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Generating 3D Facial Expressions with
Recurrent Neural Networks

Hyewon Seo and Guoliang Luo

Abstract. Learning based methods have proved effective at high-quality image syn-
thesis tasks, such as content-preserving image rendering with different style, and
the generation of new images depicting learned objects. Some of the properties that
make neural networks suitable for such tasks, for example robustness to the input’s
low-level feature, and the ability to retrieve contextual information, are also desirable
in 3D shape domain. During last decades, data-driven methods have shown success-
ful results in 3D shape modeling tasks, such as human face and body shape synthesis.
Subtle, abstract properties on the geometry that are instantly detected by our eyes
but are nontrivial to synthesize, have successfully been achieved by tuning a shape
model built from example shapes. Recent successful learning techniques, e.g. deep
neural networks, also exploit this shape model, since the regular grid assumption
with 2D images does not have a straightforward equivalent in the common shape
representation in 3D, thus do not easily generalize to 3D shapes.

Here, we concentrate on the 3D facial expression generation task, an impor-
tant problem in computer graphics and other application domains, where existing
data-driven approaches mostly rely on direct shape capture or shape transfer. At the
core of our approach is a recurrent neural network with a landmark-based shape
representation. The network is trained to estimate a sequence of pose change, thus
generate a specific facial expression, by using a set of motion-captured facial ex-
pression sequences. Our technique promises to significantly improve the quality of
generated expressions while extending the potential applicability of neural networks
to sequence of 3D shapes.
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1 Introduction

Facial shape modeling is a long-sought subject in computer graphics and computer
animation, with interesting applications in many areas. Traditionally, facial shape
has been sculpted or interactively designed by CG artists by using CG softwares
that are equipped with geometric shape interpolation (Kalra et al., 1992) or physics-
based simulation of muscle actions (Terzopoulos and Waters, 1990). During 90’s
computational methods started to appear that aim at automatic reconstruction of 3D
shape models from 2D photo images (Lee et al., 2000) or 3D range scans (Lee et al.,
1995). Often, only the static shape can be modeled realistically, and the animation
of the reconstructed models has been handled as a separate process with devoted
techniques for motion capture. Recent evolutions in the technology for capturing
moving shapes have changed this paradigm, with multi-view acquisition systems
that allow the simultaneous capture of shapes and motions (DeCarlo and Metaxas,
1996; Pighin et al., 1999). Similarly, recent 4D (3D+time) laser-scanners now enable
the capture of 3D human face geometry under motion (Beeler et al., 2011; Cosker
et al., 2011). These techniques can be assisted by deformation transfer or animation
retargeting (Noh and Fidaleo, 2000; Blanz et al., 2003; Vlasic et al., 2006), which
helps reuse the captured animation on new facial models. This line or research has
evolved to data-driven methods that make use of a set of 3D shape datasets and the
priors collected from the data shapes. A common strategy employed by data-driven
methods is to learn the model by performing a dimension reduction, often PCA
(Principal Component Analysis), on a dataset of face scans. It goes with several
different names such as subspace, or morphable model (MM) or statistical model,
all of which refer to a same technique that captures shape and texture variations in
observed human faces with a set of basis. Based on the linear model that captures
shape and texture variations in observed human faces with a set of basis, they offer
powerful modelling functionalities: A complete 3D model can be reconstructed
by using only a single 2D photo as input, and generation of new face models or
modifying existing ones can be performed by adjusting a few parameters whose
mapping to a full facial model has been found from the database. We summarize
MM in Section 2.1, and review other shape representations considerable for facial
modeling in Section 2.2.

These days, recent deep learning techniques start to replace linear function ap-
proximators with deep neural networks (DNN) in facial modeling tasks, to achieve
improved performance. Most of these methods, on the other hand, have focused on
the optimal 2D to 3D shape estimation, i.e. generation of a 3D shape from a 2D
input photo showing a face of arbitrary pose. Typically, the neural network learns
and estimates the Basel Face model (BFM) parameters (Paysan et al., 2009) of the
3D face model from 2D photos (Garrido et al., 2016; Jiang et al., 2018). Compared
to linear models like BFM, the DNN uses larger datasets spanning a large variety
of not only shape and texture, but also pose or expression so that the network can
learn the corresponding parameters of the 3D shape from an arbitrary, ‘in-the-wild’
facial image. More importantly, it can learn nonlinear model, the variation of facial
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shapes due to the facial identity, and due to the expression or pose change of a face.
In Section 2.3, we review state-of-the-art facial modelers adopting DNNs.

