertheless, this cut-off length might also be
dependent on Ka, as already suggested for low Ka by
Gülder and Smallwood [86].

5.3. A priori tests of models for curvature and displace-
ment speed

As a first step, the a priori modeling of the mean of
curvature and square of curvature are evaluated against
the DNS, following the averaging procedure described
in Appendix D.

Models for curvature

Rymer’s closure, Eq. (39), for 〈κ〉s,c∗ is first exam-
ined. The values of C, Σ∗ and |∇C| used to compute
〈κ〉s,c∗ are the exact values from DNS. The comparison
in Fig. 22 shows a good agreement between the model
and the DNS, especially for Le = 1 cases. In addi-
tion, although this closure was proposed for the flamelet
regime, it becomes even more accurate as the Karlovitz
number increases. The values of the model parameter c1
provided by Rymer [48] is based on the assumption of
symmetric profiles of Σ̄ centered on 0.5 with regards to
c̄. The unity Lewis number cases present quite symmet-
ric profiles of Σ̄, which explains the very good agree-
ment between the model and DNS for these cases. The
profiles of Σ̄ with c̄ for Le > 1 cases are less symmetric
explaining the reduced agreement with DNS. However,
when Ka increases the profiles of Σ̄ tend to get closer
to the profiles of Le = 1 cases. This phenomenon ex-
plains the better prediction of Rymer’s model for high
Karlovitz number flames.
Then, the model for 〈κ2〉s,c∗ , Eq. (40), is compared
in Fig. 23 to the DNS and to the model proposed by
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Figure 22: Comparison of the model for 〈κ〉s,c∗ given by Eq. (39) with
the DNS data versus C̃ for: (a) to (c) cases with Le = 1 and (d) to (f)
cases with Le > 1.

Hawkes et al. in [87]:

〈κ2〉s,c∗ =
(
1 − 〈nk〉s,c∗〈nk〉s,c∗

)2 Σ
∗2

C
2
(1 − C)2

, (48)

where 〈nk〉s,c∗ = −∇C/Σ
∗

is the kth component of the
surface averaged flame normal vector.
For non-unity Lewis number cases, the order of magni-
tude of 〈κ2〉s,c∗ is well reproduced by Eq. (40). For case
A, the model tends to under-predict the strong increase
of 〈κ2〉s,c∗ towards C̃ = 0 while it correctly recovers the
decrease of 〈κ2〉s,c∗ when C̃ ≥ 0.8. For cases B and E,
the agreement with the DNS is much better. Note that
the oscillations observed on the DNS results for C̃ close
to zero and one might be due to the small samples avail-
able for statistics in these regions and to the very large
curvatures observed in these regions, leading to poor nu-
merical resolution. For the unity Lewis number cases,
the agreement with the DNS is very good at all Karlovitz
numbers.
Hawkes’s model presents similar results at large
Karlovitz numbers, which is not surprising as both as-
sume similar expressions. At the same time, Hawkes
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Figure 23: Comparison of the model for 〈κ2〉s,c∗ with the DNS data
and the model proposed by Hawkes et al. [87] versus C̃ for: (a) to (c)
cases with Le = 1 and (d) to (f) cases with Le > 1.

model tends to over-predict 〈κ2〉s,c∗ by a factor of three
for case A, unlike the proposed model.
Finally, in Fig. 22e and 23e 〈κ〉s,c∗ and 〈κ2〉s,c∗ obtained
for the DNS using the ARC mechanism are also pre-
sented. Qualitatively, very similar tendencies are ob-
tained with case B and B-ARC. Discrepancies can be
quantified between both results. At C̃ = 0.5 the relative
error on 〈κ2〉s,c∗ obtained with the 2-step mechanism is
26% in Fig. 23e compared to the results obtained with
the ARC mechanism (ISOOCT18). Moreover the mean
relative error in the range 0.1 < C̃ < 0.9 reaches 21%
which is still quite acceptable. Finally we can conclude
that flame curvature statistics are weakly affected by the
chemistry description and that the 2-step description re-
mains an acceptable approximation of chemistry on this
aspect.

Models for the stretch due to curvature

The proposed model for the stretch due to curvature,
defined by Eq. (38), is compared to the DNS in Fig. 24.
The Markstein lengths correlations forLt

aT
andLt

κ given
by Eq. (30) and Eq. (31), respectively, are used. In this
figure is also presented a model proposed by Katragadda
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Figure 24: Comparison of the stretch due to curvature 〈S dκ〉s,c∗ for
Katragadda’s model and the proposed model with the DNS versus C̃
for: (a) to (c) cases with Le = 1 and (d) to (f) cases with Le > 1. In
(d) the red dashed line correspond to the model using the Markstein
lengths directly fitted on the DNS.

