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A NONABELIAN FOURIER TRANSFORM FOR TEMPERED
UNIPOTENT REPRESENTATIONS

ANNE-MARIE AUBERT, DAN CIUBOTARU, AND BETH ROMANO

ABSTRACT. We define an involution on the space of compact tempered unipotent repre-
sentations of inner twists of a split simple p-adic group G and investigate its behaviour
with respect to restrictions to reductive quotients of maximal compact open subgroups.
In particular, we formulate a precise conjecture about the relation with a version of
Lusztig’s nonabelian Fourier transform on the space of unipotent representations of the
(possibly disconnected) reductive quotients of maximal compact subgroups. We give
evidence of the conjecture, including proofs for SL,, and PGL,,.
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1. INTRODUCTION

The local Langlands correspondence predicts that the irreducible smooth representations
of a reductive p-adic group G should be controlled by the geometry of the Langlands dual
group GV. Parahoric restriction allows us to pass from depth-zero representations of G to
representations of certain finite reductive groups, and the local Langlands correspondence
should reflect the rich structure in the representation theory of these finite groups [Lul]. To
understand the interplay between the representation theory of p-adic and finite groups, it
is natural to start with the category of unipotent representations (or representations with
unipotent reduction) of G defined by Lusztig in [Lu3]. By definition, unipotent represen-
tations of p-adic groups yield unipotent representations (in the sense of [DILJ §7.8], [Lull)
of related finite groups. In this paper, we define a nonabelian Fourier transform for inner
forms of disconnected finite reductive groups, and for G simple and split, we formulate a
conjecture relating this and the elliptic Fourier transform for the pure inner twists of G as
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defined in [Ci]. This work is partly motivated by the papers of Lusztig which proposed a
theory of almost characters for p-adic groups [Lu6l [Lu7] and of Mceglin and Waldspurger on
the elliptic representations of the special orthogonal groups [MW] [Wa2].

To describe the context of the conjecture, suppose G is an absolutely simple, split con-
nected reductive group over a non-Archimedean local field F' with finite residual field. The
philosophy of the Langlands correspondence says that, in order to have a good geometric
description, one should consider not just the representations of G, but rather the represen-
tations of all the pure inner twists G’ € InnT?(G) of G, in the sense of Vogan [Vo]. This
philosophy leads us to look at all inner forms of disconnected finite reductive groups: we
shall see that these inner forms arise in parallel to the pure inner twists of G.

More specifically, for a finite connected reductive group G, Lusztig [Lul] defined a non-
abelian Fourier transform FTg on the space of unipotent representations of G, and previous
work [CO2], [Ci] has shown that one can define an involution FT}}; on the elliptic unipotent
representation space for G in a way that lifts FTg in certain cases for reductive quotients G
of maximal parahoric subgroups in G. Yet FT; does not restrict to FTg under parahoric
restriction for reductive quotients G of arbitrary parahoric subgroups of G. To adjust for
this complication, we first find that we must look not at parahoric subgroups, but at maxi-
mal compact open subgroups of GG, whose reductive quotients might not be connected. We
extend Lusztig’s definition to the case when G is disconnected by considering all inner forms
of G: we define an involution that mixes spaces of unipotent representations for these inner
forms.

If K is a maximal compact open subgroup of G with reductive quotient K, then all the
inner forms of K appear as reductive quotients for maximal compact subgroups of pure
inner twists of G. When we consider all maximal compact subgroups in all G’ € InnT?(G),
the elliptic Fourier transform has the potential to be compatible with the Fourier transform
we define for disconnected finite reductive groups. We give a precise conjecture describing
this compatibility. Our work generalizes that of [MW], [Wa2] who formulate and prove the
conjecture in the case when G = SOg,,41(F). Just as in [MW], we expect that the elliptic
Fourier transform will prove useful in investigating the stability of tempered unipotent L-
packets.

1.1. Main results. We now describe our work in more detail. As above, let us assume
that GG is a simple, split group over F. Then the Langlands correspondence, see Section
[, says that the L-packets of irreducible tempered unipotent representations of the groups
G’ € InnTP(G) are in one-to-one correspondence with GY-conjugacy classes of elements
x = su € GV (Jordan decomposition) such that s is compact. The elements in the L-packet
are parametrized by irreducible representations ¢ of the group of components Agv () of the

centralizer of  in G¥. Hence an L-packet is a collection {7 (su, ) | ¢ € Ag(\su)} Let I',
denote the reductive part of the centralizer of v in GV. In [Wa2l [Ci], one considered the set
of pairs (s, h) € I'2 of commuting semisimple elements Y(I',,) and the subset of elliptic pairs
Y(Tw)en, see Section These will play a role below in the Langlands parametrization.
Each group G’ € InnT?(G) has a finite collection of conjugacy classes of maximal compact
open subgroups max(G’). These are classified in terms the theory of [BT] IM], see Section

A compact group K’/ € max(G’) has a finite quotient K’ which is the group of k-
—/

points of a (possibly disconnected) reductive group over a finite field k. Write Ryn(K )
for the C-vector space spanned by the irreducible unipotent representations of K. TFor
connected finite groups, Lusztig [Lul] defined the nonabelian Fourier transform, which is
the change of bases matrix between the basis of irreducible unipotent characters and the
basis of unipotent almost-characters. This is recalled in Section We need to define an
extension of this map to disconnected finite groups as in [Lub]. To fit with our picture, we
define a nonabelian Fourier transform for the representations of the inner forms of the finite



A TEMPERED FOURIER TRANSFORM 3

(possibly disconnected) reductive group K, where K € max(G). See Section 5.4l The point
is that this transform gives an involution

FTcpt,un: C(G)cpt,un — C(G)Cpt,unu (11)

on the space

C(G)cpt,un = @ @ Run(F/)u

G’€InnT?(G) K’ €max(G’)

which we can think of as the sum over K € max(G) of the unipotent representation spaces
of the inner forms of K. See (6.2) and Definition It is important to notice that, in
general, FT¢p¢ un mixes the inner forms of a given K.

Since parabolic induction of characters is generally well understood, of particular interest
is the space of elliptic (unipotent) tempered representations for all pure inner twists

Rﬁn,en(G) = @ Run(G/)v
G'€InnT?(G)

see Section Bl The idea of elliptic tempered representations goes back to Arthur, and our
approach have been influenced by the work of Reeder [Re3|]. Generalizing [Re3|, we prove
in Theorem [0.1] under certain assumptions on G, that the local Langlands correspondence
induces a isometric isomorphism

LLCPwm: @ CYTw)en]™ — RE, 1(G), (s,h) = T(u, s, h), (1.2)

un,ell
ueGY

where the left hand side has a natural elliptic inner product while the right hand side is
endowed with the Euler-Poincaré product. The element w ranges over representatives of
unipotent conjugacy classes in GV. Since the left hand side has an obvious involution given
by the flip (s,h) — (h, s), this defines an involution, the dual elliptic nonabelian transform

FTh: RV, W(G) = RY L(G). (1.3)

un,ell un,ell
We notice that FT)}; mixes representations of the inner twists of G. We expect that there
is a commutative diagram, Conjecture B up to certain roots for unity (see Remark [8:0)):

RP(G) R (@) (1.4)

un,ell un,ell

TeScpt,un l lrescpt,un

C(G)Cpt,unanc(G)cpt,un
where the vertical arrows are defined by taking invariants by the pro-unipotent radicals of
maximal compact subgroups. This is a generalization of [Ci, Conjecture 1.3] with an im-
portant difference: we remark that the role of maximal compact subgroups (rather than
maximal parahoric subgroups) and hence of a Fourier transform for inner forms of discon-
nected finite reductive groups in the conjecture is essential for treating all pure inner twists.
We verify the conjecture when G = Sp, (Section [I0), SL,, (Section [T, and PGL,, (Section
[[2). The results of Waldspurger [Wa2] show that this conjecture holds when G = SOg,41.

To extend beyond the case of elliptic representations, the right object to consider from
the perspective of restrictions to compact subgroups, is the larger compact (unipotent)
tempered representation space Rﬁnﬁcpt(G), see Section B4l This space was studied from
the perspective of the trace Paley~Wiener Theorem in [CH2] (under the name “the rigid
quotient”). To parametrize it, we introduce a space of “compact pairs” C[Y(Ty)/~]",
see Section and Proposition [[771 We expect that the same conjecture (I4]) holds with
R, cpt(G) replacing RY ) (G) above. In the case of C[Y(T')/~]"™, the nonabelian Fourier

transform should be closely related to that defined by Lusztig in [Lu7].
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1.2. Structure of the paper. In Sections P Bl and M, we review relevant background
about inner twists of p-adic groups, the generalized Springer correspondence, and the local
Langlands correspondence. In Section [l we recall Lusztig’s parametrization of unipotent
representations of a connected reductive group over a finite field and the definition of the
nonabelian Fourier transform on the space spaced by these representations. We then extend
Lusztig’s parametrization: for the (possibly disconnected) groups K that arise as reductive
quotients of subgroups K € max(G) as defined above, we parametrize the union over all
inner forms K of K of the set of unipotent representations of f/, and we then define a
nonabelian Fourier transform on the space spanned by these representations (see Section
EA).

In Section 6l we return to the setting of p-adic groups. We review the parametrization of
maximal compact open subgroups of G’ € InnT? (&), under the assumption G is F-split. We
define the space C(G)cpt,un in terms of these subgroups, and we use the Fourier transform
of Section 5.4 to define an involution FTcpyun o0 C(G)cpt,un- In Section [l we review the
definitions of Y(T")en and Y(T') for a complex reductive group I', and we define an equivalence
relation on Y(I'). We also review the definition of the elliptic pairing on the Grothendieck
group of a finite group.

Section [§] contains the conjectures outlined above. We first review the Euler—Poincaré
pairing and state Conjecture Bl which predicts that the local Langlands correspondence
induces an isometric isomorphism at the level of elliptic spaces. We then define a restriction
map reScpt,un - Rﬁnﬁcn(G) — C(G)cpt,un and state Conjecture 85, which predicts that the
elliptic nonabelian Fourier transform FTXH is compatible with FT¢p un under rescpeun. We
give evidence for this conjecture in Proposition [R.7] which considers linear combinations of
twists of Steinberg representations.

We then extend this conjecture, considering not just Rﬁnﬁcn(G) but also the space Ry, i (G),
which has a basis described in terms of elements of Y(I';,) under the equivalence relation
defined in Section [{l We define a Fourier transform FT(\:/pt,un on this space and conjecture
that FTXMun is compatible with FT¢p¢ un under rescps,un-

In Section[@, we prove Conjecture B1lin the case when G is simple, split, and adjoint. In
Section [@.4] we indicate how the proof can be extended to the non-adjoint case. In the final
three sections, we verify the conjectures for explicit examples: in Section[I0 we consider the
group Sp,(F); in Section [[I] we consider SL,,(F'), and in Section [I2 we consider PGL,, (F).

1.3. Notation and conventions. Given a complex Lie group G, we write Zg for the center
of G. Given x € G, we write Zg(x) for the centralizer of z in G. Similarly, if H is a subgroup
of G, we write Zg(H) for the centralizer of H in G, and if ¢ is a homomorphism with image
in G, we write Zg(p) for Zg(im ). We write G° for the identity component of G. If x € G,
we write Ag(z) = Zg(x)/Zg(x)° for the component group of Zg(x). If w € G is unipotent, we
write I, for the reductive part of Zg(u). Given a torus T, we write X*(T) for the character
group of T.

Given a finite group A, we write A for the set of (isomorphism classes of) irreducible
representations of A, and we write R(A) for the C-vector space with basis A. Given a finite
set S, we write C[S] for the C-vector space of functions S — C.

2. RECOLLECTION ON INNER TWISTS

2.1. Inner twists. Let F' be a non-Archimedean local field with finite residual field kp = F,.
We denote by o the ring of integers of F'. Let Fj be a fixed separable closure of F', and let
T'r denote the Galois group of Fy/F. Let Fy,, C Fy be the maximal unramified extension of
F. Let Frob be the geometric Frobenius element of Gal(Fy,/F) ~ Z, i.e., the topological
generator which induces the inverse of the automorphism z +— z? of kr. We denote by Frg
the action of Frob on a connected reductive F-group G. We now review definitions related
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to inner twists and pure inner twists of a p-adic group. For details see, e.g., [Va, Section 2],
[Kalll Section 2], [ABPS2l Section 1.3]. (Note that [Vo| uses the term “pure rational form”
for what we call a pure inner twist.)

Let G = G(F). Write Inn(G) for the group of inner automorphisms of G. Recall that
an isomorphism a: H — G of algebraic groups groups determines a 1-cocycle

I'r — Aut(G)

Yo 5 s aca~lo L. (2.1)

An inner twist of G consists of a pair (H, «), where H = H(F') for some connected reductive
F-group H, and a: H == G is an isomorphism of algebraic groups such that im(y,) C
Inn(G). Two inner twists (H, «), (H',a’) of G are equivalent if there exists f € Inn(G) such
that
Ya(0) = f Yy (0) ofo™ Vo € Gal(F,/F). (2.2)
Denote the set of equivalence classes of inner twists of G by InnT(G).
An inner twist of G is the same thing as an inner twist of the unique quasi-split inner

form G* = G*(F') of G. Thus the equivalence classes of inner twists of G are parametrized
by the Galois cohomology group H'(F,Inn(G*)):

InnT(G) +— H(F,Inn(G*)).
Example 2.1. For G = SL,(F), there is a one-to-one correspondence
InnT(SL,(F)) <— Z/nZ. (2.3)

This is given as follows. Let r be an integer mod n and let m = ged(r,n). Then n = dm
and r/m is coprime to d. Therefore, there exists a division algebra Dg ./, central over F
and of dimension dimg Dg ;. /m = d?. The corresponding inner twist is SLm(DdyT/m).

The pure inner twists of G correspond by definition to cocycles z € Z1(F,G) [Vo]. Such
a cocycle is determined by the image u := z(Frob) € G. The corresponding inner twist of
G is defined by the functorial image z,q € Z'(F,Inn(G*)) of z. This pure inner twist is
defined by the twisted Frobenius action Fr, on G given by Fr, = Ad(u) o Frg.

In cohomological terms, the short exact sequence

1—Zg — G — Inn(G") — 1

induces a map in cohomology H!(F, Inn(G*)) — H?(F,Zg~). An inner twist of G* is a pure
inner twist if and only if the corresponding element of H?(F,Zg-) is trivial [Vo, Lemma
2.10]. Denote by InnT?(G*) the set of equivalence classes of pure inner twists of G*. We
have [Vol Proposition 2.7]

InnT?(G*) +— HY(F,G*). (2.4)

Example 2.2. If G is semisimple adjoint, every inner twist is pure, InnT?(G) = InnT(G).
If G is semisimple and simply connected, H* (F, Inn(G*)) = H2(F, Zg~) and therefore, there
is only one class of pure inner twists, the quasisplit form, Inn?(G) = G*. When G = SL,,(F),
the only pure inner twist is G itself, see [Vol Example 2.12].

2.2. The L-group. Let GV denote the C-points of the dual group of G. It is endowed with
an action of I'r. Let W be the Weil group of F' (relative to Fy/F) and let *G := GY x W
denote the L-group of G.

Kottwitz proved in [Kol Proposition 6.4] that there exists a natural isomorphism

ke HY(F, G) =5 Irr(ﬂ'o (ngVF)). (2.5)
et enote the simply connected cover of the derived group ) .We have
Let GY. d he simpl d f the derived GY,, of G¥.We h
GY. = (Gaa)V, and
kgt HY(F,Inn(G*)) = Irr(Z47). (2.6)

ad
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All the inner twists of a given group G share the same L-group, because the action of Wg
on GV is only uniquely defined up to inner automorphisms. This also works the other way
around: from the Langlands dual group “G one can recover the inner-form class of G.

Example 2.3. If G = Sp,,,(F), then we have GV = SO2,,41(C) and G, = Spin,,, ,(C). It
gives Zgy, ~ Z/2Z. An inner twist of G is determined by its Tits index [Ti]. The group
G* = G is split and its nontrivial inner twist is the group SUsp41(F) := SU(n, h,.), where
h, is a non-degenerate Hermitian form of index r = |n/2| over the quaternion algebra Q
over F' (see for instance [Ar2] § 9]).

We will consider G as an inner twist of G*, so endowed with an isomorphism G — G*.
Via ([20), G is labelled by a character (g of ZEVVF We choose an extension ¢ of (g to Zgy. .

3. GENERALIZED SPRINGER CORRESPONDENCE FOR DISCONNECTED GROUPS

Let G be a possibly disconnected complex Lie group. We denote by G° the neutral
component of G. Let u be a unipotent element in G°, and let Ago(u) denote the group of
components of Zgo (u).

Let ¢° be an irreducible representation of Age(u). The pair (u, ¢°) is called cuspidal if it
determines a G°-equivariant cuspidal local system on the G°-conjugacy class of u as defined
in [Lu2|]. In particular, if (u, ¢°) is cuspidal, then v is a distinguished unipotent element in
G° (that is, u does not meet the unipotent variety of any proper Levi subgroup of G°), [Lu2|
Proposition 2.8]. However, in general not every distinguished unipotent element supports a
cuspidal representation.

Example 3.1. For G := SL,,(C), the unipotent classes in G are in bijection with the parti-
tions A = (A1, Ag, ..., A) of n: the corresponding G-conjugacy class O, consists of unipotent
matrices with Jordan blocks of sizes A1, Ao, ..., \.. We identify the center Zg with the group
iy, of complex n-roots of unity. For u € Oy, the natural homomorphism Zg — Ag(u) is
surjective with kernel fi,,/4cq(x), Where ged()) := ged(A1, Az, ..., A.). Hence the irreducible
G-equivariant local systems on O, all have rank one, and they are distinguished by their
central characters, which range over those x € fi,, such gcd(A) is a multiple of the order of
X. We denote these local systems by £ . The unique distinguished unipotent class in G
is the regular unipotent class O(,), consisting of unipotent matrices with a single Jordan
block. The cuspidal irreducible G-equivariant local systems are supported on O, and are
of the form & with x € i, of order n (see [Lu2l (10.3.2)]).

n),x»

The group Ags (u) may be viewed as a subgroup of the group A, := Ag(u) of components
of Zg(u). Let ¢ be an irreducible representation of Ag(u). We say that (u, ¢) is a cuspidal
pair if the restriction of ¢ to Age(u) is a direct sum of irreducible representations ¢° such
that one (or equivalently any) of the pairs (u, ¢°) is cuspidal. Let

19 := {(U, ) | U unipotent conjugacy class in G, £ irred. G-eqvt. local system on U}.

This set can be identified with the set of G-orbits of pairs (u, ¢), where u € G is unipotent and
o€ A\u If (¢, Vy) is an irreducible A,-representation, we can first regard it as an irreducible
Zg(u)-representation, and then the corresponding local system is £ = (G Xz ) Vo —
G/Zg(u) = U). We denote by I9 the subset of I of cuspidal pairs. We write I := 19" and
I.:=19".

Let J9 denote the set of G-orbits of triples j = (M, U, &) such that M° is a Levi
subgroup of G°,

M :=Zg(Z540), (3.1)
and (U, &) € I.(M°). We observe that M has identity component M° and that Z$, =
Z54o- We set J := J9°. We notice that M = M° whenever G = G°.

Let Z3o rog = 12 € Z3go | Zg(2) = M°} and Yj(G) = Upeg (Zoo rogUc)z ™. Let
Y ;(G) be the closure of Y;(G) in G. We set Y; = Y;(G°) and Y; = Y,;(G°). For example,
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if jo = (T, 1,triv) is the trivial cuspidal pair on the maximal torus T in G°, then Yj, is the
variety of regular semisimple elements in G°, hence Y ;, = G°.

Set W7 := Ngo(M°)/M?°. This is a Coxeter group due to the particular nature of the
Levi subgroups in G° that support cuspidal local systems (see [Lu2l Theorem 9.2]).

