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Abstract

Solving time-harmonic wave propagation problems in the frequency domain and within heterogeneous media brings
many mathematical and computational challenges, especially in the high frequency regime. We will focus here on
computational challenges and try to identify the best algorithm and numerical strategy for a few well-known bench-
mark cases arising in applications. The aim is to cover, through numerical experimentation and consideration of the
best implementation strategies, the main two-level domain decomposition methods developed in recent years for the
Helmholtz equation. The theory for these methods is either out of reach with standard mathematical tools or does not
cover all cases of practical interest. More precisely, we will focus on the comparison of three coarse spaces that yield
two-level methods: the grid coarse space, DtN coarse space, and GenEO coarse space. We will show that they display
different pros and cons, and properties depending on the problem and particular numerical setting.
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1. Introduction

This work is motivated by the computational challenges that typically arise in frequency domain simulations
of wave propagation and scattering problems in heterogeneous media. Such problems appear in a broad range of
engineering applications, including acoustics, electromagnetics, and seismic inversion.

The discretisation of models describing frequency domain wave problems utilising finite element methodology
almost always results in large, indefinite, and ill-conditioned linear systems. These linear systems are difficult to solve
using standard methods, particularly for high frequencies and in the presence of complex heterogeneities. In order
to maintain accuracy, the number of grid points must grow as a function of the frequency in such a way that, for
high frequency problems, the size of the linear systems to be solved becomes prohibitive for direct methods. In such
a regime, carefully designed iterative methods are required. Here, we consider a two-level domain decomposition
approach for the robust parallel solution of the linear systems.

To model the wave problem, we utilise the Helmholtz equation on a domain Ω ⊂ Rd, d = 2, 3, for the field
u(x) : Ω→ C given by

−∆u − k2u = f in Ω, (1a)
C(u) = 0 on ∂Ω, (1b)
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where C incorporates some appropriate boundary conditions, k(x) > 0 is the wave number, and f (x) is a suitable
forcing function. A key parameter is the wave number k, which relates the angular frequency ω and the wave speed
c as k = ω/c. The wave speed c(x) depends on the position x in the media for heterogeneous problems. Since k
is proportional to the frequency, the high frequency regime constitutes the case of large k and presents particular
challenges for designing effective solvers.

The difficulty in designing a good solver for the Helmholtz equation is shown very clearly in the review papers
[1, 2] where one can see that there are no straightforward extensions to state-of-the-art methods for symmetric positive
definite problems that tackle the indefinite or non-self adjoint problem well. Nonetheless, for large problem sizes—
the case when one discretises the Helmholtz equation accurately for high wave numbers—domain decomposition
methods are a natural choice [3]. However, despite recent efforts and in view of the latest results obtained both at the
theoretical [4, 5, 6] or numerical level [7, 8, 9], there is no established method outperforming all others in the case of
the Helmholtz problem.

Domain decomposition methods are well suited to solve large systems of equations arising from discretisation of
PDEs and are among the best-known strategies for many types of problem. However, classical versions fail to be
effective and may diverge for wave propagation problems. Two key constituent parts require a more careful treatment:
the transmission conditions used to transfer information between adjoining subdomains and the coarse space that
allows for capturing of global behaviour and passing information between subdomains globally. In this work we
consider overlapping Schwarz methods.

The use of different transmission conditions at the interfaces (artificial boundaries arising from the decomposition
into subdomains) has been extensively studied over the past two decades and various works [10, 11, 12] show that
these conditions can improve the convergence of Schwarz methods and preconditioners. However, good transmission
conditions are not sufficient to ensure a robust behaviour with respect to heterogeneities in the problem to solve or
when the number of subdomains increases. To tackle these difficulties, we need coarse information that is cheap to
compute and immediately available to all subdomains.

The focus in this work is on appropriate coarse spaces. A coarse space is typically required to provide scalability
with respect to the number of subdomains used. More recently, however, coarse spaces have been designed to provide
robustness to model parameters, especially for large contrasts in complex heterogeneous problems. For example, the
GenEO (Generalised Eigenproblems in the Overlap) coarse space has been successfully employed for the robust so-
lution of highly heterogeneous elliptic problems [13, 14]. For the Helmholtz equation, finding a suitable coarse space
is not an easy task and, being an indefinite problem, choosing a larger coarse space need not improve performance
[15]. In designing coarse spaces for Helmholtz problems, we might also wish to reduce the dependence of the domain
decomposition method on the wave number k. A natural idea to capture global behaviour is to use plane waves as a
basis for the coarse space but it is not clear that this is suitable for heterogeneous media. Plane waves were first used
within the multigrid approach [16] before later being used to build coarse spaces for domain decomposition methods.
We can cite the example of FETI(-DP)-H methods [17, 18], for instance, but they have also been used in other domain
decomposition methods [19]. Nonetheless, plane waves have mainly been employed for homogeneous problems and
do not have a straightforward extension to the heterogeneous case.

Even if coarse space information needs to be global and available to all domains, coarse spaces can be built locally
and based on local functions. Spectral coarse spaces use basis vectors deriving from the solution of local eigenvalue
problems associated with appropriate operators. Within the context of the Helmholtz equation, this is exemplified
in the DtN coarse space [20]. Here, eigenproblems are formulated on subdomain interfaces based on a Dirichlet-to-
Neumann (DtN) map, extending an approach for elliptic problems [21, 22]. In this work we consider two spectral
coarse spaces, the DtN approach and a GenEO-type approach suited to the Helmholtz problem. We will also consider
a grid coarse space approach which utilises the addition of absorption in the problem.