One observation is that through all these works, the expression has been modeled
as separate, independent entity from the shape identity. The expression-driven facial
deformation is learned as a separate phenomenon from their shape identity-driven
variation, and then the twomodalities are combinedwhen a new shape is synthesized.
Similarly, from an observable shape that often comes with the shape identity and
the expression mixed together, a modeler decouples the two entities. Conveniently,
the extracted expression component from one person can be easily combined with
or transferred to another facial shape, to depict the same semantic expression on the
new shape identity. This model is very powerful yet simple, but it cannot capture
the potential correlation between two modalities. For example, the shape change
elicited by a smiling expression on a young Asian face will be the same as on an
old, Caucasian face. In Section 2.3, we address a more challenging alternative, i.e.
modelling the subtle correlation between the facial expression sequence and the
shape identity.

2 Facial Shape Modeling

2.1 Facial Shape Space

In their 3D morphable model work that are also known as the Basel Face Model
(BFM), Blanz and Vetter (1999) have constructed a subspace for facial identity
variation to reduce the dense facial geometry (several thousand vertices per face).
Using a common polygon mesh representation, each vertex’s position and color vary
between example faces, but its semantic identity remains the same – A vertex located
at the tip of the nose in one face should be located at the tip of the nose in all faces. To
obtain a consistent representation across all examples, they use a modified version
of 2D optical flow in the cylindrical parameterization of head scans. Consequently,
a face is represented by a shape-vector S = (x1, y1, z1, x2 . . . yn, zn)T ∈ R3n and a
texture-vector T = (r1, g1, b1, r2 . . . gn, bn)T ∈ R3n, containing the coordinates and
the color values of its n vertices, respectively. From the m exemplar faces that are in
correspondence, PCA is applied to m shape vectors and m texture vectors. The facial
shape is then described in the space of a reduced dimension, as a vector of weights α
to the eigenshapes si i.e. the eigenvectors of the covariance matrix of Si . The facial
color is similarly described as a vector of weights β to the eigencolors ti:

S(ᾱ) = S̄ +
∑
i=1

αi · si,T(β̄) = T̄ +
∑
i=1

βi · ti,

where S̄ and T̄ denotes the mean shape and texture, respectively. In this facial
subspace, arbitrary new faces can be generated by varying these parameters (vectors
of weights) that control the shape and texture. Model fitting to a given image is
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formulated as an optimization by minimizing the image-space discrepancy between
the input 2D image and the rendered image of the 3D face synthesized with the
current parameter set. Thanks to the learnt linear model, the solution space becomes
compact and constrained, thus solvable by common optimization techniques.

High-level facial attributes (femaleness, concave or hooked nose, thickness of
eyebrow, etc.) have been shown to be manipulated by forming shape and texture vec-
tors ∆S and ∆T that, when added to or subtracted from a face, will change a specific
attribute while keeping all other attributes as constant as possible. Such attribute
vectors are computed as weighted sums of manually-labeled faces. Expression is
handled as one of facial attributes. Formally,

∆S =
∑
i=1

µi(Si − S̄),∆T =
∑
i=1

µi(Ti − T̄), (1)

where µi is the attribute value labeled to (Si,Ti), and S̄, T̄ are mean shape and texture
vectors.

2.2 Other Shape Representations

The 3D shape representationmethods can be categorized into the global and the local
feature based. The global shape descriptors, such as the shape histogram (Ankerst
et al., 1999) and histogram of gradient (Scherer et al., 2010), are based on the
global statistical analysis to represent an entire object. On the contrary, local feature
descriptors detect local distinctive features, which aremore precise and robust against
the occlusions. Below we summarize a number of local shape representations that
have been adopted for the 3D face data.

Key-points: The representative points for 3D faces can be either the distinctive
points based on the quantified measurement of the tension, normal, curvature of each
point, or the anatomical landmarks on/around eyes, nose, mouth, etc. For example,
shape diameter function is the averaged radial segment length at each point (Shapira
et al., 2008); Heat Kernel Signature measures the energy of heat distribution which
reflects the local surface shape at each point (Sun et al., 2009); Spin image encodes
each point with respect to the normal vector (Johnson, 1997); shape index (histogram
of surface normal) can be used to detect the landmarks at the eye corners and the
nose tip (Canavan et al., 2015). The key-point extraction process, however, can be
computationally heavy and sensitive to occlusions.