One constructs a G°-equivariant semisimple perverse sheaf K; supported on Yj that has
a W-action and a decomposition [Lu2, Theorem 6.5]

K= @ Vo®Ajme,
pOGI//V\;’

where (p°, V,0) ranges over the (equivalence classes of) irreducible W;-representations and
Aj po is an irreducible G°-equivariant perverse sheaf. The perverse sheaf A; ,o has the
property that there exists a (unique) pair (U, £°) € I such that its restriction to the variety
G, of unipotent elements in G° is:

(4j.p0)lge, [— dim(Z340 )] = IC(U, £°)[dim(U)]. (3.2)
In particular, the hypercohomology of Ajo ,o on U is concentrated in one degree, namely

HW (Aj o)l = E°, where ay = —dim(U) — dim(Zj0).
If we set J =J9° = {(j,p°) : j€I9°, p° € ﬁ/?}, the generalized Springer correspondence
for G° is the bijection
Vo 197 5 397 (U,E) = (4, p°), (3.3)

where the relation between (j,p°) and (U,€) is given by (82). Let v2: I — J denote the
composition of v° with the projection from J to J.

We will now explain how, following [AMSI] § 4], one can extend the maps v° and v¢ to
the case of disconnected groups. Let j = (M, U, &) € J9. We set W, := Ng(j)/M°. There
exists a subgroup R; of W; such that W; = W? x R, (see [AMSI], Lemma 4.2]). Suppose
that f; is a 2-cocycle

—x
Hjl%j)(fﬁj%@l.
We view f§; as a 2-cocycle on W; which is trivial on W7. Then the ;-twisted group alge-

bra of W;, denote by Q,[W;,#;] is defined to be the Q,-vector space Q,[W;, ;] with basis
{fw : w € W;} and multiplications rules

Jwfuw = ﬂj(wvw/)fww’v waw/ € Wj-

One constructs a G-equivariant semisimple perverse sheaf K; supported on ?j which has
a Wj-action and a decomposition [Lu2l Theorem 6.5]

K; = @ Vo ® Ajp,
pEIrr(@@[Wj7nj])

where (p, V,,) ranges over the (equivalence classes of) simple modules of Q,[W, t;]) and A; ,
is an irreducible G-equivariant perverse sheaf.

We set
J9 = {(j.p) : 5 €39, pelr(Q[W;,t;])} (3.4)
The generalized Springer correspondence for G is a canonical bijection
viIl9 =39 (U,€) - (j,p) (3.5)

defined in [AMS1] Theorem 5.5].

Definition 3.2. Let v, = v9: 19 — J9 denote the composition of v with the projection
from J9 to JY.
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Suppose the G-class U splits into G°-classes Uy, ..., Uy, for some ¢ > 1. If we regard
& as a G°-equivariant local system, then it restricts 5|U¢° = @le &y 1 <1 < L, where
ve(U?,E2) = (5°, pi0), with j° = v2(UT, €7,) and plwe = B, , 07

Example 3.3. Let G = 03, (C), G° = SO, (C), G/G° = Z/2Z. The unipotent classes in G
are parametrized by partitions A = (A1, ..., Ay) of 2n such that each even part appears with
even multiplicity. If U is the corresponding unipotent class, then U, is a single G°-class
unless the partition A is “very even”’ [SpSt}, [CM], i.e., all parts \; are even, in which case
U, splits into two G°-classes, U;L and U, .

Let j = jo correspond to the trivial cuspidal local system on the torus of G°. Then
wWe = We = W(D,) and W; = W = W(B,), hence W/W° = G/G° = Z/2Z. If X
is not a very even partition, u € Uy, then A,/Age(u) = Z/2Z; if (jo,p°) = v°(Uy, ¢°),
then there are two nonisomorphic ways ¢, ¢’ in which one can extend ¢° to A,, and two
nonisomorphic ways p, p’ to extend p° to W, and these correspond under the disconnected
Springer correspondence.

If, on the other hand, A is a very even partition, let u = ut be a representative of
Uy and u™ a representative of Uy, then A, = Age(u) = Age(u™) = {1}. In this case,
v°(U*%,1) = p* (W(D,,)-representations), where p is parametrized by a bipartition of n of
the form a x a (necessarily n is even). Then v(U,1) = p (W(B,,)-representation), where
plw,y =p" ©p~.

4. THE LANGLANDS PARAMETRIZATION

We use the notation of Section 2l In addition, we write I for the inertia subgroup of
Wr, and we set Wi, :== Wr x SL2(C). We have natural projections from p;: Wi — Wg and
L
p2: G — WF

4.1. Langlands parameters. A Langlands parameter (or L-parameter) for G is a con-
tinuous morphism ¢: W — LG such that p(w) is semisimple for each w € Wp (that is,
r(¢(w)) is semisimple for every finite-dimensional representation r of GV), the restriction of
¢ to SLo(C) is a morphism of complex algebraic groups, and the diagram

W/, d Lg
Wr

commutes. Write ®(G) for the set of GV-conjugacy classes of Langlands parameters for G.
Let Zgv () denote the centralizer in GV of o(W}.). We have

Zov(p) NZav = Z0F, (4.1)

and hence

Zav(9)/ 268 = Lav (9)Lav [Zav-
The group Zev (¢)Zav /Zev can be considered as a subgroup of Gy and we define Z,y (¢)
to be its inverse image under the canonical projection p: Gy, — GJ;. The group ngc (p)
coincides with the one introduced by Arthur in [Arll p. 209] (denoted there by S¢1SC)S.C As
observed in [Ar1], it is an extension of Zgv (¢)/Zge by Zay,. Let Al denote the component

group of Z¢y (¢).

Remark 4.1. The group Ai, coincides with the group considered by both Arthur in [Arl]

3.2)] (denoted there by S,) and Kaletha in Kal2, §4.6] in the parametrization of the L-
¢
packet of ¢.
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An enhancement of ¢ is an irreducible representation ¢ of A}a. We denote by A}p the
set of irreducible characters of A}a. The pairs (@, ¢) are called enhanced L-parameters. Let
¢ € 2&7 Then ¢ determines a character (4 of Zgy . An enhanced L-parameter (¢, ) is
said to be G-relevant if (4 = ¢, where ( is as defined in Section The set O,(G) of
GV-conjugacy classes of G-relevant enhanced L-parameters is expected to parametrize the
admissible dual of G.

The group HY(Wg,Zgv) acts on ®(G) by

(zp)(w,z) = 2" (w) p(w,z) ¢ € P(Q),w € Wg,z € SLy(C), (4.2)
where 2’: Wr — Zgv represents 2 € HY(Wg, Zgv). This extends to an action of H(Wg, Zgv)
on ®.(G) that does nothing to the enhancements.

A character of G is called weakly unramified if it is trivial on the kernel of the Kottwitz

homomorphism. Let Xy, (G) denote the group of weakly unramified characters of G. There
is a natural isomorphism

qur(G) =~ (ZéFv)Frob C Hl(WF7 ZGV)a (43)
see [Hal §3.3.1]. Its identity component is the group Xyu,(G) of unramified characters of G.
Via [@2) and [@3]), the group Xwu:(G) acts naturally on ®.(G).
Let ¢: Wr x SLo(C) — LG be an L-parameter. We consider the (possibly disconnected)
complex reductive group
g#’ = Zésvc (@'WF)v (4'4)
defined analogously to Zév (). Denote by g, its identity component.
We define elements u,, s, € G¥ by

(ups1) = (1. (51)) and (s, Frob) = p(Frob, Idsi, c)). (4.5)

Then u, € G.

We recall that by the Jacobson-Morozov theorem any unipotent element u of G2 de-
termines a homomorphisms of algebraic groups SLy(C) — G¢ taking the value u at (&1).
Hence any enhanced L-parameter (¢, ¢) is already determined by ¢|w,, u, and ¢. More
precisely, the map

(907 ¢) = (<P|WF )y U ¢) (46)
provides a bijection between ®(G) and the set of GV-conjugacy classes of triples (¢|w,. , g, ¢).

We define an action of GY. on GV by setting

h-g:=h'gh'™* for h€ GY, and g € G, where p(h) = h'Zgv.

It induces an action of Gy, on “G and we denote by Z¢v () the stabilizer in Gy, of o(W},)
for this action.

On the other hand, the inclusion Zgy (@) < Z¢y (¢lwy) N Zay (uy) induces a group
isomorphism - -

AL =5 mo (Zhy (plwe) N Zay (up)) (4.7)
As observed in [AMSIT], (92)], another way to formulate (A7) is
AL ~ Ag, (uy) = Zg, (uy)/Zg, (uy)°. (4.8)

The L-parameter ¢ is is called
e discrete if there is no proper Wg-stable Levi subgroup LY C GY such that ¢(W}.) C
Lr.

e bounded if s, belongs to a bounded subgroup of GV.
We say that (o, ¢) € (G) is cuspidal if ¢ is discrete and (u,, ¢) is a cuspidal pair for G,
(as defined in Section [)). The set of G-relevant cuspidal (respectively discrete, bounded)
enhanced L-parameters is expected to correspond to the set of supercuspidal (respectively,
square-integrable, tempered) irreducible smooth G-representations [AMST], § 6].
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4.2. Inertial classes. For L a Levi subgroup of G and g € GV, the group gLYg~"! is not
necessarily Wr-stable, so the group GV need not act on pairs of the form (L, (¢c, ¢¢)) with
(pc, ¢c) a cuspidal enhanced L-parameter for L. In order to deal with this, as in [AMSIT]
Definition 7.1], we will have to consider all the pairs (Zrg(7T), (¢c, ¢c)) of the following form:

e 7 is a torus of GV such that the projection Zr4(7) — Wr is surjective.

o ¢.: Wi — Zrg(T) satisfies the requirements in the definition of an L-parameter.

o Let L =GYNZrg(T), and let Ly be the simply connected cover of the derived group
of L. Then ¢ is an irreducible representation of mo(Zy_(¢)) such that (uy,,¢) is
a cuspidal pair for Zj (pclw,)) and ¢, is G-relevant as defined in [AMSI, Defini-
tion 7.2] (that is {4 = ¢ on Ly N Zévf and ¢ = 1 on Ly NZZ_, where L. denotes the
preimage of £ under Gy, — GV). B

Fix such a pair (Zrg(7T), (¢c, ¢c)). The group

o

Xun(Zeg(T)) = (Z(Gv xIF)mzLG(T))FrOb (4.9)

plays the role of unramified characters for Zro (7). It acts on the enhanced L-parameters
(pc, Pc) (see [AMSI] (110) and (111)]) and we denote by Xun(Zrg(T)) - (e, ¢c) the orbit of

(e, Pe)-
We denote by s¥ the GV-conjugacy class of (Zrg(T), Xun(Zrg(T)) - (¢c, ¢c)). We write

sV =58 =[Zeg(T), (¢c, be)lcv,

and call sV an inertial class for ®(G). We denote by BY(G) the set of all such s".

Note that there exists a Wg-stable Levi subgroup LY of GV such that Z.g(7T) is GV-
conjugate to LY x Wg and £ = GY NZcg(T) is GY-conjugate to LY. Conversely, every
GY-conjugate of this LY x Wp is of the form Z.g(T) for a torus T as above (see [AMSI],

Lemma 6.2]).
We write
51, = (Zeg(T), Xun(Zeg(T)) - (¢e: dc)). (4.10)
We will consider the groups
ng = NG\/ (EX)/LV and ch = ng ((pC(IF)) (411)

The group J,, is a complex (possibly disconnected) reductive group. Define R(Jg ,T) as
the set of « € X*(7)\ {0} that appear in the adjoint action of 7 on the Lie algebra of Jg .
It is a root system (see [AMS2l Proposition 3.9]).

We set W2, = Nyo (T)/Zjs (T), where W2, is the Weyl group of R(JZ ,T). Let
R+(J:;C,T) be the positive system defined by a parabolic subgroup P; C Jg with Levi
factor (LSVOC)O. Two such parabolic subgroups Fg_ are Jg -conjugate, so the choice is inessen-
tial.

Since W, acts simply transitively on the collection of positive systems for R(J;C, T), we
obtain a semi-direct factorization

st = Wov X msv,

S

where Rev = {w e Wov : w-RT(J3,T) =R (J3_,T)}.
Definition 4.2. Let v.: ®.(G) — BY(G) be the map defined by

VC(@? (b) = [ZLG(Z;J\/LP)? 90|WF7UC7 ¢C]GV7

where (p|wy,u,d)cv is the image of (¢, d)gv via the bijection (L8], (uc, ¢.) corresponds

to (Ug, &) € I and (M, Ug, &) = l/cg*’(U, £) is the image under the map ve* from

Definition 3.2 of the pair (U, &) € 19¢ associated with (u, ¢).
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We have the following decomposition (see [AMSI] (115)]):

D (G)= || @(G), where @ (G)* =w7l(s"). (4.12)
sVeBV(GQ)

Let Irr(G) be the set of isomorphism classes of irreducible smooth G-representations.
For L a Levi subgroup of G, we denote by Irreusp(L) the set of isomorphism classes of
supercuspidal irreducible smooth L-representations.

Let o € Irreusp(L). We call (L, o) a supercuspidal pair, and we consider such pairs up to
inertial equivalence: this is the equivalence relation generated by

o unramified twists, (L,o0) ~ (L,0 ® x) for x € Xun(L),

e G-conjugation, (L,0) ~ (gLg~1,g- o) for g € G.
We denote the set of all inertial equivalence classes for G by B(G) and a typical inertial
equivalence class by s := [L, o).

In [Bel|, Bernstein attached to every s € B(G) a block R(G)® in the category R(G)
of smooth G-representations as follows. Denote by Ig the normalized parabolic induction
functor, where P is a parabolic subgroup of G with Levi subgroup L. If 7 € Irr(G) is a
constituent of I§(7) for some o € Irr(L) such that [L,o]g = s, then s is called the inertial
supercuspidal support of m. We set

Irr(G)*® := {m € Irr(G) : 7 has inertial supercuspidal support s},
R(G)® = {r € R(G) : every irreducible constituent of m belongs to Irr(G)*}.

4.3. Unipotent representations. An irreducible smooth representation (m,V) of G is
called unipotent if there exists a parahoric subgroup K of G such that the subspace V% N
of the vectors in V that are invariant by the pro-unipotent radical K+ of K contains an
irreducible unipotent representation of the finite reductive group K := K/K*. We denote
by Irry, (G) the set of isomorphism classes of irreducible unipotent G-representations.

Definition 4.3. An L-parameter ¢: Wr x SLy(C) — LG is called unramified if p(w,1) =
(1,w) for any element w of the inertia subgroup Ir of Wg. Denote by ®,,(L'G) the set
of GV-conjugacy classes of unramified L-parameters ¢ and by ®¢ un(G) the set of unrami-
fied enhanced G-relevant parameters, i.e., the subset of the (g, ¢) € ®(G) such that ¢ is
unramified. By definition

Poun(*G)= || Peun(G)=G"\{(¢,0) | ¢ unramified, ¢ € AL}.
G’'€InnT(G)
Set also
O, (FG) = G¥\{(p,) | ¢ unramified, ¢ € A4,},
so that
(I):g,un(LG) = |_| (I)c,un(G/)'
G’€lnn? (G)

The set @e un(G) is known to parametrize Irry, (G): such a parametrization was defined
by Lusztig in [Lu3l Lud] in the case when G is simple adjoint, and extended by Solleveld
in [Soll [So2] to the case when G is arbitrary. In the case when G = GL,,(F) or SL,(F), it
follows also from [HS|] and [ABPS1]. Note that an unramified L-parameter ¢ is completely
determined by the pair (s, u,), as defined in ([@5]). Thus we may phrase this parametrization
as the following bijection:

LLC: @eun("G) «— || Tra(@), GV (9, 0) = w50, iy, 6). (4.13)
G’€InnT(G)
This correspondence sends cuspidal (respectively, discrete, bounded) parameters to super-
cuspidal (respectively, square-integrable, tempered) irreducible unipotent representations.
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Conversely, let z € GV with Jordan decomposition x = su. There is an unramified
L-parameter ¢ (unique up to G"-conjugation) such that u = u, and s = s,. We set

Gs = Zgy (#lwy)- (4.14)
Notice that ¢|w, only depends on s, which explains the notation. By (3],
A}a >~ Ag. (u).
Denote by
e un(FG,8) = GV\{(¢', 0) € Peun(FG) | ¢/ (Frob, 1) = (s', Frob), s’ € G - s}.
Then

Boun(¥G, 8) = Zav (plw, )-orbits in {(v/, ¢) | v’ € G5 unipotent, ¢ € A?(\u’)} (4.15)

= Gs-orbits in {(u’, ¢) | u' € G2 unipotent, ¢ € AZ(\u’)}

The second equality follows from the fact that conjugation of unipotent elements is insensi-
tive to isogenies. This allows us to rephrase the unramified local Langlands correspondence
as follows. Let C(G), C(G)ss, C(G)un denote the set of conjugacy classes, respectively semisim-
ple, unipotent conjugacy classes in a complex group G. Let Ry, (G’) be the C-span of Irr,,, G'.
Then (£I3]) can be written as the bijection

LLCun: || || Ao+ || Imau(@),
SEC(GVY)ss UEC(Gs)un G’'€InnT(G)
which induces a linear isomorphism
LLCun: R(Peun(*G)) = P P RAs.(w)— P Rul@), (4.16)
SEC(GY)ss UEC(Gs)un G’€InnT(G)

mapping ¢ € Ag, (u) to 7(s,u,d) as defined in [@I3). If we restrict to pure inner twists,
then we need to replace the group G by the group

g? = ZGV (<P|WF)5 (417)
and the correspondence becomes

LLCE,: R(22,.("G)) = P P RAgw)— P Rul@). (418

SEC(GY)ss u€C(GY ) un G’'€InnT?(G)

Example 4.4. For G = SL,,(F), recall that there is a one-to-one correspondence between
InnT(SL,,(F")) and Z/nZ, where the inner twists are SLy,(Dg.r/m ), m = ged(r,n), v € Z/nZ.
The dual Langlands group is G¥ = PGL,,(C). The correspondence ([{I3) takes the form:

| | Bran(SLimn(Dar/m)) ¢ PGLL(C\{(z, )|« € PGL,(C), é € AL}, (4.19)
reZ/n’

in particular
Irrun (SLy (F)) <— PGL, (C)\{(z,8) |z € PGL,(C), ¢ € A, }.

In this case, G, = SL,(C) and Zgyv = C,,. The irreducible central characters are therefore

—

Zs.,«c) = {¢ | 7 € Z/nZ}. A Langlands parameter (z,¢) parametrizes an irreducible
unipotent representation of SL,,,(Dg,y/y,) if and only if (4 = (. In particular, the unipotent
representations of SL,, (F') correspond to central characters (; = 1.

Moreover, for z € PGL,(C), 4; is the group of components of Zg; ¢y(z) = {g € SLa(C) |

-1 _
grg~ "t =x}.
5. LUSZTIG’S NONABELIAN FOURIER TRANSFORM FOR FINITE GROUPS

We recall the definition of the nonabelian Fourier transform [Lul]. For the background
material, we follow [Lull [GM], [DM].
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5.1. Fourier transforms. For a finite group I', define the set

M(T) =T-orbits on {(z,0) |z €T, o € Z/F(x\)}, (5.1)

where the action of I'is: g - (z,0) = (gzg~1,09), 09(y) = (9" yg), v € Zr(gzg~t), g € T.
Define also

V() ={(y,2) eI xT' [ yz = zy}. (5.2)

Write T'\ J(") for the set of T-orbits on Y(I). Let Sh' (I") be the category of I-equivariant co-
herent sheaves of " (T" acting on itself by conjugation). The irreducible objects in ShF(l—‘) are
parametrized by M(I"): for every pair (z,0) € M(I'), let V((z,0)) =I' Xz, (2) 0 be the cor-
responding irreducible I'-equivariant sheaf. This means that there is a natural isomorphism
C[M(TI)] = K(Sh"(T")), where K () is the K-group. Moreover, there is an isomorphism

K CIM(D)] = K(Sh™ (D)) — CIL\Y(D)], V= ((y,2) = tr(z, V]y)).

Lusztig [Lul] defined a hermitian pairing on M (T):

1 -1 —1..—-1
{(xvg)a(va)}:m gze; o(gyg )T(g 2 "g), (5.3)

zgyg '=gyg 'z

and a linear map, the Fourier transform for T',

FTr: CIM(D)] = CIM(T)], FTr(f)(@,0) = Y {(,0), (5,1} (7).  (54)
(y,m)eM(l)

See Lemma [5.] for the interpretation of FTr in terms of Y(T).

