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Abstract We discuss the effective computation of geometric singularities of implicit ordinary differential equa-
tions over the real numbers using methods from logic. Via the Vessiot theory of differential equations, geometric
singularities can be characterised as points where the behaviour of a certain linear system of equations changes.
These points can be discovered using a specifically adapted parametric generalisation of Gaussian elimination
combined with heuristic simplification techniques and real quantifier elimination methods. We demonstrate the
relevance and applicability of our approach with computational experiments using a prototypical implementation
in Reduce.
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1 Introduction

Implicit differential equations, i. e. equations which are not solved for a derivative of highest order, appear in many
applications. In particular, the so-called differential algebraic equations (DAE) may be considered as a special
case of implicit equations.1 Compared with equations in solved form, implicit equations are more complicated to
analyse and show a much wider range of phenomena. Already basic questions about the existence and uniqueness
of solutions of an initial value problem become much more involved. One reason is the possible appearance of
singularities. Note that we study in this work singularities of the differential equations themselves (defined below
in a geometric sense) and not singularities of individual solutions like poles.

Our approach to singularities of differential equations is conceptually based on the theory of singularities of
maps between smooth manifolds (as e. g. described in [2,22]), i. e. of a differential topological nature. Within this
theory, the main emphasis has traditionally been on classifying possible types of singularities and on corresponding
normal forms, see e. g. [13,14]. Nice introductions can be found in [1,36]. By contrast, we are here concerned with
the effective detection of all geometric singularities of a given implicit ordinary differential equation. This requires
the additional use of techniques from differential algebra [30,38] and algebraic geometry [12].

In [33], the first two authors developed together with collaborators a novel framework for the analysis of algebraic
differential equations, i. e. differential equations (and inequations) described by differential polynomials, which
combines ideas and techniques from differential algebra, differential geometry and algebraic geometry.2 A key
role in this new effective approach is played by the Thomas decomposition which exists in an algebraic version for
algebraic systems and in a differential version for differential systems. Bothwere first introduced by Thomas [51,52]
and later rediscovered by Gerdt [20]; an implementation inMaple is described in [4] (see also [21]). Unfortunately,
the algorithms behind the Thomas decomposition require that the underlying field is algebraically closed. Hence,
it is always assumed in [33] that a complex differential equation is treated. However, most differential equations
appearing in applications are real. The main goal of this work is to adapt the framework of [33] to real ordinary
differential equations.

The approach in [33] consists of a differential and an algebraic step. For the prepatory differential step, one may
continue to use basic differential algebraic algorithms (for example the differential Thomas decomposition). A key
task of the differential step is to exhibit all integrability conditions which may be hidden in the given system and
for this the base field does not matter. In this work, we are mainly concerned with presenting an alternative for the
algebraic step—where the actual identification of the singularities happens—which is valid over the real numbers.

Our use of real algebraic geometry combined with computational logic has several benefits. In a complex setting,
one may only consider inequations. Over the reals, also the treatment of inequalities like positivity conditions is
possible which is important for many applications e. g. in biology and chemistry. We will extend the approach
from [33] by generalising the notion of an algebraic differential equation used in [33] to semialgebraic differential
equations, which allow for arbitrary inequalities. As a further improvement, we will make stronger use of the
fact that the detection of singularities represents essentially a linear problem. This will allow us to avoid some
redundant case distinctions that are unavoidable in the approach of [33], as they must appear in any algebraic
Thomas decomposition, although they are irrelevant for the detection of singularities.

The article is structured as follows. Section 2 firstly exhibits some basics of the geometric theory of (ordinary)
differential equations. We then recapitulate the key ideas behind the differential step of [33] and encapsulate the
key features of the outcome in the improvised notion of a “well-prepared” system. Finally, we define the geometric
singularities that are studied here. In Sect. 3, we develop a Gauss algorithm for linear systems depending on
parameters with certain extra features and rigorously prove its correctness. Section 4 represents the core of our

1 Differential algebraic equations owe their name to the fact that in a solved form they often comprise both differential equations and
“algebraic” equations (meaning equations in which no derivatives appear). This should not be confused with (semi)algebraic differential
equations, the main topic of this work, where the “algebraic” refers to the fact that only polynomial nonlinearities are permitted (see
below).
2 For scalar ordinary differential equations of first order, a somewhat similar theory was developed by Hubert [26]. The approach in
[33] covers much more general situations including systems of arbitrary order and partial differential equations.
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work. We show how finding geometric singularities can essentially be reduced to the analysis of a parametric linear
system and present then an algorithm for the automatic detection of all real geometric singularities based on our
parametric Gauss algorithm. Section 5 demonstrates the relevance of our algorithm by applying it to some basic
examples some of which stem from the above mentioned classifications of all possible singularities of scalar first-
order equations. Although these examples are fairly small, it becomes evident how our logic based approach avoids
some unnecessary case distinctions made by the algebraic Thomas decomposition.

2 Geometric Singularities of Implicit Ordinary Differential Equations

We use the basic set-up of the geometric theory of differential equations following [41] to which we refer for more
details. For a system of ordinary differential equations of order � in m unknown real-valued functions uα(t) of the
independent real variable t , we construct over the trivial fibration π = pr1 : R×Rm → R the �th order jet bundle
J�π . For our purposes, it is sufficient to imagine J�π as an affine space diffeomorphic toR(�+1)m+1 with coordinates
(t, u, u̇ . . . , u(�)) corresponding to the independent variable t , the m dependent variables u = (u1, . . . , um) and
the derivatives of the latter ones up to order �. We denote by π� : J�π → R the canonical projection on the first
coordinate. The contact structure is a geometric way to encode the different roles played by the different variables,
i. e. that t is the independent variable and that u(i)

α denotes the derivative of u(i−1)
α with respect to t . We describe the

contact structure by the contact distribution C(�) ⊂ T J�π which is spanned by one π�-transversal andm π�-vertical
vector fields:3

C (�)
trans = ∂t +

�∑

i=1

m∑

α=1

u(i)
α · ∂

u(i−1)
α

, C (�)
α = ∂

u(�)
α

(α = 1, . . . ,m).

The transversal field essentially corresponds to a geometric version of the chain rule and the vertical fields are
needed because we must cut off the chain rule at a finite order, since in J�π no variables exist corresponding to
derivatives of order � + 1 required for the next terms in the chain rule.

We can now rigorously define the class of differential equations that will be studied in this work. Note that in
the geometric theory one does not distinguish between a scalar equation and a system of equations, as a differential
equation is considered as a single geometric object independent of its codimension. In [33], an algebraic jet set of
order � is defined as a locally Zariski closed subset of J�π , i. e. as the set theoretic difference of two varieties. This
approach reflects the fact that over the complex numbers only equations and inequations are allowed. Over the real
numbers, one would like to include arbitrary inequalities like for example positivity conditions. Thus it is natural
to proceed from algebraic to semialgebraic geometry. Recall that a semialgebraic subset of Rn is the solution set
of a Boolean combination of conditions of the form f = 0 or f � 0 where f is a polynomial in n variables and �
stands for some relation in {<,>,≤,≥, �=} (see e. g. [8, Chap. 2]).
Definition 1 A semialgebraic jet set of order � is a semialgebraic subset J� ⊆ J�π of the �th order jet bundle.
Such a set is a semialgebraic differential equation, if in addition the Euclidean closure of π�(J�) is the whole base
space R.

In the traditional geometric theory, a differential equation is a fibred submanifold of J�π such that the restriction
of π� to it defines a surjective submersion. The latter condition excludes any kind of singularities and is thus dropped
in our approach. We replace the submanifold by a semialgebraic and thus in particular constructible set, i. e. a finite
union of locally Zariski closed sets. This is on the one hand more restrictive, as only polynomial equations and
inequalities are allowed. On the other hand, it is more general, as a semialgebraic set may have singularities in
the sense of algebraic geometry. We will call such points algebraic singularities of the semialgebraic differential
equation J� to distinguish them from the geometric singularities on which we focus in this work.