Our consideration of coarse spaces for Helmholtz problems in the high frequency regime provide the following
main contributions of the paper:

• We bring together and outline recent work on developing coarse spaces that can be used to enhance domain
decomposition methods for the Helmholtz problem in heterogeneous media. The approaches considered are
then implemented in a common software, namely FreeFEM.

• We discuss implementation details and practical aspects of the methods as well as contrasting the benefits and
drawbacks.
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• We provide extensive numerical results on several well-known benchmark problems in 2D and 3D and compare
the different approaches within a variety of settings.

• Based on the results of our numerical tests and our understanding of the implementation aspects involved, we
provide an outlook on scenarios where certain methods may be more, or less, favourable.

The outline for the remainder of this work is as follows. In Section 2 we detail the boundary value problem
considered, i.e., the heterogeneous Helmholtz problem and its discretisation by finite elements. In Section 3 we
introduce the basic principles of domain decomposition methods and present two versions of the one-level method,
namely RAS and ORAS. A second level, or coarse space, is usually added by deflation. The three different coarse
space strategies, namely the grid coarse space, DtN coarse space, and GenEO coarse space, are introduced in Section 4.
Parallel implementation details of these methods are given in Section 5 and an extensive numerical study is provided
in Section 6. Conclusions are then given in Section 7.

2. The heterogeneous Helmholtz problem

Our model problem consists of solving the interior Helmholtz equation (1). To be concrete, we let Ω is a bounded
polygonal domain and consider specific boundary conditions on Γ = ∂Ω. We suppose Γ is partitioned into a disjoint
union Γ = ΓD ∪ ΓN ∪ ΓR where Dirichlet conditions are imposed on ΓD, Neumann conditions on ΓN and a Robin
condition on ΓR. Namely, we wish to solve

−∆u − k2u = f in Ω, (2a)
u = uΓD on ΓD, (2b)

∂u
∂n

= 0 on ΓN , (2c)

∂u
∂n

+ iku = 0 on ΓR, (2d)

where uΓD is known. The Robin condition in (2d) is a standard first order approximation to the far field Sommerfeld
radiation condition and, in essence, enables appropriate wave behaviour to be described in a bounded domain, allowing
for incoming or outgoing waves along ΩR. We do not require that a problem instance includes all types of boundaries
but note that if ΓR = ∅ then the problem will be ill-posed for certain choices of k. Furthermore, when ΓR , ∅ the
resulting linear systems, while being complex symmetric, are not Hermitian and this will be important in our choice
of iterative method. However, classical iterative methods on their own are not enough to be able to solve Helmholtz
problems effectively [1]. This is further amplified when applied to highly heterogeneous problems.

The heterogeneity in our model is present in the wave number k(x) > 0, being given by ratio of the angular
frequency ω and the wave speed c(x) as k = ω/c. We allow k to have jumps across different media and otherwise vary
within the domain Ω such that k ∈ L∞(Ω).

To discretise (2), we use the finite element method. In order to prescribe the weak formulation, we let V ={
u ∈ H1(Ω) : u = uΓD on ΓD

}
and, in a similar fashion, V0 =

{
u ∈ H1(Ω) : u = 0 on ΓD

}
. The weak form of the problem

is then to find u ∈ V such that

a(u, v) = F(v) ∀ v ∈ V0, (3)

where

a(u, v) =

∫
Ω

(
∇u · ∇v̄ − k2uv̄

)
dx +

∫
ΓR

ikuv̄ ds, (4a)

and

F(v) =

∫
Ω

f v̄ dx, (4b)
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are the bilinear and linear parts, respectively. To discretise, we consider piecewise polynomial finite element approx-
imation on a simplicial mesh T h of Ω which has a characteristic element diameter h. Denoting the associated trial
space Vh ⊂ V and test space Vh

0 ⊂ V0, the discrete problem is to find uh ∈ Vh such that

a(uh, vh) = F(vh) ∀ vh ∈ Vh
0 . (5)

Let
{
φ j

}n

j=1
be the nodal basis for V0 and

{
φ j

}n+d

j=n+1
be the nodal basis for the Dirichlet boundary ΓD, for which T h is

assumed to conform. Then we can rewrite (5) as a (complex) linear system

Au = f, (6)

where the coefficient matrix A ∈ Cn×n and right-hand side vector f ∈ Cn are given by Ai, j = a(φ j, φi) and fi =

F(φi) −
∑n+d

l=n+1 a(φl, φi)ūl−n respectively, for i, j ∈ 1, 2, . . . , n. Here ū j, for j = 1, 2, . . . , d, are the known Dirichlet
values along ΓD corresponding to uΓD . We then seek the solution u ∈ Cn of the (in general) complex symmetric
indefinite system (6) to give

uh(x) =

n∑
j=1

u jφ j(x) +

n+d∑
l=n+1

ūl−nφl(x). (7)

The wave nature of solutions to the Helmholtz equation requires a sufficiently fine mesh in order to obtain a good
approximation to the true solution and this should be kept in mind when considering the choice of discretisation of
the problem. In terms of increasing the wave number k, if one is to maintain the same level of accuracy of discrete
solutions then the number of grid points must increase faster than k increases, due to the pollution effect [23]. This
growth depends on the discretisation chosen. For instance, in the case of using a piecewise linear (P1) finite element
approximation on simplicial elements of diameter h, then k3h2 must be bounded, requiring h to shrink as O(k−3/2).
For piecewise quadratic (P2) finite elements on simplicial meshes the criteria relaxes to require that h decreases as
O(k−5/4). For higher order finite elements, the requirement becomes less stringent but the interpolation properties
when using such approximation spaces ultimately begin to degrade.