Now consider the following generalization. Suppose F=TIx (), where « has order c.
Set I' = Ta C I'. As in [Lull, §4.16], define two sets M = M(I' <T) and M = M(T' <T)
as follows:

M ={(x,0) | x € T such that Zz(z) N\T' #0, o € Z/f@ with o[z, (¢) irreducible},

_ 5)

M={(z,6)|zel’, 5 €Zp(z)},

modulo the equivalence relation given by conjugation by . In addition, the cyclic group («)
acts on M by twists in the second entry of the pair (z, o) and denote by ~.. the corresponding
equivalence relation.

The set M is a subset of M(T). Given (x,5) € M, we have that (z,0) € M(T) for any
extension o of 7 to Zg(x). Thus the pairing { , } on M(T') induces a pairing

{, }+ MxM=C, {(20),(@7)}=c{(z0), @y} (5.6)

for any fixed extension o of & to Zg(x).
Let P = P(I' AT) and P = P(I' IT) be the spaces of functions on M(T') with support
in M and M, respectively. The operator [Lull, (4.16.1)] (see also [GM) §4.2.14])

FTig:P =P, Flrgpf(w,0)= Y. {(@6), (47} (7 (5.7)
(y,7)EM/~c

is an isomorphism with inverse FT;i]ff(y, T) =2 (w.o)ermi(@:0), (y,7)} (2, 0).
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5.2. Families of Weyl group representations. Let W be a finite Weyl group with the set
of simple generators S. The partition of W into families is defined in [Lull, §4.2] as follows.
Let sgn denote the sign character of W. If W = {1}, there is only one family consisting
of the trivial representation. Otherwise, assume that the families have been defined for all
proper parabolic subgroups of W. Then p, u' € W belong to the same family of W if there
exists a sequence = po, fh1,- -, fhm = M, p; € W, such that for each 7: there exists a
parabolic subgroup W; C W and u}, ul/ € W, in the same family of W; such that either

<u/i7Mi—l>Wi 7& 07 au; = a/uifu </’L{L/7MZ>W1 7é 07 au;’ = auiu

or

<M;7 Hi—1 @ Sgn>W¢ 7& 0, Ap = Qu;_1®sgn, <M;/7 Wi @ Sgn>W¢ 7& 0, Q7 = Qp;@sgn-
Here a,, is the a-invariant of p defined in [Lull §4.1]. It follows from the definition that if

F C W is a family, then so is F ® sgn and the families for W7 x Wy are F; X Fs, where F;
is a family for W;, 1 = 1,2.

Suppose in addition that we have a Coxeter group automorphism o: W — W, ie.,
o(S) = 5. Such an automorphism is called ordinary if, on each irreducible component of
W it is not the nontrivial graph automorphism of type Bs, Ga, or Fy. The automorphism
o acts on W and it permutes the families F. An important observation [Lull §4.17] is that
if o is ordinary and F is o-stable, then every element of F is o-stable.

5.3. Families of unipotent representations. Let G be a connected reductive algebraic
group over Fq with a Frobenius map Fr: G — G such that there exists a maximal torus
Ty with the property Fr(t) = t%, for all ¢ € Tg. Let W = Ng(Ty)/To be the Weyl group.
Recall that an irreducible representation p € IrrG™ is called unipotent if (p, RS(1))gr: # 0
for some Fr-stable maximal torus T of G. Here RS is Deligne-Lusztig induction [DL §7.8].
Let Irry,G™ denote the set of irreducible unipotent G™-representations. By the results
of Lusztig, the classification of Irr,, G is reduced to the case when G is adjoint simple,
see for example the exposition in [GM| Remark 4.2.1]. More precisely, if 7: G = Gaq
is the surjective homomorphism with central kernel (G,q is the semisimple adjoint group
isogeneous to G/Zg), there exists a Frobenius map Fr,q such that Fr,q o m = 7 o Fr such
that the resulting group homomorphism 7: GF* — Ggg“d induces a bijection

Fr Fr
Irryn G™ 2 Irr G ¢

Furthermore, write Goq = G1 X - - - X G, is the decomposition into factors such that each G;
is semisimple adjoint, Fr,q-stable and a direct product of simple algebraic groups that are
cyclically permuted by Fr,q. Let H; be one of the simple factors in G;: if h; is the number
of copies of H;, then FrZé preserves H;. Denote by Fr; the restriction to H;. Then

r
IrrunGgg“d = H Irruan“.
i=1

The Frobenius map Fr induces a Coxeter group automorphism o of W. Define a graph
with vertices Irry,G™ as follows: p1,p2 € IrryyG™ are joined by an edge if and only if
there is o-stable p € W such that (pi, R)gre # 0 for i = 1,2 where Ry is the almost
character associated to a fixed extension fi of 11 to W = W x (o) as defined in [Lull, (3.7.1)].
Each connected component of this graph is called a family in Irr,, GF. One can define an
equivalence relation on the set W of o-stable irreducible W-representation: p and p’ are
equivalent if Ry and Ry have unipotent constituents in the same family. By [Lul], see also
[GMl Proposition 4.2.3], the equivalence classes are the same as the o-stable families in W,
when ¢ is ordinary.



A TEMPERED FOURIER TRANSFORM 15

To each family I C Irr,, G corresponding to the o-stable family F C W", Lusztig [Lull
84| attached finite groups I'yy < Ty, such that Ty = T'y (o), a bijection

U+ M(Ty dTy), p T, (5.8)
scalars A(z,) € {£1} [Lull §6.7], and an injection

F — M(Ty <Ty), p— 2, (5.9)

such that, when o is ordinary, [Lull Theorem 4.23] says that
(ps Ri)er = A(Zp){Zp, xu}- (5.10)
Define the unipotent almost characters of GF* to be the set of orthonormal class functions
Ry =Y A@,){zpa}p, o€ My <Ty). (5.11)

peU

Hence the unipotent nonabelian Fourier transform of GF*
FTge = @  FTp,5, (5.12)
UCTrr,n GF*

gives the change of bases matrix, up to the signs A(Z,), between irreducible unipotent
characters and almost characters.

For a family U parametrized by M(T'y), let = € 'y, and define the virtual combinations
of unipotent characters

My(z,y) = Y. oy )p(so) wherey € Zr(w),

UGZ/F—\(I)

Iy (o, 1) = Z T(Y)pey,0), if 0,7 € Zp(x),
yE€Zr(z)

(5.13)

where p(, o is the representation in U parametrized by (z,0) € M(Ty). The second linear
combination only depends on Zp(x), not on z.

Lemma 5.1 (cf. [DM]). With the notation (513), T =Ty,
FTr(Ily(z,y)) = Mu(y,2), FTr(y(o,7)) =y(r, o).

Proof. We verify the first formula. The second one is analogous (or it follows by change of
bases.) Denote by C, the conjugacy class of y in Zr(z).

FTFL[ (HZ/{ (Ia y)) = Z U(yil) Z {(Ia U)v (Zv 7-)}p(z,T)
(z,7)

—1 1 -1 -1_-1
ZXU:U(y )(;)m Z o(gzg )T(g @ Q)P(z,r)

g€l, gzg—1€Zr(z)

1 1 1 —1 1 -1
:Zm 3 mga(y Vo(gzg™ ") | (9™ 2 9)parr)

g€T, gzg—1€Zr(x)
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where we used column orthogonality of characters and that (y, z) is T-conjugate to (¢~ '4'g, g~ 1xg)
when y' € C,.
O

5.4. Disconnected groups. Now suppose that G is a disconnected reductive group with
Frobenius map Fr: G — G and identity component G° such that A = G/G® is abelian. (In
our applications, G/G° will almost always be a cyclic group.) By definition, the irreducible
unipotent G*-representations Irr,,G™ are the constituents of all induced representations
Indgfrpr p, where p € Trr,,G°F. See [GM, Proposition 4.8.19] for the compatibility with the
definition in terms of the appropriate version of R¥(1). The parametrization of Irr,, G
follows from that of Irru,nG°F via Mackey induction using the explicit results for simple
groups, e.g. [GM| Theorem 4.5.11 and 4.5.12].

We are interested in studying the irreducible unipotent representations for groups G*
that are related via the structure theory of p-adic groups.

Definition 5.2. Let G be a reductive algebraic group over F,, with identity component G°
and such that G/G° = A is a finite abelian group. Let Frg be a Frobenius map on G and
assume that G is split. Given a € A, conjugation by a defines an outer automorphism
of G°, which induces an isomorphism, call it o,, of the based root datum of G°. For every
a, define the Frobenius automorphism Fr, = Frg o 0,. The set of inner forms of G is the
collection of finite groups

InnG = {G"= | a € A}.

This definition agrees with the usual notion of inner forms. Indeed, the equivalence classes
of forms of G inner to the split form are in one-to-one correspondence with the first Galois
cohomology group

InnG < H'(F,,G) = H'(F,,G/G°) = H'(F,, A) = A,
using Lang’s theorem H'(F,, G°) = 0, see [Se| II1.§2, Corollary 3] for example.
g g q y p

By (&8), every unipotent family & C Irrun G has an associated finite group I'y = Ty
(since GeFro ig split). The group A acts on the set of families &. For every orbit O4 = A-U
with representative U, let Z 4 (U) be the corresponding isotropy group. Then Z 4 (/) permutes
the elements of U, hence the corresponding parameters M(T',). If Ty is abelian, which
turns out to be the case in all of the examples of interest to us when A # {1}, this defines
automatically an action of Z 4 (U) on Ty, hence a group

T =Ty % ZaU). (5.14)
See [Lubl, §17] for more details.
Proposition 5.3. Let G be as in Examples [[ 4059 The parametrization (2.8) induces a

bijection

|_| Irrun(GF“) — |_| M(fﬁ)a

acA UC A\Irry, Go Fo
where U in the right hand side ranges over a set of representatives of the A-orbits of families
in Irry, GO0,

Proof. The proof is presented in each case in the examples. ([l

Let Run(Gfe) be the C-span of Irry, (GF«). The bijection of Proposition induces a
linear isomorphism

DRuE™) » P CMTHI (5.15)

acA UCA\Irry, GoFro
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The right-hand side of (5I5) has the involution given by (G.4]). Define
FTg: @D Run(G™) = @D Run(G™), (5.16)

acA a€A
to be the corresponding involution on the left-hand side.
In the examples below, when A is clear from the context, we may write Ty in place of
fﬁ for simplicity of notation.

Example 5.4. Let H be a connected almost simple F,-split group and G = (Hx H) xZ/2Z,
where the nontrivial element § of A = Z/27Z acts by flipping the two copies of H. There are
two inner forms:
InnG = {H(F,)? x Z/2Z,H(F 2) x Z/2Z},
the second one for the Frobenius map Fry(h1, ha) = (Fro(hs2), Fro(h1)), h1, he € H. A family
of G°(F,) = H(F,)? is Uy KUz, where Ui, Us are unipotent families of H. The A-orbits are
either {U; XU, Us RU;} for Uy # Uz or {U K U}. Assume that all Ty, are abelian. Set
T o =Ty x Tuy, Us # Us, Ty = T3 % 2/2,

with the flip action of §. There are 6(6;3) conjugacy classes in fugu, £ =|T'y|, and they are
represented by

o (z,2')~ (2 x)if x #2" €Ty, qum((x,x’)) =T%;

o (z,z), v €Ty, qugu((:z,:zr)) =T xZ/2Z;

o (z,1)0,x €Ty, Z ((x,1)8) = (g, (z,1)d), where I'f; is the diagonal copy of I'y.

lt:b(&l/{
When Uy # Us, if p1 € Uy, p2 € U, then p1 X pg := Indggﬂzl‘;‘i)(pl X po) is parametrized by

(jpnjm) € M(Ful&uz)-
In the second case, let p,p’ € U. If p # p/, then p x p' = p’ X p is an irreducible
representation of G(Fy). If z, = (z,0), Z, = (2/,0’) are the corresponding parameters of

p, p in M(T',), then the parameter for p x p’ in M(fugu) is ((x,2"),0 R o), if x # ', or
((x,z),0 x ¢’), where o X ¢/ = Indll:ixz/%(a Ko'), if o £ 0.

If p = p/, then we can extend p X p in two different ways to G(F,), denoted by (p x
p)T relative to the character of Z/2Z. The corresponding parameters in M(fugu) are
((z,z), (¢ x 0)*), with the obvious notation.

For the second inner form, the irreducible unipotent representations of H(F,2) are given
by the same families U as for H(F,) and 0 fixes each unipotent representation p of H(F ).
Let p be an irreducible H(F 2 )-representation in ¢ parametrized by 7, = (z,0), x € Ty,
o € Ty Then it can be extended in two different ways p* to H(F,2) % Z/27Z. The centralizer
Zz  ((z,1)8) = (T'f, (x,1)8) is isomorphic to the direct product Cy = ((y,y) | y # = €

Tumu
Ty) x ((x,1)8), since ((x,1)0)°> = (z,2). Regard o as a representation of the subgroup
Fﬁ and there are two ways 0% to extend it to C, coming from the short exact sequence
1 = ((z,2)) = {(x,1)8) — Z/2Z — 1. We attach ((z,1)d,0%) € M(Tyxy) to p*t. To
fix a choice of &, we fix a choice of primitive ¢-th root of unity (, for each £. Then, if
o((z,z)) = ¢}, for some j, where k is the order of z, then o¥((z,1)§) = ¢J,. For our
applications, H will be a classical group and therefore, I';y a 2-group, hence x will have order
k<2.
Example 5.5. Let G° = GL}", G = GL4(F,)™, and A = Z/mZ acting by cyclic permu-
tations on the factors of G°. Then

InG = {G°"" % Z/mZ = GLg(Fym/a)? X Z/mZ | r € Z/mZ, d = ged(r,m)}.

Each unipotent family of GLk(]qu/d)d is a singleton {p; X --- X pg} where p; € §k, 1<
i < d. Hence, we can ignore the difference between unipotent families and irreducible
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representations of symmetric groups. The irreducible representations of S’g X Z/mZ are
constructed by Mackey theory.

Start with a unipotent representation p = p1®- - -Kp,, of GLy(F,)"™ XZ/mZ with stabilizer
Z/cZ, clm. This means that p; = p; /. for all i (viewed mod m) and that Z/(m/c)Z has
no fixed points under the cyclic action on py X --- & pp, /.. The corresponding unipotent

family U that we construct for Inn G has
T2 — 7,/c7.,

The irreducible representations p of GF™ whose restriction to G contain p are in one-to-
one correspondence to the characters of Z/cZ, hence they are parametrized un M(fu) by
the pairs (0,0), 0 € Z//C\Z

For every r € Z/mZ such that m/c divides d = ged(r,m), consider the representation
of G°F™ given by p” = p; K --- K py. The stabilizer of this representation in Z/mZ is also
Z/¢Z. The irreducible representations 5" of G whose restriction to G°™ contain p” are
again in one-to-one correspondence to the characters of Z/cZ, and we parametrize them in

M(Ty) by the pairs (¢,0), 0 € Z/cZ. This completes the parametrization via M(ff/mz)
of the unipotent representations for Inn G corresponding to the family & = {p} in GeFro,

Example 5.6. Let G° = SOy, n > 2, A = Z/2Z = (§). There are two inner forms
Inn G = {03, (F,), 05, (F,)}. In this case, we use the parametrizations of [Lull §4.6,§4.18].
Ao ”\b>,b+b’_2m,0§A1<

I I 12
s < Ay, 0 < g < -+ <y, which is considered the same as the array where the rows are

flipped. A symbol whereb=10 =mand A1 < 3 < Ao < po < ..o, oA+ w2 =n+m?—m
is called special.

Let Z be a special symbol. In the case when \; = pu; for all 1 < i < m, one attaches to Z
two unipotent G°™°-families, U’ = {p} and U" = {p'}, each consisting of a single unipotent
representation and with I'y;r = Ty = {1}. In this case, the action of  flips the two families.
Hence they give rise to a single family {5} for G, plgero = p @ p/, and Ty = {1}.

Assume now that the two rows of the symbol Z are not identical, i.e., Z is nondegenerate
in the sense of loc. cit.. Then Z defines one unipotent family for G°™™° and one for G,
Each element of these families is stable under § so it can be lifted to two different G0,
respectively G| representations.

The unipotent representations in the GOFro-family Uz corresponding to Z are indexed
by the set Mz of symbols A such that b — b = 0 mod 4, b + b = 2m. The unipotent
representations in the GOFrl-family U, corresponding to Z are indexed by the set M of
symbols A such that b — b = 2 mod 4, b+ V' = 2m. Let Z; be the set of elements that
appear as entries of Z only once. Let 2d = |Z;|. Define

Recall that symbol for type D,, is an array A = (

o V7, : the set of subsets X C Z; of even cardinality, with the structure of an Fo-vector
space with the sum given by the symmetric difference;

Vélz the set of subsets X C Z; with the structure of an Fs-vector space with the
sum given by the symmetric difference, modulo the line spanned by Z; itself;
(Vz,)": the subspace of V;; where the elements are the subsets X of even cardinality;
e (V7 )7: the subspace of V; where the elements are the subsets X of odd cardinality.

Notice that (V)" is also the image of the projection of Vz, to Vy . The dimensions of V7
and Vz, over Fy are 2d — 1, while the dimension of (V) is 2d — 2. There is a nonsingular
pairing

( s )Z Vle X VZ1 — FQ, (Xl,XQ) — |X1 ﬁX2| mod 2. (517)

This pairing restricts to a nonsingular symplectic Fo-form of (V )*. If Vy, has the basis
€1,€2,...,ea4—1 as in [Lul], then (VZ'1)+ is spanned by the images €1, €s, ..., &1 modulo
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the relation é; +é3 + - -+ €9—1 = 0. Let

I' = subspace of (Vz, )" spanned by é1,és, ..., €241,

I" = subspace of (Vz )t spanned by €3, &y, ..., €24—2;
they are maximal isotropic subspaces of (V )* and (V} )™ =I' ® I”. Then

Ty, = 1" = (2/272)%".
As shown in [Lull §4.6], there is a natural bijection
Mz o M(Ty,) = (Vy) =T 1"
(where I’ is identified with the group of characters of Iy, ). Denote
Ty, ={veVj | (v,ex) =0, 1 <i<d—1} = (Z/22)". (5.18)

Clearly, Ty, <Ty,. As shown in [Lull §4.18], there is a natural bijection

My & M(Ty, 9Ty,) = (V)™ = (Tu, \Tu,) x T,

Let &Z be the set (family) of irreducible representations in Irr,, G U Irr,,G™* whose
restrictions to G°™™ (resp. G°™) are in Uy (resp. U, ). Since each unipotent representation
in Uz and U, extends in two different ways to the corresponding disconnected group, the
parametrization above implies easily that there is natural bijection

Uy > M(Tu,). (5.19)
Explicitly, let {fi, fa, ..., fa} be the spanning set of Vy, subject to Z?il fi = 0, such that
€ = fi+ fiz1, 1 < i < 2d — 1. Then an Fy-basis of fuz is given by {f1,€2,€4,...,E24}.
An irreducible character of I'y, = (€2,é4,...,6€24) can be extended in two different ways
to fuz by setting the character value on f; to 1 or —1. The value 1 corresponds to the
representations of the identity components of GF™, Gt extended by letting & act trivially,
while the —1 value to the ones where ¢ acts by —1.

Example 5.7. Let G° be of type Ay_1, k > 3, or Eg, and A = Z/27Z = (J) acting by the
nontrivial automorphism of the Dynkin diagram. The nonsplit form has G°F™ of type 24;_,
or ?Eg, respectively. By [Lull, §4.19], every unipotent family U of G° is fixed pointwise by
A. Hence N
T2/ — Ty x 7,/2Z, for all U.

Each irreducible representation p of the split form G°f™ can be extended to G in two
different ways p* corresponding to the two characters of Z/2Z. If the parameter for p is
z, = (z,0) € M(Ty), then the parameters for p* are ((z,1),0%) with the obvious notation.