[38] (given in Appendix E), using their suggested val-
ues for the model parameters. Although developed for
the generalized approach, Katragadda’s model is here
computed using quantities Σ

∗
and C on the iso-surface

c∗.

For Le = 1 cases, Fig. 24a to 24c, the proposed model
presents a good agreement with the DNS by reproduc-
ing the decrease of 〈S dκ〉s,c∗ with C̃. For these cases,
Katragadda’s model is close to the proposed model ex-
cepted on the burned gases side where it presents large
positive values while the DNS remains negative. For
Le > 1 cases, the proposed model reproduces qualita-
tively the evolution of 〈S dκ〉s,c∗ as seen in Fig. 24d to
24f. In particular, the model is in good agreement with
the DNS towards C̃ = 0 and the decrease of 〈S dκ〉s,c∗

with C̃ up to 0.8 approximately is correctly reproduced.
On the contrary, above this value, the model goes back
to zero too quickly compared to the DNS. This discrep-
ancy can partly be explained by the strong numerical
noise observed in the DNS on the burned gases side as
mentioned previously. Katragadda’s model also recov-
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ers the order of magnitude of 〈S dκ〉s,c∗ but it is less accu-
rate than the proposed model and shows a too flat profile
compared to the DNS. Although qualitative agreement
between the DNS data and Eq. (38), as well as with Ka-
traggada’s model [38] is obtained, an accurate descrip-
tion of 〈S dκ〉s,c∗ is still not reached.

In Fig. 24d, the proposed model is also presented in
red dashed line using the Markstein lengths fitted from
DNS case A in section 4.5. The model prediction im-
proves remarkably on the burnt gases side with these
Markstein lengths. For instance at C̃ = 0.8 the model
using the correlation over-estimates 〈S dκ〉s,c∗ by a factor
two while when using the fitted values, the error goes to
nearly zero. This result shows that the proposed model
has the ability to correctly recover the DNS results but
it also shows that unfortunately, the model prediction is
highly sensitive to the turbulent Markstein lengths em-
ployed. Future work is certainly needed to better assess
how these lengths could be defined in a more reliable
and possibly universal manner.

DNS case B using the ARC mechanism is also pre-
sented in Fig. 24e. Unlike previous flame statistics,
quantitatively, the difference for 〈S dκ〉s,c∗ versus C̃ is
quite large between the two mechanisms: for 0.25 <
C̃ < 0.6, the mean and maximum relative difference on
〈S dκ〉s,c∗ between the two mechanisms is about 40% and
60% respectively. Nevertheless, the two curves are very
similar in terms of shape, indicating that presumably the
physical mechanisms at stake are identical and thus not
modified by the choice of the chemistry.

Models for displacement speed
Predictions of 〈S d〉s,c∗ by the proposed model in

Eq. (35), are now assessed against the DNS and the
constant 〈S d〉s,c∗ model adopted in the standard flamelet
models (〈ρS d〉s,c∗ = ρuS L). Fig. 25d presents 〈S d〉s,c∗

given by the proposed model for case A, using both
the Markstein lengths fitted from the DNS (in dotted
line) and those given by Eqs. (30) and (31). It can be
seen that 〈S d〉s,c∗ is over-predicted when correlations are
used, while it closely follows the DNS for C̃ > 0.1 with
the fitted values. This result is in agreement with what
was observed for 〈S dκ〉s,c∗ and confirms the strong im-
pact of Markstein length evaluations on both quantities.
Note that the error observed with the Markstein length
correlation is maximum for case A, which is the case
where the correlation shows the poorest agreement with
the fitted values as seen in Fig. 15. On the contrary for
cases B and E, a much smaller difference is observed
between fitted and correlation values (not shown).
For all six DNS cases, the proposed model predicts
globally the increase of 〈S d〉s,c∗ with C̃ observed in the
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Figure 25: Comparison of the displacement speed 〈S d〉s,c∗ for the pro-
posed models in Eqs. (35) and (49) with the DNS versus C̃ for: (a) to
(c) cases with Le = 1 and (d) to (f) cases with Le > 1. In (d) the dot-
ted line correspond to the model using the Markstein lengths directly
fitted on the DNS results.