3 A vector field X is π�-vertical, if at every point ρ ∈ J�π we have Xρ ∈ ker Tρπ�; otherwise it is π�-transversal.
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Fig. 1 A semialgebraic
differential equation with
some prolonged solutions

The additional closure condition imposed in Definition 1 for a semialgebraic differential equation ensures that
the semialgebraic differential system defining it does not contain equations depending solely on t and thus that t
represents indeed an independent variable. Nevertheless, we admit that certain values of t are not contained in the
image π�(J�). This relaxation compared with the standard geometric theory allows us to handle equations like
t u̇ = 1 where the point t = 0 is not contained in the projection. We use the Euclidean closure instead of the Zariski
one, as for a closer analysis of the solution behaviour around such a point (which we will not do in this work) it is
of interest to consider the point as the limit of a sequence of points in π�(J�).

A (sufficiently often differentiable) function g : I ⊆ R → Rm defined on some interval I is a (local) solution of
the semialgebraic differential equation J� ⊂ J�π , if its prolonged graph, i. e. the image of the curve γg : I → J�π
given by t 
→ (

t, g(t), ġ(t), . . . , g(�)(t)
)
lies completely in the setJ�. This definition of a solution represents simply

a geometric version of the usual one. Figure 1 shows the semialgebraic differential equation J1 which is defined by
the scalar first-order equation u̇ − tu2 = 0 together with some of its prolonged solutions. J1 is a classical example
of a differential equation with so-called movable singularities: its solutions are given by u(t) = 2/(c − t2) with
an arbitrary constant c ∈ R and each solution with a positive c becomes singular after a finite time. However,
this differential equation does not exhibit the kind of singularities that we will be studying in this work. We are
concerned with singularities of the differential equation itself and not with singularities of individual solutions.

We call a semialgebraic jet set J� ⊆ J�π basic, if it can be described by a finite set of equations pi = 0 and a
finite set of inequalities q j > 0 where pi and q j are polynomials in the coordinates (t, u, u̇ . . . , u(�)). We call such a
pair of sets a basic semialgebraic system on J�π . It follows from an elementary result in real algebraic geometry [8,
Prop. 2.1.8] that any semialgebraic jet set can be expressed as a union of finitely many basic semialgebraic jet sets.
We will always assume that our sets are given in this form and study each basic semialgebraic system separately,
as for some steps in our analysis it is crucial that at least the equation part of the system is a pure conjunction.

To obtain correct and meaningful results with our approach, we need some further assumptions on the basic
semialgebraic differential systems we are studying. More precisely, the systems have to be carefully prepared using
a procedure essentially corresponding to the differential step of the approach developed in [33] and the subsequent
transformation from a differential algebraic formulation to a geometric one. Otherwise, hidden integrability con-
ditions or other subtle problems may lead to false results. We present here only a very brief description of this
procedure and refer for all details and an extensive discussion of the underlying problems to [33]. We use in the
sequel some basic notions from differential algebra [30,38] and the Janet–Riquier theory of differential equations
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[27,37] which can be found in modern form for example in [39] to which we refer for definitions of all unexplained
terminology and for background information.

The starting point of our analysis will always be a basic semialgebraic system with equations pi = 0 (1 ≤ i ≤ r)
and inequalities q j > 0 (1 ≤ j ≤ s). We call such a system differentially simple with respect to some orderly
ranking ≺, if it satisfies the following three conditions:

(i) all polynomials pi and q j are non-constant and have pairwise different leaders,
(ii) no leader of an inequality q j is a derivative of the leader of an equation pi ,
(iii) away from the variety defined by the vanishing of all the initials and all the separants of the polynomials pi ,

the equations define a passive differential system for the Janet division.

The last condition ensures the absence of hidden integrability conditions and thus the existence of formal solutions
(i. e. solutions in the form of power series without regarding their convergence) for almost all initial conditions. In the
sequel, we will always assume that in addition our system is not underdetermined, i. e. that its formal solution space
is finite-dimensional. Differentially simple systems can be obtained with the differential Thomas decomposition.

Consider the ring of differential polynomials D = R(t){u}. Obviously, the polynomials pi may be considered
as elements of D and we denote by Î = 〈p1, . . . , pr 〉D the differential ideal generated by the equations in our
differentially simple system. It turns out that in some respect this ideal is too small and therefore we saturate it with
respect to the differential polynomial Q = ∏r

i=1 init(pi )sep(pi ) to obtain the differential ideal I = Î : Q∞ of
which one can show that it is the radical of Î [39, Prop. 2.2.72]. Over the real numbers, we need the potentially
larger real radical according to the real nullstellensatz (see e. g. [8, Sect. 4.1] for a discussion). An algorithm for
determining the real radical was proposed by Becker and Neuhaus [7,34]. An implementation over the rational
numbers exists in Singular [44]. However, in all these references it is assumed that one deals with an ideal in a
polynomial ring with finitely many variables. Thus we have to postpone the determination of the real radical until
we have obtained such an ideal.

For the transition from differential algebra to jet geometry, we introduce for any finite order � ∈ N the finite-
dimensional subrings D� = D ∩ R[t, u, . . . , u(�)]. Note that D� is the coordinate ring of the jet bundle J�π
considered as an affine space. Fixing some order � ∈ N which is at least the maximal order of an equation pi = 0
or an inequality q j > 0, we define the polynomial ideal Î� = Î ∩ D�. Using Janet–Riquier theory and Gröbner
basis techniques, it is straightforward to construct an explicit generating set of this ideal. Now that we have an ideal
in a polynomial ring with finitely many variables, we can determine its real radical I�. Finally, we prefer to work
with irreducible sets and thus perform a real prime decomposition of the ideal I� and study each prime component
separately.4 Thus we may assume in the sequel without loss of generality that the given polynomials pi generate
directly a real prime ideal I� ⊂ D�.

Definition 2 A basic semialgebraic differential equation J� ⊂ J�π is called well prepared, if it is obtained by the
above outlined procedure starting from a differentially simple system.

Consider a (local) solution g : I ⊆ R → Rm of a semialgebraic differential equation J� and the corresponding
curve γg : I → J�π given by t 
→ (

t, g(t), ġ(t), . . . , g(�)(t)
)
. Since, according to our definition of a solution,

im γg ⊆ J�, for each t ∈ I the tangent vectorγ ′
g(t)must lie in the tangent space Tγg(t)J� ofJ� at the pointγg(t) ∈ J�.

We mentioned already above the contact structure of the jet bundle. It characterises intrinsically those (transversal)
curves γ : I ⊆ R → J�π that are prolonged graphs. More precisely, there exists a function g : I → Rm such
that γ = γg, if and only if the tangent vector γ ′(t) is contained in the contact distribution C(�)|γ (t) evaluated at
γ (t). These two observations motivate the following definition of the space of all “infinitesimal solutions” of the
differential equation J�.

4 Over the complex numbers, one can show that the radical I� obtained after the saturation with Q is always equidimensional [32,
Thm. 1.94] and therefore does not possess embedded primes. It is unclear whether the real radical shares this property. For our geometric
analysis, it suffices to study only the minimal primes.
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Definition 3 Given a point ρ on a semialgebraic jet set J� ⊆ J�π , we define the Vessiot space at ρ as the linear
space Vρ[J�] = TρJ� ∩ C(�)|ρ .

In general, the properties of the Vessiot spaces Vρ[J�] depend on their base point ρ. In particular, at different
points the Vessiot spaces may have different dimensions. Nevertheless, it is easy to show that for a well-prepared
semialgebraic differential equation J� the Vessiot spaces define a smooth regular distribution on a Zariski open and
dense subset of J� (see e. g. [33, Prop. 2.10] for a rigorous proof). Therefore, with only a minor abuse of language,
we will call the family of all Vessiot spaces the Vessiot distribution V[J�] of the given differential equation J�.