Due to these restrictions and the desire for faster simulation times, it is common that practitioners simply consider
a fixed number of points per wavelength instead, resulting in h decreasing as O(k−1). Given a fixed number, nppwl,
of points per wavelength we ensure that nppwlh ≈ λ, where the wavelength is given by λ = 2πk−1. A prevalent
engineering practice is to use 10 points per wavelength and in some large real-world problems of interest, such as in
imaging science, it may be adequate or necessary to insist on less resolution. In light of this, we consider both 5 and
10 points per wavelength scenarios and make use of standard P2 finite element approximation throughout this work.

3. Domain decomposition

We now give details of the overlapping domain decomposition approach that we will utilise. This will be applied
as a preconditioner rather than a stand-alone iterative method. Our approach is based on a two-level version of the
optimised restricted additive Schwarz (ORAS) method. To provide a domain decomposition, we first partition Ω into
non-overlapping subdomains

{
Ω′s

}N
s=1 which are resolved by the mesh T h. A layer of adjoining mesh elements is then

added to provide overlapping subdomains {Ωs}
N
s=1 through the extension

Ωs = Int

 ⋃
supp(φ j)∩Ω′s,∅

supp(φ j)

 , (8)

where Int(·) denotes the interior of a domain and supp(·) the support of a function. Note that more than one layer of
elements can be added in a recursive manner if subdomains with larger overlap are required.

Now that we have a domain decomposition, we can define the restriction to a given subdomain Ωs as an operator
from Vh into Vh(Ωs) =

{
v|Ωs : v ∈ Vh

}
, namely Rs : Vh → Vh(Ωs) where Rsv = v|Ωs . Let Rs ∈ Rns×n be the matrix

form of Rs where ns is the number of degrees of freedom in Ωs. Since our subdomains overlap, we also make use of
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a partition of unity having matrix form Ds ∈ Rns×ns which is diagonal and satisfies
∑N

s=1 RT
s DsRs = I; this removes

“double counting” in the additive Schwarz method. Note that RT
s acts as an extension by zero outside of Ωs.

We can now define the restricted additive Schwarz (RAS) preconditioner

M−1
RAS =

N∑
s=1

RT
s DsA−1

s Rs, (9)

where As = RsART
s is the local Dirichlet matrix on Ωs, that is, Dirichlet conditions are implicitly assumed on ∂Ωs \

∂Ω. This corresponds to using Dirichlet transmission conditions in the additive Schwarz method. Note that each
contribution from the sum in (9) can be computed locally in parallel.

The RAS approach, using the classical choice of Dirichlet transmission conditions, applied as a stand-alone sta-
tionary iterative method need not converge since frequencies in the error smaller than the wave number k are not
diminished [3]. When used as a preconditioner, the iterative solver used will typically suffer from slow convergence
and may stagnate. Further, the local Dirichlet problems involving As are not necessarily well-posed as k2 may be
an eigenvalue of the corresponding Laplace problem, in which case As is singular. While methods to handle such
singular systems can be applied, a different approach, which provides a convergent stand-alone method, is to change
the Dirichlet transmission conditions to Robin conditions. This results in the so-called optimised restricted additive
Schwarz (ORAS) method given by

M−1
ORAS =

N∑
s=1

RT
s DsÂ−1

s Rs, (10)

where now Âs is the discretisation of the local Robin problem

−∆ws − k2ws = f in Ωs, (11a)
C(ws) = 0 on ∂Ωs ∩ ∂Ω, (11b)

∂ws

∂ns
+ ikws = 0 on ∂Ωs \ ∂Ω, (11c)

with C representing the underlying problem boundary conditions on ∂Ω. The local problem (11) will always have a
unique solution ws. We note that the use of Robin conditions is not the only remedial choice. Optimal transmission
conditions can also be studied and are given using a Dirichlet-to-Neumann (DtN) map [3]. However, this results in
requiring pseudodifferential operators and is somewhat less practical without further approximation. We do not follow
the pursuit of more advanced transmission conditions in this work.

The above approaches, RAS and ORAS, are one-level methods: they rely only on local subdomain solves and
the local transmission of data. Such domain decomposition methods do not scale as we increase the number of
subdomains used; that is, their convergence behaviour depends on N. To achieve robustness with respect to N, a
coarse space is typically included, giving a two-level method. The coarse space is represented by a collection of
column vectors Z, having full column rank. A coarse space operator E = Z†AZ is constructed as well as the coarse
correction operator Q = ZE−1Z†; note the similarity to terms in (9). The inclusion of the coarse space can be done in
a number of ways, the simplest being additively as

M−1
2-level = M−1

1-level + Q, (12)

where M−1
1-level is the underlying one-level preconditioner used, such as (9) or (10). Hybrid approaches are often more

effective and we shall consider the adapted deflation technique

M−1
2-level = M−1

1-levelP + Q = M−1
1-level(I − AQ) + Q, (13)

where P = I − AQ is a projection. The most crucial choice is that of Z, which provides the coarse space. This is what
we shall now consider.

5



4. Coarse spaces

The construction of a suitable coarse space can be achieved in different ways. One natural approach is to utilise
a coarse grid in order to approximate the global behaviour. Often, the slow convergence in the one-level method can
be characterised by “slow modes” which should be incorporated into the coarse space. For instance, in the Poisson
problem slow modes correspond to constant functions in the kernel of the Laplace operator in each subdomain and
these are used to give the Nicolaides coarse space. On the other hand, for homogeneous elasticity problems the slow
modes are rigid body motions.