Feature-curve: Based on the precise nose tip point detection, typical feature
curves of 3D face include the iso-depth contour, the iso-geodesic curve and the
radial curves. The quality of these curves highly relies on the correctness of the nose
tip detection, and occlusions may cause the incompleteness of the curves (Samad
and Iftekharuddin, 2016).

Local surface based: The local surface-based feature descriptors are normally
based on the local statistics of the regional geometrical properties such as normal,
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geodesic distance, curvatures, etc (Li and Zhang, 2007). Compared to the key-point
based methods, such methods are more robust for representing facial expressions.

We note that most of the existing feature representations for 3D faces are for
facial recognition, but they may be not directly applicable for 3D face reconstruction
or synthetics. For example, given a 3D face model of point clouds, we can easily
compute the per-vertex curvatures, which can be applied to visualize the 3D face and
recognize the facial expression. However, the reverse process is not quite possible,
i.e. one cannot reconstruct the 3D face by using the computed curvatures.

2.3 Modern Facial Modelers using DNN

Recently, the revolutionary development of deep learning started to replace linear
function approximators with deep neural networks to achieve drastically improved
performance.Most of these methods, on the other hand, are devoted to the generation
of a 3D shape from a 2D input photo showing a face of arbitrary pose. Typically,
the neural network learns and estimates the BFM parameters of the 3D face model
from 2D photos (Garrido et al., 2016; Jiang et al., 2018). Compared to linear models
like BFM (Section 2.1), the DNN uses larger datasets spanning a large variety of
not only shape and texture, but also pose or expression so that the network can learn
the corresponding parameters of the 3D shape from an arbitrary, ‘in-the-wild’ facial
image. More importantly, it can learn nonlinear model, the variation of facial shapes
due to the facial identity, and to the expression or pose change of a face.

E2FAR (End to end 3D Face Reconstruction with DNN) by Dou et al. (2017)
shows how a trained DNN takes a 2D facial image as input and predicts the optimal
identity and expression parameters to minimize the error in the 3D space – the
difference between the reconstructed 3D face and the ground truth (the shape that
has been used to produce the 2D input image) (Dou et al., 2017). They make use
of the BFM without any encoder that extracts shape parameters from input images
and concentrate on learning the mapping function f : I → αd, αe, that maps the 2D
image I to the BFM shape parameters. With only shapes considered, and the network
learns (1) identity parameters αd , and (2) expression parameters αe.

MOFA (MOdel-based deep convolutional Facial Autoencoder) (Tewari et al.,
2017) shows a good example of commonly adopted NN architecture, i.e. the com-
bination of a CNN encoder and model-based decoder. The CNN encoder learns to
extract semantically meaningful parameters from a single image. Similarly to Dou
et al. (2017), they use the facial subspace based on the Basel Facial Model, and
once again, pose, shape, expression, texture, illumination are parametrized indepen-
dently. Given a scene description in the form of a semantic code vector, the decoder
generates a synthetic image of the corresponding face. The loss function is defined
as a photometric error between the synthesized image and the input image. The
error combines three error terms, landmark error; photometric error, and statistical
regularization error, as is often the case in similar optimization setting.
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Nonlinear 3D face morphable model (Nonlinear 3DMM) operates in a similar
fashion, with the decoder-encoder architecture (Tran and Liu, 2018). They train their
own encoder to extract feature descriptors on the given scene, and use texture image
instead of per-vertex color for the sake of better preservation of spatial relation
among pixels. Given a set of 2D facial images, an encoder is learned to estimate
the shape, texture and projection parameters, and two DNs (decoders) to decode the
estimated parameters to a 3D shape and texture, respectively, with an objective that
the rendered image with the encoded parameters can approximate the original image
well.