DNS, unlike the flamelet model which remains con-
stant, which makes a substantial improvement. At the
same time this increase can be substantially over (case
A) or under (cases B and E) predicted on the burned
gases side. The model proposed with Eq. (35) is based
on the presumed PDF of curvature (Eq. (37)), which
is evaluated knowing 〈κ〉s,c∗ and 〈κ2〉s,c∗. Yet, Figs. 22
and 23 show significant errors on the prediction of these
two variables close to the burned gases side, like for in-
stance at C̃ = 0.8. In addition, the Gaussian PDF is
shown to be slightly larger than the PDF of the DNS
(Fig. 20c), and symmetric, unlike the DNS. The combi-
nation of these approximations is certainly responsible
for the largest part of the under and over predictions ob-
served in Fig. 25.
More importantly from a modeling perspective, the
proposed model under-predicts the strong decrease of
〈S d〉s,c∗ when C̃ tends toward zero for non-unity Lewis
number cases: for case A, 〈S d〉s,c∗ form the DNS ap-
proaches zero in this zone and becomes even negative
for cases B and E. The main explanation for this error
is that the proposed model relies on Eq. (28) for the dis-
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placement speed, which is directly taken from laminar
flame analysis [27, 88]. This expression assumes that
the perturbation wavelength is much larger than the lam-
inar flame thickness and that the displacement speed is
locally in equilibrium with the local stretch. However,
all the cases considered here present a Karlovitz num-
ber larger than unity, therefore a laminar flame thick-
ness greater than the Kolmogorov length scale (Ka =

(δL/η)2). Consequently, the assumption on the wave-
length is not satisfied and the equilibrium assumption
might not be valid any more and the flame responds to
stretch in a delayed and attenuated way [79].
The discussion above suggests that the instantaneous
displacement speed S d of the flame is an attenuated re-
sponse to the stretch history seen by the flame along its
movements across the flame brush. Taking into account
this attenuation and history is a real modelling chal-
lenge. As a first step towards such a model, we found
that considering in the linear model Eq. (27) an effec-
tive stretch S 0

dκ instead of the instantaneous one, S dκ,
allowed to substantially improve the prediction of S d for
κ > 0. This modification does not constitute a reliable
and well justified model, it only illustrates the limits of
Eq. (27) on highly turbulent flows and suggests theoret-
ical research work is necessary to account for the flame
response time to turbulence. Interestingly enough, very
recently, Dave and Chaudhuri [27] proposed a very sim-
ilar hypothesis for the modelling of S d on the unburned
gas side (Eq. (3.6) in their paper, equivalent to the ex-
pression of S d in Eq. (49) below for the case κ > 0),
to replace the reference expression involving a denomi-
nator (Eq. (3.2) in their paper, equivalent to Eq. (28) in
this study). Mathematically, this leads to the integration
of two different expressions of S d for κ > 0 and κ < 0 :

〈ρS d〉s,c∗ =ρ∗
∫ 0

κmin

S 0
d − L

t
aT
〈aT 〉s,c∗ − D∗κ

1 +Lt
κκ

 p(κ)dκ

+ ρ∗
∫ +∞

0

[
S 0

d − L
t
aT
〈aT 〉s,c∗ − D∗κ − Lt

κS
0
dκ

]
p(κ)dκ.

(49)

In Figs. 25d to 25f, the corrected model (in green solid
line) is found to be in much better agreement with the
DNS data on the fresh gases side compared to the pro-
posed model in Eq. (35). For Le = 1 cases, the models
based on Eqs. (35) and (49) are nearly identical as in this
case, the curvature Markstein lengths are much smaller.

5.4. Summary of model parameters
Table 5 presents an overview of the closure relations

retained in the final model, involving a significant num-
ber of parameters corresponding to 14 constants. Some

of these constants are directly taken from the ECFM-
LES combustion model [22]:

• Two constants for the model of curvature (Eq. 39),
β1 = 4/3 and c1 = 0.5, are fixed to the same values
as proposed by Richard et al. [22] and are assumed
to be identical for other conditions.

• The model parameter αaT involved in the model for
tangential strain rate (Eq. 42) plays the same role
as in the ECFM and ECFM-LES combustion mod-
els [22]. In practical applications, this is the only
parameter that is tuned to fit experimental results.

In the current analysis, some constants were added by
introducing new models:

• In the model for 〈κ2〉s,c∗ (Eq. 40), the model pa-
rameter β2 was introduced. This parameter was set
equal to one for a correct agreement with DNS. Its
dependency to thermodynamic and mixture prop-
erties should be investigated in future work.

