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Abstract  18 

We review the use of complex physiological traits, of tolerance and performance, as 19 

biomarkers of the toxicological effects of contaminants in subtropical and tropical 20 

freshwater fishes.  Such traits are growing in relevance due to climate change, as 21 

exposure to contaminants may influence the capacity of fishes to tolerate and perform 22 

in an increasingly stressful environment. We review the evidence that the critical 23 

oxygen level, a measure of hypoxia tolerance, provides a valuable biomarker of 24 

impacts of diverse classes of contaminants.  When coupled with measures of 25 

cardiorespiratory variables, it can provide insight into mechanisms of toxicity. The 26 

critical thermal maximum, a simple measure of tolerance of acute warming, also 27 

provides a valuable biomarker despite a lack of understanding of its mechanistic basis. 28 

Its relative ease of application renders it useful in rapid evaluation of multiple species, 29 

and in understanding how the severity of contaminant impacts depends upon prevailing 30 

environmental temperature. The critical swimming speed is a measure of exercise 31 

performance that is widely used as a biomarker in temperate species but very few 32 

studies have been performed on subtropical or tropical fishes. Overall, the review 33 

serves to highlight a critical lack of knowledge for subtropical and tropical freshwater 34 

fishes. There is a real need to expand the knowledge base and to use physiological 35 

biomarkers in support of decision making to manage tropical freshwater fish 36 

populations and their habitats, which sustain rich biodiversity but are under relentless 37 

anthropogenic pressure. 38 

Key-words: 39 

Biomarker, critical oxygen level, critical swimming speed, critical thermal maximum, 40 

ecotoxicology, hypoxia, warming.  41 
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Introduction 42 

 Freshwater ecosystems, and their resident fish populations, are particularly at 43 

risk from negative impacts of anthropogenic global change (Mason, 2002; Costa and 44 

Barletta, 2016; Higgins et al., 2021). Freshwater ecosystems are suffering relentless 45 

contamination with a bewildering diversity of chemical hazards and toxic substances 46 

such as agricultural chemicals; industrial solvents, surfactants and flame-retardants; 47 

metals, and pharmaceutical products, among many other pollutants (Stauffer, 1998; 48 

Mason, 2002; Rantin et al., 2020).  These enter waterways directly from treated and 49 

untreated industrial, agricultural and domestic wastewaters, from run-off and 50 

atmospheric deposition (including spray drift) and indirectly from leaching (Holt, 2000).  51 

The diversity of contaminants and their potential toxic effects on freshwater fishes grow 52 

incessantly (e.g. Jobling and Tyler, 2003; Pérez-Parada et al., 2018; Wagner and 53 

Lambert, 2018).  54 

In aquatic organisms, biomarkers are used to provide early warning signals of 55 

exposure or effects of specific pollutants or pollutant classes (Peakall, 1994; van der 56 

Oost et al., 2003). They are defined, in a broad sense, as any biological response by 57 

an organism to exposure to environmental chemicals, or to their toxic effects. The term 58 

is most commonly used to refer to measurements in body fluids, cells or tissues, which 59 

are indicative of bioaccumulation of toxic chemicals, biochemical and cellular 60 

modifications provoked by specific toxicants (van der Oost et al., 2003; Kroon et al., 61 

2017) but would also be pertinent for other responses, for example behavioural 62 

alterations (Little and Finger, 1990; Saaristo et al., 2018). 63 

For fishes it has long been recognized that complex traits of whole animal 64 

physiology, especially traits of functional integrity and energetics, are valuable 65 

indicators of sublethal toxicological impacts of contaminants (Brett, 1958; Cairns, 1966; 66 

Sprague, 1971; McKenzie et al., 2007). They have direct ecological relevance because 67 

the survival of an organism under stressful conditions depends on its ability to balance 68 

energy demand and energy supply (Calow and Forbes, 1998), and complex traits of 69 

functional integrity and energetics will influence how effectively a fish can achieve this, 70 

and cope with the conditions and the demands of life in their habitat (Cairns, 1966; 71 

Sprague, 1971; McKenzie et al., 2007). Physiological traits are particularly useful as 72 

components of an approach combining multiple biomarkers, which can capture 73 

different response kinetics and toxicological impacts of contaminants, especially in 74 

natural environments where contaminants occur as complex mixtures (Hook et al., 75 

2014; Dalzochio et al., 2016). 76 

Traits of tolerance of environmental stressors, such as hypoxia or warming, 77 

were first proposed as biomarkers 50 years ago (Cairns, 1971; Sprague, 1971). They 78 
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are now gaining increased ecological relevance because of ongoing climate change, 79 

which is predicted to make freshwater environments increasingly physiologically 80 

challenging for fishes (Diaz and Breitburg, 2009; Noyes et al., 2009; Stillman, 2019). 81 

Aquatic hypoxia is expected to be ever more common as a stressor, including an 82 

increased frequency of severe hypoxic episodes (Diaz and Breitburg, 2009; Costa and 83 

Barletta, 2016). The same is true of warming where, beyond gradual rises in seasonal 84 

mean temperatures, an increased frequency, intensity and duration of seasonal 85 

heatwaves is projected to be a major source of environmental stress for fauna globally 86 

(Williams et al., 2016; Stillman, 2019). The extent to which contaminants can influence 87 

tolerance of hypoxia or warming may, therefore, be determinants of the capacity of fish 88 

populations to persist in certain habitats (Noyes et al., 2009; Noyes and Lema, 2015; 89 

Khursigara et al., 2019; Isaza, 2020). The capacity to perform exercise is also a 90 

valuable and ecologically relevant biomarker of sub-lethal toxic effects of pollutants on 91 

fishes, because activities such as foraging, escaping predators, protecting territory, and 92 

migration, all depend upon swimming (Brett, 1958; Cairns, 1966; Beamish, 1978; 93 

McKenzie et al., 2007; Domenici, 2010; Domenici and Hale, 2019). One particular 94 

advantage, of complex physiological traits of tolerance and performance as 95 

biomarkers, is that they integrate the function of multiple underlying physiological 96 

systems, and can provide insight into why fish fail to colonize some polluted habitats 97 