Among a few works that adopt other representation than BFM is that of Jackson
et al. (2017). They convert the 3D face surface into binary 3D voxels, i.e, the voxels
crossed by face surface with 1s, otherwise 0s. The conversion of the un-structured
3D face model into the structured volume form allows a direct adaptation of the
advanced DNNs to 3D face data. In specific, they use DNNs to encode the projection
process from 3D voxels to 2D images (Yang et al., 2017; Jackson et al., 2017).
However, due to the computational costs, the size of the volume is kept small.

3 Facial Animation Modeling

Facial animation modeling has evolved along a similar path as the facial shape
modeling, i.e. from interactive key-framing to capture-based reconstruction. Thanks
to recent evolutions in the technology for capturing moving shapes, it is now possible
to acquire full 4D shapes of human faces including geometry, motion and appearance
with advanced multi-view acquisition systems. However, most current techniques
focus on modeling the shape instances in a frame-by-frame manner, and do not
model the temporal aspect of the shape evolution.

Flame (Faces Learned with Articulated Model and Expressions) presents an ex-
tension of BFM to 4D facial model (Li et al., 2017). Given a 4D scans, displacements
from a 3D template shape aremodeled for each frame as a function of three decoupled
parameters describing the shape identity, head pose, and expression. The temporal
evolution is not modeled, i.e. the facial parameters have been found for each frame.
Formally, the mapping function is defined as

M(β, θ, ψ) : R |β |× |θ |× |ψ | → R3N,

where β, θ, ψ are the shape identity, head pose, and expression parameters, and N
is the number of vertices of the template shape. The facial parameters are found for
each frame, i.e. the temporal evolution of the found parameters is not modeled

In their work on the facial reenactment, Kim et al. (2018) also reconstruct a
sequence of 3D facial models from a video input, by fitting the BFM to each
frame: The identity parameter set is estimated in the first frame and is kept constant
throughout the frames, and all other parameters are estimated every frame. Again,
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the reconstruction as well as estimation is limited to the spatial domain of the facial
shape.

In facial animation transfer (Blanz et al., 2003; Vlasic et al., 2006; Thies et al.,
2015), source and target sequences of facial poses are analyzed to separate the
identity, pose, and expression components in a frame-by-frame manner. Typically,
the expression component is extracted from the source video and transferred to
replace that of the target video. However, the transferred, expression-driven shape
change is a direct function of the source face and its expression, neglecting the shape
identity of the target face.

4 Learning-based Generation of 3D Facial Expression Sequences

We build a facial expression estimator model by training a neural network that
learns to generate facial expression sequences. Unlike existing methods that treat the
expression data as a set of shape instances, we aim atmodeling the temporal evolution
of the facial shape. RNN seemed appropriate as it can learn temporal relation between
consecutive frames. Initially, we considered GAN (Generative Adversarial Network)
(Goodfellow et al., 2014) as well, which has shown a superior performance on
generating high quality images based on the raw 2D image input (Goodfellow et al.,
2014; Brock et al., 2019). However, this would require the additional preprocessing
of time-normalization of the facial expression dataset, and its learning capability
on temporal dependency may not be as good as RNN. For these reasons, we have
adopted RNNs for our work.

4.1 RNN on Time Series Data

Our work builds on the recent success of deep neural networks in sequence data
analysis. In particular, RNNs achieved promising results in processing and mod-
eling sequential, time-series data, such as text-to-text translation (Sutskever et al.,
2014; Cho et al., 2014), scene description (Vinyals et al., 2015), and music com-
position (Boulanger-Lewandowski et al., 2012). Unlike many feedforward neural
networks, an RNN maintains hidden internal states that is not only dependent on
the current input, but also relies on the previous hidden state and hence the previ-
ous inputs. It takes inputs, updates its internal state through recurrent connection
that spans adjacent time steps, and generates outputs at every time-step iteratively.
Therefore, the history of inputs affects the generation of outputs. Formally, the fixed
length hidden state h(t) is updated with the current input x(t) by using a nonlinear
function f :

h(t + 1) = f (h(t), x(t)). (2)

RNN training is similar to feedforward network straining in the sense that network
parameters are updated incrementally via backpropagation. Since RNNs include
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recurrent edges that span adjacent time steps the same parameters are shared across
all time steps, gradients at the current time step would affect gradient computation at
the previous time steps. This process is called back propatation through time (BPTT).
In our work, we build our RNNs using LSTM units, which preserves gradients well
while BPTT/layers and thus can deal well with long-term dependencies.