Similarly, an irreducible representation p’ of the nonsplit form G°** can be extended to
GF1 in two different ways p'. If the parameter for p/ is z, = (2/,0") € M(Ty), then the
parameters for p'* are ((«,9), a’i).

Example 5.8. Let H be of type Dy, £ > 2 and G° = H x H. Let A = (1) x (d2) =
7./27 x Z]2Z, where 61 acts by the nontrivial outer automorphism of the Dynkin diagram
of type Dy, and 5 flips the H-factors. This case is therefore a combination of Example
and Example 5.4 and the parametrization of families for the inner forms of G follows from
these examples, i.e., the same parametrizations as in Example B4l but constructed from the
orthogonal families Uz from Example

Now for the same H and G°, suppose A = (§) = Z/4. If s}, s} are the two commuting
extremal reflections of the first H = Dy, and s}, s are the similar reflections for the second
H = Dy, then § acts by the cyclic permutation:

. /! / " 1" /
0: 8]+ 85 >8] > 85 > ST
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On all the other simple reflections of the two components of type Dy, § acts by the obvious
diagram flip (of order 2). To describe the inner forms, let Fr denote the Frobenius map of
H whose fixed points is the nonsplit group of type 2Dj. Then

FI’MHXH%HXH, Fl”l(hl,hg):(FI’(hg),hl)

is a Frobenius automorphism and Fr, = Frj, r € Z/4, e.g., [GM| Example 1.4.23]. The
identity components of the inner forms are the finite reductive groups of types:

GOFTO : Dk X Dk, GOFrl : 2Dk, GOFr2 : 2Dk X 2Dk, GOFT?’ : 2Dk.
If p1, p2 are two unipotent representations of Dy, the action of § is

p2, if the symbol of ps is nondegenerate,

(p1,p2) = (ph, p1), where py = { - )
Py, otherwise,

where p, is unipotent representation parametrized by the other degenerate symbol with the
same rows. See Example

We start with a family U; x Us of GoFro = Dy, x Dy. If either Us consists of a degenerate
symbol, then the stabilizer in A is always 1, regardless of what U; is. (Similarly if U; is
degenerate.) In this case,

TZ/4
I‘Z/ll XUz — I‘Z/{l :

(Recall that Ty, = 1 necessarily.) Since the stabilizer in Z/4 of each representation p; X pa,
p1 € U, pa € Us is also trivial in this case, it follows that there is a one-to-one correspondence

between the representations Indgjrporo (p1 ® p2) and p; € Ui, hence a parametrization by
M(Ty, ) as expected.

For the rest of the example, assume that all families correspond to nondegenerate symbols.
Let Zy, Zs be two nondegenerate symbols of type Dy. Let U;,Us be the corresponding
families for Dy, and U; , U, the families for 2Dy,. Suppose first that Z; # Z, then the
stabilizer in A is Z/2Z = (§?), hence the group for the inner forms is

~Z/4
T/ s, = Tty % Tuy % Z/2L.

If p1 € Uy and pa € Us, the stabilizer in A of p; K py is also Z/27Z = (62). By Mackey theory,
we get two irreducible representations of G by inducing p; X ps twisted by the trivial
or the sign character of Z/27Z. If z,, = (x;,0;) € M(I'y,), i = 1,2, then the two induced
representations are parametrized by ((z1, 22,1),01 Koo ® 1) € M(Ty, X Ty, X Z/27), where
T is the trivial or the sign character of Z/2Z.

If p} €Uy and py € U, , the analysis is analogous. The difference is that 7, = (z},0) €
M(Ty, <Ty,), i = 1,2, where 2} € Ty, \ Ty, 05 € Ty,. Write z; = yia, i = 1,2,
yi € I'y,, where « is the nontrivial automorphism of the Dy, diagram. Then the two unipotent
representations of G2 whose restriction to G°™ contain py W p are parametrized by
((y1,92,62),01 o2 X 71) € M(Ty, x Ty, X Z/27Z), where 7 is the trivial or the sign character
of Z./2Z.

Finally, if Z; = Zy = Z with the families I/ of D, and U~ of 2Dy, then the stabilizer of
URU is A=Z/4. In this case, set

T = Ty x Ty) x Z /4. (5.20)

All four inner forms G contribute in this case. Each conjugacy class in fi{éu is represented
by an element (x,y,r), x,y € Ty, and some r € Z/4 and it will correspond to a unipotent
representation of G+, for the same 7.

If » = 0, then the conjugacy classes are given by (x,2',0) ~ (2/,2,0) and its stabilizer
in ff/éu is TZ x (0%) if # # 2/ or all fi@u if © = a'. If p,p) € U with parameters
z, = (z,0), &y = (a',0’), it is clear that there is a perfect matching between the Mackey
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construction of induced representations and the parameters ((z,z’,0),5) € M(fi{éu), where
o S Z'l;z/4 ((.I,.I/, 6))
uRku
If r = 2, the conjugacy classes are given by (x,2’,6%) ~ (z/,x,5?) and its stabilizer in
Ff/éu is T x (62) if & # 2/ or all Fzzzgu if v = 2. If p, p € U~ with parameters &, = (za, ),
z, = (2'a, o), again there is a perfect matching between the Mackey construction of induced

representations and the parameters ((z,2’,6%),5) € M(fi@u), where ¢ € Zgzz/a ((x,2,2)).
U

u
If r = 1 or 3, the conjugacy classes are given by (x,1,0"), cf. Example[5.4l The stabilizer
in this case is (I', 62, (z,1,4)). Let p be a representation in the unipotent family 2/~ with

parameter Z, = (za,0), 0 € I'y. It can be extended in four different ways to 2Dy, x Z/4
corresponding to the characters of Z/4. Since x has order 2, the cyclic group

(2,1,8)) = (1,1,1), (2,1,0), (z,2,8%), (1,,0%)) = Z/4.
Notice that there is a short exact sequence (which does not split)

1—Th — Zf%u((x, 1,6") — Z/4 — 1,

where the quotient Z/4 is generated by the image of (z,1,d). This means that o € fu,
viewed as a representation of I'} can be lifted in four different ways to Zgz/a ((2,1,07)):
uku

first one lifts o in two different ways to o=, representations of T'f; x (§2) corresponding to

the trivial and the sign character of (§2). Then, fixing a square roots (* of o (z,z, §2), one
constructs lifts o* of o, 0 < i < 3, by setting

&0(($7 155)) = <+a 51(($7 155)) = _CJr’ 52((175 175)) = Cia 53((175 175)) = _Ci'
Notice that {#¢*} is the set of 4-th roots of 1, and this gives the desired parametrization.

Example 5.9. Let G° be of type Dy and A = Z/3Z = (§) acting on the Dynkin diagram
by cyclically permuting the extremal nodes. The Weyl group W (D,) has 13 irreducible
representations which we denote by bipartitions of 4, o x 8 up to swapping « and [, except
where a = f3, there are two non-isomorphic representations o x a*. There is one cuspidal
unipotent representation p., and in total 14 unipotent representations of Getro,

All families are singletons with associated finite group I'yy = {1}, except the family

{(12) x (1), (22) x 0, (11) x (2), pc}

for which the finite group is I'yy = Z/2Z. This family and the following four singleton
families:

{(4) >0}, {a111) x 0}, {3) x (1)}, {(111) x (1)}

are A-stable and in fact each element in the family is A-stable. The remaining 6 unipotent
(singleton) families form two A-orbits:

{(13) x 0, (2) x (2)7,(2) x (2)~} and {(112) x 0, (11) x (11)*, (1) x (11)}.

According to our recipe, the groups f%/ 7 are:

e 7./37Z corresponding to each of the four A-stable singleton families U;

e 7./27 x 7,/3Z for the unique family with 4 elements;

e {1} for each one of the two nontrivial A-orbits.
Hence the right hand side of Proposition 5.3is M(Z/3Z)* U M(Z/2Z x 7./3Z) LI M({1})?
which has 32 x 4 + 62 + 12 x 2 = 74 elements.

The irreducible unipotent representations of the disconnected group Dy x Z/37Z are
parametrized, via Mackey theory, by the elements (z,0) € M(fzz/ 3Z), where x € I'y and
U ranges over a set of representatives of the A-orbits of families of D4. There are 26 such
irreducible representations.
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The other two A-forms corresponding to § and § ! are both isomorphic to the finite group
of type D,. There are 8 irreducible unipotent representations of 3D each coming from one
of y-stable irreducible unipotent representations of D4. By induction, there are 8 x 3 = 24
irreducible unipotent representations of 3Dy x Z/3Z. The irreducible representations of the
3D, corresponding to § are parametrized by (z6,0) € M(fg/ )
over the set of A-stable families. Similarly for 6—1.

, where z € I'yy and U ranges

6. MAXIMAL COMPACT SUBGROUPS

We return to the setting of Section 2, so G is a connected reductive group over F' and
G = G(F). In this section, we assume in addition that G is simple and F-split with maximal
F-gplit torus S. Let Il be a set of simple roots for G with respect to S, and extend Il to
a set of simple affine roots II¢, = Il U {a}. Let I C G(op) be the corresponding Iwahori

subgroup of G, with S(op) = S(F)N1I. Let Wg = Ng(S(F))/S(or) be the Iwahori-Weyl
group:

G= || rir,

wGWG

where w denotes a choice of a lift in Ng(S(F)) of w € We. The finite Weyl group is
Wea = Ng(S(F'))/S(F). Let W§ be the affine Weyl group generated by the simple reflections
{s; | i € II%}. Then

We = W& x Qq,

where (¢ is a finite abelian group, the stabilizer in WG of I.

6.1. Let max(G) denote the set of conjugacy classes of maximal compact open subgroups
in G. To parametrize max(G), we define Spax(G) to be the set of Qg-orbits of pairs (A, O),
where A is a subgroup of {)g and O is an A-orbit in II¢ satisfying

Stabg,, (0) = A.

By [IM] and [BT], max(G) is parametrized by Spax(G). Explicitly, given (A, O) € Smax(G),
we construct an element Ko € max(G) as follows: let We be the finite subgroup of W,
generated by A and {s;, i € I \ O}. Set

Ko= || Il
wEWO
The map (A4, O) — Ko defines a bijection between Sy, (G) and max(G). (Note that a pair
(A,0) € Shax(G) is completely determined by O, so the notation Ko is unambiguous.)
In this notation, the maximal hyperspecial subgroup G(or) is Ky}, where ag, as defined
above, is the unique simple affine root in II% \ Ig.
Given (A,0) € Smax(G), let W@ be the normal subgroup of We generated by {s;, i €
I, \ O}. Then K¢ := ||, 5. [w! is a parahoric subgroup of G, and we denote by K its
(@]
pro-unipotent radical. There is a short exact sequence
1— Ky —Ko—A— 1
Set Ko = K4/Kg, and Ko = Ko/KQS. Then Ko = Mo(kr), Ko = M@ (kg), for a
reductive kp-split group Mo with identity component Mg and Mo /Mg = A. Let Inn Ko
A be the collection of inner forms of Me.
Now let G’ be a pure inner twist of G. By Section B InnTPG = HY(F, G). If Gy is the
simply connected cover of G and identifying ()¢ with the kernel of the surjection Gsc — G,

then by [Kn, Satz 2], HY(F,G) = H2(F,Q¢) = Qg, with the last equivalence because G
is F-split. Given x € Qg¢, let G, € InnTPG be the corresponding pure inner twist. If we
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denote the set of conjugacy classes of maximal compact open subgroups of G, by max(G,),
then there is a one-to-one correspondence

{(A,0) € Smax(G) | 2 € A} +— max(G,), (6.1)

which we write as (4,0) — K, 0. Note that Fm,@ € Inn Ko is the inner form given by
r € A2 HY(kr, Mp) +> Inn Ko (see Definition [5.2)). For fixed (A4, 0) € Simax(G), we have

U K.o0=ImKo. (6.2)
€A

For every maximal compact open subgroup K’ € max(G’), define Ryn(K ) to be the C-span
of Irrunf/, and let
—
C(G)eptun = @ @ Run(K). (6.3)
G’'€InnT?G K’ €max(G’)

By the discussion above, we have

C(G)Cpt,un = @ @ Run(f;n,(’)) (64)

ZEQ (A,0)ESmax(G)
with z€ A

= P PruE. 0. (6.5)

(A,0)€Smax(G) TEA

Note that for each (A4,0) € Syax(G), by 6.2), ®reaRun(Kz 0) has the involution FT%,
given by ([B.I6]). Putting together these involutions for all choices of (A, O) gives the following
definition.

Definition 6.1. Let FT pun = GB(A,O)GSMX(G) FTg, be the involution on C(G)ept,un

defined by using (5.16) and (6.2).

Notice that FTqpe,un always preserves the space Run(G(or)), since G(or) corresponds to
the pair (A, {ap}) with A trivial. In the case when G is simply connected, we have Qg =1
and Ko = K for all O, so FT¢pi,un preserves the space Ryn(Kp) for all Ko € max(G).

But in general it does not preserve Ry (K4 o) for every maximal compact open subgroup
K, 0, which can be seen even in the case when G = PGLy (see Example [2.3]).

Example 6.2. We list the type of groups Ko in the case when G is adjoint. Since are only
interested in the unipotent representations, only the Lie type of ??9 is important.

(1) If G is also simply connected, which is the case for types Ga, Fy, Es, the set max(G)
is in one-to-one correspondence with the maximal subsets of II, (equivalently, O is
a single vertex in II).

(2) If G = PGL,,, Qg = Z/n acting by cyclically permuting IIZ, then for every divisor
m of n, we have an orbit O, in II%, with stabilizer A = Z/mZ and

Ko, = P(GL",,) x Z/mZ,

n/m
where the semidirect product is given by the permutation action. This case corre-
sponds to Example
(3) If G = SO49,,41, Qg = Z/27Z, then K ¢ is either SOg,, 11 (A = 1) or SO2,41 X O2(n—m)
(A=7Z/2Z), for 0 <m < n. This case corresponds to Example
(4) If G = PSpy,,, Q = Z/2Z, then Ko is type
e CpxCp(A=1)for 0<k<l, k+{=mn;
o (Cp xCx) NZ/27 (A=17/2Z), if n =2k, or
° (Cz x C; % Anflfgi) X Z/2 (A = Z/2Z), for 0 <i< %
Here Z/2Z acts by flipping the two type C factors and by the nontrivial diagram
automorphism on the type A factor. These cases are covered by Examples 5457
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(5) If G = PSOypm, m > 2, Qg = (61) x (§2) = Z /27 x Z/27, then 6 acts by flipping
II, horizontally and ds by the vertical flip. For each subgroup A < Q¢, we give the
possible FZ

(a) If A = Q, K, is of type: Dy X Dy X Agpm_ok—1, 2 < k < m, Dy, X Dy, or
Ao, 3, where A acts on Dy x Dy as in Example[5.8] while on As,,, _2r_1 01 acts
trivially, and J2 by the nontrivial diagram automorphism.

(b) If A = (01), Fz is of type: Dg X Dopm_k, 2 < k < m, or Dao,,_1, where 01
acts by the nontrivial automorphism of type D,. These cases are covered by
Example

(c) If A = (8;) or A = (6103), K ¢y is of type Agp,_1 with the diagram automorphism
action as in Example 5.7

(d) If A=1, then fg is the hyperspecial subgroup of type Dap—1.

(6) IfG = PSO4m+2, m 2 2, QG = <5> = Z/4

(a) If A =Qg¢, ??9 is of type: Dg X Dy X Aopm_ok, 2 < k < m, or Aop_o, where
acts on Dy x Dy as in Example B.8 while on As,, 2k, 0 acts by the nontrivial
diagram automorphism.

(b) If A = (6%), fg is of type: Doy, or Dy X Doy i1, 2 < k < m, where 62 acts
on each factor by the nontrivial automorphism of type Dy, as in Example

(c) If A=1, then fg is the hyperspecial subgroup of type Day,.

(7) Let G be of type Fg with Q¢ = (§) 2 Z/3Z.

(a) If A=1, then Fz is either of type Eg or As x Aj.

(b) If A = Qg, then K% is of type A3 with § acting by permutation, as in Example
5.5 A$ x Aj, where § permutes the first 3 factors and it fixes the last one, or
Dy, where § acts as in Example

(8) Let G be of type E7 with Q¢ = (§) X Z/2Z.

(a) If A=1, then F?Q is either of type E7, Dg x Ay, or Ay X As.

(b) If A = Qg, then fz) is of type Eg with ¢ acting by the nontrivial diagram
automorphism as in Example[5.7, Dy x A%, with § acting by an order 2 diagram
automorphism of D, (Example B.6) and by flipping the two A;’s, A3 x As,
flipping the first Ay’s and trivially on the third Aa, A% x A, with the flip on
A2 and trivial action on Aj, or A7 with the nontrivial diagram automorphism,

see Examples 5.4I5.7]

7. ELLIPTIC AND COMPACT PAIRS

7.1. Finite groups. Suppose H is a finite group. If (4,V5s) is a finite-dimensional H-
representation over C, define

(. )% = ﬁ S dety; (1 — 3(h) £ (1) (), (7.1)

heH

for every two functions f, f': H — C. For p,p’ € R(H), set

(p; p/)gll = (Xp XP/)gllu

where X,, x,» denote the corresponding characters. The basic facts about ( )% can be
found in [Re3l §2]. An element h € H is called (é-)elliptic if V;(h) = 0. The set Hey of
elliptic elements of H is obviously closed under conjugation by H and let H\ H,j denote the
set of elliptic conjugacy classes. Let R(H) be the quotient of R(H) by the radical of the
form (, )%,. As in loc. cit., there is a natural identification of R(H) with the space of class
functions of H supported on Hy.

For every h € H, let 1, denote the characteristic function of the conjugacy class of H.
Clearly, {1, | h € H\Hey} is an orthogonal basis of R(H) with respect to the elliptic pairing

( ’ )gll'
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Suppose that, in addition, we are given § : H — H an automorphism. Let (f) denote
the cyclic group generated by § and H' = H % (0). If (4, V5) is a finite-dimensional complex
H'-representation, define

) = |—jl| S dety, (1— 6(6R)) £((61) 1) £ (6h), (7.2)

heH

for every two functions f, f': H — C. For p,p’ € R(H'), set

(p, Pl)gfcn = (Xp> Xp’)gfcna

where x,, X, denote the corresponding characters.

7.2. Complex reductive groups. Let G be a possibly disconnected complex reductive
group with identity component G°. If x € G° is given, fix a Borel subgroup B, of Zg(x)°
and a maximal torus T, in B,. Let t, be the complex Lie algebra of T,. As in [Re3|[Wa2], we
define a complex representation (d,,t,) of Ag(x) as follows. Since Ag(z) acts on Zg(x)° by
the adjoint action, every element z € Ag(z) acts on Zg()° via an automorphism «,. There
exists y € Zg(x)° such that o, o Ad(y) preserves B, and Ty. This means that a, o Ad(y)
defines an automorphism of the cocharacter lattice X, (T3) in Zg(x)°, and therefore a linear
isomorphism of t,. This is d,(z), and this construction gives a representation of Ag(x). We
consider the elliptic theory of the finite group Ag(z) with respect to the representation ¢,.

An element g € G is called elliptic if the centralizer Zg(g) contains no nontrivial torus.

7.3. Definitions. Suppose T is a (possibly disconnected) complex reductive group with
identity component I'°. Extending the definition in Section [B.1] we define the sets (cf. [Cil

Def. 1.1))
Y(T) ={(s,h) €T xT'| s, h semisimple, sh = hs}, -3
Y()en ={(s,h) € T xT"| s, h semisimple, sh = hs, Zp(s, h) is finite}. (7.3)

Here Zr(s,h) = Zr(s) N Zr(h) and the finiteness condition is equivalent to saying that no
nontrivial torus in T' centralizes both s and h. We refer to elements of Y(I')en as elliptic
pairs. Notice that the condition in Y(T')e) is equivalent to saying that h is elliptic in Zr(s)
or equivalently s is elliptic in Zp(h).

The sets Y(I'), Y(T')en have T-actions via conjugation g - (s,h) = (gsg~*, ghg™'). They
also have a natural I'-equivariant involution given by the flip

(s,h) — (h,s).
Let T\Y(T"), T\Y(T")en be the sets of I'-orbits. Then we get an involution
flip: T\Y(T) = T\W(T), flip([(s, B)]) = [(F, )],
which preserves T'\Y(T)en.
Lemma 7.1. T\Y(T')ep is a finite set.