(McKenzie et al., 2007). It is therefore possible to investigate what causes impairment 98 

of tolerance or performance, to gain valuable understanding of the impacts of 99 

contaminants on fish health and populations (e.g. Beaumont et al., 1995, 2000; Tierney 100 

et al., 2007; Thomaz et al., 2009; Gomez Isaza et al., 2020), which is particularly useful 101 

within programmes of ecological risk assessment. 102 

We review knowledge on the application of physiological biomarkers in 103 

subtropical and tropical fish species, which we take to mean those that can occupy 104 

habitats where average monthly temperatures do not fall below 18 °C. Many 105 

subtropical and tropical freshwater ecosystems suffer from pollution and limited 106 

environmental regulation, so exposure to contaminants represents a serious hazard to 107 

population health of resident fishes (Langiano et al., 2008; Cazenave et al., 2009; Braz-108 

Mota et al., 2015; Beltrão et al., 2019; Barreto et al., 2020). At the same time, tropical 109 

ecosystems are relatively poorly studied in terms of ecotoxicology, despite harbouring 110 

important resources in terms of biodiversity (Lacher and Goldstein, 1997; Daam and 111 

Van Den Brink, 2010; Wang et al., 2019). They can also be naturally subject to 112 

stressful hypoxic and warming events, especially because many have seasonal 113 

variations in rainfall that severely modify the volume and connectivity of habitats. We 114 

consider studies that have used the critical oxygen level (O2crit) as a biomarker. For 115 
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these studies, we pay particular attention to how changes in O2crit caused by 116 

contaminant exposure are linked to elements of cardiorespiratory physiology and 117 

performance, as these are core components of whole animal tolerance (Driedzic and 118 

Gesser, 1994; Gamperl and Driedzic, 2009). We then consider studies that have used 119 

traits of thermal tolerance as biomarkers, in particular the critical thermal maximum 120 

(CTmax).  Finally, we review the few studies that have used critical swimming speed 121 

(Ucrit) as a biomarker.  122 

 123 

Effects of contaminants on tolerance of hypoxia 124 

 Hypoxic events can be very frequent in subtropical and tropical freshwater 125 

ecosystems, with dissolved oxygen (DO) fluctuations of different duration and 126 

magnitude, diurnally, spatially, and seasonally (Almeida-Val et al., 2006). Although 127 

fluctuating levels of DO can be a natural phenomenon, hypoxia caused by 128 

eutrophication and pollution is one of the most pressing and critical water problems in 129 

the world (Pollock et al., 2007). Hypoxia and contaminant exposure often co-occur in 130 

aquatic environments but their interactions remain poorly studied (Monteiro et al., 131 

2020). There is evidence that co-exposures to hypoxia and polycyclic aromatic 132 

hydrocarbon mixtures caused several disorders in fishes, such as altered growth and 133 

sexual differentiation, reduced reproductive capacity, and developmental toxicity 134 

(Matson et al. 2008; Di Giulio and Clark, 2015; Mu et al., 2017). Rahman et al. (2018) 135 

demonstrated that co-exposure to hypoxia and polychlorinated biphenyl reduced 136 

biotransformation of organic xenobiotics by monooxygenase enzyme cytochrome 137 

P450-1A (CYP1A), but markedly augmented hepatic endothelial nitric oxide synthase 138 

(eNOS) and interleukin-1β (IL-1β) mRNA levels, and protein carbonyl (PC) contents. 139 

Hypoxia survival requires a well-coordinated response to either secure more O2 140 

from the depleted environment or to protect against the metabolic consequences of low 141 

O2 levels at the mitochondria, which limit aerobic ATP production (Regan et al., 2017; 142 

Richards, 2019). The critical oxygen level (O2crit) is widely used as a quantifiable trait of 143 

hypoxia tolerance in fishes.  It represents the minimum water oxygen level required to 144 

sustain standard metabolic rate (SMR, the basal metabolic rate of an ectotherm at their 145 

acclimation temperature) (Claireaux and Chabot, 2016; Rogers et al., 2016). It is 146 

determined by plotting rates of oxygen uptake (MO2) against water O2 tension (kPa), to 147 

identify the point at which MO2 falls below SMR, and becomes directly dependent upon 148 

water O2 tension (Rogers et al., 2016). Once below their O2crit, fishes must depend on 149 

anaerobic energy metabolism and basal functions can be compromised (Pörtner, 150 

2010). If the hypoxic conditions worsen and persist, the combination of hypoxic severity 151 

and accumulation of metabolic products can threaten survival (Claireaux and Chabot, 152 
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2016). Although the ecological significance of the O2crit threshold has been debated 153 

(Wood, 2018; Regan et al., 2019; Ultsch and Regan, 2019), it varies among species in 154 

a manner that is consistent with their overall hypoxia sensitivity, being lower in more 155 

tolerant species (Rogers et al., 2016). A low O2crit value indicates a higher capacity for 156 

O2 extraction by the gills and O2 delivery to the tissues as O2 availability declines, 157 

indicating a greater hypoxia tolerance (Mandic et al., 2009). 158 

Figure 1 shows data for one species, matrinxã Brycon amazonicus, where 159 

sublethal exposures to various contaminants all increased O2crit values. The degree of 160 

physiological plasticity for hypoxia tolerance is a key determinant of species 161 

performance (Rogers et al., 2016). This was associated with various impacts of the 162 

contaminants on MO2 during graded hypoxia (Table 1). This is shown in more detail for 163 

the matrinxã, where contaminants had various effects on O2 uptake such as increases 164 

and decreases in MO2 during normoxia (for Roundup Originalâ and Roundup 165 

Transorbâ, respectively) and/or early decline in MO2 during graded hypoxia for all 166 

pollutants (Figure 2). All these effects had the consequence of impairing the capacity of 167 

the species to oxyregulate. According to McRae et al. (2018) metabolic rate is, itself, a 168 

useful integrated measurement of toxicological impact because it is a measure of 169 

energy resource associated with multiple sublethal processes and ecologically 170 

important endpoints such as reproduction, growth and survival. 171 

The exposure to various contaminants markedly increased O2crit, and therefore 172 

reduced tolerance of hypoxia, in four species of tropical fishes, including hypoxia-173 

tolerant fish species such as Nile tilapia Oreochromis niloticus and trahira Hoplias 174 

malabaricus (Table 1). These data clearly indicate that exposure to contaminants may 175 

reduce survival chances of many species of fishes in tropical hypoxic environments. 176 