4.2 Learning to generate 3D Facial animations

Overview. Here we leverage the well-known capability of a recurrent network to
capture temporal information, in order to model the facial expression sequence
modeling. We set our goal to generate new sequences to animate an arbitrary facial
shape by using a trained network. We could have employed generative adversarial
networks (GANs) instead (Goodfellow et al., 2014; Brock et al., 2018), but it would
be computationally more expensive and less reliable for ensuring temporal fluidity.
Indeed, an RNN is not only capable of learning temporal relation between frames
but also more suitable for handling sequential data with arbitrary lengths. The main
inspiration of our work comes from a recent advances neural image caption (NIC),
whichmakes use of a deep CNN that encodes a given image into a fixed-length vector
representation, and uses the vector as the initial hidden state of a decoder RNN that
generates the target caption sentences. Here, we propose to directly use the landmark
locations of a neutral face as the initial input to a decoder RNN, as the representation
of the facial geometry (landmark coordinate vectors) lies in the same dimensional
space as the sequence data (landmark displacement vectors). Expression-specific
prior is assumed, that is, each network is devoted to one specific facial expression
elicited by a basic emotion.

Fig. 1 83 landmarks
have been defined in
our facial mocap data
(BU-3DFE) (Yin
et al., 2006).

Data preparation. We have used the facial mocap data from
Binghamton University (BU-3DFE) Yin et al. (2006), consist-
ing of 606 facial expression sequences captured from 101 people
(58 females and 43 male subjects). For each subject, six univer-
sal facial expressions (anger, disgust, fear, happiness, sadness
and surprise) are elicited, whose shape and texture have been
recorded at a video frame rate of 25 fps. Also provided is a
sequence of 3D coordinates of 83 landmarks located on the face
(Figure 1). With a number of exceptions, most sequences begin
and end with neutral head/face expression poses.

We use the landmark displacements (i.e. offset coordinates
from the previous frame), rather than absolute coordinates.
Thus, from the original sequence data containing the ordered
list of landmark coordinates, we generate landmark displace-
ment data. Initially we tried to decouple the head motion from
the expression-driven deformation and removed the rigidmotion
in the landmark displacement data. However, we found from some early experiments
that the head motion encoded in the landmark displacements actually increases the
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expressivity of generated expressions. This is especially noticeable in ‘surprise’ ex-
pression, where many subjects lean their heads slightly backward and so does the
generated expression when the head motion had been included in the training data.
Thus, we use the original landmark displacement data including the head motion.
Thus, from the original data containing the ordered list of landmark positions, we
generate landmark coordinate displacements including the head motion.

Each sequence contains a varying number of frames. In the ‘happy’ dataset, for
example, the sequence length varies from 69 to 115 frames. We uniformized the
length of the sequence by choosing a constant as the number of frames for all se-
quences. A sequence data with longer frames has been be cut at the end, and the one
with shorter frames has been zero-padded until the end.

Data representation. Since we aim to model the sequence as a whole instead
of modeling each frame individually, we must employ a light-weight representation
for the facial shape and avoid using vectors/matrices of large dimensionality. In our
modeler, we use the landmark-based shape representation in order to maintain a
moderate data dimension. A facial expression is then represented as a sequence of
landmark displacement vectors applied to each landmark point on a rest pose.

Formally, our training data can be describedwith the input and output pairs (X,Y).
Let X be the input observations and Xi ∈ X a sample from our observation, where
i ∈ 1,..n; n is the number of subjects in the dataset.

Xi ∈ M f×3m contains the expression sequence from the i-th subject, where f +1
is the number of frames, and m is the number of landmarks, respectively. It is an
ordered set of landmark displacement vectors, as written by

Xi =
[
xi1 xi2 . . . x

i
t

]T
,

where xij =
[
dxi1, j, dy

i
1, j, dzi1, j, . . . , dzim, j

]
is a row vector of size 3m denoting

the landmark displacements between (t+1)-th frame t-th frame (t = 1, . . . f ). In our
data, Xi has been recorded with 83 landmarks and its sequence length f has been
normalized to 135, so it is 135 × 249 (83 times 3) dimensional. We have tried to
apply PCA to reduce the data dimension to dozens but the gain in computation time
had been insignificant.