• The model for 〈S d〉s,c∗ (Eq. 49) is based on the use
of effective Markstein lengths Lt

κ and Lt
aT

(Eqs. 30
and 31) involving model parameters, which are:

– Ll
κ and Ll

aT
which are the laminar strain and

curvature Markstein lengths. These parame-
ters are uniquely defined computing strained
and curved laminar flames as proposed in this
study.

– Parameters a, b, α, β,M∞κ andM∞aT
are tuned

to best fit the present DNS. As the proposed
expression only depends on the Karlovitz
number which is an adimensional quantity, it
is expected that this expression should cor-
rectly describe other turbulent flames. This
should be verified in future work involving
a larger range of turbulent flames (different
equivalence ratios, fuels, dilution rates, . . . ).

• The retained model for tangential strain rate, LPF,
(Eq. 47), involves an additional parameter, which
is the cut-off length δc. As shown in the supple-
mentary material, the sensitivity to this parameter
is weak and choosing δc = δL allows to correctly
recover the DNS strain. As for the effective Mark-
stein length, future work should assess the validity
of this model on different turbulent flames.

Finally, the chosen approach implies to choose a par-
ticular iso-surface c∗ in the reaction zone, which here
corresponds to values between 0.5 and 0.9. Thus, c∗ ap-
pears as a new model parameter, but it is expected that
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Table 5: Summary of the closures involved in the proposed model.

Progress variable: C = H(c − c∗)

Filtered equation:
∂ρC̃

∂t
+ ∇ · (ρuC) = 〈ρS d〉s,c∗Σ

∗

Closure of 〈ρS d〉s,c∗

ρ∗
∫ 0

κmin

S 0
d − L

t
aT
〈aT 〉s,c∗ − D∗κ

1 +Lt
κκ

 p(κ)dκ

+ρ∗
∫ +∞

0

[
S 0

d − L
t
aT
〈aT 〉s,c∗ − D∗κ − Lt

κS
0
dκ

]
p(κ)dκ

submodels

p(κ)
1

√
2σ2π

exp

− (κ − 〈κ〉s,c∗ )2

2(〈κ2〉s,c∗ − 〈κ〉
2
s,c∗ )


〈κ〉s,c∗ β1

c1 − C

C(1 − C)

(
Σ
∗
− |∇C|

)
〈κ2〉s,c∗ β2

1

C
2
(1 − C)2

(
Σ
∗
− |∇C|

)2

FSD: Σ
∗

= |∇C| = |∇c|δ(c − c∗)

Filtered equation:

∂Σ
∗

∂t
+ ∇ · (〈u〉s,c∗Σ

∗
) = 〈aT 〉s,c∗Σ

∗
+ 〈S d∇ · n〉s,c∗Σ

∗

−∇ · (〈S dn〉s,c∗Σ
∗
)

Closure of 〈S dκ〉s,c∗

∫ +∞

κmin

S 0
dκ − L

t
aT
〈aT 〉s,c∗κ − D∗κ2

1 +Lt
κκ

p(κ)dκ

Closure of 〈aT 〉s,c∗ αaT

3
√

55
Ka

S 0
L

δL

1 − exp

−3
2

Ck
1

Ret

(
πlt
δc

)4/31/2

κmin = max
(
ε−1
Lt
κ
,− 2

δL

)
.
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the model results would not change significantly when
varying c∗ in this range.

Conclusions

A DNS database of freely propagating statistically
planar turbulent C8H18-air premixed flames at differ-
ent Karlovitz numbers was performed using simplified
chemistry. The resulting cases are obtained at the same
integral length scale but for different turbulent velocity
fluctuations. The impact of turbulence on the flame is
studied using a turbulence forcing method, to allow the
flame to reach a statistically stationary state. In addition,
a simulation using a more detailed chemical mechanism
showed that the influence of the chemical scheme on the
general behavior of the flame is moderate. Then, dif-
ferential diffusion effects were systematically isolated
by performing the simulations with both non-unity and
unity Lewis numbers. The resulting analysis of the
flame/turbulence interactions, from the flamelet to TRZ
regimes, was then used to evaluate the modeling impli-
cations.
First, the flame surface and turbulent flame speed S T