We will ignore here algebraic singularities of a semialgebraic differential equation J�, i. e. points on J� that are
singularities in the sense of algebraic geometry. It is a classical task in algebraic geometry to find them, e. g. with the
Jacobian criterion which reduces the problem to linear algebra [12, Thm. 9.6.9]. We will focus instead on geometric
singularities. In the here exclusively considered case of not underdetermined ordinary differential equations, we
can use the following—compared with [33] simplified—definition which is equivalent to the classical definition
given e. g. in [1].

Definition 4 Let J� ⊆ J�π be a well-prepared, not underdetermined, semialgebraic jet set. A smooth point ρ ∈ J�

with Vessiot space Vρ[J�] is called
(i) regular, if dim Vρ[J�] = 1 and Vρ[J�] ∩ ker Tρπ� = 0,
(ii) regular singular, if dim Vρ[J�] = 1 and Vρ[J�] ⊆ ker Tρπ�,
(iii) irregular singular, if dim Vρ[J�] > 1.

Thus irregular singularities are characterised by a jump in the dimension of the Vessiot space. At a regular
singularity, the Vessiot space Vρ[J�] has the “right” dimension, i. e. the same as at a regular point, but in the ambient
tangent space Tρ J�π its position relative to the subspace ker Tρπ� is “wrong”: it lies vertical, i. e. it is contained
in ker Tρπ�. By contrast, at regular points the Vessiot space is π�-transversal, since Vρ[J�] ∩ ker Tρπ� = 0. The
relevance of this distinction is that any tangent vector to the prolonged graph of a function is always π�-transversal.
Hence no prolonged solution can go through a regular singularity.

A sufficiently small (Euclidean) neighbourhood of an arbitrary regular point can be foliated by the prolonged
graphs of solutions. At a regular singular point, there still exists a foliation of any sufficiently small neighbourhood
by integral curves of the Vessiot distribution. However, at such a point these curves can no longer be interpreted
as prolonged graphs of functions (see [28,42] for a more detailed discussion). The set of all regular and all regular
singular points is the above mentioned Zariski open and dense subset of J� on which the Vessiot spaces define a
smooth regular distribution. At the irregular singular points, the classical uniqueness results fail and it is possible
that several (even infinitely many) prolonged solutions are passing through such a point.

3 Parametric Gaussian Elimination

Wewill show in the next section that an algorithmic realisation of Definition 4 essentially boils down to analysing a
parametric linear system of equations. Therefore we study now parametric Gaussian elimination in some detail and
propose a corresponding algorithm that satisfies a number of particular requirements coming with our application to
differential equations. While parametric Gaussian elimination has beed studied in theory and practice for more than
30 years, e. g. [5,23,43], it is still not widely available in contemporary computer algebra systems. One reasonmight
be that it calls for logic and decision procedures for an efficient heuristic processing of the potentially exponential
number of cases to be considered. The algorithm proposed here is based on experiences with the PGauss package
which was developed in Reduce [24,25] as an unpublished student’s project under co-supervision of the third
author in 1998. The original motivation at that time was the investigation of possible integration and implicit use
of the Reduce package Redlog for interpreted first-order logic [18,45,46] in core domains of computer algebra
(see also [17]).
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For our proof-of-concept purposes here, we keep the algorithm quite basic from a linear algebra point of view.
For instance, we do not perform Bareiss division [6], which is crucial for polynomial complexity bounds in the
non-parametric case. On the other hand, we apply strong heuristic simplification techniques [19] and quantifier
elimination-based decision procedures [31,40,54,55] from Redlog for pruning at an early stage the potentially
exponential number of cases to be considered.

In a rigorous mathematical language, we consider the following problem over a field K of characteristic 0. We
are given an M × N matrix A with entries from a polynomial ring Z[v] whose P variables v = (v1, . . . , vP ) are
considered as parameters. In dependence of the parameters v, we are interested in determining the solution space
S ⊆ K N of the homogeneous linear system Ax = 0 in the unknowns x = (x1, . . . , xN ). Furthermore, we assume
that we are given a sublist y ⊆ x of unknowns defining the linear subspace �y(K N ) := { x ∈ K N | xi = 0 for xi ∈
y } ⊆ K N and we also want to determine the dimension of the intersection S ∩ �y(K N ). A parametric Gaussian
elimination is for us then a procedure that produces from these data a list of pairs (	i ,Hi )i=1,...,I . Each guard
	i describes a semialgebraic subset G(	i ) = { v̄ ∈ K P | K , (v = v̄) |� 	i } of the parameter space K P . The
respective parametric solutionHi represents the solution space S(Hi ) of Ax = 0 for all parameter values v̄ ∈ G(	i )

in the following sense.

Definition 5 Let A ∈ Z[v]M×N , and let v̄ ∈ K P be some parameter values. A parametric solution of Ax = 0
suitable for v̄ is a set of formal equations

H = {xπ(1) = s1, . . . , xπ(L) = sL , xπ(L+1) = rN−L , . . . , xπ(N ) = r1},
where L ∈ {1, . . . , N },π is a permutation of {1, . . . , N }, we have sn ∈ Z(v, xπ(n+1), . . . , xπ(N )) for n ∈ {1, . . . , L},
and r1, …, rN−L are new indeterminates. We call xπ(L+1), …, xπ(N ) independent variables.5 If one substitutes
v = v̄, then the following holds. The denominator of any rational function sn does not vanish. For an arbitrary
choice of values r̄1, …, r̄N−L ∈ K , one obtains values s̄1, …, s̄L ∈ K such that

x̄π(1) = s̄1, . . . , x̄π(L) = s̄L , x̄π(L+1) = r̄N−L , . . . , x̄π(N ) = r1

defines a solution x̄ ∈ K N of Ax = 0. Vice versa, every solution x̄ ∈ K N of Ax = 0 can be obtained this way for
some choice of values r̄1, …, r̄N−L ∈ K .

In addition, we require that dim
(
S(Hi ) ∩ �y(K N )

)
is constant on the set G(	i ) and that G(	i ) ∩ G(	 j ) = ∅

for i �= j and
⋃I

i=1 G(	i ) = K P , i. e. that the guards provide a disjoint partitioning of the parameter space.
Our Gauss algorithm will use a logical deduction procedure �K to derive from conditions 	 whether or not

certain matrix entries vanish in K . The correctness of our algorithm will require only two very natural assumptions
on �K :

D1. 	 �K γ implies K , 	 |� γ , i.e., �K is sound;
D2. γ ∧ 	 �K γ , i.e., �K can derive constraints that literally occur in the premise.

Of course, our notation in D2 should to be read modulo associativity and commutativity of the conjunction operator.
Notice that D2 is easy to implement, and implementing only D2 is certainly sound. Algorithm 1 describes then our
parametric Gaussian elimination.

Proposition 6 Algorithm 1 terminates.

Proof For each possible stack element s = (	, A, p) define

μ1(s) = min {M, N } − p ∈ N,

μ2(s) = |{ (m, n) ∈ {p, . . . , M} × {p, . . . , N } : 	 � Amn �= 0 and 	 � Amn = 0 }| ∈ N.