Table 1 also summarises how different pollutants can have a diverse array of effects on 177 

both ventilatory and cardiac activity in normoxia, and how such activity can be affected 178 

at given levels of hypoxia. 179 

Oxyregulation is achieved by reflex cardiorespiratory responses that aim to 180 

sustain oxygen uptake and delivery, and possibly protect vital organs such as the 181 

heart. There is a profound hyperventilation, involving increases in gill ventilation volume 182 

(𝑉̇𝐺) achieved through increased respiratory frequency (fR) and amplitude, and a 183 

bradycardia (Farrell, 2007; Perry et al., 2009; Joyce et al., 2016; Rantin et al., 2020). 184 

The hyperventilation increases O2 transport to the site of gas exchange (Bergsson et 185 

al., 2019). Enhancements in 𝑉̇𝐺 are required to maintain a constant MO2, which implies 186 

that fish survival in hypoxic environments can be compromised if the ability to increase 187 

𝑉̇𝐺 is affected (Martins et al., 2011). Pollutants can, indeed, impair the ability to 188 
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increase fR and 𝑉̇𝐺 in response to hypoxia, impairing the regulation of metabolic rate. 189 

For example, the lower fR induced by acute exposure to the organophosphate 190 

trichlorfon in Nile tilapia Oreochromis niloticus, both in normoxia and hypoxia, impaired 191 

gill ventilation and compromised the hyperventilatory response in severe hypoxia 192 

(Thomaz et al., 2009). The same response pattern was observed in trahira after 193 

subchronic and trophic exposure to mercury chloride (Monteiro et al., 2013). In 194 

matrinxã, increases of fR and 𝑉̇𝐺 in response to hypoxia were significantly reduced 195 

after acute exposure to the emerging contaminant triclosan, an antimicrobial agent 196 

widely used in personal care products. In normoxia, triclosan had caused an increased 197 

fR with concomitant decreased 𝑉̇𝐺 (Martins, 2018). Under hypoxia, 𝑉̇𝐺 values were also 198 

considerably lower in Nile tilapia 48 h after intraperitoneal injection of mycrocystin-LR 199 

(Martins et al., 2011) and in matrinxã acutely exposed to glyphosate-based herbicides 200 

Roundup WG® and Roundup Transorb® (Anelli Jr., 2010), probably due to alterations of 201 

homeostatic reflexes that impaired respiratory responses to hypoxia, due to unknown 202 

toxic mechanisms. All these effects described above and presented in Table 1 can 203 

reduce the ability of tropical fish to maintain a constant O2 uptake when they encounter 204 

hypoxia in contaminated environments 205 

Organophosphate (OP) pesticides, mercury chloride, triclosan, and glyphosate-206 

based herbicides inhibit acetylcholinesterase activity resulting in paralysis, mainly of 207 

the fins and respiratory muscles, uncoordinated movements, seizures, and even 208 

central depression of respiration (Suresh et al., 1992; Sancho et al., 1998; Antonijevic 209 

and Stojiljkovic, 2007; Thomaz et al., 2009; Modesto and Martinez, 2010; Menéndez-210 

Helman et al., 2012; Pullaguri et al., 2021). Furthermore, contaminants such as 211 

microcystins and glyphosate-based herbicides cause oxidative stress and alterations in 212 

gill structure and respiratory epithelium (Gupta and Guha, 2006; Shiogiri et al., 2012; 213 

Braz-Mota et al., 2015; Martins et al., 2017) which could result in disturbances in 214 

respiratory function. Specifically for matrinxã exposed to Roundup Original®, Roundup 215 

WG® and Roundup Transorb®, 𝑉̇𝐺 values were already high in normoxia (Table 1), 216 

indicating increased respiratory drive to maintain O2 extraction. 217 

On the other hand, contaminants can also induce rises in respiratory frequency 218 

and conspicuous increases in gill ventilation, including in hypoxia, which may indicate a 219 

desperate attempt to meet tissue oxygen demand. Increased gill ventilation was 220 

detected in matrinxã after methyl parathion and Roundup Original® exposure, mainly 221 

during hypoxia (Table 1, Olle 2007; Anelli Jr., 2010). Wang et al. (2013) evaluated the 222 

ventilatory responses of 3 tropical species, zebrafish Danio rerio, rare minnow 223 

Gobiocypris rarus and grass carp Ctenopharyngodon idellus to acute exposure to 4 224 

heavy metal ions (Hg2+, Cu2+, Cd2+, and Zn2+). Ventilatory frequency and amplitude 225 
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increased after exposure to Hg2+ and Cu2+ but markedly decreased with increasing 226 

concentrations of Cd2+ and Zn2+. This shows that respiratory activity of fishes is highly 227 

sensitive to heavy metal pollution but in complex ways (Wang et al., 2013). Differences 228 

in ventilatory responses to hypoxia could also be related to changes in blood O2-229 

carrying capacity (Pereira et al., 2013; Islam et al., 2019), according to the type and 230 

concentration of contaminants and the physiology of the target species. In the silver 231 

perch Bidyanus bidyanus from Australia, exposure to nitrate caused animals to perform 232 

aquatic surface respiration (ASR) at a higher oxygen level during progressive hypoxia 233 

(from 19 to 1 kPa), coupled with increased ventilation frequency. This was linked to 234 

lower levels of hemoglobin and hematocrit, indicating reduced blood oxygen carrying 235 

capacity (Gomez Isaza et al., 2021a). Fish exposed to pollutants often show 236 

hyperplasia and hypertrophy of gill epithelia cells with fusing and thickening of gill 237 

lamellae and mucus hypersecretion, which increases the water/blood diffusion distance 238 

and impairs O2 uptake, leading to hypoxemia (Schjolden et al., 2007; Sokolova and 239 

Lannig, 2008; Bilberg et al., 2010). In traíra, exposure to a single dose of microcystin-240 