RNN to learn the facial expression. Given a 3D face mesh (in a rest pose) whose
landmark locations have been identified, a neural network is trained to predict the
sequence of landmark displacements, whichwill animate the givenmeshwhen added
to the given mesh sequentially. Formally, the variable number of facial expression
poses (as represented by landmark displacement vectors) previously seen by the
network are expressed by a fixed length hidden state ht , which is updated with the
current input xt by using a nonlinear function, i.e., ht+1 = h(ht, xt ). The output yt
is evaluated as a linear function of the hidden state, i.e., yt = g(ht ), which can be
implemented as a fully connected (FC) layer.

Figure 2 illustrates the predictor network architecture used in this paper: An
LSTM (long short term memory) network consisting of multiple LSTM layers with
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a fully-connected (FC) decoder unit. LSTM is a variant of RNN which preserves
gradients well while backpropagating through time/layers and thus can deal with
long-term dependencies. The input to the network is the current displacement vector
xt =

(
dxt1, dy

t
1, . . . , dztm

)
encoding x, y, and z offsets of each landmark. The input

vector xt is passed toweighted connections to a stack of recurrently connected hidden
layers to compute first the hidden vector sequences hn =

(
hn

1 , . . . , h
n
T

)
, n = 1 . . . 3

and then the output vector yt . yt is the predicted landmark displacement vector in the
next time step, xt+1, and is used to predict the next landmark displacement by being
fed as input to the network in the next time step. During the training of network, we
directly minimize the sum of squared error over the predicted displacements and the
ones from the observation data. Thus we define our loss function that measures the
mean squared error over the displacements.

Ldisp =
∑
‖yt − xt+1‖

2

where yt is the predicted output at time t, and xt+1 is the corresponding ground truth
at time t+1.

Fig. 2 Deep recurrent neural network architecture of our facial animation synthesizer. The rounded
rectangles represent LSTM cells, each containing 128 neurons, and the rectangles fully connected
layer. The solid lines represent weighted connections and the dashed lines predictions. The predicted
landmark displacements yt are fed as input to RBF nets, which computes a deformation field.
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In our experiments, we trained each expression network with 3 hidden layers with
128 hidden units and a dense output layer, by using Tensorflow (Tensorflow) deep
learning library (Abadi et al., 2015). The hidden layers used the tanh nonlinear func-
tion, although other activation functions could have been used. Figure 3 illustrates
the blocks of training data. The input data block {Xi} assembles the sequences of
landmark displacement vectors from all subjects and is n× f ×3m dimensional. The
first element X1 of every expression sequence is set to a zero vector, signaling the
start of the sequence. An output sequence Yi has been generated by left-shifting Xi

by one, i.e. yit = xi
t+1 (t=1,... f − 1), and by filling the last frame with a zero-vector,

yi
f
= [0, ...0]T .

Fig. 3 Training data for the network. An input data block, {Xi}, is the compilation of individual
expression sequences Xi of i-th subject, where each row is a concatenation of displacement vectors
(dx, dy, and dz). The output sequence, {Yi}, has been generated by left-shifting the Xi tensor by
one.The initial frames of Xi as well as the last frames of Yi are set to zero-vectors.

The model parameters were tuned by using Adam optimization method, with the
learning rate α = 0.001 and default values for the other parameters: β1 = 0.9, β2 =
0.999 and ε = e−8. Although deep RNNs are known to take a long time to train,
thanks to the compressed nature of the landmark-based facial animation data, we
were able to train our RNNs in approximately 30 minutes on an Intel Core i5 (3.2
GHz) personal computer, with 10 000 epochs over 101 samples with batch size 5.

After the network has been trained, each output vector yt recursively feeds back
into the network at the next time step, until a full-length sequence is generated.
At each frame, yt is also used to parametrize an RBF network over the Euclidian
space, which computes the deformation of the full face mesh by evaluating the
displacement of each vertex on the mesh (see the next subsection). Note that the
RBF parametrization followed by the full-mesh deformation is performed at each
frame.

Landmark to full mesh deformation. The trained RNN networks generate a
sequence of displacement vector for the landmark set, from which we compute a
sequence of deformedmesh of a given a face shape (Figure 4). Amongmany available
techniques that we could use for the mesh warping, we use Radial basis function
(RBF) networks, a universal solver for scattered interpolation problems (Powell,
2007). Consider a real valued function wx(v) : R3 → R that approximates the
deformation (along x-axis, without losing the generality) of the face mesh given a
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sparse set of function values known at landmark locations
{
wx

(
vi

)
= di

xs
}
where

vi is the location of the i-th maker and di
x denotes its displacement along x-axis.