were found to show a bending with increasing Karlovitz
number in line with previous studies [6–11]. A shown
in previous studies, differential diffusion has a strong
impact on the flame wrinkling of present DNS, which
reaches higher values with Le = 1 than with Le > 1 for
the same turbulence intensity, but also on the bending
of S T . The flame thickness is also influenced by turbu-
lent intensity and Lewis number: turbulent flames with
Le > 1 are thickened over the whole flame, even in the
reaction zone, while flames with Le = 1 are thinner and
mainly thickened in the preheat zone. Thus, theories
considering a thickening only in the preheat zone seem
well suited for unity Lewis number flames, but not for
flames with Le > 1. However, the reaction zone for
these cases remains thin relatively to the preheat zone,
and the mean conditional reaction rate of the progress
variable remains close to that of a laminar flame, sug-
gesting that the assumption of the TRZ regime remains
valid.
The DNS analysis shows that 〈S d/S 0

d〉s,c∗ decreases
on the fresh gas side (when c∗ decreases) while the
flame surface density Σ

∗
increases so that the product

〈S d/S 0
d〉s,c∗Σ

∗
remains constant, which is a consequence

of the statistical stationarity of the flame. The modeling
implication is that a fine grained FSD approach com-
bined to the coherent flame model appears adequate to
evaluate the flame speed, particularly if c∗ is chosen in
the reactive region.

Then, the impact of turbulence on the displacement
speed S d is explored through the response to stretch
of an iso-surface of the progress variable at c∗ = 0.8.
This value is retained as it corresponds to an iso-surface
close to the peak of heat release rate showing the lowest
perturbations of the iso-surface by turbulence. It also
corresponds to the closest value of the stretch factor
I0 to unity, that is, a displacement speed close to that
of the laminar flame. An analytical expression for S d,
Eq. (28), is then proposed based on strain and curva-
ture. This expression considers a tangential diffusion
term −Dκ as suggested by Peters, but present DNS re-
sults show that the sum of reaction and normal diffusion
components S r + S n cannot be assumed constant and
equal to the laminar flame speed. For this reason, S r+S n

is modeled retaining a laminar flame speed expression
devised for S d from asymptotic theories [76]. Laminar
Markstein lengths are then replaced by effective strain
and curvature Markstein lengths. Fitting these Mark-
stein lengths on the DNS results, they are shown to
decrease strongly with increasing Karlovitz number, in
good agreement with previous studies which observed a
decrease of the effective Lewis number with Ka [18, 39–
43]. The proposed expression of S d allows to repro-
duce correctly the response of S d to stretch at all the
Karlovitz number considered, in spite of the strong as-
sumptions and approximations it involves.
Closures for the adapted equations of the CFM model
are then proposed, focusing on the displacement speed
〈ρS d〉, the stretch due to curvature 〈S dκ〉, and the tur-
bulent strain 〈at〉. Models for 〈ρS d〉 and 〈S dκ〉, see
Eq. (49) and (38), are obtained by integration of the pro-
posed expression of S d, Eq. (28), over curvature, using
a presumed Gaussian PDF for curvature. This PDF is
itself determined thanks to the mean curvature model
of Rymer [48], and to a new model for 〈κ2〉, Eq. (40).
Models for 〈ρS d〉 and 〈S dκ〉 are found in good agree-
ment with the DNS, even at the largest Karlovitz num-
bers. At the same time, it is shown that these models are
highly sensitive to the modelling of the effective strain
and curvature Markstein lengths, which require there-
fore future research to reach good predictivity. Finally,
a new closure for the turbulent strain rate 〈at〉 is pro-
posed, Eq. (47), based on a simplification of Charlette’s
efficiency function. In this model called LPF (Low Pass
Filter), the efficiency of vortices is considered equal to
unity down to a cut-off length scale δc, then equal to zero
below this scale. Choosing the laminar flame thickness
for δc leads to a better agreement with DNS results com-
pared to previous models.

The a posteriori validation of the proposed closures
will be the subject of future work.
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Appendix A. Discussions on the turbulence forcing
method

The turbulence forcing method described in sec-
tion 3.2 can introduce some undesirable effects on the
flame front, especially on the flame stretch and the
flame displacement speed. An additional case BFG cor-
responding to case B conditions is performed with the
forcing term f in the momentum equation weighted with
the progress variable following Eq. (A.1). This alter-
native forcing method allows to force the velocity field
only in the unburned gases.

fFG =

(
1 − tanh

(
c

cFG

))
f, (A.1)

where cFG is a limit value to control the decrease of
the forcing term f relatively to the flame. This limit is
set here to 0.01, which means that forcing is essentially
suppressed for c > 0.05.
The simulation parameters of both cases B and BFG are
reported in Table A.6.
Figure A.26 presents the temporal evolution of some
variables of interest. In Fig. A.26a, the flame wrinkling
Ξ of case BFG is smaller than for case B, by a reduction
of approximately 30%. This is to be related to the
tangential strain rate 〈aT 〉s in Fig. A.26b which is also
reduced by 30%. Furthermore, the heat release rate
presented in Fig. A.26d shows a similar decrease in
case BFG compared to case B. However, the evolution

Table A.6: The DNS set-up for the simulations B and BFG of the
interaction between a planar flame and forced homogeneous isotropic
turbulence.