LR (100 μg Kg−1 of body weight, i.p.) caused hyperventilation coupled with significantly 241 

reduced O2 extraction from the ventilatory current under normoxic and hypoxic 242 

conditions, which compromised O2crit and was attributed to compromised gill gas 243 

transfer (Martins et al., 2019). 244 

 Many pollutants (methyl parathion, tricholorfon, Roundup WG®, Roundup 245 

Transorb®, mercury chloride, microcystin) also impaired cardiac activity, causing a 246 

bradycardia that then lead to very low heart rates under hypoxic conditions (Table 1). 247 

This may indicate direct toxic effects on cardiac myocytes. Several studies have 248 

reported decreased myocardial isometric twitch force development in tropical fishes 249 

exposed to pollutants (Incardona et al., 2004; Thomaz et al., 2009; de Andrade 250 

Waldemarin et al., 2012; Monteiro et al., 2017). Reduced cardiac performance can 251 

increase the likelihood of starvation, predation vulnerability, and disease susceptibility 252 

(Incardona and Scholz, 2017). Exposure to 1 mg L-1 of copper sulfate for 96 h caused 253 

significant changes in Nile tilapia cardiomyocytes, including decreased myocardial 254 

contractility, cellular swelling, mitochondrial swelling, and alterations in mitochondrial 255 

inner membranes, which may impair ATP supply (de Andrade Waldemarin et al., 256 

2012). Monteiro et al. (2020) found that cardiac responses to hypoxia were impaired in 257 

both matrinxã and traira after exposure to inorganic mercury by different routes (water 258 

and diet) and durations (acute and sub-chronic). There were alterations in the rhythm 259 

of the cardiac pacemaker such as first-degree atrioventricular block, lengthening of the 260 

action potential (AP) plateau, and the development of cardiac arrhythmias and 261 

abnormalities (episodes of missing QRS complexes with sequential P waves, 262 
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extrasystoles, negative QRS complex, T wave inversion) (Monteiro et al., 2020). These 263 

disruptions of electrical conduction could underly the myocardial dysfunction and 264 

increase hypoxia sensitivity by impairing cardiac output (Rantin et al., 1995). 265 

 Overall, these findings demonstrate that O2crit is a valuable biomarker of impacts 266 

of contaminants in tropical freshwater fishes, irrespective of the ecology and life history 267 

characteristics of a given species. In addition, analyses of effects on MO2 and 268 

cardiorespiratory variables can improve understanding of the mode of toxic action of 269 

some contaminants, which can aid in the environmental risk assessment of aquatic 270 

systems. The fact that contaminants can impair hypoxia tolerance may have significant 271 

ecological consequences, not just directly influencing survival but potentially also 272 

reducing fitness, by impairing the capacity to forage, capture and digest food, with 273 

consequences for growth and/or reproductive rates. Nonetheless, the knowledge base 274 

is critically limited and should be extended to further species and contaminants. 275 

 276 

Effects of contaminants on tolerance of warming 277 

 There are complex interactions between temperature and the toxicity of 278 

contaminants in fishes, which depend upon multiple factors that are too extensive to 279 

review here (Noyes et al., 2009; Patra et al., 2015).  We focus exclusively upon the use 280 

of thermal tolerance as a biomarker. In fishes, limits of thermal tolerance are measured 281 

using acute thermal ramping protocols, especially the critical thermal (CT) methodology 282 

that reveals the threshold temperature which causes loss of equilibrium (LOE). The 283 

protocol is simple and defines the temperature where survival is threatened because at 284 

LOE the fish cannot escape the conditions (Beitinger and Lutterschmidt, 2011). There 285 

are, however, quite major limitations to the critical thermal protocol as an experimental 286 

tool (Rezende et al., 2014; Blasco et al., 2020). Notably, the idea that the complexity of 287 

thermal tolerance limits can be captured by a single measure is a major 288 

oversimplification (Rezende et al., 2014; Rezende and Bozinovic, 2019; Lefevre et al., 289 

2021). There are also methodological issues; particularly that the measured CTmax 290 

depends upon heating rate (Lutterschmidt and Hutchison, 1997). Furthermore, 291 

although the mechanism(s) that causes LOE are presumed to involve impaired function 292 

of critical organs such as the heart and brain (Wang et al., 2014; Brijs et al., 2015; 293 

Jutfelt et al., 2019; Lefevre et al., 2021), they are not known and may differ among 294 

species and with warming rate (Currie and Schulte, 2014; Healy et al., 2018; Blasco et 295 

al., 2020). What is well-established, however, is that a given increase in acclimation (or 296 

acclimatization) temperature (Tacc) is not linked to an equivalent increase in CTmax, both 297 

among and within fish species (Cossins and Bowler, 1987; Currie and Schulte, 2014; 298 

McKenzie et al., 2020). As a consequence, when comparing among species, tropical 299 
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fishes have a lower thermal safety margin (TSM) than temperate, where TSM is 300 

calculated as the net difference between Tacc and CTmax (Comte and Olden, 2017a; b).  301 

Within a species, TSM also becomes smaller as a fish is acclimated to progressively 302 

warmer temperatures across its thermal range (e.g. McDonnell et al., 2019; McKenzie 303 

et al., 2020). 304 

The notion that CTmax could be used as a biomarker of sublethal toxic effects of 305 

contaminants dates from the 1970s (Cairns, 1971; Johnson, 1978; Dale Becker and 306 

Wolford, 1980) although the trait has only been used in this way on 11 species of 307 

subtropical or tropical fish (Table 2). As for all biomarkers that are complex 308 

physiological traits, CTmax can provide a sensitive indicator of functional impairment 309 

caused by a contaminant. The lack of mechanistic understanding does, however, 310 

hinder comprehension of essential questions such as why CTmax is modified by 311 

exposure to contaminants. Nonetheless, the CTmax is interesting from a toxicological 312 

viewpoint because it is an incipient lethal threshold, therefore if it is reduced by 313 

contaminants this could have clear consequences for persistence of fish populations 314 

that suffer heat stress in polluted waters. The low TSM of subtropical and tropical 315 

species acclimated (or acclimatized) to warm waters may render them particularly 316 

vulnerable to heatwaves if they are in contaminated environments, especially if they 317 

are at temperatures close to the top of their thermal range. 318 

There have been various investigations of effects on CTmax of organic 319 

contaminants, notably pesticides, herbicides and common pollutants from industry such 320 

as phenol. Many of these molecules act as neurotoxins in vertebrates, hence they 321 

might be expected to influence CTmax since LOE almost certainly has some 322 

neurological component (Lutterschmidt and Hutchison, 1997; Jutfelt et al., 2019). In 323 

many cases, the studies involved first establishing lethal concentrations (LC50) for the 324 

focal species, and then evaluating effects of sublethal concentrations on CTmax. 325 