5 The introduction of the new indeterminates r1, …, rN−L is somewhat redundant. Our motivation is to mimic the output of Reduce,
which uses at their place operators arbreal(n) or arbcomplex(n), respectively.
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Algorithm 1 Parametric Gauss
Input: Denote v = (v1, . . . , vP ), x = (x1, . . . , xN ):

(i) matrix A ∈ Z[v]M×N

(ii) list x
(iii) sublist y of x
(iv) field K of characteristic 0 with a suitable deduction procedure �K

Output: list (	i ,Hi )i=1,...,I as follows:

(i) each 	i is a conjunction of polynomial equations and inequations in variables v
(ii) given v̄ ∈ K P , we have v̄ ∈ G(	i ) for one and only one matching case i ∈ {1, . . . , I }
(iii) given v̄ ∈ K P with unique matching case i , Hi is a solution of Ax = 0 suitable for v̄
(iv) dim

(
S(Hi ) ∩ �y(K N )

)
is constant on G(	i )

1: Y := { n ∈ {1, . . . , N } | xn in y }
2: I := 0
3: create an empty stack
4: push (true, A, 1)
5: while stack is not empty do
6: (	, A, p) := pop
7: if 	 �K false then
8: if there is m ∈ {p, . . . , M}\Y , n ∈ {p, . . . , N } such that 	 �K Amn �= 0 then
9: in A, swap rows p with m and columns p with n
10: in A, use row p to obtain Ap+1,p = · · · = Am,p = 0
11: push (	, A, p + 1)
12: else if there is m ∈ {p, . . . , M}\Y , n ∈ {p, . . . , N } such that 	 �K Amn = 0 then
13: push (	 ∧ Amn �= 0, A, p)
14: in A, set Amn := 0 {this is an optional optimisation of the Algorithm}
15: push (	 ∧ Amn = 0, A, p)
16: else if there is m ∈ {p, . . . , M} ∩ Y , n ∈ {p, . . . , N } such that 	 �K Amn �= 0 then
17: in A, swap rows p with m and columns p with n
18: in A, use row p to obtain Ap+1,p = · · · = Am,p = 0
19: push (	, A, p + 1)
20: else if there is m ∈ {p, . . . , M} ∩ Y , n ∈ {p, . . . , N } such that 	 �K Amn = 0 then
21: push (	 ∧ Amn �= 0, A, p)
22: in A, set Amn := 0 {this is an optional optimisation of the Algorithm}
23: push (	 ∧ Amn = 0, A, p)
24: else {A is in row echelon form modulo 	}
25: I := I + 1
26: (	I ,HI ) := (	, construct HI from A)

27: end if
28: end if
29: end while
30: return (	i ,Hi )i=1,...,I

During execution, we associate with the current stack a multiset

μ(S) = { (μ1(s), μ2(s)) ∈ N2 | s ∈ S }.
Every execution of the while-loop removes from μ(S) exactly one pair and adds to μ(S) at most finitely many

pairs, all of which are lexicographically smaller than the removed one. This guarantees termination, because the
corresponding multiset order is well-founded [3]. ��

It is obvious that the output of Algorithm 1 satisfies property (i) of its specification from the way the guards 	i

are constructed. The same is true for property (iii), as Algorithm 1 determines for each arising case a row echelon
form where the guard 	i ensures that all pivots are non-vanishing on G(	i ). Finally, property (iv) is a consequence
of our pivoting strategy: pivots in y-columns are chosen only when all remaining x-columns contain only zeros in
their relevant part. Hence Algorithm 1 produces a row echelon form where rows with a pivot in a y-column can only
occur in the bottom rows after all the rows with pivots in x-columns. As a by-product, our pivoting strategy has the
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effect that the algorithm prefers the variables in y over the remaining variables when it chooses the independent
variables. The next proposition proves property (ii) and thus the correctness of Algorithm 1.We remark that Ballarin
and Kauers [5, Section 5.3] observed that the well-known approach taken by Sit [43] does not have this property
which is crucial for our application of parametric Gaussian elimination in the context of differential equations.

Proposition 7 Let (	i ,Hi )i=1,...,I be an output obtained from Algorithm 1. Then

G(	i ) ∩ G(	 j ) = ∅ (i �= j),
I⋃

i=1

G(	i ) = K P .

In other words, given v̄ ∈ K P, there is one and only one i ∈ {1, . . . , I } such that K , (v = v̄) |� 	i .

Proof We consider a run of Algorithm 1 with output (	i ,Hi )i=1,...,I . We observe the state Qk of the algo-
rithm right before the kth iteration of the test for an empty stack in line 5: Let Qk = Sk ∪ Rk where
Sk = { 	 | (	, A, p) on the stack for some A, p } and Rk = {	1, . . . , 	I }. Line 5 is executed at least once
and, by Proposition 6, only finitely often, say � times. The �th test fails with an empty stack, S� = ∅, and
Q� = R� = {	1, . . . , 	I } contains the guards of the output. It now suffices to show the following invariants ofQk :

I1. G(	) ∩ G(	′) = ∅ for 	, 	′ ∈ Qk with 	 �= 	′,
I2.

⋃
	∈Qk

G(	) = K P .

The initialisations in lines 2 and 4 yield Q1 = {true}, which satisfies both I1 and I2. Assume now that Qk satisfies
I1 and I2, and considerQk+1. In line 6, 	 is removed from Sk ⊆ Qk . Afterwards one and only one of the following
cases applies:

(a) The if-condition in line 8 holds: Then Qk+1 = (
(Sk\{	}) ∪ {	}) ∪ Rk = Qk .

(b) The if-condition in line 12 holds: Then

Qk+1 = (
(Sk\{	}) ∪ {	 ∧ Amn �= 0, 	 ∧ Amn = 0}) ∪ Rk .

To show I1, consider 	 ∧ Amn �= 0 ∈ Qk+1, and let 	′ ∈ Qk+1 with 	′ ˙�= (	 ∧ Amn �= 0). Using I1 for Qk ,
we obtain

G(	 ∧ Amn �= 0) ∩ G(	′) ⊆ G(	) ∩ G(	′) =̇ ∅.

The same argument holds for 	 ∧ Amn = 0 ∈ Qk+1. To show I2, we use I1 for Qk+1 and I2 for Qk to obtain

⋃


∈Qk+1

G(
) =̇
⋃


∈Qk

�=	

G(
) ∪ G(	 ∧ Amn �= 0) ∪ G(	 ∧ Amn = 0) =̇
⋃


∈Qk

G(
) =̇ K P .

(c) The if-condition in line 16 holds: Then lines 17–19 are identical to lines 9–11, and we proceed as in case (a).
(d) The if-condition in line 20 holds: Then lines 21–23 are identical to lines 13–15, and we proceed as in case (b).
(e) We reach line 26 in the else-case: Then Qk+1 = (Sk\{	}) ∪ (Rk ∪ {	}) = Qk .

��

Inspection of the proofs yields that Proposition 6 relies on properties D1 and D2 of our deduction�K but remains
correct also with stronger sound deductions. Proposition 7 does not refer to �K except for the termination result in
Proposition 6. This paves the way for the application of heuristic simplification techniques during deduction, which
we will discuss in more detail in Sect. 5.
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4 Detecting Geometric Singularities with Logic

The main point of this article is an algorithmic realisation of Definition 4. Obviously, as a first step one must be
able to compute the Vessiot space Vρ[J�] at a point ρ ∈ J�. As we are only interested in smooth points, this
requires only some linear algebra. We choose as ansatz for constructing a vector v ∈ Vρ[J�] a general element

v = aC (�)
trans + ∑m

α=1 bαC
(�)
α of the contact space C(�)|ρ where a, b are yet undetermined real coefficients. We have

v ∈ Vρ[J�], if and only if v is tangential to J�.
Recall that we always assume that our semialgebraic differential equation J� is given explicitly as a finite union

of basic semialgebraic differential equations each of which is well prepared. Furthermore, ρ is a smooth point of
J�. Thus, if ρ is contained in several basic semialgebraic differential equations, then the equations parts of the
corresponding systems must be equivalent in the sense that they describe the same variety. As we will see, in this
case we can choose for the subsequent analysis any of these basic semialgebraic differential equations; the results
will be independent of this choice.