The notion that certain modes are responsible for slow convergence and must be incorporated into the coarse
space can be made more general, in particular in the framework of spectral coarse spaces. Such coarse spaces use
spectral information from an appropriate eigenproblem to identify relevant modes that should feature in the coarse
space. Before considering spectral coarse spaces we first outline the grid coarse space.

Remark 1 (Notation). Following on from Section 3, for a variational problem giving rise to a system matrix B we
denote by Bs the corresponding local Dirichlet matrix on Ωs. Where Robin conditions are used on internal subdomain
interfaces (the artificial boundaries) the local problem matrix is denoted by B̂s. Meanwhile, when Neumann conditions
are used on such interfaces, the local matrix is denoted by B̃s.

4.1. The grid coarse space method

The grid coarse space was first introduced in [24] for the absorptive Helmholtz problem and extended to incorpo-
rate impedance (or Robin) conditions in [5]. In this case the one-level method is based on the following formula

M−1
1,ε =

N∑
s=1

RT
s DsÂ−1

s,εRs. (14)

where matrices Âs,ε stem from the discretisation of the following local Robin problems with absorption (given by the
parameter ε , 0)

−∆us − (k2 + iε)us = f in Ωs,

C(us) = 0 on ∂Ωs ∩ ∂Ω,

∂us

∂ns
+ ikus = 0 on ∂Ωs \ ∂Ω.

In order to achieve weak dependence on the wave number k and number of subdomains N, the two-level preconditioner
can be written in a generic way as follows

M−1
2,ε = M−1

1,εP + ZE−1Z†, (15)

where M−1
1,ε is the one-level preconditioner (14), Z is a rectangular matrix with full column rank, E = Z†ÂεZ is the

so-called coarse grid matrix, Q = ZE−1Z† is the so-called coarse grid correction matrix, and P = I − AεQ.
Perhaps the most natural coarse space is the one based on a coarser mesh, which we call the “grid coarse space”.

Let us consider T Hcoarse , a simplicial mesh of Ω with mesh diameter Hcoarse, and VHcoarse ⊂ V , the corresponding finite
element space. Let I0 : VHcoarse → Vh be the nodal interpolation operator and define Z as the corresponding matrix.
Then, in this case, E = Z†ÂεZ is really the stiffness matrix of the problem (with absorption) discretised on the coarse
mesh. Related preconditioners without absorption are used in [19].

4.2. The DtN coarse space

The Dirichlet-to-Neumann (DtN) coarse space [21, 20] is based on solving local eigenvalue problems on subdo-
main boundaries related to the DtN map. To define this map for the Helmholtz problem we first require the Helmholtz
extension operator from the boundary of a subdomain Ωs.
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Let Γs = ∂Ωs \ ∂Ω and suppose we have Dirichlet data vΓs on Γs, then the Helmholtz extension v in Ωs is defined
as the solution of

−∆v − k2v = 0 in Ωs, (16a)
v = vΓs on Γs, (16b)

C(v) = 0 on ∂Ωs ∩ ∂Ω, (16c)

where C(v) = 0 represents the original problem boundary conditions, as in (1b). The DtN map takes in the Dirichlet
data vΓs on Γs and gives as output the corresponding Neumann data, that is

DtNΩs (vΓs ) =
∂v
∂ns

∣∣∣∣∣
Γs

(17)

where v is the Helmholtz extension defined by (16).
We now seek eigenfunctions of the DtN map locally on each subdomain Ωs, given by solving

DtNΩs (uΓs ) = λuΓs (18)

for eigenfunctions uΓs and eigenvalues λ ∈ C. To provide functions to go into the coarse space, we take the Helmholtz
extension of uΓs in Ωs and then extend by zero into the whole domain Ω using the partition of unity.

To formulate the discrete problem, we require the coefficient matrices Ãs corresponding to local Neumann prob-
lems on Ωs with boundary conditions C = 0 on ∂Ωs ∩ ∂Ω, defined analogously to that of the local Robin problems in
(11). Further, we need to distinguish between degrees of freedom on the boundary Γs and the interior of the subdomain
Ωs, as such we let Γs and Is be the set of indices on the boundary and interior respectively. We also let

MΓs =

(∫
Γs

φ jφi

)
i, j∈Γs

(19)

denote the mass matrix on the subdomain interface. Using standard block notation to denote submatrices of As and
Ãs the discrete DtN eigenproblem is (

ÃΓs,Γs − AΓs,Is A
−1
Is,Is

AIs,Γs

)
uΓs = λMΓs uΓs . (20)

The Helmholtz extension of uΓs to degrees of freedom in Is is then given by uIs = −A−1
Is,Is

AIs,Γs uΓs . Letting us denote
the Helmholtz extension, the corresponding vector which enters the coarse space Z is RT

s Dsus. For further details and
motivation behind the DtN eigenproblems see [20].

It remains to determine which eigenfunctions of (20) should go on to be included in the coarse space. Several
selection criteria were investigated in [20] and it was clear that the best choice was to select eigenvectors corresponding
to eigenvalues with the smallest real part. That is, we use a threshold on the abscissa η = Re(λ) given by

η < ηmax, (21)

where ηmax depends on ks = maxx∈Ωs k(x). In particular, the choice ηmax = ks is advocated in [20]. Note that for larger
ηmax more eigenfunctions are included in the coarse space, increasing its size and the associated computational cost.
Nonetheless, it was recently showed that taking a slightly larger threshold ηmax = k4/3

s can be beneficial in certain
cases in order to gain robustness to the wave number [25]. However, this only occurs for the homogeneous problem
with sufficiently uniform subdomains. Since it is not necessarily known in advance how many eigenvalues are below
the threshold and in order to make a fair comparison in our numerical tests, we will consider using a fixed number of
eigenvectors per subdomain.