Johnson (1978) studied the effects of four widely-used OP insecticides on CTmax in the 326 

western mosquitofish Gambusia affinis, when acclimated to 20 °C (Table 2).  327 

Gambusia affinis is a subtropical North American species that is highly eurythermal.  328 

As acetylcholinesterase inhibitors, OP insecticides have neurotoxic effects on fishes. 329 

Taking concentrations that were proposed as doses for field applications, the 330 

pesticides had no significant effects on mosquitofish CTmax aside from chlorpyrifos, 331 

which caused a modest but significant decline in tolerance (Table 2). Takle et al. (1983) 332 

reported that sublethal concentrations of the biocide endothall, which is a protein 333 

phosphatase A2 inhibitor, had no significant effect on CTmax in another subtropical 334 

eurythermal north American species, the red shiner Cyprinella lutrensis, acclimated to 335 

20 °C.  In the same species, Messaad et al. (2000) investigated effects on CTmax of 336 
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sublethal concentrations of the triazine herbicide, atrazine, of an OP pesticide, 337 

terbufos, plus a cocktail of these, comparing effects on fish acclimated to 23° or 30 °C. 338 

Toxic actions of atrazine in animals are supposedly related only to endocrine 339 

disruption.  CTmax of control fish increased with acclimation temperature but the 340 

contaminants caused more marked discrete declines in CTmax at a Tacc of 30 °C 341 

compared to 23 °C (Table 2).  In particular, the cocktail of the two pesticides caused a 342 

very profound decline in CTmax at 30 °C (Table 2). The mechanisms underlying the 343 

increased impact upon CTmax at the higher temperatures may relate to increased 344 

metabolic rates and ventilatory water flows, which would cause increased uptake of 345 

contaminants from the water (Yang et al., 2000).  Such results indicate that, as Tacc 346 

increases, fishes may be more vulnerable to heat stress when they are also exposed to 347 

certain environmental contaminants (Messaad et al., 2000). 348 

 Patra et al. (2007) studied the effects on CTmax of sublethal concentrations of 349 

three contaminants, endosulfan, an organochlorine pesticide; the OP chlorpyrifos, and 350 

an organic contaminant, phenol, in three subtropical Australian species, silver perch, 351 

eastern rainbowfish Melanotaenia duboulayi and western carp gudgeon Hypseleotris 352 

klunzingeri.  Endosulfan is neurotoxic, a GABA-gated chloride channel antagonist, and 353 

a Ca2+, Mg2+ ATPase inhibitor. It is used to control insect pests but is acutely toxic to 354 

animals and is now banned in many countries.  Phenol is one of the most common 355 

molecules in the chemical industry globally with a vast array of uses, it can have toxic 356 

effects on the central nervous system and heart of vertebrates.  Although both 357 

endosulfan and chlorpyrifos caused significant declines in CTmax in all species, while 358 

phenol was without effect. Kumar et al. (2016) reported that, in a euryhaline tropical 359 

Asian species the milkfish Chanos chanos acclimated to 28 °C, sublethal 360 

concentrations of endosulfan reduced CTmax compared to a control (Table 2), an effect 361 

that was abolished by dietary supplements of vitamin B6, pyroxidine. Pyroxidine 362 

supplementation was linked to changes in tissue oxidative status and expression of the 363 

heat shock protein HSP70, which may have been related to the improved thermal 364 

tolerance (Kumar et al., 2016).   365 

 Zebral et al. (2018) investigated effects of the glyphosate-based herbicide, 366 

Roundup®, on thermal tolerance of embryos of an endangered annual neotropical 367 

killifish, Austrolebias nigrofasciatus, hatched at 20 °C.  This annual species leaves 368 

eggs in diapause in dried water courses during the dry season, which hatch when rains 369 

arrive.  Glyphosate is not considered to have acute toxic effects on vertebrates.  370 

Glyphosate caused, however, a significant decline in CTmax in hatched embryos held at 371 

21 °C, when measured as cardiac arrest followed by mortality despite being 372 

immediately returned to acclimation temperature (Table 2). Philippe et al. (2019) 373 
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investigated the effects, on CTmax of adults of the turquoise killifish Notobranchus 374 

furzeri, an annual species from Africa, of a highly persistent compound released from 375 

chlorinated aniline herbicides, 3,4-dichloroaniline (3,4-DCA). Fish were acclimated to 376 

either 24 or 28 °C and exposed to two concentrations of 3,4-DCA, CTmax increased with 377 

Tacc and the contaminant only caused a significant decline in CTmax at the highest 378 

concentration at 28 °C (Table 2).   379 

 There has been some investigation of effects of sublethal concentrations of 380 

toxic heavy metals on CTmax in subtropical or tropical fish species.  Cadmium and lead 381 

are both highly toxic to fishes, they attack various organs systems including gills, 382 

intestine and kidney.  Notably, at sublethal concentrations they are neurotoxic (Green 383 

and Planchart, 2018) and, therefore, could influence thresholds for LOE and CTmax. 384 

Carrier and Beitinger (1988) found that sublethal concentrations of cadmium decreased 385 