Without loss of generality, wemay therefore assume thatJ� is actually a basic semialgebraic differential equation
described by a basic semialgebraic system with equations pi = 0 for 1 ≤ i ≤ r . By a classical result in differential
geometry (see e. g. [35, Prop. 1.35] for a simple proof), the vector v is tangential to J�, if and only if v(pi ) = 0 for
all i . Hence, we obtain the following homogeneous linear system of equations for the unknowns a, b in our ansatz:

C (�)
trans(pi )|ρa +

m∑

α=1

C (�)
α (pi )|ρbα = 0, i = 1, . . . , r. (1)

At any fixed point ρ ∈ J�, (1) represents a linear system with real coefficients which is elementary to solve. The
conditions for the various cases in Definition 4 can now be interpreted as follows. A point is an irregular singularity,
if and only if the dimension of the solution space of (1) is greater than one. At a regular point, the one-dimensional
solution space must have a trivial intersection with ker Tρπ�, i. e. be π�-transversal. As in our ansatz only the vector

C (�)
trans is π�-transversal, this is the case if and only if we have a �= 0 for all nontrivial solutions of (1). Expressing

these considerations via the rank of the coefficient matrix of (1) and of the submatrix obtained by dropping the
column corresponding to the unknown a, we arrive at the following statement.

Proposition 8 The point ρ ∈ J� is regular, if and only if the rank of thematrix A with entries Aiα = C (�)
α (pi )|ρ is m.

The point ρ is regular singular, if and only if it is not regular and the rank of the augmentedmatrix
(
C (�)
trans(pi )|ρ | A

)

is m. In all other cases, ρ is an irregular singularity.

Remark 9 The rigorous definition of a (not) underdetermined differential equation is rather technical and usually
only given for regular equations without singularities (see e. g. [41, Def. 7.5.6]). In the case of ordinary differential
equations, it is straightforward to extend the definition to ourmore general situation: a basic semialgebraic differential
equation J� is not underdetermined, if and only if at almost all points ρ ∈ J� the rank of the matrix A (the so-called
symbol matrix) defined in the above proposition ism. Thus a generic point is regular, as it should be. The geometric
singularities form a semialgebraic set of lower dimension.

Example 10 We consider the first-order algebraic differential equation J1 ⊂ J1π given by

u̇2 + u2 + t2 − 1 = 0. (2)

Geometrically, it corresponds to the two-dimensional unit sphere in the three-dimensional first-order jet bundle J1π
for m = 1 and can be easily analysed by hand. The linear system (1) for the Vessiot spaces consists here only of
one equation

(t + uu̇)a + u̇b = 0

for two unknowns a and b. The matrix A introduced in Proposition 8 consists simply of the coefficient of b. Thus
geometric singularities are characterised by the vanishing of this coefficient and hence form the equator u̇ = 0 of the



Real Singularities of Implicit ODEs 343

Fig. 2 Unit sphere as semialgebraic differential equation

sphere. Only two points on it are irregular singularities, namely (0,±1, 0), as there also the coefficient of a vanishes
and hence even the rank of the augmented matrix drops. All the other points on the equator are regular singular.
In Fig. 2, the regular singular points are shown in red and the two irregular singularities in yellow. The figure also
shows integral curves of the Vessiot distribution. As one can see, they spiral into the irregular singularities and
cross frequently the equator. At each crossing their projections to the t–u space change direction and hence they
cannot be the graph of a function there. But between two crossings, the integral curves correspond to the graphs of
prolonged solutions of the equation.

For systems containing equations of different orders or for systems obtained by prolongations, the following
observation (which may be considered as a variation of [41, Prop. 9.5.10]) is useful, as it significantly reduces the
size of the linear system (1). It requires that the system is well prepared, as it crucially depends on the fact that no
hidden integrability conditions are present.

Proposition 11 Let J� ⊂ J�π be a well-prepared basic semialgebraic differential equation of order �. Then it
suffices to consider in the linear system (1) only those equations pi = 0 which are of order �; all other equations
contribute only zero rows.

Proof By a slight abuse of notation (more precisely, by omitting some pull-backs), we have the following relation
between the generators of the contact distributions of two neighbouring orders:

C (k+1)
trans = C (k)

trans +
m∑

α=1

u(k+1)
α C (k)

α .

On the other hand, if ϕ is any function (not necessarily polynomial) depending only on jet variables up to an order
k < �, then its formal derivative is given by Dϕ = C (k+1)

trans (ϕ). Since we assume that J� is well prepared, for
any equation pi = 0 in the corresponding basic semialgebraic system of order k < � the prolonged equation
Dpi = 0 can be expressed as a linear combination of the equations contained in the system (otherwise we would
have found a hidden integrability condition). Because of k < �, we have Dpi = C (k+1)

trans (pi ) = C (�)
trans(pi ) and

trivially C (�)
α (pi ) = 0 for all α. Hence the row contributed by pi to (1) is a zero row, as Dpi (ρ) = 0 at any point

ρ ∈ J�. ��
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For the purpose of detecting all geometric singularities in a given semialgebraic differential equation J�, we
must analyse the behaviour of (1) in dependency of the point ρ. Thus we must now consider the coefficients of (1)
as polynomials in the jet variables (t, u, u̇, . . . , u(�)) and not as real numbers. Furthermore, we must augment (1) by
the semialgebraic differential system definingJ� and study the combined system of equations and inequalities in the
variables (t, u, u̇ . . . , u(�), a, b). In the approach of [33], one simply performs an algebraic Thomas decomposition
of this system for a suitable ranking of the variables. While this approach is correct and identifies all geometric
singularities, it has some shortcomings. It does not really exploit that a part of the problem is linear and as it
implicitly also determines an algebraic Thomas decomposition of the differential equation J�, it leads in general
to many redundant case distinctions, which are unnecessary for solely detecting all real singularities, but simply
reflect certain geometric properties of the semialgebraic set J�.

We propose now as a novel approach to study the linear part (1) separately from the underlying semialgebraic
differential equation J� considering it as a parametric linear system in the unknowns a, b with the jet variables
(t, u, u̇ . . . , u(�)) as (yet independent) parameters. Using parametric Gaussian elimination, all possible different
cases for the linear system are identified. Then, in a second step, it is verified for each case whether it occurs some-
where on the differential equation J�, i. e. we take now into account that our parameters are not really independent
but have to satisfy a basic semialgebraic system. If yes, we obtain by simply combining the equations and inequal-
ities describing the case distinction with the equations and inequalities defining J� a semialgebraic description of
the corresponding subset of J�.

According to Proposition 8, the coefficient matrix A of the linear system (1) possesses the same rank at regular
and at regular singular points. The difference between the two cases is the relative position of the Vessiot space to
the linear subspace W = ker Tρπ�: as one can see in Definition 4, at regular singular points the solution space lies
in W , whereas at regular points its intersection with W is trivial. For this reason, we need a parametric Gaussian
elimination in the form developed in the previous section which takes the relative position of the solution space
to a prescribed linear (cartesian) subspace into account. In terms of the m + 1 coefficients a, b of our ansatz, W
corresponds to the cartesian subspace of Rm+1 defined by the equation a = 0 (which we can write as �a(R

m+1)

in the notation of the last section) and thus we solve (1) using Algorithm 1 with the choice y = (a). This means
that—among the points with a one-dimensional solution space—we characterise the regular points as those where
a is the free variable in our solution representation and the regular singular points as those where a = 0, i. e. where
the intersection of the solution space of (1) with �a(R

m+1) is trivial.
Because of our special form of parametric Gaussian elimination and the choice of y = (a), all points on one of

the obtained subsets G(	i ) are of the same type in the sense of Definition 4. The type is easy to decide on the basis
of the form of the obtained row echelon form of the linear system (or of its solution) on the subset. Hence we do
actually more than just detecting singularities: we identify semialgebraic subsets of J� on which the Vessiot spaces
allow for a uniform description and possess uniform properties. This is of great importance for a possible further
analysis of the found singularities (not discussed here).