Proof. If (s,h) € Y(I')en. The cyclic group (s) is in Zr(s, h), hence s has finite order.
Moreover, s must be isolated in I" in the sense that Zp(s) is semisimple. The classification
of isolated semisimple automorphisms of I' is well known, in particular, there are finitely
many automorphisms up to inner conjugation. O

Define the relations on Y(T'):
(s,h) ~r (s,h) if yhy™* € B'T for some v € Zr(s) and T' a maximal torus in Zr(s, h);

(s,h) ~r (s, h) if y1577 " € §'T for some v, € Zp(h) and T as before.
(7.4)
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Let ~ be the equivalence relation on Y(T") generated by ~ and ~g. Denote also by ~ the
equivalence relation induced on I'\Y(I'). The subsets T\Y(I')¢py and T\Y(I")en are closed
under ~-equivalence and notice that

\Y(@)en/~ = T\V()en.
Lemma 7.2. Fiz s € T' semisimple. The projection map Zr(s) — Ar(s), h + h, induces:
(1) a bijection between ~p,-classes of pairs (s, h) € Y(I') and conjugacy classes in Ar(s);
(2) a bijection between Zr(s)-orbits of elliptic pairs (s,h) and the elliptic conjugacy
classes in Ar(s).

Proof. We need a result from the theory of semisimple automorphisms of reductive groups,
e.g. [Soml Proposition 9]: if z,y are semisimple elements in a reductive group G such that
their images in the group of components G/G° are in the same conjugacy class, and S is a
maximal torus in Zg (), then there exist g € G and s € S such that gyg—! = ws.

Apply this to G = Zr(s) (a reductive group), then (1) follows immediately (this is in fact
the motivation for the definition ~).

Now suppose h, h’ semisimple elements such that (s, h) and (s, h’) are elliptic pairs. The
elliptic condition implies that the maximal torus in Zg(h) is trivial, hence s = 1 in the
relation above, and h and h’ are G-conjugate. This implies that if A = b/ then [(s,h)] =
(s, 1), )

To prove (2), it remains to show that (s, k) is an elliptic pair if and only if A is elliptic
in Ar(s). This is just a matter of checking the definitions in the case G = Zr(s). Given
the semisimple element h € G, choose a maximal torus Ty in G which is normalized by h.
Then h is not elliptic if and only if there exists a nontrivial torus S C T which centralizes
h, equivalently if and only if §5(h) fixes a nonzero element of t,, i.e., if A is not elliptic in
AF(S).

O

Remark 7.3. In every ~-equivalence class of Y(I",), we may choose (not uniquely) a repre-
sentative (s, h) such that both s, h have finite order. We call these representatives compact
Dpairs.

For every (s,h) € Y(T'), define
O(s,h) = > o(h)d € R(Ar(s)), (7.5)

¢EAr(s)
and let TI(s, h) denote the image in R(Ar(s)). Here ¢(h) is interpreted as ¢(h) where h is
the image of h in Ar(s). Let C[Y(I')en]" denote the I'-equivariant functions on Y(I')ey; this
space can be identified with C[I'\)(I")en]. Let 1 5) denote the characteristic function of
the T'-orbit of (s, h).

Proposition 7.4. The correspondence 1 ) — TI(s, h) induce an isomorphism
CY@al = @ R(4r(s).
SEC(T)ss

Proof. In light of Lemma [Z.2] the only thing left is to remark that II(s, k) forms a basis of
R(Ar(s)) as h ranges over a set of representatives of Zr(s)-conjugacy classes such that (s, h)
is an elliptic pair. It is elementary that in R(Ar(s)),

ﬁ(s, h) = |ZAp(s) (E)| ]_E—l,
and the claim follows. O

We say that I'yy C I is a Levi subgroup if there exists a torus S C I'° such that 'y, =
Zr(S). If a pair (s, h) is in Y(T's), denote by II' (s, h) the combination defined analogous
to



A TEMPERED FOURIER TRANSFORM 27

Lemma 7.5. Suppose s € 'y is semisimple.
(1) The inclusion Zr,,(s) = Zr(s) induces an inclusion Ar,,(s) — Ar(s).
(2) For every (s,h) € Y(Tur), Indii(s)(s)HFM (s,h) =T(s, h).
M

Proof. (1) This is a well-known argument. We need to show that Zr,,(s) N Zp(s)° is con-
nected, and hence in Zr,,(s)°. But Zp,,(s) N Zr(s)° = Tar N Zr(s)° = Zp(S) N Zr(s)° =
Z7:(s)>(S) which is connected since the centralizer of any torus in a connected reductive
group is connected.
(2) This is elementary using that ¢(h) = Z’IIJEA/\()<¢7w>AF (sy¥(h) for every ¢ €
INVAC M

—

Ar(s), by restriction of characters. O

Lemma 7.6. Let (s,h) € Y(I') be given and suppose S is a mazimal torus in Zp(s, h)°. Set
Car = Zr(S). Then Zr,,(s,h)° =73, i.e., (s,h) is an elliptic pair in Tnr/Z3 .

Tar’

Proof. Let S; be a torus in Zr,, (s, h)°. Then S; C Zr(s,h)° and since it commutes with S
which is maximal in Zp(s, h)°, it follows that S; C S C Zp. . O

Let M denote a set of representatives for the I'-conjugacy classes of Levi subgroups I'ps
in I". Let xr be the assignment

(5,h) € Y(I') = (s,h) € Y(T'm/Z1,, )en
from Lemma [7.6

Proposition 7.7. The map sr induces a linear isomorphism

pe s CYM)/T — D CYV(Tu /27, )] V0.
F'meM

In particular, T\Y(T')/ . s finite.

Proof. Suppose (s, h),(s’,h’) € Y(T') are I'-conjugate, then the corresponding I'ps, T'ppr in
Lemma are conjugate. In addition, if ¢ € S the maximal torus in Zr(s,h), so that
(s,h) ~ (s,ht), then (s,ht) is also a pair in 'y and (s, h) = (s, ht) mod Zp D S. This
shows that the linear map kr is well defined.

The map is clearly surjective. It is injective because firstly, if (s’,h') = (s, h)y~! such
that T'ppr = Tpr, then v € Np(T'py) (which explains the Np(T'p)-invariants in the codomain
of kr), and secondly, if (s, h) = (s, h’) mod Zp. , we have (s',h') = (s21, hzz) for some 21, 22
in the torus Zp. ~C Zr(s, h)°, which means that (s, h) ~ (s, h'). O

Remark 7.8. Our main application will be to consider I' = I'y;, the reductive part of the
centralizer of a unipotent element u in the Langlands dual group GV, while I'y; will be the
centralizer of u in a Levi subgroup M.

7.4. Elliptic pairs in I'°. In applications, we will often encounter the situation where the
group I' is connected. For this reason, it is useful to have a precise description of the elliptic
pairs in I'°. Suppose s € I'° a semisimple element. Let T be a maximal torus of I' containing
s and let ® be the system of roots of T in I'° and W(I'°) the Weyl group of T in I'°. If
a € @, let X, be the corresponding one-parameter unipotent subgroup in I'°. For each
w € W(I'°), we fix a representative w of w in Nro (7). Recall [Car, Theorem 3.5.3]

Zre(5)° = (T, Xo | a(s) =1, a € P)
Zro(s) = (T, Xo,w | a(s) =1, a € &, wsw™ ' =5, w e W([°)).

We say that w € W(T'°) is elliptic if T* is finite, equivalently if t* = 0, where t is the
Lie algebra of T'.

(7.6)

Proposition 7.9. With the notation as abowve,
Y(I)en =T° - {(s,w) | s is reqular, w € W(I'°) is elliptic, s € T"}.
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Proof. Since we are considering I'°-orbits of pairs (s,h) € Y(I'°)en, we may assume that
s € T and h is in a semisimple conjugacy class of Zro(s). If h € Zro(s)°, since Zro(s)° is
reductive ([Carl Theorem 3.5.4]), h is contained in a maximal torus of Zro(s)°, hence (s, h) is
not an elliptic pair. This means that A must be in Zro(s)\ Zr-(s)°. By (Z0), we can assume
that h = w for some w € W (I'°) such that s € T%. It is clear that Zpo(s,w) D T*, which
means that w is necessarily elliptic if (s,w) is an elliptic pair. Suppose s is not regular.
Then there exists a € ® such that a(s) = 1. Let O, = {a,w(a),w*(a),...,w" ()},
where n is the order of w. Then in the Lie algebra of I', there exists an appropriate sum of
root vectors e = 3 5. es that is invariant under Ad(w) and therefore Zre (s, ) contains
the one-parameter subgroup for e and it is infinite.

Conversely, suppose (s,w) is such that s is regular and w is elliptic. By (), Zr-(s) =
W(I°)T, where W(T°), = {w; € W(I'°) | wysw; ' = s}. Then Zro(s,w) is finite if and
only if Ad(w) has no nonzero fixed points on the Lie algebra jro(s). But 3ro(s) = t, so this
is equivalent with w being elliptic. ([

Remark 7.10. If T' is connected and simply connected, then Y(T')ey = 0. This is because
in that case, for every regular semisimple s, Zr(s) = Zr(s)° = T, a maximal torus.

8. THE DUAL NONABELIAN FOURIER TRANSFORM

Let G be a connected semisimple algebraic F-group and G = G(F'). Let R,y (G) denote
the category of smooth unipotent representations of G. If V, V' € Irr,,, G, let

EPG(V,V') =Y (-1)"dimExt'(V, V"), (8.1)
i>0
where Ext’(V, V') are calculated in the category :(G) of all smooth G-representations ([SS]),
or equivalently, since R,,(G) is a direct summand of R(G), in the category Run(G). We
remark that this is a finite sum by Bernstein’s result on the finiteness of the cohomological
dimension of G. Extend, as we may, EP¢(, ) as a hermitian pairing on R,,(G) (as defined
in Section A.3). Let Ru,(G) denote the quotient of Ry, (G) by the radical of EPg.
Let Rtemp(G) be the subspace spanned by the irreducible unipotent tempered representa-
tions and let Ry " (G) be the image of R™P(G) in Ryun(G). As it is well-known ([SS, Rel]),
as a consequence of the (parabolic induction) Langlands classification:

temp

Ry (G) = Run(G). (8.2)

Let B, (G) denote the unipotent Bernstein center so that Run(G) = @,em,, (o) 2(G)*,
where R(G)® is the C-span of irreducible objects in the subcategory R(G)® (defined in
Section 2)). Since there are no nontrivial extensions between objects in different Bernstein
components, we have an EP-orthogonal decomposition:

Ru(G) = P R@G):.
SEBun(G)
With the same notation for an inner twist G’ of G, we get

P rRu.G)= P P ERG) (8.3)

G’€InnT(G) G’€InnT(G) s€Bun (G’)

Recall the unramified Langlands correspondence in the form (£I6). Apply the definitions
above to u € G, unipotent to obtain a representation 05 of Ag_(u) on the Cartan subalgebra
t® in the Lie algebra of Zg, (u). Let ( , )gis‘l be the elliptic inner product on R(Ag,(u)) and
let R(Ag,(u)) be the elliptic quotient by the radical of the form. One expects the following
correspondence to hold.
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Conjecture 8.1. The unramified Langlands correspondence ([[.16]) induces isometric iso-

morphisms:
[Cw: P P RAg(w)— P FRul@) (8.4)

s€C(GY)ss u€C(Fs)un G’€InnT(G)

LCwm: P P RAgw)— @ TRuwl@), (8.5)

SEC(GVY)ss uEC(GE )un G’€Inn?(G)

and

where the spaces on the left are endowed with the elliptic inner products ( )iﬁ, while the
spaces on the right have the Euler-Poincaré pairings EPqr.

Here C(GY)ss and C(Gs )un refer to conjugacy classes of semisimple and unipotent elements,
as defined in Section

Remark 8.2. In [Rel], Reeder proves that this elliptic correspondence holds in the case
of irreducible representations with Iwahori-fixed vectors of a split adjoint group. In section
[ we prove Conjecture Bl for a simple F-split group G under the assumption that Zg is
cyclic, in particular, when G is adjoint. In Proposition below, we also illustrate the
result with a direct proof for G = SL,,.

8.1. The elliptic Fourier transform: the split case. Suppose G is the split F-form. In
order to apply the ideas in Section [7.3] we rephrase the left hand side of (83]). Since Frob
acts trivially on GV, in this situation we have G? = Zgv (s), and the hence

b D Fagw)= & D EAe (),
S€EC(GY)ss uEC(GE Jun s€C(GY)ss u€C(Zgv (8))un
which can be written as
S5 P RArs)= B CPTwal™,
UEC(GY )un SEC(Ty)ss u€C(GY )un

via Proposition[7.4], where T, is the reductive part of Zgv (u), as before. Denote for simplicity

Rﬁn cll(G) = @ Run (G/)7 (86)

G’€InnT?(G)

endowed with the Euler-Poincaré pairing EP = @, EP¢/. Hence the elliptic unramified
local Langlands correspondence for pure inner forms of a split group can be viewed as the
isomorphism

rC]Dun : @ (C[y(ru)cll] — Rﬁn ell(G)' (8.7)

u€C(GY )un
For every class of elliptic pairs [(s,h)] € Ty,\Y(I'y)en, define the virtual combination (cf.
[Wa2l [Ci]):
I(u, s, h) = Z o(h) (s, u, B). (8.8)
$€ AT, (5)

Regard II(u, s, h) (or rather its image) as an element in R ;(G). As before ¢(h) = #(h),
where h is the image of h in Ar, (s).

Lemma 8.3. With the notation as above and A, = Agv(z),
(1) EP((u, s, h), (v, s', 1)) =0 if x = su and &’ = s'u’ are not GV -conjugate;
(2)
EP(H(u, 5, 1), T, 5, 1)) = (2, (B) 1g-, 1 Za, ()] L)
~ ||Za,(h)|dety, (1 —R7Y), if h,h' are conjugate.
B 0, otherwise,
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Hence, the combinations {Il(u, s, h)} define an orthogonal basis of R ,,(G).

un,ell

Proof. This is a straight-forward consequence of Theorem[0.T] (and an elementary calculation
for the last equality in (2)). O

Definition 8.4. (cf. [Ci], [Wall]). The (dual) elliptic nonabelian Fourier transform is the
involutive linear map FTY,: R?_ ,(G) — RP_ ,(G), defined by

un,ell un,ell
FT;/H(H(ua S, h)) = H(’LL, h7 S)v (Sa h) S Fu\y(ru)cll, u € Gv unipotent.
For every G’ € InnT?(G), and K|, € max(G’) consider the restriction map
resg, : IrrynG’ — Run(Ko), V — VES (8.9)

We define a linear map rescpt,un: ®¢'emntr(G) Bun(G') = C(G)cpt,un by setting

resept,un(V) = Z resg; (V)
K emax(G')

for all G' € InnT?(G) and V' € Irryn(G'). With notation as in Section [6] for each (4,0) €

Smax(G), we let proj, be the projection map C(G)cpt,un — BzeaRun(Kz,0) with respect to
the decomposition ([6.5]), and let resp = rescpt,un © projo. We have

IeScpt,un = @ reso . (8.10)
(A,0)ESmax(G)

We can now formulate the conjecture for elliptic representations.

Conjecture 8.5. Let G be a simple F-split group. The following diagram commutes

FTY,

Rﬁn,cll (G) - Rﬁn,cll (G)

re€Scpt,un J/ lrcscpt,un

C(G)cpt,unFT—> C(G)cpt,un

cpt,un

up to roots of unity. More precisely, for every unipotent element u € GV, elliptic pair
(s,h) € Y(T'w)en, and mazimal compact open subgroup Ko of G, there exists a root of unity
¢ =C((u,s,h,0) such that

reso(Il(u, b, s)) = ¢ - (FTcpun o reso ) (I(u, s, h)).

Remark 8.6. If K is the maximal hyperspecial compact subgroup of G, so that in partic-
ular resp = resg,,, we expect that the only roots of unity ¢ that appear are the well-known
A(z,) € {£1}, see [Lull, §6.7], for certain families of unipotent representations of the finite
groups of types E7 and Eg. But for other maximal compact subgroups, Proposition [[1.§
shows that new roots of unity can appear.

8.2. Example G = SLo(F). As an example of the correspondence for elliptic unipotent
representations, consider G = SLy(F') and GV = PGLy(C). Let X (v) denote the unramified
principal series of G, where v € C/(2wi/logq), as in [Cas, Appendix]. The elliptic tempered
representations occur at ¥ = +1 and v = 7i/log g (the unramified quadratic character).

At v = 7i/logq, there is a decomposition X (v) = X @ X, where X+ are irreducible
tempered representations. The virtual elliptic combination, in the sense of Arthur, is X —
X

At v = £1, one of the subquotients of the principal series is the Steinberg represetation
St (the other being the trivial representation). The Steinberg representation is a square
integrable representation.

In terms of the local Langlands correspondence for unipotent representations, we have

IrTun (SLo(F)) U Trran (D) <— PGLy(C)\{(z, &) | = € PGLy(C), ¢ € AL}, (8.11)
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where D is the 4-dimensional division algebra over F, hence Irry,, D* = {trivpx }.
The elements x parameterizing elliptic representations are

1 1 1 0
x—u1—<0 1)Zandx-s-<0 _1)Z.

If x = uq, then A}H = Zs,(c) = C2 with Cs = {triv, sgn}, and the parameterization is
St «— (u1, triv), trivpx <— (u1,sgn).
Since I'y,, = {1}, there is one associated elliptic virtual combination
M(u1,1,1) = St + trivpx. (8.12)

If © = s, ZpgLy(c)(s) = O2/Z and then Zg, ) (s) = Oz. Hence A; = C5. The Langlands
parameterization is
Xt e (s,triv), X~ < (s,sgn).
The unipotent part of x is ug = 1, and T',,, = PGL2(C), which means that

-1 0
There is only one associated elliptic tempered virtual combination (up to sign):

(ug, s,1) = X T — X~ (8.13)

V(Tug)en = Loy - (8,0), where w = ( 0 1) Z.

8.3. Regular unipotent elements. In Section[II] we will verify this conjecture completely
when G = SL,, and PGL,,, but here we illustrate it in the case when w is a regular unipotent
element.

Proposition 8.7. Let u, € GV be a reqular unipotent element. Then
rescpt,un(H(urv h, 5)) = FTcpt,un o rescpt,un(H(uh S, h))
for all (s,h) € Y(T'y,.). In particular, Conjecture holds true with trivial roots of unity.

Proof. In this case I',. = Zgv and every pair (s, h) in Y(Zgv) is elliptic. Write the natural
identification -
Qo = Zev

as x + ¢5. Then for (s,h) € Y(Ty,), we have I(u,,s,h) = > .o ¢z(h)7(s,ur, ¢.). Note
that 7(1,u,, @) is the Steinberg representation Stg, of G, so w(s,ur, @) =~ Sta, ® Xs,
where x; is the weakly unramified character corresponding to s under ([@3]).

For the rest of the proof, we fix (4, 0) € Smax(G). Then given s € Zgv, the character
Xs is trivial on the parahoric K , so defines a character, call it o, of A under the natural
isomorphism K, o/K; o =~ A. We have

0, ifx ¢ A,
StK%zNUs ifx e A,

reso 7T(S, Uy, ¢z) = {

where Stg is the Steinberg character of the finite group E;w inflated to K¢, .. Note that

@

that for evefy reA
¢z(h) = op(x), for all h € Zgv.