4.3. The GenEO coarse space
The GenEO (Generalised Eigenproblems in the Overlap) coarse space was derived in [13] to provide a rigorously

robust approach for symmetric positive definite problems even in the presence of heterogeneities. The fundamental
generalised eigenproblems on Ωs at the variational level are given by

aΩs (u, v) = λaΩ◦s (Ξs(u),Ξs(v)) ∀ v ∈ V(Ωs), (22)
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where Ξs represents the action of the partition of unity on Ωs and Ω◦s is the overlapping zone, that is the part of Ωs

which overlaps with any other subdomain. Here aD(·, ·) stems from the underlying variational problem on the domain
D, in particular with problem boundary conditions on ∂Ω and natural (Neumann) conditions on parts of ∂D internal
to Ω. The particular form of eigenproblem in (22) arises naturally in the analysis of [13]. We also note that (22)
possesses infinite eigenvalues when there exists u , 0 such that aΩ◦s (Ξs(u),Ξs(v)) = 0 ∀ v ∈ V(Ωs) but aΩs (u, v) , 0
for some v ∈ V(Ωs), for example when u is supported only outside Ω◦s .

The discrete form of the eigenproblem (22) is

Ãsu = λDsÃ◦s Dsu (23)

where Ã◦s is the (Neumann) matrix built from assembling only over elements in the overlapping zone Ω◦s . The eigen-
functions selected to enter the coarse space are the low frequency modes, that is those corresponding to the smallest
eigenvalues. Typically, either a fixed number of eigenfunctions are taken per subdomain or a threshold λ < λmax on
the corresponding eigenvalues is used, where λmax can be chosen based on problem parameters to achieve a specified
condition number of the preconditioned system; see [13].

The precise formulation of the eigenproblem and use of the overlapping zone is somewhat flexible. In particular,
the overlapping zone can be replaced with the whole subdomain, as in [14] which utilises an eigenproblem of the form

Ãsu = λDsAsDsu. (24)

It is this form of GenEO that we shall build upon shortly. We note that two separate GenEO eigenproblems can also be
formulated to provide bounds on both ends of the preconditioned spectrum, as is found when using a symmetric ORAS
approach in [14]. This flexibility and robustness of GenEO-type methods has yet to be fully explored, especially for
problems which are not symmetric positive definite where current theory breaks down. We now consider the utility of
using GenEO as basis for constructing a coarse space for the heterogeneous Helmholtz problem.

4.4. A GenEO-type coarse space for the Helmholtz equation
In pursuing a GenEO approach for the Helmholtz equation we must first note the matrices Ãs and As, now stem-

ming from the bilinear form (4a), are no longer symmetric positive definite. As such, eigenvalues λ of the eigen-
problem (24) are no longer real and positive (or infinite). As a threshold criterion, as with the DtN approach, we can
consider the abscissa η = Re(λ) instead and seek eigenfunctions corresponding to η < ηmax. Further, since the theory
breaks down without the symmetric positive definite assumption, it is no longer clear that (24) provides appropriate
eigenvectors for the coarse space. Indeed, applying out of the box the GenEO method using (24) fails to provide a
satisfactory method.

Since GenEO is designed for positive definite problems, a natural proposal is to use a nearby positive definite
problem in the formulation of the eigenproblem, namely a Laplace problem, that is setting k = 0 for the purpose of
constructing the coarse space. Let Ls be local Dirichlet matrix corresponding to the discrete Laplacian and L̃s the
equivalent Neumann matrix on Ωs, then

L̃su = λDsLsDsu. (25)

has positive real eigenvalues. While this approach can perform reasonably well when the wave number k is small, the
behaviour as k grows becomes increasingly poor, as might be expected given the coarse space is independent of k.

To incorporate k, we instead link the underlying Helmholtz problem to the positive definite Laplace problem to
formulate a GenEO-type eigenproblem

Ãsu = λDsLsDsu. (26)

Eigenvalues of (26) are now, in general, complex (though we note they primarily appear to cluster close to the real
line) and so we suggest to threshold based on the abscissa η < ηmax. We call this GenEO-type approach for the
Helmholtz problem “H-GenEO”. Some initial exploration of this method can be found in [26], where the approach
is seen to perform well for a 2D wave-guide problem and provide robustness to heterogeneity as well as to the wave
number k, albeit requiring a comparatively large coarse space. Again, in our numerical experiments we take a fixed
number of eigenvectors and vary this quantity, aiming to give a relatively fair comparison of the spectral coarse space
methods.
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5. Implementation details

Numerical results within this paper have been obtained using FreeFEM [27]. More precisely, ffddm—a light-
weight layer in FreeFEM domain specific language that generates all domain decomposition data structures—was used
on top of HPDDM [28], which handles the underlying computations such as matrix–vector products or preconditioner
applications. When it comes to spectral two-level methods, as depicted in the previous Sections 4.2 to 4.4, the bulk
of the work comes from the local eigensolves, see, e.g., eqs. (20), (23) and (26). These are performed concurrently in
each subdomain, using solvers such as ARPACK [29] or SLEPc [30]. Then, the construction of the algebraic Galerkin
operator Q introduced in Section 3 is performed in HPDDM. In order to deal efficiently with both large numbers of
subdomains and large numbers of local eigenvectors, the assembly and exact LU factorisation of Q is performed on
a subset of processes from the global communicator. We use MUMPS [31] both as a subdomain solver and a coarse
operator solver in our experiments. Again, we refer interested readers to [28] for more details about this subject.