Note that the RBF works on a multidimensional domain but a scalar function,
thus, we compute w (x) for each dimension, i.e., wx (x), wy (x), and wz (x) for the
displacement along each coordinate. wx (·) is assumed to be as a weighted sum of
radial basis function and a linear term, i.e.,

wx(v) =
m∑
i

qi · φ
(

v − vi



) + p(v) (3)

where φ : R3 → R is a radial based function (Gaussian in our case), qi are scalar
weights of i-th kernel, vi ∈ R3 are the kernel centers of RBF, m is the number
of interpolants, and p (x) is a polynomial. To determine qi and p (x), we use the
known function values at interpolates, i.e., the displacements at landmark locations,
as written by wx(v

i) = di
x, j = 1, . . . ,m. This results in a linear system

wx

(
v1)
...

wx (vm)

 =

φ11 . . . φ1m
...

. . .
...

φm1 . . . φmm




q1
...

qm

 =


d1
x
...

dm
x

 (4)

where φi j = exp
(
−
‖vi−v j ‖

2σ2

)
. As the matrix φ can be computed from the Gaussian

evaluation using landmark distances as input, and the displacement vector dx is
known, the weight vector q can be found by solving for the linear system, i.e.,
q = φ−1 · dx which determines the function wx (·).

Fig. 4 Given a sequence of landmark set and a static mesh, we generate a sequence of deformed
mesh driven by the landmark locations.

Once the warp functions wx (·), wy (·), wz (·) are found, we can evaluate them at
each vertex location of the full mesh so that it conforms to the displaced landmarks.
The warping functions should be solved for every frame, since each frame yields new
interpolants. With the number of landmarks less than 100, it can be solved efficiently
by using the LU decomposition.
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Results. Figure 5 shows some of the expression sequences generated by our
‘Anger’ network. Note that we have applied the landmark displacement prediction
to a same face geometry, to mask off the visual effects originating from different
shape identities. In Figure 6, the generated expressions are applied to different face
models. The deformations deriving a specific facial expression are learned properly
and gives plausible results. This is despite the fact that the captured landmark data
is sometimes very noisy, and that the shape variety of facial models is large.

Fig. 5 Snapshots of ’Anger’ expression sequences generated by our model.

The overall evaluation is a neural-net inference followed by RBF warping of
a full mesh. The training and evaluation for the landmark-to-mesh deformation is
performed in a per-frame basis. Each frame takes about 0.1 seconds for a mesh
comprised of 10 000 vertices, accounting for a total time of only a few seconds for
the generation of an entire sequence.

5 Discussion

We have addressed, and provided an overview of, facial shape and animation model-
ing. In particular, a new deep learning-based method for facial expression generation
has been presented, which models a facial animation as a temporal entity, i.e. a
sequence of deformations applied to a facial mesh as represented by a set of sparsely
sampled landmarks. LSTM RNNs have been trained with dis-placements of land-
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Fig. 6 Facial expression sequences generated by our ‘Anger’ network have been applied to different
faces.

mark locations, one for each expression of a basic emotion. Unlike existing modelers
where only static expression poses are learned in a frame-by-frame manner, our
modeler learns the temporal evolution of the facial pose change as a whole, thus
enabling a 4D facial expression modeling. As a result, our technique offers a promis-
ing solution for the facial expression sequence modeling, significantly improving the
quality of generated expression while extending the potential applicability of neural
networks to 4D shape data (time-varying shapes).

The landmark-based representation of facial mesh used in this work requires a
same landmark configuration on the database and on a new face mesh where the gen-
erated animation will be applied. Moreover, the RBF-based landmark-to-full mesh
animation can sometimes result in unstable deformation caused by the extrapolation,
notably along the mesh boundary. These limitations can be complemented by deep
learning-based methods for automatic landmark extraction, and for landmark-driven
fine mesh deformation. Another possibility is to adopt more compact geometric
representations that represent the full facial mesh with a moderate data size. In the
future, our model can be trained on a larger database and thus can take advantage of
additional data.
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