Thus

reso I(uy, s, h) = Z on(x)Stxe , % 0s. (8.14)

T€A

With notation as in Sectionfdl let Up gy = {St K;;} be the Steinberg family in Irr,, (K o), and
let Zjo,St C Ugealtry, (K,.0) be the family parametrized by f{f‘,@ysc = A under the bijection
of Proposition 53] Then by I4), resp II(u,, s, h) corresponds to Uz o, (0s,0mn) defined as
in (BI3). The claim then follows from Lemma [E11 O
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8.4. The compact Fourier transform: the split case. We extend the conjecture from
the elliptic case. Recall the spaces C[)(T',)/~]5 defined in Section [7.3] particularly Propo-
sition [[7 For every compact pair (s,h) € T, \Y('y)/~, define II(u,s,h) € as in (&F).
Let

R ept(G) = span(l(u, s, h) | u € C(GY )un, (s,h) € TA\V(Tu)/~)- (8.15)

Since s, h have finite order, all of the irreducible G’(F)-representations, G’ € InnT?(G),

that occur in the virtual linear combination II(u, s, h) are tempered. Hence RE ept(G) s a
subspace of @, RSP (G).
Definition 8.8. The dual compact (nonabelian) Fourier transform is

FTI\J/I] ,cpt ® Rﬁn Cpt(G) — Rﬁn Cpt(G)7 FTI\J/H ,cpt (H(u7 S, h)) = H(”? h7 8)' (816)

Conjecture 8.9. Let G be a simple F-split group. The following diagram commutes

FTcpt un
RP. . (G) —ZRP

un,cpt un Cpt(G)

TeScpt,un l lrcscpt,un

C(G)ept,un T C(G)ept,un
cpt,un
Let LY be the set of GV-conjugacy classes of Levi subgroups M"Y in GV. If the unipotent

GV-class of u meets the Levi subgroup MV, assume that v € MV, and denote nyv =

', N MV. Proposition [Z.7] implies that we have a natural isomorphism

e @ LT — @ B Dzl

u€C(GY)un WEC(GY )un MV ELY uEMV

= | @ @l /2 )al | /~av,
(MY ,u)

(8.17)
where the pairs (M"Y, u) range over Levi subgroups M"Y in GV and v € M unipotent. Let
M be the Levi subgroup of G whose dual is M"V. Conjecture Bl (proved in some cases in
Section [@)) in the interpretation ([BX) says that there is natural isomorphism

LLCP,, ( P c (FMV/Zer)en]> [omrv = Ry an(M/Z5).

ueMY

On the left hand side u ranges over the unipotent elements of MY. Composing with k., we
get a natural isomorphism

LLChm: D CYTW)/™ — (G} Rﬁn,eu(M/Z?w)) /~c, (8.18)
u€C(GY )un M

where M ranges over the set of Levi subgroups of G. In particular, if £ is the set of conjugacy

classes of Levi subgroups of G, this implies a natural isomorphism

un Cpt @ Run ell M/Z(J)W) (819)
MeL
We make this more precise when G is simply connected, in which case G is the only pure
inner form. We recall several known results from the K-theory of G, see [BDK] [Dal [CH2|
Kaz]. Since the category of unipotent representations of G is a direct summand of the
full category of smooth representations of G, we state the results directly in the unipotent
setting. Following [CH2| §6.7], define the rigid quotient

E(G)un,rig = Run(G)/R(G)un,diff; (820)
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here R(G)un,ait C Run(G) is the C-span by ir(0) — ip(0 @ x), where M ranges over the
set of standard Levi subgroups of G, 0 € R¢(M )un, and x is an unramified character of M.
For every M, ip; denote the functor of (normalized) parabolic induction: since we only work
at the level of Grothendieck groups, the choice of parabolic containing M is not important.
The parabolic form of the Langlands classification implies that R(G)un,rig is spanned by (the
images of) tempered representations, and moreover by @ ,,c iar (R(M/Z3;)un). Hence the
map

Rinept(G) = R(G)un = R(Gun,ig (8.21)
is surjective. Let H(G) = C°(G) be the Hecke algebra of G, H(G) the cocenter of H(G)
(the quotient by the space of commutators). Let H(G)™8 be the rigid cocenter, the image
in H(G) of > Kemax(a) Cot (K). Let H(G)!e be the rigid unipotent cocenter, the image of
> kemax() O (K )un. The rigid trace Paley-Wiener Theorem [BDK [CH2] and Kazhdan’s
Density Theorem [Kaz] imply that the trace map

tr: H(G)ng = (R(Gunsig)”s [ (1 — tr(f)) (8.22)
is an isomorphism. By [Dal, Theorem 4.25]
dim H(G)E = D dim R(M/Z3;)un,
MeL
and therefore by I9), dim R(G)un g = dim R, (G). Comparing to (82I]), we arrive

un,cpt
at

Corollary 8.10. Suppose G is split and simply connected. There exist natural isomorphisms

R(G)un,rig = Rﬁn,ept(G) = @MEL Rﬁn,ell(M/Z?W) = @uEC(GV)un CD}(Fu)/N]Fu
We expect that a similar result holds for arbitrary isogenies.

Remark 8.11. The Fourier transform FT ¢ un should be compatible with parabolic induc-
tion. This is deduced in [MW] §6.4] from the works of Lusztig and Shoji. In this situation,
in particular when G is simply connected, Conjecture implies Conjecture [R.9

9. ELLIPTIC UNIPOTENT REPRESENTATIONS
The main result of this section is:

Theorem 9.1. Suppose G is a simple split F-group of adjoint type. Then Conjecture [S81]
holds true for all pure inner forms of G, in the sense of (8.3).

Remark 9.2. In Section [0.4] we explain how Theorem can be extended to other iso-
genies, in particular, to the situation when all R-groups that appear in the disconnected
generalized Springer correspondence (Section [3)) are cyclic. See Remark [0.12] and Corollary
9.1

The strategy of the proof is as follows. As explained in Section Ml the set of unramified
enhanced Langlands parameters ®e yn(G’), where G’ is an inner twist of G, decomposes into
a disjoint union ®eun(G’) = v ey (1) ®.(G')*". Consequently, there is a decomposition

sV
R((I)cyun(G/)) = @ R((I)C(G/)J )-
sVeEBY,(G)
In [AMS2], an affine Hecke algebra with possibly unequal parameters H(s") is constructed
such that there is a natural bijection

Irr H(s") «— 0o (G')° (9.1)
which induces a natural linear isomorphism

R(H(s")) = R(®.(G")*).
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We need to study the elliptic space R(#H(s")). The important fact for elliptic theory is that
H(sY) is a deformation of an extended affine Weyl group Wev = Wev x X*(Tsv), where
Tev = <I>e(L')5Z/ for L' a Levi subgroup of G’ that corresponds to V. This allows us to use

the results of [OS], in order to further reduce to R(H(s")) = R(Wsv). Moreover, the latter
space, is equivalent with a direct sum of elliptic spaces for certain finite groups

RWo)= P  Rw, (s).

seW v\T,v

We then use results of [Wa2] and the generalized Springer correspondence in order to relate

the spaces R(Zw,, )(s) to the relevant spaces of Langlands parameters (for the various
unipotent elements) in B, (G')°" .

Finally, by [Lu3l [Ludl [Sol] for each sV € B, (G’), there exists s € B, (G’) such that the
Hecke algebra H(s) for s is naturally isomorphic to H(s"). The fact that the elliptic space
for the representations in the block 93(G’)* is naturally isomorphic to R(#(s)) is immediate
by the exactness of the equivalence of categories between R(G’)® and H(s)-modules.

9.1. Euler-Poincaré pairings for affine Hecke algebras. We begin by recalling several
known facts about the elliptic theory for affine Weyl groups and affine Hecke algebras. The
main reference is [OS], see also [COI]. The notation in this section is self contained and
independent of the previous sections. For applications, the root datum in this section will
be specialized to the root datum of the Langlands dual group GV, as well as to the root
data for the affine Hecke algebras H(s") which occur on the dual side of the local Langlands
correspondence.

Let R = (X, R, XV, RY,1I) be a based root datum. Here X, X" are lattices in perfect
duality (, ): X x XV = Z, R C X \ {0} and RV C XV \ {0} are the finite sets of roots
and coroots respectively, and II C R is a basis of simple roots. Let W be the finite Weyl
group with set of generators S = {s, : @ € IT}. Set W = W x X, the extended affine Weyl
group), and W = W x @Q, the affine Weyl group, where @ is the root lattice of R. Then
W is normal in W and Q := W/Wa >~ X/@ is an abelian group. We assume that R is
semisimple, which means that (2 is a finite group.

The set R* = RV x Z C XV x Z is the set of affine roots. A basis of simple affine roots is
given by 11 = (IIY x {0}) U{(7¥,1) : vV € RY minimal}. For every affine root a = (a¥, n),
let sa: X — X denote the reflection sa(z) = z — ((z,@¥) + n)a. The affine Weyl group W¢
has a set of generators S* = {s, : a € II*}. Let I: W — Z be the length function.

Set E = X ®zC, so the discussion regarding elliptic theory of W and E' from the previous
sections applies. We denote a typical element of W by wt,, where w € W and x € X. The
extended affine Weyl group W acts on E via (wty) - v=w-v+z,veEE.

An element wt, € W is called elliptic if w € W is elliptic (with respect to the action on
E). For basic facts about elliptic theory for W, see [OS] sections 3.1, 3.2]. There are finitely

many elliptic conjugacy classes in W (and in W*). The following fact is well known, see for
example [CO1, Lemma 5.4].

Lemma 9.3. Suppose C is an elliptic conjugacy class in W*. Then there exists one and
only one mazximal J C S% such that C N Wy # 0, and in this case C N Wy forms a single
elliptic Wy-conjugacy class.

Define the Euler-Poincaré pairing of W by:
(U, V)g@ = Z(—l)i dim Ext%‘v/(U, V), U,V finite-dimensional W-modules. (9.2)

>0
Let R(W) be the Grothendieck group of W-mod (the category of finite-dimensional mod-
ules), and set R(W) = R(W)/rad(, )Rp. By [0S, Theorem 3.3], the Euler-Poincaré pairing
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for W can also be expressed as an elliptic integral. More precisely, define the conjugation-
invariant elliptic measure pe; on 1% by setting pen = 0 on nonelliptic conjugacy classes, and
for an elliptic conjugacy class C' such that v € E is an isolated fixed point for some element
of C, set
e (C) = Zw@ N O

Zg ()]

here ZW(U) is the isotropy group of v in W. Then

(U = (xu, xv)i = /w uxv dpen, U,V € W-mod, (9.3)

where xy, xv are the characters of U and V.

Set T' = Homyz(X,C*). Then W actsonT. Forevery s € T,set Wy = {w € W : w-s = s}.
One considers the elliptic theory of the finite group Wy acting on the cotangent space of T’
at s. By Clifford theory, the induction map

Ind,: We-mod — W-mod, Indy(U) :=Indl , (U ®s)

maps irreducible modules to irreducible modules. By [OS, Theorem 3.2], the map

P md,: P RW.e —RW)c (9.4)

seT /W seT/W

is an isomorphism of metric spaces, in particular,
(Ind, U, Ind, V), = (U, V)We, U,V € Wy-mod. (9.5)

A space R(W;)c in the left hand side of ([@.4)) is nonzero if and only if s is an isolated element
of T, more precisely s € Tig,, where

Tiso ={s €T" :w-s = s for some elliptic w € W}.

Example 9.4. Let R be the root datum of PGL,(C). In other words, T is the maximal
diagonal torus of PGL,(C), X = X*(T) is the group of characters, and XV = X, (T) the
group of cocharacters. In this case, @ = X and

W=W*=(s;, 0<i<n—1](sis;)™) =1, 0<i,j<n—1),

where m(i,i) = 1, m(i,j) = 2if 1 < |t —j| <n—1, and m(i,j) = 3if |i —j] = 1 or
li—jl=n—1, whenn>3.Ifn=2, then W = W% = (s, 51 | s2 = s2 = 1).

With this notation, the finite Weyl group is W = (s1,...,8,-1) C W®. For every
0<i<n-—1, denote W; = (S0, 81,...,8i—1,Sit1s--+,Sn—1) C W?. These are the maximal
(finite) parahoric subgroups of W¢. In particular, Wy = W and W; = S, for all <. The
space E = t* =2 C"~! and each W; acts on E by the reflection representation. Therefore,
there exists a unique elliptic W;-conjugacy class represented by the Coxeter element w; =
8081+ 8i—18i+1 " Sn—1. Thus by Lemma[Q.3] there are exactly n elliptic conjugacy classes
in W* each determined by the condition that it meets W; in the conjugacy class of wj,
0 <4 <n— 1. In particular, dim R(W )¢ = n in this case.

On the other hand, by (@4]), we need to consider W-orbits in Tis,. Since there is only
one elliptic conjugacy class in W, every W-orbit in Tis, is represented by an element of

T2 sn=1t = (A, (2) | 2 € pn}, An(2) =diag(l,2,22%,...,2" ) ET, pp={2z] 2" =1},

as noticed before. Two elements A, (z) and A, (z') of T51%25n-1 are W-conjugate if and
only if z and 2’ have the same order. Fix a primitive n-th root ¢ of 1. This means that (@)
becomes in this case:

@ R(WAn(Cn/d))C = R(W)(C

d|n
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If z = (™, where n = dm, then A, (2) is W-conjugate to (1,...,1,2,...,2,...,2971 ... 2471,
—— —— |
Hence, one calculates
Wa,(z) = St x Cqand th oy = {(ar,...,an) | D a; =0}. (9.6)
i=1

The action is the natural permutation action. There are ¢(d) elliptic conjugacy classes in
represented by (W, 1,...,1) x4, where wy, is a fixed m-cycle (Coxeter element) of S, and
x4 is one of the ¢(d) generators of Cq, see Lemma [[T5 Again },, ¢(d) = n.

Let § = {qa(s) : s € S°} be a set of invertible, commuting indeterminates such that
q(s) = q(s’) whenever s, s’ are W%-conjugate. Let A = Clq(s),q(s)"!:s € S9].

The generic affine Hecke algebra H(R, q) associated to the root datum R and the set of
indeterminates g is the unique associative, unital A-algebra with basis {T,, : w € W} and
relations

(i) TwTw = Twu, for all w,w’ € W such that l(ww') = l(w) + I(w');
(i) (Ts — q(s)?)(Ts +1) = 0 for all s € S°.

Fix an indeterminate q. Given a W%invariant function m: S* — R, we may define a

homomorphism A, : A — Clq], q(s) = q"*). Consider the specialized affine Hecke algebra

H(Ru q, m) = H(Ru q) A (Ckm . (97)

Example 9.5. Let R be the root datum of PGL,(C). If n = 2, the generic affine Hecke
algebra has two indeterminates q(so) and q(s1) and it is generated by Ty = Ts,, T1 = Ts,
subject only to the quadratic relations

(T; — q(s)*)(T; +1) =0, i =0,1.

If n > 3, all the simple reflections are W“-conjugate. There is only one indeterminate q
such that the affine Hecke algebra is generated by {T; = Ts,,0 < i < n — 1} subject to the
relations:

(1) TlT] = TjTi, 1< |Z—j| <n-—1;

(i) T T = Tip1TiTipq, 0 < i <n—1; ToTp1To = Tph1ToTh—1;

(iii) (T3 — q?)(T; +1) = 0.

Specialize further the indeterminate q to ¢ > 1. Let H = H(R,q,m) be the resulting
affine Hecke algebra over C. If U, V are two finite-dimensional H-modules, define the Euler-
Poincaré pairing [OS] §3.4]:

EPy(U,V) =Y (1)’ dim Ext}, (U, V). (9.8)
i>0
This is a finite sum since H has finite cohomological dimension [OS| Proposition 2.4]. The
pairing EP# is symmetric and positive semidefinite. It extends to a hermitian positive-
semidefinite pairing on the complexified Grothendieck group R(H)c of finite-dimensional H-
modules. We wish to compare the Euler-Poincaré pairings for the H(R, ¢, m) and H(R, ¢¢, m),
where € € [0,1]. Suppose we have a family of maps
oc: H(R,q,m)-mod — H(R,q°,m)-mod, o.(m,V)= (7, V), (9.9)
such that

(a) for every w € W and every (m, V), then assignment ¢ — (¢)(T,) is a continuous
map [0, 1] — End(V).
Then [OS| Theorem 3.5] shows that

EP’H(R,q,m) (U, V) = EPH(R,qé,m) (O’E(U), O'E(V)), for all e € [0, 1]
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In particular, notice that H(R,¢%, m) = (C[W], meaning that

EP'H(R,q,m)(Uv V) = <UO(U)7 UO(V»E/ . (910)

Using [OS|, Theorem 1.7] or equivalently, for the affine Hecke algebras that occur for unipo-
tent representations of p-adic groups, via the geometric constructions of [KL| Lu2], we know
that scaling maps o, as above exist and in addition, they also behave well with respect to
harmonic analysis:
(b) for every e € [0,1], V is unitary (resp., tempered) if and only if o.(V) is unitary
(resp., tempered);
(c) for every e € (0,1], V is a discrete series if and only if o.(V') is a discrete series.

Denoting by R(H)c the quotient of R(H )¢ by the radical of EPy, it follows [OS| Proposition
3.9] that the scaling map o( induces an injective isometric map

00: R(MH)c = RW)e = P R(W,)c. (9.11)
seT/W

In fact this map is an isometric isomorphism, for example by the results of [CHI].

9.2. Elliptic inner products for Weyl groups (after Waldspurger [Wa2|). Let G = G°
be a complex connected reductive group and 6: G — G a quasi-semisimple automorphism of
G of finite order.

The automorphism 6 acts on I via: (U,€) — (O(U), (671)*(E)). Let I denote the fixed
points of this action and suppose (U, &) € I?. If we fix u € U, there exists g € G such that
Ad(x) 0 0(u) = u, hence Ad(x) o0 preserves Zg(u) and hence it defines an automorphism of
Ay, denoted 6,,. As explained in [Wa2l p. 612],if ¢ € A\u corresponds to the local system &,
the fact that (671)*(£) = € is equivalent to the condition that ¢ extends to a representation
& of Ay x (6,).

Fix a Borel subgroup B,, of Zg(u)° and a maximal torus T, in B,,. Let ¢, be the complex
Lie algebra of T,,. We define a complex representation (d,,t,) of A, X (6,), extending the
previous definition for the action of A4,. Since A, acts on Zg(u)° by the adjoint action and
0., acts on Zg(u)° as above, every element z € A, % (6,) acts on Zg(u)° via an automorphism
a. There exists y € Zg(u)® such that a, o Ad(y) preserves B, and T,. This means that
a, o Ad(y) defines an automorphism of the cocharacter lattice X, (T, ) which also preserves
the sublattice X.(Z5), and therefore a linear isomorphism of t,. This is 0,(z), and this
construction gives a representation of A, x (6.,).

Suppose (U,€) and (U’,&’") are two elements of I represented by (u,¢) and (v, ¢'),
respectively. Define

ey o (5) &)g“_elp itU = U/a
(¢7¢ )Q—ell = {O, FU # U

This is f-elliptic pairing on @, R(Ay % (0u))-

The relation between this elliptic pairing and the generalized Springer correspondence
[Lu2|] is explained in [Wa2| §3]. The automorphism 6 acts naturally on all of the objects
involved in the definition of the Springer correspondence. As discussed in [Wa2| §3], this
leads to an action of W x () on 3, the Lie algebra of the Zp,, and to a 6-generalized

(9.12)

Springer correspondence v: I? — J?. For every (j,p) € 39, let p denote the extension of p
to a representation of W; x (8) as in loc. cit..

Let i = (U,&), i’ = (U',&') be two elements of I, and v(i) = (j, p), v(i') = (§',p).
For every m € Z, the constructible sheaf H*" v’ (A, )|y decomposes as a direct sum of
G-equivariant local systems on U. As in [Wa2|, setting

Hm/ = Hom(é', /H2m+aU/ (Aj/7p/)|U),
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the automorphism ¢ defines a linear map 677, : Hi}, — H/",,. In particular,

Ry i,
H;=0if m# 0 and dim H}; = 1.
We may arrange the construction so that 67, is the identity map. Moreover, it is clear

that H[", # 0 for some m only if U C U’. (Recall that the restriction of Aj , to Gun) is

supported on U’.)
Define the virtual representation of W, x (6)

p= Z P; 0, where Pj , ; = Z tr(07 ). (9.13)
ple‘//[/\je meZ

In this virtual combination, Pj,, = 1 and P;,, # 0 implies that U C U’ if (U,€) =
I/_l(jv p) and (Ulugl) = V_l(jupl)'

Example 9.6. When 8 is the trivial automorphism of G and j = jo (the case of the classical
Springer correspondence), p can be identified with the reducible W-representation on the

¢-isotypic component (¢ € A, corresponding to &) of the total cohomology of the Springer
fiber of u.