CTmax in the red shiner acclimated to 20 °C, with a severity that increased with 386 

exposure dose and duration (Table 2).  By contrast, Philippe et al. (2018) found that 387 

two sublethal concentrations of cadmium had no effect on CTmax in the turquoise 388 

killifish acclimated to either 24 or 28 °C, although CTmax increased with acclimation 389 

temperature (Table 2). In the Mekong striped catfish Pangasianodon hypophthalmus 390 

acclimated to 34 °C, exposure to a sublethal concentration of lead caused a significant 391 

decline in CTmax, which was ameliorated by dietary supplementation with selenium or 392 

zinc (Kumar et al., 2017, 2018). This amelioration was concomitant with changes in 393 

redox balance of the tissues and in expression of HSPs, further circumstantial evidence 394 

that these elements of cell physiology may be involved in thermal tolerance in fishes. 395 

 There has also been some investigation of effects of nutrient contaminants on 396 

tolerance of warming.  Nitrite is a pervasive form of nutrient pollution that enters aquatic 397 

habitats from diverse sources such as nitrogen-based fertilisers, livestock manure, 398 

sewage wastewater, and atmospheric deposits. The major toxic effect of nitrite is that it 399 

compromises blood oxygen transport in fishes, by causing methemoglobin formation 400 

(Lewis and Morris, 1986; Jensen, 2003). Watenpaugh et al. (1985) found that 401 

increasing sublethal concentrations of nitrite caused a progressive decline of CTmax in 402 

the subtropical eurythermal channel catfish Ictalurus punctatus acclimated to 20 °C. 403 

The CTmax was negatively correlated with blood methaemoglobin concentrations, which 404 

would seem to indicate that oxygen transport capacity is a determinant of CTmax in this 405 

species.  Rodgers and De Boeck (2019) reported that a sub-lethal nitrite concentration 406 

caused a significant decline in CTmax of in a globally extremely widespread subtropical 407 

eurytherm, the common carp Cyprinus carpio, when acclimated to 23°C (Table 2).  408 

Within the extreme boundaries delineated by CTmax, thermal tolerance in fishes 409 

is typically evaluated with a thermal performance curve (TPC) that measures a trait of 410 
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organismal performance over a range of temperatures to identify features such as a 411 

thermal optimum for performance (Schulte et al., 2011; Currie and Schulte, 2014). The 412 

most common TPC is for aerobic metabolic scope (AS), the net capacity to supply 413 

oxygen for aerobic metabolic activities beyond basal maintenance (Fry, 1971; Schulte 414 

et al., 2011; Schulte, 2015). Very few studies have investigated how contaminants 415 

might influence elements of a TPC in subtropical or tropical fishes (Rodgers and De 416 

Boeck, 2019; Gomez Isaza et al., 2020a), also because this requires very extensive 417 

experimental work. 418 

The study by Rodgers and De Boeck (2019) on common carp exposed to nitrite 419 

is a rare example where changes in CTmax were related to aerobic performance and 420 

aerobic scope. Although nitrite reduced CTmax this was not related to any decline in AS, 421 

indicating that CTmax in the carp is not affected by capacity to provide oxygen for 422 

metabolism when warmed. The most comprehensive evaluations of how a contaminant 423 

might influence thermal tolerance and thermal sensitivity of performance in a tropical 424 

freshwater fish are studies on effects of nitrate on the silver perch (Gomez Isaza et al., 425 

2020a, 2021b).  Nitrate is the most abundant nutrient contaminant globally; although 426 

less toxic than nitrite it nonetheless shows persistently high concentrations in 427 

freshwaters due to agricultural runoff from nitrogen-based fertilisers, fossil fuel 428 

combustion and wastewater treatment plants. Nitrate also causes the formation of 429 

methaemoglobin, compromising blood oxygen carrying capacity (Gomez Isaza et al., 430 

2020b).  Gomez Isaza et al. (2020a) investigated whether nitrate exposure would 431 

increase susceptibility to elevated temperatures, measured as CTmax, and limit aerobic 432 

performance at warmer temperatures, measured as AS by swimming respirometry.  In 433 

silver perch acclimated to 28 °C, exposure to either 50 or 100 mg 1-1 nitrate caused a 434 

decline in CTmax that was not, however, observed in fish acclimated to a warmer 435 

temperature of 32 °C, despite these latter having higher overall CTmax (Table 2).  436 

Furthermore, when swum at three temperatures (28, 32 or 36 °C), nitrate-exposed fish 437 

with a Tacc of 28 °C showed a decline in AS (and swimming performance, see below) at 438 

36 °C, whereas those with a Tacc of 32 °C displayed a thermally-insensitive phenotype, 439 

with no change in AS or performance across temperatures.  It was subsequently 440 

demonstrated that the silver perch with a Tacc of 32 °C exhibit thermally-related plastic 441 

compensation of the cardiorespiratory system, including increased gill surface area and 442 

greater ventricular thickness (Gomez Isaza et al., 2021b).  This demonstrates how the 443 

thermal physiology of fishes may have complex interactions with their relative 444 

sensitivity to contaminants (Gomez Isaza et al., 2020a, 2021b).   445 

 One major conclusion to be drawn from Table 2 is that the knowledge base for 446 

effects of contaminants on thermal tolerance in subtropical and tropical freshwater 447 
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fishes is extremely limited, with a majority of information for subtropical species. Given 448 

that the mechanisms that cause LOE in CTmax are not known, it is not possible to 449 

speculate about why some contaminants cause a decline in thermal tolerance while 450 

others do not.  Some patterns can, however, be demonstrated in the limited dataset, as 451 

a basis for stimulating further research.  When simply considering all CTmax data in 452 

Table 2, there is a very clear and highly significant decline in TSM of control animals as 453 

Tacc increases (Fig 3). This analysis makes no effort to correct for warming rate, 454 

developmental stage (one species was studied as an embryo), but the results confirm 455 

that is known about effects of Tacc on TSM in fishes (Comte and Olden, 2017a; b). The 456 

question that then arises is whether exposure to contaminants will exacerbate this 457 

effect, rendering tropical species even more vulnerable to warming events when they 458 

are in contaminated habitats.  For those species in Table 2 where a contaminant 459 

caused a significant decline in CTmax, there was also a highly significant decline in TSM 460 

with Tacc (Figure 3).  The intercept and slope of the relationships did not, however, differ 461 

significantly from those of control animals (Fig 3).  Fig 4 shows, however, the 462 

proportional extent (as a percentage) to which contaminants reduced TSM compared 463 

to control conditions, as a function of Tacc.  There was a significant effect whereby the 464 

higher Tacc, the greater the extent to which a contaminant would compromise TSM (Fig 465 