In a more formal language, our novel approach translates into Algorithm 2, the correctness of which follows from
the above discussion. Note that for computational purposes we limit ourselves to input with integer coefficients.
The critical steps are the parametric Gaussian elimination which may potentially lead to many case distinctions,
but which represents otherwise a linear operation. For each obtained case, an existential closure must be studied
to check whether the case actually occurs on J�. The real quantifier elimination in Redlog primarily uses virtual
substitution techniques [31,47,48,54,55] and falls back into partial cylindrical algebraic decomposition [10,11,40]
for subproblems where degree bounds are exceeded. The latter algorithm is double exponential in the worst case
[9]. It is noteworthy that for our special case of existential sentences also single exponential algorithms exist [23]
but no corresponding implementations.

Remark 12 It should be noted that the form of the guards 	i appearing in the output is not uniquely defined. We
produce a disjunctive normal form, as it is easier to interpret. However, many equivalent expressions can be obtained
by performing some simplification steps and in particular by trying to factorise the polynomials appearing in the
clauses. In the fairly simple examples considered in the next section, we always obtained an “optimal” form where
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Algorithm 2 Real Singularities
Input: well-prepared, basic semialgebraic system �� = (

(pa = 0)a=1,...,A, (qb > 0)b=1,...,B
)
, where pa , qb ∈ D� = D ∩

Z[t, u, . . . , u(�)]
Output: finite system (	i ,Hi )i=1,...,I with

(i) each 	i is a disjunctive normal form of polynomial equations, inequations, and inequalities overD� describing a semialgebraic
subset J�,i ⊆ J�

(ii) each Hi describes the Vessiot spaces of all points on J�,i
(iii) all sets J�,i are disjoint and their union is J�

1: set up the matrix A of the linear system (1) using the equations (pa = 0)a=1,...,A
2: � = (

γτ ,Hτ

)
τ=1,...,t := ParametricGauss

(
A, (b, a), (a),R

)

3: for τ := 1, . . . , t do
4: let 	τ be a disjunctive normal form of γτ ∧ ∧

��

5: check satisfiability of 	τ using real quantifier elimination on ∃t ∃u . . . ∃u(�) 	τ

6: if 	τ is unsatisfiable then
7: delete (γτ ,Hτ ) from �

8: else
9: replace (γτ ,Hτ ) by (	τ ,Hτ ) in �

10: end if
11: end for
12: return �

no clause can be simplified any more. In larger examples, this will not necessarily be the case and it is non-trivial
to define what “optimal” actually should mean.

Remark 13 Many differential equations arising in applications depend on parameters χ , i. e. the polynomials pa
and qb defining the equations and inequalities of the corresponding basic semialgebraic system depend not only on
the jet variables (t, u, . . . , u(�)), but in addition on some real parameters χ . Such situations can still be handled by
Algorithm 2. A straightforward solution consists of considering the parameters as additional unknown functions u
and adding to the given semialgebraic system the differential equations χ̇ = 0 (of course, one can this way also
incorporated easily conditions on the parameters like positivity constraints by adding corresponding inequalities).

However, it is easier to apply directly Algorithm 2with only some trivial modifications.We consider pa and qb as
elements of the polynomial ringD�[χ]. For the parametric Gaussian elimination, there is no difference between the
parameters χ and the jet variables (t, u, . . . , u(�)): all of them represent parameters of the linear system of equations
(1) for the Vessiot spaces. Thus in the output of the elimination step, the guards γτ will now generally depend on
both the jet variables (t, u, . . . , u(�)) and the additional parameters χ , i. e. they will also be defined in terms of
polynomials in D�[χ]. Hence the guards γτ returned in the second line of Algorithm 2 will be defined by such
polynomials, too. In the fifth line, we still consider only the existential closure over the jet variables (t, u, . . . , u(�)).
The outcome of the satisfiability check is now either “unsatisfiable” or a formula over the remaining parameters
χ . The only change in the algorithm is that in the latter case we must augment 	τ by the obtained formula (and
recompute a disjunctive normal form). Note that the guards produced by the parametric Gaussian elimination always
consist only of equations and inequations. By contrast, the possibly appearing additional satisfiability conditions
on the parameters χ are produced by a quantifier elimination and can be arbitrary inequalities.

5 Computational Experiments

Wewill now study the practical applicability and quality of results of the approach developed in this article on several
examples. To this end, we have realised a prototype implementation of Algorithm 1 and Algorithm 2 in Reduce
[24,25], which is not yet ready for publication. We chose Reduce because on the one hand it is an open-source
general purpose computer algebra system, and on the other hand itsRedlog package [18,45,46] provides a suitable
infrastructure for computations in interpreted first-order logic as required by our approach. Although technically a
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“package”,Redlog establishes a quite comprehensive software systemon top of Reduce. Systematically developed
and maintained since 1995, it has received more than 400 citations in the scientific literature, mostly for applications
in the sciences and in engineering. Its current code base comprises around 65 KLOC.

Our implementation of Algorithm 1 uses from Redlog fast and powerful simplification techniques for quantifier-
free formulas over the reals for the realisation of a nontrivial deduction procedure �K . We specifically apply the
standard simplifier for ordered fields originally described in [19, Sect. 5.2]; one notable improvement since is the
integration of identification and special treatment of positive variables as a generalisation of the concept of positive
quantifier elimination described in [49,50]. Our implementation of Algorithm 2 uses—corresponding to line 5—
implementations of real quantifier elimination, specifically virtual substitution [31] and partial cylindrical algebraic
decomposition [40] as a fallback option when exceeding degree limits for virtual substitution.

The presented examples were chosen for their simplicity allowing for any easy check of the results with hand
calculations and for the possibility to apply also the complex algorithm of [33] for comparison purposes. They do
not represent real benchmarks testing the feasibility of the presented approach for large scale problems. However,
they already demonstrate the potential of our approach to concisely and explicitly provide interesting insights into
the appearance of singularities of ordinary differential equations. On a standard laptop, the required computing
times were on the scale of milliseconds. We will report timings for more serious problems elsewhere.

Example 14 We continue with Example 10, the unit sphere as first-order differential equation J1, and show the
results of an automatised analysis. Our implementation returns for the corresponding semialgebraic differential
system �1 = (u̇2 + u2 + t2 − 1 = 0) as input a list with three pairs:

(	1,H1) =
(
u̇ �= 0 ∧ u̇2 + u2 + t2 − 1 = 0, {a = r1, b = −r1(u + t u̇)−1}

)
,

(	2,H2) =
(
t �= 0 ∧ u2 + t2 − 1 = 0 ∧ u̇ = 0, {a = 0, b = r2}

)
,

(	3,H3) =
(
t = 0 ∧ u2 − 1 = 0 ∧ u̇ = 0, {a = r3, b = r4}

)
.

It is easily seen that each guard 	i describes a semialgebraic subset J1,i ⊂ J1 and that these sets are pairwise
disjoint. Each set Hi parametrises theVessiot spaces at the points ofJ1,i and one can easily read off their dimensions.
At each point on J1,1, the dimension is clearly one, since H1 contains one free variable r1 = a. The dimension
of the Vessiot space at each point of J1,2 is also one because of the free variable r2 = b, but as H2 comprises the
equation a = 0, the Vessiot spaces are everywhere vertical. The set H3 contains two free variables r3 = a, r4 = b so
that everywhere on J1,3 the dimension is two. According to Definition 4, the points on J1,1 are regular, the points
on J1,2 regular singular and the two points on J1,3 irregular singular. Thus we exactly reproduce the result of the
analysis by hand presented in Example 10.

Applying the complex analysis of [33] (more precisely, a Maple implementation of it provided by one of the
authors of [33]) to this example, we find that the algebraic step yields five cases. One of them contains no real points
at all. Furthermore, for the regular singular points an unnecessary case distinction is made by treating the two points
(±1, 0, 0) as a special case. This distinction is not due to the behaviour of the linear system (1), but stems from an
algebraic Thomas decomposition of the sphere. If we consider only the R-rational points in each case and combine
the two cases describing regular singular points, the result coincides with the one obtained here.