Consider the 6-elliptic pairing ( , )g‘:jell on P ¢ yo R(W; x (0)), defined on each summand
via the action of W; x (8) on 3. and extended orthogonally to the direct sum.

Theorem 9.7 ([Wa2, Théoréme p. 616]). Leti = (U,E), i’ = (U', &) be two elements of 1%,
and v(i) = (4,p), v(i') = (5',0"). Let (u,d), (v',¢"), ¢ € Ay, ¢’ € Ay, be representatives
for i,i, respectively. Then

(6, )o—cn = (ﬁ,ﬁ”)g‘feu.

9.3. The proof of Theorem the case of adjoint groups. In this subsection,
suppose that G is a simple F-split group of adjoint type. This means that GV is simply
connected, hence, for every s € TV, Zgv (s) is connected. We may apply Theorem [0.7] to

G = Zgv(s) and 6 the trivial automorphism.

Denote I¥ = T%ev(8) J5 = J%ev(5)  and Js = szV(S), so that the generalized Springer
correspondence for Zgv (s) is the map

ve: I8 = J°, (U, E) = (4, p),

and

=Y Py, where Pj,, =" dimHom(E, H>" 0 (A »)|v).
P’EVV\j mEZ

For convenience, let us also denote
Ui I8 = I, (U,E) = (). (9.14)
Recall that for every semisimple element s € GV, GP = Zgv (s).

Proposition 9.8. The maps Us from (9.13) induce an isometric isomorphism
R ~ ) Oy e~ ~ W
D FAgw)= D DEW), (&)= E(0) 76l
SGC(GV)SS SEC(GV)SS jeJs

Proof. This is immediate from Theorem 0.7 applied to each GP. O
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9.4. Extending Theorem In order to extend the results to the case when G is simple
F-split, but not adjoint, we need first some results about Mackey induction. We follow a
construction from [CHI| §4.2]. Suppose H' is a finite group, H a normal subgroup of H’,
and H'/H = R is abelian. The groups H',R act on H. For every H-character x, and
v € R, denote by 7y the H-character Yx(h) = x(y 'hy) (it doesn’t depend on the choice
of coset representative ).

IfoeH , let R, and H, denote the corresponding isotropy groups of o. For each v € R,,
fix an isomorphism ¢.: o — ¢ and define the twisted trace as tr,(o)(h) = tr(o(h) o ¢,),

h € H. The choices of ¢, (each unique up to scalar) define a factor set, or a 2-cocyle,
By : Ry X R, — C*.

Remark 9.9. We assume that the action of R can be normalized so that (3, is trivial. This
is the case for example when R is cyclic.

If 7 is a (virtual) fR,-representation, we may form the Mackey induced (virtual) H’-
representation
oXNT = Indg;(a ®T).
If 7 is an irreducible R,-representation, then o x 7 is an irreducible H'-representation. In
fact, H' = {o x 7 | 0 € R\H, 7 € R,}.
Given v € R, if v € R,, define 7, , to be the virtual JR,-representation whose character

is the delta function on y. Then {o x 7, | 0 € R\H, ~ € R} is a basis of R(H'). As in
[CHI, Lemma 4.2.2]

0, if h ¢ H~,
XU><17'(,,W (h) = { ¢

> ey, (1 (0))(h), if h € Hy. (9.15)

Notice that

H'/H! 2 R/R,
indexes the fR-orbit (equivalently, the H’-orbit) of o € H. Suppose H' is endowed with a
representation d and we define the corresponding elliptic pairings ( , )gl/ and ( , )ff_eu (for
each v € R).

Lemma 9.10. For every vi,7v2 € R and every 01,09 € fAI, the H'-elliptic pairing is given
by

L Z 'Y/ 'Y“ H . .
/ 'mm,//mm(ol 02)5 —ell if 1=
(01 e T017’71702 X T027’72)gl = 1% v'eR/ LTe / 2 7 el . ,

0, if 11 # e

Proof. The orthogonality of the two characters when v # 2 follows at once since the first
is supported on 1 H and the second on 7o H. The first formula follows from (@I3) by
explicitating the definition of the elliptic pairing. g

Lemma .10 allows thus to extend the proof of Theorem to the case when G’ is
disconnected as long as:

*): the cocycles £, that occur in the disconnected Springer correspondence can be
th les #; that in the di ted Spri d b
trivialized.

Proposition 9.11. Retain the notation from Section [A and suppose that (x) holds. Let
v : 19 — J9 be the generalized Springer correspondence (33). Leti = (U,&), i = (U', &) be
two elements of 19, and v(i) = (j,p), v(i') = (j', ). Let (u,¢), (u',¢'), ¢ € Ay, ¢ € Ay
be representatives for i,i’, respectively. Then

if (5,U) # (3", U"),

n _J0,
(20 )en = {w, OYh = (0.0), i (G,U) = (7,U7) and Zon,go () Zge () = Zg () Zago ().
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Proof. Suppose j = j', otherwise the claim is true by definition. Let p%, p3 € ﬁ/? and suppose
that they have unipotent supports U7, Us, respectively, in the connected generalized Springer
correspondence such that G- Up # G - Us. Let pf, i = 1,2 be the corresponding reducible
Springer representations, as in Section[@.2l We assume that they all have appropriate twisted
extensions as in Section and drop ~ from the notation. Using Lemma applied to
H=W¢, H =W;, R =Ry, for every v € (%j)po N (MRy)ps5

1

W
(p1 ”Tpi’mpg M Tpo .y Vell = m | Z Pz = ‘en =0,
,Y/ ’YH
by Theorem[0.71 We used implicitly here that the stabilizer in 9R; of pj and p§ are the same.
In conjunction with the second claim in Lemmam this implies that (p§ 71, p§ 7'2)3/1 =0

for all 7; € @po, 1 = 1,2. Hence (p1, p2) i = 0 whenever py, p> have distinct unipotent
(disconnected) Springer support, which proves the first part of the claim.

Now assume that u = u" and ¢, ¢’ € A,. Suppose p§ occurs in the restriction of p; to W2
and that ¢7 € Ago (u) (which necessarily occurs in the restriction of ¢;) corresponds to P
in the connected generalized Springer correspondence. We observe that there is a natural
injection

E)%j ZVVJ‘/VVjO ENg(j)/Ngo(Mo);}g/go. (916)
Hence every v € R; can be regarded as au automorphism of G° and in particular, Theorem
can be applied with v in place of §. We wish to compare (p3 3 7po -,,p5 X Tpgm)g/lj and
(BT X Tpo vy s P X T3, )i By [AMST] Lemma 4.4],

(Rj)pe = (W;)pe /W; = (Au)ge [Age (u), 1=1,2,

which implies that there is an identification between v;, ¢ = 1,2 for the p?’s and for the ¢7’s
in the setting of Lemma [0.101 Hence if 71 # 72, both elliptic products are zero.

Suppose 11 =72 =7 € (R;)ee N (Rj)ps = ((Au)gg N (Au)gg)/Age(u). To simplify the
formulas, set n; = [(M;)p0| = [(Au)gs/Age(u), i = 1,2. Then, firstly by Lemma and
secondly by Theorem [0.7]

o o W; v o ~" o wy
nina|R;|(p7 Tp,v:P2 X Tpg,w)eu = E ("1, P2)y ell
’)’lq'}’,,emj
/ " A (u )
— YA VA go (to
- E E ( ¢17 ¢2)'yfcll :
uo ER;G°-u/G° 'y’,’y”Gf)‘\‘j

QO~(W/u0):g°'(wnuo):g°'uo

The first sum is over the representatives of the G°-orbits that are conjugate to G° - u via
R,. Since the corresponding summand for two different G°-orbits ug, u € G - u are equal
(as they are related by an outer automorphism of G°), it follows that
R, o o Wi _ Y go v poyAge (w)
n1n2 N, (p] TpS,vs P2 XITng’Y)cll = Z ( ¢17 ¢2)7 ell (9.17)
, VR
G%-(Tu)=G°-(" u)=G"u

where N, is the number of G°-conjugacy classes in 2,;G° - u. It is easy to see (using orbit-
stabilizer counting) that |9%] = |Zx,go(u)/Zgo(u)|. Moreover, an element v € 9R; has the
property that G° - (") = go w if and only if v € Zg(u) mod G°. Hence (@IT) becomes:

W; o Ago (u
n1na|Zax;go (w)/Zge (W)[(PT X Tps v, P2 X Tpg,) et = Z (7¢177 ¢2)7 gcll )

YY" €2 jgo (w)/Zgo (u)
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On the other hand, applying Lemma [0.10 to A,, we get

o o w r’ o 1" onNAgo (u
minalAu/Age (W(65 % Togn, 03 X Tog )it = 3 (65,76l (918
" €Ay [Ago (u)

Notice that
Ay/Age (u) = Zg(u)/Zge (u) — G/G°.
The claim follows.
O

Remark 9.12. (1) As remarked in the proof of Proposition [@.I1] there is an injection
M, — G/G°. In our case, G = Z¢gv (s) for a semisimple element s. Then using a well-
known result [SpSt], G/G° is a subgroup of C, the kernel of the covering Gy, — GV,
in particular, G/G° is a subgroup of Z(GY.). This implies that if GV is simple, the
only case when G/G° might not be cyclic is if G¥ = PSO4,,(C). Hence, by Remark
0.9, assumption (%) holds for all simple groups GV with the possible exception of
PS04, (C).

(2) The condition Zgw;go(u)/Zge(u) = Zg(u)/Zgo(u) in Proposition @11 should not be
needed and we do not know if it is always satisfied. When j = jo is the cuspidal
datum associated to the trivial local system on the maximal torus of G°, the 3, =
G/G°, hence this condition holds automatically.

As a consequence of Proposition [0.11] and Remark [0.12] we have:

Corollary 9.13. Let G is a simple split F-group other than Spiny,, (F). Then Conjecture
[81] holds true for all Iwahori-spherical representations of the pure inner twists of G, in the

sense of (83).

10. Sp,(F)

As a useful example, we present the case G = Sp,(F). Firstly, there are 6 unipotent
representations of the finite group Sp,(F,): 5 in bijection with the finite Weyl group of type
C5 and one cuspidal representation §. Using Lusztig’s notation for the irreducible represen-
tations of the Weyl group of type B/C, there are 3 families F of unipotent representations
with associated finite groups I' as follows:

o I'={1}, F={2 x 0};

o I'={1}, F={0x 11};

o' =7Z/2Z, F = {1 x 1,11 x 0,0 x 2,0} with associated parameters, in order,
M(F) = {(L 1)7 (_17 1)) (17 E)v (_L 6)}

For the Z/2Z-family, the stable combinations are:
o(1,1)=1x1+0x2, o(-1,1)=11x0+6,

o(1,-1)=1x1-0x2, o(-1,—-1)=11x0—9, (10.1)

and Lusztig’s Fourier transform acts by the flip o(z,y) — o(y, x). For the singleton families,
the Fourier transform is the identity.

Next, to the p-adic group Sp,(F): the unipotent representations are parameterized by
data in the dual group G¥ = SO5(C). In particular, the list of unipotent classes u and their
attached groups I'y, is:

u T,

(5) 1
(311) S(Ol X 02) =~ 0y
(221) Sp,

1) 505
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| m(us,¢) [ Ko—Spy(Fy) | Ki—Spy(Fy)® [ Ky — Spy(Fy) |
(s0,1) Ix140x11[1XMe+eR1+ele|1Ix14+0x11
(s0,€) 0 x2 eXe 0 x2
(s1,1) fx240x11 1Xe+eXe 1x1
(s1,€) 1x1 eX1+elXe Dx24+0x11
(52, 1X1) 0 x 11 1R 11 <0
(s2,eX 1) Ok, 0 0
(SQ,lIEE) 0 0 6‘K2
(s2,eXe) 11x0 eX1 0 x11

TABLE 1. Elliptic Sp, (F')-representations attached to u = (311) € SO;

The interesting case is u = (311). Write
Tu=1(28]|2€C* 6*=1, 626 ' =271,

Then Zr, (£d) = Ap, (£0) = {£1,+6} = Cy x Cy and Ar,(£1) = {1,6} = Cs. There are 6
conjugacy classes of elliptic pairs:

[(£1,0)],  [(6,£1)], [(6,+0)], (10.2)
and the flip acts as
flip([(£1,9)]) = [(6,£1)],  flip([(d, £6)]) = [(J, £)]. (10.3)

There are three conjugacy classes of isolated semisimple elements in 7V = {(a,b) | a,b € C*}
in SO5(C). In this notation, the Weyl group W (Bs) acts on T by flips and inverses. The
representatives of the three classes are:

® S0 = (17 1)a ZGV (SO) = SO5,
® 51 = (_15 1)7 ZGV (Sl) = S(OQ X 03)7
® S2 = (_15 _l)a ZGV(SQ) = S(Ol X 04) = 04,

All three s, s1, s2 occur in I', = O3 and in the notation above for Os = (z,4), they are
SQ<—>1€OQ, 81(—>—1602, sp <> 0 € Os.

Consequently, there are 8 elliptic tempered representations of the form 7 (s;, u, ¢), i =0, 1, 2,
u = (311): 6 are Iwahori-spherical, and 2 are supercuspidal. Out of these, 4 are discrete
series representations, all those for s = §. The parahoric restrictions are given in Table [Tl
We computed them using the same method as in [Re2, (6.2)], but since in our case GV is
not simply connected, we also need to involve the Mackey induction for graded affine Hecke
algebras attached to disconnected groups.

The corresponding stable combinations are

I(u,1,0) = 7(u, s0,1) — m(u, so, €),

M(u, —1,6) = 7(u,s1,1) — m(u, s1,€),
M(u,0,1) = w(u, $2, L K1) 4+ 7w(u, s, 1 X e) + w(u, s2,¢ ¥ 1) + 7(u, s2,€ K €),
M(w,d,—1) = m(u, s2, LK 1) + 7(u, s2,1 Xe) — m(u, s2,e K1) — 7m(u, s9,eXe),
I(u,6,0) = m(u,s2, 1 1) — w(u, s2,1 K e€) + m(u, s2,e K1) — 7(u, s2,e X e),
I(u,d, —0) = w(u, 2, L K1) — w(u, s2,1 Ke) — m(u, 2,6 K1) + 7(u, s2,e X ).

The corresponding parahoric restrictions are in Table 2
One can easily verify by inspection using Table 2l that the conjecture holds in this case.
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| H(U,S,h) | KO | Kl | K2 |
(1,9) (Ix1-0x2)+0x11 [1NKe+eX1|(1x1-0x2)+0x11
(6,1) (11 x0+0k,)+0x11 [1Ne+eX1 | (11 x040k,)+0x11
(—1,0) [(—1x1+4+0x2)+0x11|1Ne—eX1|(Ix1-0x2)—0x11
(0,—-1) | (11 x0—0k)+0x11 [ 1NKe—eX1 | (11 x0+0g,)—0x 11
(0,9) (m11 X0+ 0k,)+0x11 |1Ke—eX1| (11 X0 —0f,)—0x11
(6, —06) (11 x0—0k,)+0x11 [|1Xe+eX1 | (11x0—0k,)+0x11

+
TABLE 2. Elliptic Sp,(F) stable combinations attached to u = (311) € SOs

11. SL,(F)

11.1. Elliptic pairs for G = PGL,,(C). Consider the case G¥ = PGL,(C). Let Z denote
the centre of GL,(C). In the Weyl group of type A,_1 (W = S,), denote by w, the
permutation matrix corresponding to the n-cycle (1,2,3,...,n). For every n-th root z of 1,
let

A, (2) = diag(1,z,2%,...,2" "1 Z € PGL,(C).

Fix ¢, a primitive n-th root of 1 and set s, = A, ((,). Notice that w, and s, commute in
PGL,(C).

Lemma 11.1. Suppose I' = PGL,,(C). Then
YDa= || T (snuif).

ke (Z/nZ)x

In particular, there are o(n) T-orbits in Y(T)ey. The flip (s, h) — (h, s) induces the following
map on T-orbits in Y(T)en:

flip: ([(sn, @3)]) = [(s0,,")], k€ (Z/nZ)*.

Proof. Let T be the diagonal torus in I'. By Proposition[.9] the only possible elliptic pairs
are conjugate to (s,w) where w is elliptic and s is regular such that s € T%. If the group is
semisimple of type A,,_1, then the only elliptic elements of the Weyl group are the n-cycles.
We may assume that w = w,. It is easy to see that

T = {A,(2) | 2" = 1}.

Since s € T%" needs to be regular, it follows that the corresponding z must be a primitive
root of 1.

Now fix s = s,,. Every other A(¢’) with ¢’ a primitive n-th root is conjugate in T' to
sn. The centralizer is Zr(s) = (T, | k € Z/nZ) = T x Z/nZ. This means that 1!, is
conjugate to 1’ in Zr(s) if and only if i = j. On the other hand, W/ is elliptic if and only
it k € (Z/nZ)*, hence the claim follows.

For the claim about the Fourier transform, let € GL,,(C) be such that 2= i,z = s,
where = is the matrix corresponding to a basis of eigenvectors of w,. Then a calculation
shows that

z ts,r =, ! in PGL,(C).

From this:

flip([(sn, 1)) = [(wh, s0)] = [(wsha™ " sn)] = (s, 2 sn)] = [(sh, )]
Finally, let p be a permutation matrix such that p~tskp = s,, (this exists since k is coprime
to n). This has the effect p~11i,p = Wk, hence [(s%, 1 1)] = (50, W, %)].

O
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Now let u be a unipotent element in PGL,(C). Via the Jordan canonical form, u is
parameterized by a partition A of n, where we write A = (1,...,1,2,...,2,...,¢,...,0). As
—— —— ——

1 T2 Ty

it well known (see for example [CM| Theorem 6.1.3])

¢
i=1

where H) means H embedded diagonally into the product of i copies of H. In particular,
T, is connected. Let T, denote the diagonal torus in GL,., Z,. the center of GL,., T,. = T,./Z,.
and W, = S, the Weyl group. A maximal torus in I',, is T}, = Hle(Tm)iA /Z and the Weyl
group is Wy, = [Ti_; (W, ).
Let w = Hle(wi)g € Wy, w; € W, be given. We need T} to be finite. The morphism
¢
m: Ty — [[(T)a, (t:)i mod Z — (t; mod Z;)
i=1
is surjective and Wy-equivariant. Since (1,...,1, (T}*")4,1,...,1) C T for each 4, it follows
that w; is elliptic for PGL,,, hence, each w; is an r;-cycle.