4). We show this figure precisely to highlight why it is unsatisfactory, namely that there 466 

is a critical lack of information for effects of contaminants on TSMs of fishes at warm 467 

tropical temperatures. There are major reasons for caution in interpreting this figure. 468 

Firstly, the four points at 30 °C and above are from two species, red shiner and striped 469 

catfish; the three points at 30°C all come the from the study on red shiner that 470 

demonstrated how two pesticides and their cocktail caused much more profound 471 

declines in CTmax in fish acclimated to 30 ° compared to 23 ° C by (Messaad et al. 472 

2000).  Indeed, at 30 °C the pesticide cocktail reduced the TSM by over 80% compared 473 

to uncontaminated animals (Fig 4). Secondly, as mentioned above, warmer 474 

temperatures did not increase susceptibility to nitrate in silver perch, because of plastic 475 

physiological responses by this eurythermal subtropical species (Gomez Isaza et al., 476 

2020a, 2021b), so this data is not carried on the figure. Therefore, it is very important to 477 

extend the knowledge base on how contaminants affect thermal tolerance of tropical 478 

species, to investigate whether they are particularly vulnerable to impacts of heatwaves 479 

when exposed to common pollutants. This is highly relevant to the life cycle of many 480 

tropical species that, during dry seasons, may find themselves confined to increasingly 481 

smaller water bodies, which will tend to concentrate any pollutants as water evaporates 482 

and also to be submitted to extremes of warmth due to solar radiation (Patra et al., 483 

2007, 2015). 484 
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 485 

Critical swimming speed as a biomarker 486 

 Swimming performance has clear ecological relevance for many fish species, 487 

so measures of performance can provide valuable biomarkers of toxic effects of 488 

aquatic contaminants (Cairns, 1966; Beamish, 1978; Tudorache et al., 2008; McKenzie 489 

et al. 2007, 2008; Domenici, 2010). In particular, the critical swimming speed protocol 490 

(Ucrit, Brett, 1964) was first proposed as a sublethal physiological biomarker more than 491 

50 years ago (Cairns, 1966; Beamish, 1978).  The Ucrit protocol allows investigation of 492 

proximate mechanisms that underly impaired performance following exposure to 493 

contaminants, so gaining insight into mechanisms of toxic effects in target organs such 494 

as skeletal muscle (Beaumont et al., 1995, 2000; Tierney et al., 2007) or the heart 495 

(Khursigara et al., 2019). 496 

The Ucrit protocol exposes fish to stepwise increases in speed in a swimming 497 

respirometer, to establish the speed at which it fatigues. The knowledge base is 498 

dominated by work on temperate species and especially salmonids, while the 499 

Deepwater Horizon disaster led to extensive research on subtropical marine species.  500 

Studies have demonstrated impacts of many classes of contaminant under controlled 501 

laboratory conditions, including metals (e.g. Beaumont et al., 1995), xenobiotic 502 

organics (Wood et al., 1996; Tierney et al., 2007), crude oil itself (Stieglitz et al., 2016), 503 

waste products such as ammonia (Shingles et al., 2001), and other consequences of 504 

anthropogenic pressures, such as harmful algae (Corriere et al., 2020). Critical 505 

swimming speed has also been used to show impacts of exposure to water containing 506 

complex contaminant mixtures (e.g. Goertzen et al., 2012; Folkerts et al., 2020) 507 

including by exposing fishes in cages (McKenzie et al., 2007). The zebrafish is an 508 

important model vertebrate species for laboratory studies to demonstrate impacts of 509 

contaminants on swimming performance, to demonstrate toxic effects and their 510 

mechanisms (e.g. Thomas and Janz, 2011; Gerger et al., 2015; Lucas et al., 2016; 511 

Folkerts et al., 2017).  Such studies on zebrafish have never, however, been related to 512 

conditions in their natural environment in tropical south Asia, so we will not review them 513 

here.  514 

There are so few studies that, to our knowledge, have used Ucrit as a biomarker 515 

of effects of contaminants on subtropical and tropical freshwater species (other than 516 

zebrafish), that it is almost trivial to review them.  We do this, however, to stimulate 517 

further work.  One necessity for such studies is, of course, access to a swim tunnels or 518 

swim flume.  These are now commercially available, which opens up possibilities of 519 

using swimming performance as a valuable biomarker to support decision-making for 520 

water quality control in tropical countries. This is especially relevant for the protection of 521 
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economically valuable species that perform remarkable migrations through tropical 522 

river systems that are at increasing risk of contamination by multiple pollutants (Hogan 523 

et al., 2007; Duponchelle et al., 2016; Speranza et al., 2016). Other traits of 524 

performance such as the escape response (Tudorache et al., 2008; McKenzie et al., 525 

2009) or aspects of swimming behavior (Little and Finger, 1990), which do not require 526 

a swim tunnel, can also be used as biomarkers. 527 

Two studies have investigated effects of organic pollutants on Ucrit in freshwater 528 

subtropical/tropical species. Perfluorooctane sulfonic acid (PFOS) is a fluorosurfactant 529 

with a wide range of commercial and industrial applications, which has become a 530 

pervasive and persistent pollutant of freshwaters globally (Augustsson et al., 2021). Xia 531 

et al. (2015) studied effects of a range of sublethal concentrations of PFOS on Ucrit in 532 

qingbo Spinibarbus sinensis, a subtropical Asian species acclimated to two 533 

temperatures, 18 ° and 28 °C.  Increasing concentrations of PFOS caused progressive 534 

declines in Ucrit, while Tacc had no interaction with these impairments.  Swimming 535 

respirometry showed that the decline in performance was linked to reduced swimming 536 

efficiency, in that higher rates of oxygen uptake were needed to achieve a given a 537 

swimming speed. The author suggested that this might be due to sensorimotor or 538 

muscle tissue impairments, due to toxic effects of PFOS.  McKenzie et al. (2017) used 539 