CaseLeFuel u′/S0
L lt/δL Ret Ka Da ηk/∆x

B 2.9 12.5 4.3 489.0 21.4 0.3 0.6

BFG 2.9 11.7 4.1 427.0 19.8 0.4 0.7

of both the stretch factor I0 and the displacement
speed shown in Fig. A.26c present the same orders
of magnitude and similar temporal evolution for both
cases B and BFG. Thus, the decrease of the heat release,
when the turbulence is only forced in the fresh gases, is
explained by the decrease of the turbulent flame surface.
It seems that the forcing method does not influence the
inner structure of the flame and has mainly an effect on
the surface through an increase of the tangential strain
rate.
The evolution of the conditional mean of the displace-
ment speed conditioned with the curvature for case
BFG is compared to case B in Fig. A.27. The overall
evolution of 〈S ∗d〉κ is shown to be similar with slightly
smaller slopes for case BFG which can be explained by
the moderate decrease of the turbulence intensity in the
flame front when forcing only in the fresh gases.
Figure A.28 presents the evolution of 〈κ〉s,c∗ , 〈κ2〉s,c∗ ,
〈S dκ〉s,c∗ and 〈S d〉s,c∗ for cases B and BFG as functions
of C̃. All these quantities remain similar between B
and BFG, with a tendency to smoother profiles (due to
slightly less intense turbulence) and decrease 〈S dκ〉s,c∗

and flatten 〈S d〉s,c∗ for case BFG compared to case B.

From this additional case it can be concluded that
the turbulence forcing throughout the flame front does
not alter significantly the statistics.

Appendix B. Evaluation of Markstein lengths using
stretched flames

Several techniques reported in [46] have been used
to estimate a Markstein length. In this study, two ef-
fective Markstein lengths need to be estimated, one for
the effect of tangential strain rate and one for the effect
of curvature on the flame. Thus, two techniques allow-
ing to isolate both effects were chosen: a counter-flow
premixed flame for the tangential strain and a spherical
flame for the effect of curvature.
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Figure A.26: Comparison of the overall results by forcing the turbulence in the whole domain (case B) in solid lines or in the fresh gases only (case
BFG) in dashed lines: (a) the temporal evolution of the generalized flame surface, (b) the temporal evolution of the generalized tangential strain rate,
(c) the temporal evolution of the displacement speed in red and of the stretch factor I0 in black and (d) the temporal evolution of the heat release.

Using the open-source solver Cantera, a counter-flow
iso-octane/air premixed flame is computed as described
by Darabiha et al. in [89] and illustrated in Fig. B.29a.
Two flames are simulated, one with Lek , 1 for each
species and one with unity Lewis numbers using the
two-step mechanism presented in Section 3.1. The
flame stretch rate in this configuration is only due to
tangential strain rate, i.e K = aT . As presented by Van
Oijen [90], the stretch is computed as follows:

K =
1
ρ

dρu
dx

. (B.1)

S ∗r + S ∗n at c = c∗ = 0.8 is extracted and plot-
ted as a function of K∗ in Fig. B.30. The dashed
line in Fig. B.30, represents the linear relationship:
S ∗r + S ∗n = S 0

d − LaT K∗, where LaT is the Markstein
length with a∗T . The latter is fitted to best reproduce the
evolution of S ∗r + S ∗n for low stretch.

Using AVBP-code, one 8th of a freely propagating
spherical iso-octane/air premixed laminar flame is simu-

lated (see Fig. B.29b). As for the spherical flames, both
Lek , 1 and Lek = 1 flames are simulated. With this
configuration, the flame stretch is computed as follows:

K =
1
A

dA
dt

=
2

Rb

dRb

dt
, (B.2)

where A is the flame surface, Rb is the radius of the
spherical flame taken in the burnt gases.