For the grid coarse space method from Section 4.1, two meshes of the same domain must be considered simul-
taneously. First a coarse one, see an example Figure 1a, and then a fine one, see examples Figures 1b and 1c. We
generate fine meshes using a uniform refinement in which edges of all triangles or tetrahedra are divided uniformly
in s. In the aforementioned example, s = 2. Note that if one wants nppwlh ≈ λ on the fine grid, on which the original
algebraic system of equations (6) stems from, then the coarse mesh has to satisfy Hcoarse = h

s . When it comes to
the underlying domain decomposition preconditioners, two options will be considered next. One where both levels
of overlap on fine and coarse grids are minimal, i.e. 1, see Figure 1b, and another where the level of overlap on the
coarse grid is minimal, i.e. 1, and where the level of overlap on the fine grid is s, see Figure 1c. In the latter case, note
that subdomains on the fine grid are merely uniformly refined subdomains of the coarse grid. While the setup cost
of such a two-level preconditioner is much lower than for a spectral method as described in the previous paragraph,
applying it to a vector, for example in a Krylov method, is usually costlier. Indeed, the coarse problem is in this case
often solved iteratively, instead of using an exact factorisation of the coarse operator. This outer–inner strategy, which
also makes the use of flexible methods such as FGMRES [32] mandatory, may not perform very well prior to some
tuning of the inner (coarse) solver.

In the numerical experiments presented in this paper, the inner coarse problem in the grid coarse space method
is defined with a splitting level s = 2 and is solved approximately with GMRES preconditioned by a one-level
method, with a tolerance of 0.1. Additionally, in the spirit of “shifted Laplacian preconditioning” (see [33, 34]),
the coarse problem is defined with added absorption in the equation. This improves the convergence of the one-level
method, which then requires fewer iterations to reach the prescribed inner tolerance. Two-level domain decomposition
preconditioners with added absorption have been proposed in the literature for the Helmholtz [35] and Maxwell [36]
equations. The amount of added absorption needs to be chosen carefully: if the amount of added absorption is too
small, there is no gain in the convergence of the inner coarse problem. On the other hand, if the amount is too large,
the coarse problem becomes a bad approximation of the original problem (without absorption), and the number of
outer iterations increases. We choose the additional imaginary term to be proportional to the wave number k as a
compromise.

We conclude this section by mentioning that all the spectral preconditioners may be used in PETSc [37] through the
PCHPDDM preconditioner [38]. When it comes to the grid coarse space method, we have a custom implementation in
HPDDM that handles systems with multiple right-hand sides, which are encountered frequently in wave propagation
phenomena [39, 40, 7]. PCMG, the PETSc machinery for geometric multigrid, does not handle such systems as of
version 3.14.1.

6. Comparative numerical studies

In this section we compare the domain decomposition preconditioners for several challenging heterogeneous test
problems. We include problems in both 2D and 3D and vary different characteristics of the problem to understand how
they can affect performance. In particular, we are interested in the behaviour for larger wave numbers (or equivalently
larger frequencies) and for an increasing number of subdomains within the domain decomposition. We will also
consider discretisations with differing number of points per wavelength and will see how this can affect performance
of the preconditioners. For the approaches that use a spectral coarse space, we further investigate the choice of how
many eigenvectors should be taken per subdomain.
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(a) Coarse mesh

(b) Refined mesh with minimal overlap (c) Refined mesh with coarse overlap

Figure 1: Different overlap definitions (bottom) for a uniformly refined simple 2D coarse mesh (top).

In the results that follow, a tabulated value of � signifies that the particular test instance did not run, typically this
is for the smallest problem when trying to solve on too many subdomains. When the maximum number of iterations is
reached before convergence, we denote this by ×. Depending on the test problem, the maximum number of iterations
is set at either 500 or 1000.

6.1. The Marmousi problem
The Marmousi problem, see [41], has become a benchmark geophysics test case for the assessment of numerical

methods and solvers when used in a direct or inverse problem context. It features a 2D rectangular domain with
velocity data modelling a heterogeneous subsurface. We utilise this as the wave speed within our Helmholtz model
with a point source placed close to the surface; see the example solution in Figure 2. The problem is posed on
the domain (0, 9.2) × (�3, 0) with homogeneous Dirichlet conditions imposed on the top (surface) boundary and
Robin conditions on the remaining (subsurface) boundaries, the latter being artificial boundaries set for computational
purposes.

Figure 2: The real part of the solution to the Marmousi problem at a frequency of 20 Hz.

The difficulty of this test case stems both from the heterogeneous nature of the problem but also from the presence
of a substantial number of wavelengths and for this reason, the problem is considered to be high-frequency. Therefore,
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it is important to have a sufficiently accurate discretisation, keeping in mind that for inverse problems the accuracy
requirements are different (usually 5 points per wavelength) and weaker than in the case of only solving the forward
problem (in common engineering practice, we use 10 points per wavelength).

We first consider discretisation with 5 points per wavelength. In Table 1 we show results for the one-level method
with minimal overlap and also with minimal overlap from the coarse grid (twice the overlap—see Figure 1) as ref-
erences to compare to. Further, Table 1 gives results for the two-level coarse grid approach with minimal overlap
from the coarse grid. We see that both cases of the one-level method are not scalable (iteration counts increase as the
number of subdomains N increases) and perform worse as the frequency f becomes higher. On the other hand, the
two-level coarse grid approach is reasonably scalable and with only mildly increasing iteration counts as the frequency
increases.

Table 1: Results using the one-level and coarse grid methods for the Marmousi problem when using 5 points per wavelength, varying the frequency
f and the number of subdomains N.