Thus, even in such a simple example consisting only of a scalar first-order equation, all the potential problems of
applying the complex analysis of [33] to real differential equations already occur. We obtain too many cases. Some
are completely irrelevant for a real analysis, as they do not contain real points (in some situations, it might be non
trivial to decide whether a case contains at least some real points). Other cases are at least irrelevant for detecting
singularities. Sometimes, the underlying case distinctions are important for a further analysis of the singularities,
but often they are simply due to the Thomas decomposition and have no intrinsic meaning.
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Fig. 3 Elliptic and hyperbolic gather

Example 15 Dara [13] resp. Davydov [14] classified the possible singularities of generic scalar first order equations
F(t, u, u̇) = 0 providing normal forms for all arising cases. One distinguishes two classes: folded and gathered
singularities, respectively. In this example, we consider the gathered class. It is characterised by the normal form

u̇3 + χuu̇ − t = 0 (3)

with a real parameter χ . Values χ > 0 correspond to the hyperbolic gather, whereas values χ < 0 lead to the
elliptic gather (classically, one considers χ = ±1). Again, it is straightforward to analyse (3) by hand. The linear
equation for the Vessiot distribution is given by

(−1 + χ u̇2)a + (3u̇2 + χu)b = 0.

Thus the singularities lie on the parabola 3u̇2+χu = 0. In the hyperbolic case, we find two real irregular singularities
at (∓2/

√
χ3,−3/χ2,±1/

√
χ) where both coefficients of the linear equation vanish; in the elliptic case no real

irregular singularities exist (see Fig. 3).
Our implementation applied to the parametric differential equation (3) returns three pairs:

(	1,H1) =
(
3u̇2 + χu �= 0 ∧ u̇3 + χ u̇u − t = 0, {b = r1(3u̇

2 + χu)−1(1 − χ u̇2), a = r1}
)

,

(	2,H2) =
(
χ u̇2 − 1 �= 0 ∧ 3u̇2 + χu = 0 ∧ u̇3 + χ u̇u − t = 0, {a = 0, b = r2}

)
,

(	3,H3) =
(
3u̇2 + χu = 0 ∧ u̇3 + χ u̇u − t = 0 ∧ χ u̇2 − 1 = 0 ∧ χ > 0), {a = r3, b = r4}

)
.

As in the previous example, one can easily read off from the solutions Hi that the first case describes the regular
points, the second case the regular singularities and the last case the irregular singularities. Note in the guard of the
third case the clause χ > 0. It represents the solvability condition for the clause χ u̇2 − 1 = 0 and distinguishes
between the elliptic and the hyperbolic gather. In the elliptic gather the third case does not appear.

The results of a complex analysis are independent of the value of the parameter χ . The algebraic Thomas
decomposition yields seven cases: three with regular points, three with regular singularities and one with irregular
singularities. One of the cases with regular singularities never contains a real point independent of χ ; the existence
of real irregular singularities depends of course on the sign of χ . The other unnecessary case distinctions stem again
from an algebraic Thomas decomposition of the given equation.

So far, we have always studied each differential equation in the jet bundle of the order of the equation. However,
in some cases it is also of interest to study prolongations, i. e. to proceed to higher order. This is e. g. necessary to
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see whether solutions of finite regularity exist (for a detailed analysis of a concrete class of quasilinear second-order
equations in this respect see [42]). Obviously, the regularity of solutions is an issue only over the real numbers,
as any holomorphic function is automatically analytic. A natural question is then whether there exists a maximal
prolongation order at which all singularities can be detected. The following example due to Lange–Hegermann [32,
Ex. 2.93] shows that this is not the case, as in it at any prolongation order something new happens. We make here
contact with some classical (un)decidability questions for power series solutions of differential equations as e. g.
studied in the classical article by Denef and Lipshitz [15].

Example 16 We start with the first-order equationJ1 ⊂ J1π in three unknown functions u, v,w of the independent
variable t defined by the following polynomial system:

tvu̇ − tu + 1 = 0, v̇ − w = 0, ẇ = 0. (4)

To obtain the first prolongation J2 ⊂ J2π , we must augment the system (4) by the equations

tvü + (tw + v − t)u̇ − u = 0, v̈ = ẅ = 0.

If we prolong further to some order q > 2, then for the definition of Jq ⊂ Jqπ we must add for each integer
2 < k ≤ q the three equations

tvu(k) + [
(k − 1)(tw + v) − t

]
u(k−1) + (k − 1)

[
(k − 2)w − 1

]
u(k−2) = 0, v(k) = w(k) = 0.

The Vessiot spaces of J1 arise as solutions of the linear system

(tw + v − t)u̇a + tvbu = 0, bv = bw = 0.

For computing the Vessiot spaces of the prolonged equation, we exploit Proposition 11 telling us that at each
prolongation order only the newly added equations must be considered. Hence we always obtain a linear system
containing three equations. At any prolongation order q > 1, the Vessiot spaces of Jq are defined by the linear
system
[(
q(tw + v) − t

)
u(q) + q

(
(q − 1)w − 1

)
u(q−1)

]
a + tvbu = 0, bv = bw = 0.

We fed the basic semialgebraic systems �1, �2 and �3 corresponding to the first three equations J1, J2 and J3

into our implementation. For each system, it returned three cases containing the regular, regular singular and irregular
singular points, respectively, of the corresponding differential equation. We obtained for q = 1 the following results
(we only discuss the guards 	i and do not present the respective solutions Hi ). As already mentioned in Remark 9,
the regular points represent the generic case and the corresponding guard is given by 	1 = (�1 ∧ v �= 0 ∧ t �= 0).
There is one family of regular singular points described by the guard

	2 = (
ẇ = 0 ∧ v̇ − w = 0 ∧ tu − 1 = 0 ∧ v = 0 ∧ t (w − 1)u̇ − u �= 0

)
.

Obviously v = 0 is the condition characterising singularities. The final inequation distinguishes the regular from
the irregular ones: the guard 	3 for the latter one differs from 	2 only by this inequation becoming an equation. For
later use, we make the following observation. The equation tu − 1 = 0 implies that neither t nor u may vanish at a
singularity. Thus at an irregular singularity we cannot have w = 1 or u̇ = 0, as otherwise the final equation in 	3

would be violated.
We refrain from explicitly writing down all the guards of the next prolongations, as they become more and more

lengthy with increasing order. The regular points are always described by a guard of the form 	1 = (�q ∧ v �=
0 ∧ t �= 0). The key condition for singularities is always v = 0. Besides the equations from �2, the guard
	2 for the regular singularities of J2 contains in addition the equation t (w − 1)u̇ − u = 0 and the inequation
t (2w − 1)ü + 2(w − 1)u̇ �= 0 whereas for the irregular singularities this inequation becomes again an equation.
Thus all the singularities of J2 lie over the irregular singular points of J1. This is not surprising, as it is easy to see
that firstly for any differential equation Jq all singularities of its prolongation Jq+1 must lie over the singularities



Real Singularities of Implicit ODEs 349

of Jq and secondly that the fibre over a regular singular point is always empty. This time we can observe that at an
irregular singularity we cannot have w = 1/2 or ü = 0. The results of J3 are in complete analogy: now w = 1/3
or u(3) = 0 are not possible at an irregular singularity.

The above made observations are of importance for the (non-)existence of formal power series solutions. Assume
that we want to construct such a solution for the initial conditions u(t0) = u0, v(t0) = v0 and w(t0) = w0. Recall
that a point in the jet bundle Jqπ corresponds to a Taylor polynomial of degree q. Thus a point ρ on a differential
equation Jq may be considered as such a Taylor polynomial approximating a solution. This Taylor polynomial can
be extended to one of degree q + 1, if and only if the prolonged equation Jq+1 contains at least one point lying
over ρ. As already mentioned, this is never the case, if ρ is a regular singularity. Hence, there can never exist a
formal power series solution through a regular singular point. Our observations have now the following significance.
Assume that we choose v0 = 0 so that we are always at a singularity. Then no formal power series solution exists,
if we choose w0 = 1, as the w-coordinate of an irregular singularity of J1 can never have the value 1. Similarly, no
formal power series solutions exists for w0 = 1/2, but now the problem occurs at the prolonged equation J2 where
the w-coordinate of an irregular singularity can never have the value 1/2. Generally, one can show by a simple
induction that for w0 = 1/k with k ∈ N no formal power series solution exists, as the prolongation Jk of order k
does not contain a corresponding irregular singularity.