Figure B.31 displays the temporal evolution of the
stretch rate K∗, the tangential strain rate a∗T and the
stretch rate due to curvature (S dκ)∗ for c = c∗ = 0.8.
This figure shows that (S dκ)∗ is dominant, representing
about 85% of the total stretch rate at t = 3 ms.

To evaluate Ll
κ, the quantity S ∗r + S ∗n + Ll

aT
a∗T is ex-

tracted from the DNS of the spherical flame, where Ll
aT

is the Markstein length estimated with the counter-flow
premixed flame. It is plotted as a function of (S dκ)∗ in
Fig. B.32. Ll

κ is deduced as the best fit of this function
by the linear relation S ∗r + S ∗n +Ll

aT
a∗T = S 0

d −L
l
κ(S dκ)∗.

This fit corresponds to the dashed line in Fig. B.32.
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Figure A.27: Comparison of the responses of the displacement speed
to curvature by forcing the turbulence in the whole domain (case B) or
in the fresh gases only (case BFG): (a) the evolution of the conditional
mean displacement speed, 〈S ∗d〉κ, normalized with the laminar flame
speed at c = c∗ as a function of the curvature κ, (b) the evolution
of 〈S ∗r + S ∗n〉κ normalized with the laminar flame speed at c = c∗ as
a function of the curvature κ. The solid lines are used for the results
from case B and the dashed lines represents the results from case BFG.
The error bars represent the standard deviation.

Appendix C. Discussion on chemical mechanisms

The response to strain rate of the 2-steps mecha-
nism is compared to the analytically reduced mecha-
nism ISOOCT18. Table C.7 shows the flame charac-
teristics for each mechanism.

Both mechanisms predict very similar laminar flame
speeds with less than 2% difference relatively to
ISOOCT18 mechanism. Note that the laminar flame
thicknesses δL computed for each mechanism dif-
fer significantly, by approximately 30% relatively to
ISOOCT18 mechanism.

Figure C.33 shows the evolution of S ∗r + S ∗n as a func-
tion of the tangential strain rate a∗T normalized with the
laminar flame time τF = δL/S 0

L extracted from counter-
flow premixed flame computed with Cantera using the
2-steps mechanism, the reduced analytical mechanism
ISOOCT18 and the reduced SPK mechanisms in black,

Table C.7: Flame characteristics using the 2-steps mechanism and the
reduced analytical mechanism ISOOCT18.

Mechanism S0
L [m/s] δL [µm] τF [ms]

2-steps 0.366 385 1.11

ISOOCT18 0.360 560 1.56

red and blue solid lines, respectively.

In this figure, the flames using SPK and ISOOCT18
mechanisms present the same evolution for S ∗r +S ∗n con-
firming that ISOOCT18 mechanism is well suited to
capture the effect of preferential diffusion. The evolu-
tion of S ∗r + S ∗n with a∗TτF using the 2-steps mechanism
is similar to those using the reduced mechanisms. How-
ever, even if the flame using 2-steps mechanism also
presents a decreasing evolution of S ∗r + S ∗n with increas-
ing a∗TτF , its slope (corresponding to Markstein num-
ber) is slightly smaller than the flame using ISOOCT18
mechanism. Indeed, the Markstein numbers Ml

aT
de-

duced from Fig. C.33 are 1.6 and 1.2 for ISOOCT18
and 2-steps mechanisms, respectively.

As shown in subsection 4.5 and as supported by pre-
vious study [39], the response to strain rate also depends
on turbulence. Thus, similarly to case B a turbulent
Markstein numberMt

aT
is computed from DNS for case

B-ARC. Figure C.34 compares Markstein numbers of
the flames simulated with ISOOCT18 and 2-step mech-
anisms in plain triangle and empty circle symbols, re-
spectively.

In this figure, the Markstein number of the flame
computed with the ISOOCT18 mechanism decreases
with increasing Karlovitz number with a steeper slope
than with the 2-steps mechanism (from 1.63 for Ka = 0
to 0.37 for Ka = 21.4, to be compared to 1.19 and
0.60 respectively with the two step-mechanism). Conse-
quently, the expression in Eq. (30) fitted on the 2-steps
mechanism could slightly differ with ISOOCT18 mech-
anism. However, these results show that flames simu-
lated with ISOOCT18 and 2-steps mechanisms present
a qualitatively similar response to strain rate. The dif-
ferences observed are acceptable but confirm that fur-
ther investigations on turbulent flame involving detailed
chemical mechanisms are needed to better understand
and model the strain rate response.
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Figure A.28: Comparison of the profiles by forcing the turbulence in the whole domain (case B) or in the fresh gases only (case BFG): (a) the
evolution of 〈κ〉s,c∗ , (b) the evolution of 〈κ2〉s,c∗ , (c) the evolution of 〈S dκ〉s,c∗ , and (d) the evolution of 〈S d〉s,c∗ .