One-level (min. overlap) One-level (coarse overlap) Coarse grid

f \ N 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160

1 30 46 78 98 − 26 39 47 64 − 15 18 19 20 −

5 57 82 117 170 236 53 76 105 154 213 26 29 28 29 31

10 75 111 173 232 330 68 102 158 212 302 32 35 41 40 42

20 89 133 193 268 373 82 125 178 248 347 34 35 42 43 44

We now turn to the two spectral coarse space methods with results in Table 2 being given for a varying number
of eigenvectors taken per subdomain ν. We first see that the H-GenEO method within this scenario performs poorly
and, without sufficiently many eigenvectors being taken, often exhibits iteration counts worse than the one-level
method. On the other hand, the DtN method generally converges faster than the one-level method and, with enough
eigenvectors, can give reasonable performance. However, as the frequency increases the approach begins to struggle
a little with larger iteration counts typically required for convergence even with more eigenvectors being utilised.
Nonetheless, for small frequencies the approach can beat the coarse grid method with relatively few eigenvectors per
subdomain and even for the larger frequencies tested, when using the most subdomains and sufficient eigenvectors per
subdomain the DtN approach converges faster than the coarse grid method. We note by way of caution though that
taking too many eigenvectors per subdomain can eventually lead to some deterioration in the performance of the DtN
method. We can also see from Table 2 that the larger coarse overlap is beneficial for the DtN method and primarily
yields smaller iterations counts. On the other hand, minimal overlap appears preferable for H-GenEO.

Overall, while the DtN approach can reduce the number of iterations required for convergence compared to the
coarse grid method in some cases, particularly low frequencies, the coarse grid approach exhibits greater robustness
and requires relatively low iterations counts, suggesting it is the favourable approach in this scenario of using 5 points
per wavelength.

We now consider the case of discretisation with 10 points per wavelength and similarly compare the different
approaches. In Table 3 we show results for the one-level methods along with the coarse grid method. We notice
that the iteration counts in this situation are slightly higher than when using 5 points per wavelength but otherwise
the picture remains similar with the coarse grid approach giving a reasonably robust method, albeit with some slow
growth in iteration counts as the frequency is increased.

Table 3: Results using the one-level and coarse grid methods for the Marmousi problem when using 10 points per wavelength, varying the frequency
f and the number of subdomains N.

One-level (min. overlap) One-level (coarse overlap) Coarse grid

f \ N 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160

1 34 49 72 143 − 30 43 63 97 − 16 18 19 21 −

5 62 94 137 191 268 58 87 126 175 246 29 29 34 34 36

10 85 136 185 272 371 78 124 172 251 346 35 41 43 46 45

20 101 152 213 299 419 92 142 198 272 389 39 47 48 49 49
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Turning to the spectral coarse space approaches, we see in Table 4 that H-GenEO now becomes competitive.
For larger frequencies and equivalent numbers of eigenvectors taken per subdomain, the H-GenEO method generally
requires fewer iterations and this is particularly true for the large frequencies with many subdomains. We note that
the minimal overlap case is preferable for H-GenEO while for DtN there is no longer a clear-cut preference between
the coarse overlap and minimal overlap cases. Provided sufficiently many eigenvectors are taken per subdomain, we
see that H-GenEO now outperforms the coarse grid approach in terms of iterations counts and is particularly strong
for the large frequency and many subdomains situation.

Overall, in the scenario of 10 points per wavelength, we have different findings from the 5 point per wavelength
scenario. Now, while the coarse grid approach is still relatively robust, the H-GenEO method can be seen as strong
alternative which is able to markedly reduce the number of iterations required in the case of large frequencies and many
subdomains. One possible explanation is that spectral information is not relevant or sufficiently well approximated in
the case of a low number of points per wavelength.

6.2. The COBRA cavity

The COBRA cavity problem consists of a plane wave incident upon a curving cavity aperture and scattering in
3D. The geometry is shown within an example solution in Figure 3. The problem was devised by EADS Aerospatiale
Matra Missiles for Workshop EM-JINA 98 and is described in [42, 43]. The COBRA cavity problem is a benchmark
problem in electromagnetism (when we use the time-harmonic Maxwell’s equations as the underlying model) but here
we present the Helmholtz version. The main difficulty comes from the presence of metallic curved waveguide which
can cause trapping in addition to the inherent difficulties present in mid-high frequency regime wave propagation
problems. This problem is naturally three-dimensional but a similar two-dimensional test can be designed making use
of a cross-section of the cavity.

(a) 3D view (b) 2D cross-section

Figure 3: The COBRA cavity problem.

We first consider discretisation of the problem with 5 points per wavelength using P2 finite elements. In Table 5
we display results for the underlying one-level method and the two-level coarse grid approach. The one-level method
performs poorly as expected, however, we also see that the coarse grid approach lacks robustness in this setting and
performs poorly for larger wave numbers.
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Table 5: Results using the one-level and coarse grid methods for the COBRA cavity problem when using 5 points per wavelength, varying the wave
number k and the number of subdomains N.

One-level Coarse grid

k \ N 20 40 80 160 20 40 80 160

100 71 83 104 − 21 21 22 −

200 161 203 259 303 87 90 91 91

300 326 429 574 727 277 309 330 562

400 326 426 581 705 375 450 463 471

Comparing now the spectral coarse space methods, in Table 6 we observe that, in this scenario, the H-GenEO
method performs poorly and is often worse than the one-level method, even when taking fairly large numbers of
eigenvectors per subdomain. The DtN method can also perform worse than the one-level method in some cases
without sufficiently many eigenvectors being taken. However, the DtN approach begins to show relatively low iteration
counts once enough eigenvectors are utilised, especially in the many subdomain cases, and can significantly reduce
the iteration counts compared to the one-level or coarse grid approaches. Nonetheless, it appears for this 3D problem
that the number of eigenvectors required in order to drive down the overall iteration count is rather high.