Example 17 As a final example, we study a minor variation of (4) which destroys most of the interesting properties
of (4), but which nicely demonstrates why it is useful to take some care with how the guards are returned. We
consider the following basic semialgebraic system which differs from (4) only by a missing factor t in one term:

tvu̇ − u + 1 = 0, v̇ − w = 0, ẇ = 0. (5)

While our implementation yields for the regular points exactly the same guard as before, the dropped factor leads
to considerable more distinct cases of regular and irregular singularities. The irregular singularities of J1 form the
union of four two-dimensional (real) algebraic varieties, as one can easily recognise from the corresponding guard
in disjunctive normal form:

	3 = ( ẇ = 0 ∧ w − 1 = 0 ∧ v̇ − 1 = 0 ∧ v = 0 ∧ u − 1 = 0 ) ∨
( ẇ = 0 ∧ v̇ − w = 0 ∧ v = 0 ∧ u̇ = 0 ∧ u − 1 = 0 ) ∨
( ẇ = 0 ∧ v̇ − w = 0 ∧ v = 0 ∧ u − 1 = 0 ∧ t = 0 ) ∨
( ẇ = 0 ∧ v̇ − w = 0 ∧ u̇ = 0 ∧ u − 1 = 0 ∧ t = 0 ).

The regular singularities form the union of two three-dimensional varieties without the above described union of
four two-dimensional varieties. This set is characterised by the following guard in disjunctive normal form:

	2 = ( ẇ = 0 ∧ v̇ − w = 0 ∧ v = 0 ∧ u − 1 = 0 ∧ w − 1 �= 0 ∧ u̇ �= 0 ∧ t �= 0 ) ∨
( ẇ = 0 ∧ v̇ − w = 0 ∧ u − 1 = 0 ∧ t = 0 ∧ v �= 0 ∧ u̇ �= 0 ).

As in the last example, we also considered the first two prolongations of J1. The dimensions of the semialgebraic
sets containing the regular, regular singular and irregular singular points are in any prolongation order 4, 3 and
2. However, the guards 	2 and 	3 are getting more and more complicated. For J2 the guard 	2 contains four
conjunctive clauses and 	3 six; for J3 these numbers raise to six and eight. Without some simplifications and the
consequent transformation into disjunctive normal form, the guards would be much harder to read. The disjunctive
normal form allows for a simple interpretation as union of basic semialgebraic sets (not necessarily disjoint).
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6 Conclusions

For the basic existence and uniqueness theory of explicit ordinary differential equations, it makes no difference
whether one works over the real or over the complex numbers. The standard proofs of the Picard–Lindelöf Theorem
are independent of the base field. The situation changes completely, if one performs a deeper analysis of the equations
and if one studies more general equations admitting singularities. Both the questions asked and the techniques used
differ considerably over the real and over the complex numbers. We mentioned already in Sect. 5 the question of
the regularity of solutions appearing only in a real analysis. There is a long tradition in studying the singularities
of linear ordinary differential equations (see [53] for a rather comprehensive account of the classical results or
[56] for an advanced modern presentation) and a satisfactory theory requires methods from complex analysis like
monodromy groups and Stokes matrices. By contrast, singularities of nonlinear ordinary differential equations are
mostly studied over the real numbers using methods from dynamical systems theory and differential topology (see
[1,36] for an introduction and [13,14] for some typical classification results).

In this article, we were concerned with the algorithmic detection of all geometric singularities of a given system
of algebraic ordinary differential equations. Using the geometric theory of differential equations, we could reduce
this problem to a purely algebraic one. In [33], two of the authors presented together with collaborators a solution
over the complex numbers via the Thomas decomposition. Now, we complemented the results of [33] by developing
an alternative approach to the algebraic part of [33] (as the part where the base field really matters) applicable over
the real numbers using parametric Gaussian elimination and quantifier elimination.

A key novelty of this alternative approach is to consider the decisive linear system (1) determining the Vessiot
spaces first independently of the given differential system. This allows us to make maximal use of the linearity of
(1) and to apply a wide range of heuristic optimisations. Compared with the more comprehensive approach of [33],
this also leads to an increased flexibility and we believe that the new approach will be in general more efficient in
the sense that fewer cases will be returned. Although we cannot prove this rigorously, already the comparatively
small examples studied in Sect. 5 show this effect. We expect it to be much more pronounced for larger systems,
as in the approach of [33] it cannot be avoided that the Thomas decomposition also analyses the geometry of a
differential equation J� even where it is irrelevant for the detection of singularities.

Our main tool for this first step is parametric Gaussian elimination. We proposed here a variant with two specific
properties required by our application to differential equations. Firstly, it provides a disjoint partitioning of the
parameter space. Secondly, it takes the relative position of the solution space with respect to a prescribed cartesian
subspace taken into account. The last property was realised by an adapted pivoting strategy. Our elimination
algorithm ParametricGauss makes strong use of a deduction procedure �K for efficient heuristic tests for
the vanishing or non-vanishing of certain coefficients under the current assumptions, thus avoiding redundant case
distinctions at an early stage at comparatively little computational costs. The practical performance of the algorithm
depends decisively on the power of this procedure. In our proof-of-concept realisation, we used with the Redlog
simplifier a well-established powerful deduction procedure.

In the examples studied here, the results always turned out to be optimal in the sense that the output contained
exactly three different cases corresponding to regular, regular singular and irregular singular points. In general,
this will not be the case. In more complicated examples it may for instance happen that at different regular points
different pivots are chosen by the parametric Gaussian elimination so that these points appear in different cases.
Sometimes there may exist an intrinsic geometric reason for this, but sometimes these case distinctions may be
simply due to the heuristics used to choose the pivots.

In the second stepof our approach, the testwhether the various cases foundby the algorithm ParametricGauss
actually appear on the analysed differential equation J� requires a quantifier elimination. As in practice many alge-
braic differential equations are as polynomials of fairly low degree, fast virtual substitution techniques will often
suffice. As fallback a partial cylindrical algebraic decomposition can be used.

We have ignored algebraic singularities, i. e. singular points in the sense of algebraic geometry. The Jacobian
criterion allows us to identify them easily using linear algebra. In [33], the detection of algebraic and geometric
singularities is done in one go. This approach leads again to certain redundancies, as among the algebraic singularities
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case distinctions are made because of the behaviour of the linear system (1), although the latter is not overly
meaningful at such points. Our novel approach is more flexible and in it we believe that it makes more sense to
separate the detection of the algebraic singularities from the detection of the geometric singularities.

One should note a crucial difference between the real and the complex case concerning algebraic singularities.
On a complex variety, a point is nonsingular, if and only if a local neighbourhood of it looks like a complexmanifold
[29, Thm. 7.4]. For this reason, nonsingular points are often called smooth. Over the reals, one has no longer an
equivalence: there may exist singular points on a real variety around which the variety looks like a real manifold [29,
Rem. 7.8] [8, Ex. 3.3.12]. At such points, both the Zariski tangent space and the smooth tangent space are defined
with the former being of higher dimension. For defining the Vessiot space at such a point, it appears preferable to
use the smooth tangent space. However, it is a non-trivial task to identify such points. Diesse [16] presented recently
a criterion for detecting them, but its effectivity is yet unclear. We will discuss elsewhere in more detail how one
can cope with algebraic singularities over the reals.
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