Proposition 11.2. For u € PGL,(C), Y(T')enn # 0 if and only if the corresponding partition
A is a rectangular, i.e., A= (i,...,1) for some i. In this case,
——

I = GL,, () /Z = PGL,, (C),
s0 Y(T'y)en is as in Lemma[I1 1l

Proof. Let w € W, be elliptic as above. We pass to the Lie algebra t, = s(@(t,)% ). Since
tyi = C-1d,,, we see that

4
tzj = {(alldh 5 CLQIdT27 CLQIdT2, ceey aildri, SN ,aiIdTi, NN ) | Zzaz = 0}
ﬁ_/ i=1

The element w is elliptic if and only if ¢ = 0. From the condition Zle ia; = 0, we that
this can only happen if there exists a unique ¢ such that r; # 0. O

Corollary 11.3. The number of orbits of elliptic pairs for PGL, (C) is

Z |Fu\y(Fu)cll| =n.

u unipotent class

Proof. From Proposition[IT.2] the only unipotent classes that contribute are the rectangular

ones, which are in one-to-one correspondence with divisors d of n. For the unipotent class

u=(n/d,...,n/d), Lemma [Tl says that there are ¢(d) orbits of elliptic pairs. Hence the
———

d
total number is 3=, ,, ¢(d) = n.
(]

11.2. Elliptic unipotent representations of SL,,(F)). It is instructive to make explicit the
elliptic correspondence Conjecture Bl for G = SL,,(F). Let Ky = SL,(or) and let I C K
be an Iwahori subgroup. Let H(G,I) = {f € C°(G) | f(i1gi2) = f(g), for all i1,i2 € I} be
the Iwahori-Hecke algebra (under convolution with respect to a fixed Haar measure). The
algebra H(g, I) is naturally isomorphic to the affine Hecke algebra H = H(R, \/q,1), where
q is the order of the residual field of F' and R is the root datum for PGL,,(C).
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Every irreducible unipotent G-representation has nonzero fixed vectors under I, in other
words, Run(G) = R1(G), where R (G) is the category of smooth representations generated
by their I-fixed vectors. The functor

mr: Run(G) = R1(G) = H(G,I) —Mod, V VI,

is an equivalence of categories. The Langlands parameterization in this case can be read
off the Kazhdan-Lusztig classification of irreducible modules for H (G, I) extended to this
setting in [Rell:

Irry,SL,, (F) < It H(G, I) + PGL,(C)\{(z,¢) | x € PGL,(C), ¢ € /Alx} (11.2)
The exact functor m; induces an isomorphism
Extg (V, V') = Extyy g pn (V! V'), for all 4,
and therefore EPg(V, V') = EPy . n(V!, V') for all V,V' € Irr R;(G). Since EPg and
EPyq,r) are additive, they extend to pairings on the Grothendieck groups of finite-length

representations. Let R;(G)c be the C-span of Irr R;(G) and R;(G)c the quotient by the
radical of EPg. Thus:

Lemma 11.4. The equivalence of categories my gives an isomorphism mr: Rr(G)c —
R(H(G, I))c which is isometric with respect to EPg and EPya.n)-

The elliptic theory of affine Hecke algebras is well understood [OS], and we will review
the basic facts in Section In particular, via (@I0) and ([@4))), we get that

Ri(G)ec=RW)c= P RW.e, (11.3)
sEW\TY,

iso

where W = we, W, TV, Wy are as in Example[@.4l Recall that if n = dm, then we consider
Saxm = An(z), where z is a primitive d-th root of 1. In that case,

Zav (Saxm) = P(GL,, (C)?) x Z/dZ,

which has component group Agv (S4xm) = Z/dZ. The Lie algebra of the maximal (diagonal)
torus in Zgv (Saxm) s

tl\i/Xm:{zz (Ila-'wxn) | le:o}a

on which W,

Sdxm

acts in the standard way: break (x1,...,z,) into m-tuples

Y. = (T Dymt1, T—Dymt2, - Tim), 1 < i< d

4
Then the i-th S, acts by the natural permutation action on Y, whereas Z/dZ permutes
cyclically (gl, Y d). We consider the elliptic theory of W
this action.

on ty, . with respect to

dxm

Lemma 11.5. There are ¢(d) elliptic conjugacy classes of Wi, acting on t), . with
representatives ge = (wm, 1,1,...,1)¢, where & ranges over the elements of order d in Z/dZ,
and Wy, s a fired m-cycle in Sy,.

Proof. We first show that each such element is elliptic. Without loss of generality, suppose
that £ acts as the standard cycle (1,2,...,d) and w,, = (1,2,...,m). Then g¢-z = z implies
T1 = T(4—1)mt+1 = T(d—2)m+1 = -+ = Tmy1 Which then equals to z,, (because of the effect
of wy,), then with x4, = T(d—1)ym = " = T2m, which then equals x,, 1 etc. It follows that
all coordinates x; are the same and since the sum of the coordinates is 0, we get that there
are no nonzero fixed points.

Secondly, no two g¢’s are conjugate. This is clear because if £, ¢ are distinct in Z/dZ,
then z¢ and 2’¢’ are in different conjugacy classes for all z, 2" in S9.
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It remains to show that these are all the elliptic conjugacy classes. Let £ be an element
with @ = (01,...,04) € S and € € Z/dZ. 1f ¢ does not have order d, then there exists

points £ = (y,,---,Y,) € tix,, (here, as above, each y. is an m-tuple) fixed under the action
of £ such that not all y;’s are equal. This means in particular, that there exists j such that
Y, = (T(j—1)ym+1s--->Tjm) is arbitrary and fo(j_l)m_H z; # 0. But then every o; € S,

has a nonzero fixed point Y for example taking all of the entries of Y, to be equal, and

therefore z€ is not elliptic.
This means that necessarily £ has order d. We claim that the conjugacy classes of € are
in one-to-one correspondence with conjugacy classes of .S, via the correspondence

w e Sy, — (w,1,...,1) € 8¢ xZ/dL.

Without loss of generality, suppose £ acts by shifting the indices i — ¢ 4+ 1 mod d. We show

that every element z¢, x = (01, ...,04), is conjugate to an element of the form (w, 1,...,1)¢&.
This is equivalent to the existence of permutations z1,...,z4 € Sy, such that
o1 = zlwzgl, o9 = zzzgl, e, 0g—1 = zd_lz(;l, o4 = zdzfl

This can be solved easily, by taking z; = 1, then z4 = 04, 24-1 = 04-104,..., 29 =
0203 ...0q, W = 0102 ...0(.

A similar calculation shows that (w,1,...,1)¢ and (w',1,...,1)¢ are conjugate if and
only if w,w’ are conjugate in S,,. (If w’ = zwz~!, then (v, 1,...,1)¢ and (w, 1,...,1)¢ are
conjugate via (z,z,...,2).)

Finally, if element (w, 1,...,1)&, £ of order d, is elliptic then w is elliptic in S,,, otherwise
if y is a fixed point of w, (y,...,y) is a fixed point of (w,1,...,1)§. This concludes the
proof. (I

On the other hand, we have unipotent classes u in P(GL,,(C)?%) and we need to look at the
elliptic theory of Agv (saxmu) on the Lie algebra of the maximal torus in Zp gL, (¢)4xc, (4)-
Let u = ugxm be the unipotent element given by the principal Jordan normal form on each
of the GL,,-blocks. Then the reductive part of the centralizer is

Zev (saxmuaxm)™ ™ = P(Ze, ¢y X Z/dZ,

hence Agv (SaxmUdxm) = Z/dZ and this acts on the Cartan subalgebra

tv(Sdeude) = {(ledm, ey ZdIdm) eCc” | ZZZ = 0} .

In particular, R(As,,, u,,,,)c has dimension ¢(d) and can be identified with the class func-
tions on the elements of order d in Z/dZ. Thus, in the case of SL,(F), the elliptic corre-
spondence for unipotent representations takes the following very concrete form.

Proposition 11.6. Let G = SL,(F). The local Langlands correspondence for unipotent
representations induces an isometric isomorphism

LLCPun: P R(As,,,.) — Run(SLa(F)), ¢+ m(@asm, 6)
d|n

where Taxm = SaxmUdxm € PGL,(C) is as above and A, =7Z/dZ.

The connection with the elliptic pairs for G¥ = PGL,,(C) from Proposition [T.2]is:

@ C[Y(Tw)en) u @C | Y. ell Hdxm = @R Zdxm)

u€C(PGL, (C))un d|n d|n
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11.3. The elliptic Fourier transform for SL, (F). The results so far imply that we have
an equivalence

Run(SLa(F)c 2 RM)c = RW)c= P T\V(Twen.
u€C(PGL, (C))un

1%

The spaces involved are all n-dimensional and we describe the basis of Ry, (G)c given by
the virtual characters II(u, s, h).

First consider the two extremes. At one extreme, we have the regular unipotent class tyeg.
Then T'y,,, = {1} and 7(ureg, 1,1) = St. At the other, end, v = 1, I'y = PGL,(C), and there
are p(n) orbits of elliptic pairs (s,,wr), k € (Z/nZ)*, as in Lemma [[TIl The component
group is A, = (w,) 2 Z/nZ. Let 7(s,) denote the tempered unramified principal series of
G with Satake parameter s,, € W\T". Since Wy, = A;, = Z/nZ, as it is well known via
the theory of the (analytic) R-groups, there is a decomposition

7T(1, Sn) = @ 77(175717¢)7

$EA,,

where each 7(s,,®) is an irreducible tempered G-representation. Identifying m with
Z/nZ (via the primitive n-th root ¢, of 1), we get

(1, sn,08) = > Fr(lsn ), ke (Z/n2), (11.4)
LEZ /T

where ¢¢((,) = ¢¢. Moreover, as an H-module, 7(1,s,,d.) is the (unique) irreducible
tempered H-module with central character W - s, such that

oo(m(1, 8n, 00)") = Indz;‘:z)ix(qﬁg ® 8p).

Now, more generally, by Proposition IT.2 Y(T'y)en # 0 if and only if ugx.,, is labelled

by a rectangular partition (m,...,m) of n. In this case I'y, = PGL4(C). Recall sgxm =
d
(L., Cay ey Gy e ey 3_1, el 3_1) and Tgxm = SdxmUdxm- Consider the parabolically
—— ——— N ———
m m m

induced tempered G-representation

T (Uasm; Saxm) = Idp 7 (St @ C1) B (St ® Ce,) -+ B (St @ Cpan)),

Paxm
where P;y., is the block-upper-triangular parabolic subgroup with Levi subgroup Mgxm =
S(GL,,(F)%), St,, is the Steinberg representation of GL,,(F), and C, is the unramified
character of GL,,(F) corresponding to the semisimple element zId,, in the dual complex
group GL,,(C). The R-group in this case is Z/dZ which coincides with A . We have a
decomposition into irreducible tempered G-representations:

Ldxm

T(Uaxm, Saxm) = @D T(Udxm, Saxm, ).
pEA

Tdxm

Taking I-fixed vectors and the deformation og, we have

UO(Wde, Sdxm ¢£)1) = Indlé:lzxx

dxm XX

(Sgnde¢l ® Sde)v

where recall that W,
Define

H(udxmu Sdxm ws><m) = Z Cﬁk 7T(Ud><m, Sdxm (bf)a ke (Z/dZ)X . (115)
LeZ/dZ

=S4 x Z/dZ and sgn,,,, is the sign character of S¢,.

The elliptic Fourier transform in this case is

FTY (T (wasms Saxm, Whsem)) = M(Waxms Saxm, Wy, ), k€ (Z/dZ)*. (11.6)
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The maximal compact open subgroups of SL,, (F') are maximal parahoric subgroups K;, one
for each vertex ¢ of the affine Dynkin diagram. With this notation, Ky = SL,,(0F). Moreover,
Inn K; = {K;}. All K; are isomorphic to Ky (conjugate in GL,(F)), hence for all i, the
nonabelian Fourier transform of K is the identity. Let W; = S,, denote the finite parahoric
subgroup of W corresponding to Kj;, so that W = W. The isomorphism W; = W is given
by the map s; = S(j_i) mod n- By Mackey induction /restriction

Ind%‘:jf (880 xmPe ® Saxm)|w; = Indmi/sdx )i (S804 mPe @ Saxm), (11.7)

mxX

where (W, )i = (Ws,,,. X X) N W;. Let v = €1 — €, be the highest root of type A,,_1, in
the standard coordinates, so that sg = s,t,, denoting by t, € X C W* the corresponding

translation. Then one can see that W, >~ (W, ); is given by sending

Sdxm Sdxm
S if j £ .
sj 37 ]7& 1<j<n.
Site;—e;pq, Af J =1,

Lemma 11.7. For every 0 <i <n,
Wi ~ S,
Id(yy, ) (580 m®t © sdxm) = Indiy  (s80gxmbrr 2 ))-

Proof. In light of the observation before the statement of the Lemma, we only need to trace
how the inducing character changes on the generator corresponding to i. Denote by (S%,);
the image of S¢, inside (W, )i, and similarly for (Z/dZ);. If s; is a generator of (S%,);,
equivalently k # 0, then the value of the character sgx.m, on te,—c,,, is 1. On the other hand,
if s; is not a generator of (S% );, then there is also no change. This means that the inducing
character on the (S); is still sgn,.,,,.

The generator € of Z/dZ is, in cycle notation, a product of the disjoint cycles (I, m—+1, 2m—+
l,....,(d —1)m +1), where [ ranges from 0 to m — 1 (by I = 0, we understand the cycle
(m,2m,...,dm)). Then the simple reflection ¢ contributes to the cycle I for i = jm + I,
j = |i]. In (Z/dZ);, we then get a 0, ,, which we need to move to the end of the
product of cycles, and we get that the image (£); in (Z/dZ); is (§)i = &te,—e(q_1ymsy- Lhe
character sqxm acts on te,—c, .., by Cé, which means that ¢gsgx.m acts on (£); by Csﬂ,
which proves the claim. O

Proposition 11.8. Conjecture holds true for G = SL,(F). More precisely, for each
0<i<n,
v -k _ 2k -k
Iesk; OFTell,un(H(U’de7 Sdxm dem)) - Cd FTCPt;UH OTresg; (H(U’dX"H Sdxm, wdxm))'

Proof. To verify Conjecture BB given (L6, it is sufficient to compare the restrictions
to W; of oo (resk, M(twaxm, Sdxm, u')sxm)l)) and oo (resk, ((Uaxm, Sdxm, u';;fm)l) as virtual

Wi-characters. For this, we apply (I1.7) and Lemma 1.7 and get with j = [ -
Uo(reSKi (H(udev Sdxm; wljxm)l)) = Z Csllnd%;dxm (Sgnde(W-i-j)
tez/d

—ki -
=Y Indyy (sgngumde).
14

On the other hand,

- ~ —kl7, 1.
ao(res e, (I (Uasms Saxms W) ) = D> ¢ klIndWdem(sgndeqSHj)
=
- i, (et = 3 clndy, (s
= =

kj -
ST S (o)
4
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where we have used that
Indadem (Sngde)g) = Indglzdxm (sgndxmd)*f)v

because ¢y is the Z/dZ-representation contragredient to ¢,, which implies that the two sides
are contragredient to each other, but all irreducible S,,-representations are self-contragredient.

O
12. PGL,(F)
Now suppose G = PGL,,. The dual group GV is SL, (C). Each unipotent element u € GV
corresponds to a partition A, of n, and if Ay, = A= (1,...,1,2,...,2,...,¢,...,£), then
—_—— —— ——
1 T2 Te

4 14
T, ~ {(xl, T € HGL”((C) | Hdet(xi)i = 1} : (12.1)

Lemma 12.1. The group I'y, contains elliptic pairs if and only if u is reqular unipotent. In
this case Y(T'y) = Y(Tu)en = {(s,h) | s,h € Zs_,(c)}-

Proof. The proof is very similar to that of Proposition[I1.2l Note that if u is not rectangular,
then I',, has infinite center: for example, with notation as in (I2.1]), given t € C*, the element
(t1d,,, tId,,, ..., tId,,_,,t"~%1d,,) € Zr,. So if I, contains an elliptic pair, then A, is of the
form [k, k, ..., k] for some k dividing n, and I';, ~ {z € GLx (C) | det(z)" = 1}. Explicitly,
we can think of I';, as a split extension

1—=SLa(C) =Ty = pr —1

where the first inclusion is the natural one, and the map to pz is given by the determinant.
Now, given semisimple elements s, h € I';, such that sh = hs, there exists g € SLx (C) such
that gsg~', ghg™! are both diagonal in GL= (C). So a maximal torus of SLx (C) centralizes
both s and h, and if (s, h) is an elliptic pair, we must have k = n. O

We can now easily prove Conjecture in this case.

Theorem 12.2. Conjecture holds when G = PGL,,. More precisely, when G = PGL,,,
we have
T'€Scpt,un OFTZH = FTcpt,un O I'€Scpt,un -

Proof. Using Lemma [IZ.1] the proof of the theorem reduces to Proposition 8.7 O

To illustrate the theorem, we explicitly describe the case when G = PGL;. Note that
even this low-rank example shows that certain choices were necessary in our set up: to
relate FTY), to a finite Fourier transform for the non-split inner twist of G, first, we must
consider maximal compact subgroups instead of just parahorics (otherwise the restrictions
of TI(u,1,1) and M(u,—1,1) would be the same, though FTY), fixes the first but not the
second). Second, FTcpt wn must mix subspaces corresponding to distinct inner twists to give
a well-defined linear map.

Example 12.3. Now let G = PGL;. Then G has a unique non-split inner twist G’, which
we can describe explicitly as follows: Let

a wb
D:{<E a>|a,b,c,d€F(2)},

where F{g) is the degree-2 unramified extension of F'. Then D is a 4-dimensional division
algebra over F', and we can take G’ := D* /F*.

Let xo be the unramified character of F'* given by @ +— —1. Then the nontrivial weakly
unramified character of G (resp. G’) is given by x := xo o det (resp. X’ := xo o det).
Let St denote the Steinberg representation of G (and similarly for Stgr, which is the
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trivial representation of G’), and let u € SL3(C) be regular unipotent. Then the virtual
representations corresponding to our 4 elliptic pairs are

M(u,1,1) = Stg+ St
M(u,1,—-1) = Stg — Ster
O(u,—1,1) = (Ste¢® x)+ (Ster @ X')
M(u,—1,-1) = (St ®x)— (Ster @ x’).

The involution FTY), switches IT(u, 1, —1) and II(u, —1,1), and fixes the other two sums.
Let I be the Iwahori subgroup of G given by

a wb
I_{<c d)|a,d€o§,b,c€0F}.

With notation as in Section [0l we have Qg ~ Z/27. The set Smax(G) contains two elements
(A,0): one corresponding to A = Qg, and one corresponding to A trivial. Thus the
group G has two conjugacy classes of maximal compact open subgroups: the maximal
parahoric subgroup Ky := PGLa(0op) (which corresponds to A trivial) and K7 := Ng(I)
(which corresponds to A = Q). Note that K contains I with index 2: it is generated by T
and 0 := (9% ). The reductive quotients are given by Ko ~ PGLy(F,) and K| ~ F xZ/2Z.
Note that y is trivial on Ky and on I, but x(0) = —1, so x induces the sign character on
the component group of K.

Note that, in the notation of Sectionfl we have G’ = G, where x is the nontrivial element
of Q¢. Thus G’ has a unique conjugacy class of maximal compact subgroups, corresponding
to the element (A, Q) of Spmax(G) with A = Qg. Explicitly, the only parahoric subgroup of
G is I' := 0},/0, where op is the ring of integers of D. The normalizer K| = N¢/(I') is
maximal compact, generated by I’ and o (defined as above), which again has order 2 in G.
The reductive quotient K1 ~ (F(IXQ JF) % Z/2Z. Note that as above X' is trivial on I" but
takes the value —1 on o, so x’ factors through the sign character of the component group
of le

The space C(G)cpt,un is given by

C(G)Cpt,un = Run(fo) @ Run(fl) S Run(fll)u
and the map rescpt,un is defined on the virtual representations above by
M(u,1,1) +— Stg, + Sty + St
H(U,l,—l) — StK0+St]_St]/
IM(u,—1,1) +— Stg, + (St; ® sgn) + (St; @ sgn)
IM(u,—1,—-1) — Stg, + (St; ® sign) — (St ® sgn),
where, as in the proof of Proposition B.7 Stx denotes the Steinberg representation of K,
and sgn denotes the sign representation of the relevant component group.
If (A4,0) € Shax(G) with A trivial, then resp(II(u, s, h)) = Stg, for all elliptic pairs
(s,h). In this case, FTcptun restricts to the identity map on Ry, (Ko).
Now suppose (4,O0) € Smax(G) with A = Qg. Then resp is given by projection onto
Run(K1) ® Run (f/l) In the notation of Section B4l and with U the (one-element) family

consisting of the Steinberg representation of K 1, we have fﬁ = A, so M(fﬁ) consists of four
elements: (1,triv), (1,sign), (z, triv), (z,sgn) (where, as above, x is the nontrivial element of

Q¢). These correspond to following elements of Ryn(K1) ® Run (E;)
(1,triv) <— Sty
) +— Str®sgn
(x,triv) «+— Sty
) +— Stp ®sgn.

(1,sgn

(z,sgn
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With notation as in (5.I3), we have

reso (II(u, 1,1)) triv, triv)
reso (I(u, 1 —1))
reso (I ( 1,1))
reso (I(u, -1))

IT; (
= IIz(triv,sgn)
1T (sgn, triv)

= IIz(sgn,sgn),

where U is the family indexed by I‘Z‘j. Thus the proof of Proposition B, and Conjecture
B3 may be easily verified.
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