Fresh mixture

Hot mixture

𝑇 = 𝑇𝑢

𝑇 = 𝑇𝑏

𝑦

𝑥

Reaction zone

(a) Schematic view of a counterflow
premixed flame.

O
U

TLET P
R

ESSU
R

E

OUTLET PRESSURE

SYMMETRIC CONDITIONS

SY
M

M
ET

R
IC

 C
O

N
D

IT
IO

N
S

𝑅∗

(b) Two dimensional slice of a
spherical premixed flame.

Figure B.29: Schematic view of laminar stretched ames.

Appendix D. Post-processing methodology

The analysis of the flame consists in extracting the
mean part and the fluctuating part of quantities of inter-
est at each time step. In this study we discretize the sim-
ulation domain along the propagation axis, as illustrated
in Fig. D.35. The flames being statistically uniform in

the y and z directions, a spatial averaging of c (or C)
in each slice of thickness δx is performed allowing to
get profiles of c (respectively C) and c̃ (respectively C̃)
against the propagation axis x. The value of δx is chosen
as δx = 2∆x, where ∆x is the cell size of the DNS.
Then, from the extraction of the iso-surface c = c∗,
the surface averaging operation, defined in Eq. (D.1),
is applied to each variable of interest. From the pro-
files of c̃(t) (C̃) and of 〈Q(t)〉s,c∗ versus x, the profiles of
〈Q(t)〉s,c∗ against c̃(t) (or C̃(t)) are deduced.

〈Q(t)〉s,c∗ =

∫
Vx

Q(x, t)dA∗

A∗(t)
, (D.1)

where Q is a general quantity, Vx is the volume of the
slice at position x and A∗ is the area of flame surface
contained in the slice.

Finally, the profiles of 〈Q(t)〉s,c∗ versus c̃(t) (or C̃(t))
are temporally averaged on the quasi-steady state phase
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Figure B.30: Evolution of the sum S ∗r + S ∗n as a function of stretch K∗

for counter-flow premixed flames for (a) unity Lewis numbers case
and (b) non-unity Lewis numbers case.

identified in Section 4.

Appendix E. Katragadda’s model for stretch due to
curvature

Katragadda et al. [38] proposed a model for the
stretch due to curvature in the context of generalized
FSD transport equation. This model was developed in
the context of the TRZ regime, and is given below:

〈S dκ〉sΣ = − β1S 0
L

(
1 − 〈N〉s 〈N〉s

)
(c − c∗) f (c, c̃)Σ

− De f fβH

(
1 − 〈N〉s 〈N〉s

)2 1

c2 (1 − c)2 Σ,

(E.1)

where 〈N〉s = −∇c/Σ is the surface averaged normal
vector, De f f is an effective diffusivity which is expected
to approach the mass diffusivity for low Da combustion,
and β1, c∗, f (c, c̃) and βH are model parameters defined
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Figure B.31: Temporal evolution of the stretch rate K∗, the tangential
strain rate a∗T and the stretch due to curvature (S dκ)∗ for spherical
premixed flames (a) for unity Lewis numbers case and (b) non-unity
Lewis numbers case.

as follows:

β1 =(7.24Le−0.68)(1 + Ka)−0.25,

(E.2)

c∗ =
1.27 exp(−0.77Le)

er f [(1 + Ka)1.1/4.85]

[
1 +

f2(Ret) − 1.0
[1.0 + exp(−5.0(Kath − 1.9))]5

]
,

(E.3)

f2(Ret) =0.49
Re0.41

t + 0.69
0.46Re0.46

t + 0.56
,

(E.4)

f (c, c̃) =1.0 −
exp(−9.0(1 − c̃))

c(1.0 − c)m ,

(E.5)

m =1.56
exp(−0.24Le)

er f [(1.0 + Ka)/1.5]
,

(E.6)

βH =2.24Le−0.85 0.5
1 + exp[−(Ret − 20)]

.

(E.7)
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Figure B.32: Evolution of S ∗r + S ∗n + Ll

aT
a∗T as a function of stretch

K∗ = (S dκ)∗ for spherical premixed flames for (a) non-unity Lewis
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