Ucrit to evaluate individual variation in sub-lethal sensitivity to the OP pesticide 540 

trichlorfon in a globally widespread tropical species, the Nile tilapia.  At a Tacc of 27 °C, 541 

trichlorfon reduced Ucrit significantly and fish only exhibited a partial recovery 96h after 542 

return to control freshwater.  The decline in Ucrit was due to reduced swimming 543 

efficiency, which was attributed to the fact that OPs are acetylcholinesterase inhibitors 544 

that interfere with cholinergic nerve function at motor endplates and in the central 545 

nervous system of vertebrates. This would impair neuromuscular coordination in fishes, 546 

reducing their swimming efficiency (Tierney et al., 2007; McKenzie et al., 2017). This 547 

study is a rare investigation of how individuals in populations differ in their sensitivity to 548 

a pollutant, finding that intrinsically efficient swimmers were the least affected by the 549 

OP (McKenzie et al., 2017). 550 

Gomez Isaza et al. (2020a) investigated effects of nitrate, the most prevalent 551 

nutrient contaminant globally, on thermal sensivity of swimming performance in silver 552 

perch, acclimated to either 28 or 32 °C. Two sublethal exposure concentrations were 553 

evaluated at three temperatures (28, 32 and 36 °C), to reveal complex effects whereby 554 

fish acclimated to 28 °C had better overall Ucrit performance than those acclimated to 555 

32 °C.  Exposure to nitrate, however, impaired Ucrit of the 28 °C fish, in a manner 556 

proportional to nutrient concentration, but was without effect on performance of the 32 557 

°C fish.  This absence of effects of nitrate in fish acclimated to 32 °C was unexpected 558 
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but paralleled the findings for CTmax and aerobic performance that are reported above.  559 

In a study on the subtropical highly eurythermal spangled perch Leiopotherapon 560 

unicolor, Gomez Isaza et al. (2020b) investigated effects on Ucrit of combinations of 561 

sublethal nitrate and low pH (acidification). The Ucrit was impaired by both nitrate and 562 

acid pH, with most severe impairment being in fish at the highest nitrate concentration 563 

and low pH, although the combined effect was additive rather than synergistic.  These 564 

impairments in performance were linked to a reduced capacity to raise oxygen uptake 565 

during swimming, leading to lower AAS. These proximate effects could, in turn, be 566 

attributed to measured negative effects of nitrate and low pH on blood oxygen carrying 567 

capacity (Gomez Isaza et al., 2020b).  Such multifactorial studies provide excellent but 568 

challenging templates for future investigations of effects of contaminants on the 569 

environmental tolerance and physiological performance of freshwater tropical fishes.   570 

 571 

Conclusions 572 

 This review demonstrates that O2crit, CTmax and Ucrit can all be useful 573 

physiological biomarkers of the toxicological effects of water contaminants on tropical 574 

and subtropical freshwater fishes.  Understanding the interactive effects on fish 575 

physiology of sublethal exposures to contaminants, hypoxia and heatwaves will be 576 

crucial for monitoring the health of populations and projecting their biological 577 

consequences before serious changes in population size occur. This review very 578 

clearly demonstrates the need to extend the knowledge base to more species and 579 

contaminants, to better evaluate subtropical and tropical freshwater fish vulnerability in 580 

light of ongoing climate change. Complex physiological traits should be used to support 581 

decision-making in formulating water quality criteria for fishes and conservation 582 

strategies for their habitats, to protect their rich biodiversity.  They may be particularly 583 

useful in procedures to identify adverse outcome pathways (van der Oost et al., 2020).  584 

Despite the technical challenges involved, future studies should consider interactions 585 

among pollutants, hypoxia and warming in tropical fishes, as the stresses all co-occur 586 

in nature. 587 
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Figure Legends 1107 

Figure 1. Reduced tolerance of hypoxia, as measured by critical oxygen level (O2crit), in 1108 

matrinxã Brycon amazonicus, after exposure to various different pollutants. Ct = control 1109 

condition, MP = methyl parathion, Hg = HgCl2, TC = triclosan, RT = Roundup Transorb, 1110 

RO = Roundup Original, RWG = Roundup WG. (Adapted from: Olle, 2007; Anelli Jr., 1111 

2010; Monteiro et al., 2013; Martins, 2018). 1112 

Figure 2. Influence of ambient oxygenation on oxygen uptake rate (ṀO2) of matrinxã 1113 

Brycon amazonicus, after exposure to various different pollutants. Ct = control, MP = 1114 

methyl parathion, Hg = HgCl2, TC = triclosan, RT = Roundup Transorb, RO = Roundup 1115 

Original, RWG = Roundup WG. Closed symbols denote a significant difference in relation 1116 

to the normoxic values (P < 0.05). (Adapted from: Olle, 2007; Anelli Jr., 2010; Monteiro 1117 

et al., 2013; Martins, 2018). 1118 

Figure 3. The relationship of acclimation temperature to thermal safety margin (TSM) in 1119 

subtropical and tropical freshwater fishes, where TSM is the difference, in °C, between 1120 

acclimation T and CTmax. Open symbols, control conditions for all data carried in Table 1121 

2. Grey symbols, conditions where contaminants caused a significant decline in CTmax.  1122 

Based upon data from 14 studies on 12 species exposed to 15 contaminants (Table 2).  1123 

Control data, dashed line, R2 = 0.828, P < 1 x 10-8, exposed data, dotted line, R2 = 0.716, 1124 

P < 1 x 10-5.  Slopes are not significantly different (P = 0.129, two-way T-Test). 1125 

Figure 4. Relationship between acclimation temperature (Tacc) and the extent, as a 1126 

percentage of control conditions, to which contaminants decrease thermal safety 1127 

margin (TSM) in sub-tropical and tropical freshwater fishes.  Data are taken from Table 1128 

2, for all those situations where contamination caused a significant decline in CTmax (n 1129 

= 17, from 11 studies of 11 contaminants on 10 species). Line describes a linear 1130 

regression, dotted lines are 95% confidence intervals, R² = 0.43, P = 0.0012. This 1131 

figure is based upon a very limited dataset and should, therefore, be interpreted with 1132 

caution until the knowledge base is extended (see main text for details) 1133 
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