Table 6: Results using the H-GenEO and DtN spectral coarse space methods for the COBRA cavity problem when using 5 points per wavelength,
varying the wave number k, the number of subdomains N, and the number of eigenvectors used per subdomain ν.

H-GenEO DtN

ν k \ N 20 40 80 160 20 40 80 160

20

100 66 86 107 − 47 58 74 −

200 165 214 284 366 154 199 250 324

300 334 453 611 809 326 429 569 742

400 342 440 624 810 337 425 582 727

40

100 65 85 108 − 32 34 28 −

200 164 216 291 377 145 187 233 262

300 348 468 638 852 319 424 567 768

400 366 500 716 981 337 438 594 778

80

100 64 85 108 − 16 12 8 −

200 155 214 285 382 116 132 99 63

300 345 461 636 845 301 399 542 573

400 408 558 771 × 335 453 650 918

160

100 63 85 108 − 7 5 5 −

200 150 210 282 382 46 41 17 11

300 324 441 617 830 247 263 249 144

400 417 547 749 × 350 476 576 483

320

100 − − − − − − − −

200 145 207 281 383 10 10 50 55

300 308 422 601 817 100 60 45 29

400 401 527 730 994 271 233 147 44

We also consider the case of discretising the problem with 10 points per wavelength, again using P2 finite elements.
Results in Table 7 show that in this case the coarse grid method performs very well and consistently leads to a small
number of iterations being required for convergence; this is in stark contrast to the 5 points per wave case. For the
spectral coarse spaces, as detailed in Table 8, the H-GenEO method remains poor, especially for large wave numbers,
while the DtN method can perform reasonably well when enough eigenvectors are employed. In particular, the DtN
method can require fewer iterations than the coarse grid method, especially for smaller frequencies, but in general
struggles to compete in line with the coarse grid approach in terms of robustness.
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Table 7: Results using the one-level and coarse grid methods for the COBRA cavity problem when using 10 points per wavelength, varying the
wave number k and the number of subdomains N.

One-level Coarse grid

k \ N 20 40 80 160 20 40 80 160

50 27 38 47 52 8 8 8 9

100 80 103 115 147 11 23 11 11

150 143 181 235 292 16 16 17 17

200 192 268 308 427 15 15 16 16

Table 8: Results using the H-GenEO and DtN spectral coarse space methods for the COBRA cavity problem when using 10 points per wavelength,
varying the wave number k, the number of subdomains N, and the number of eigenvectors used per subdomain ν.

H-GenEO DtN

ν k \ N 20 40 80 160 20 40 80 160

20

50 26 31 41 46 19 22 20 20

100 73 94 111 130 63 77 87 112

150 128 171 230 278 120 157 209 244

200 186 264 315 427 178 246 283 380

40

50 25 31 40 45 13 12 10 8

100 72 89 109 132 51 58 66 57

150 129 168 228 279 112 130 181 211

200 197 279 328 433 163 225 251 330

80

50 24 31 40 44 6 6 5 4

100 68 89 106 132 28 28 19 10

150 131 167 224 281 87 101 109 74

200 200 270 327 428 142 193 218 255

160

50 24 29 40 44 5 4 4 4

100 65 87 109 132 11 9 8 5

150 126 164 220 279 50 31 21 14

200 192 267 324 430 109 134 83 41

320

50 23 30 40 44 6 6 5 5

100 63 85 107 133 6 6 6 5

150 119 158 219 279 14 9 8 7

200 182 246 311 430 44 28 15 11

6.2.1. The COBRA cavity in 2D
While the COBRA cavity is a 3D problem, we can additionally consider a 2D cross section, as illustrated in

Figure 3b, and formulate the problem on such a slice. This allows us to consider a cavity problem in 2D and further
consider higher wave numbers.

Results for this 2D COBRA cavity problem at 5 points per wavelength are given in Tables 9 and 10. Similarly to
the full 3D problem, we see that the coarse grid method again lacks robustness in this scenario as the wave number k
increases and the H-GenEO is unable to provide any benefit over the one-level method. The DtN approach is able to
provide the lowest iteration counts, even with relatively few eigenvectors per subdomain, and provides a very effective
method with more eigenvectors.
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Table 9: Results using the one-level and coarse grid methods for the 2D COBRA cavity problem when using 5 points per wavelength, varying the
wave number k and the number of subdomains N.

One-level Coarse grid

k \ N 20 40 80 160 20 40 80 160

200 74 99 122 − 30 30 30 −

400 103 155 211 279 67 69 70 70

600 204 303 429 668 145 155 158 160

800 184 287 392 559 197 214 218 219

1000 188 278 400 551 242 265 269 270

Table 10: Results using the H-GenEO and DtN spectral coarse space methods for the 2D COBRA cavity problem when using 5 points per
wavelength, varying the wave number k, the number of subdomains N, and the number of eigenvectors used per subdomain ν.

H-GenEO DtN

ν k \ N 20 40 80 160 20 40 80 160

20

200 59 85 122 − 24 29 17 −

400 101 135 202 277 78 87 77 40

600 177 271 371 531 161 228 254 221

800 192 293 390 517 179 274 341 371

1000 213 302 428 597 203 288 415 521

40

200 54 83 107 − 6 7 6 −

400 94 126 192 271 30 16 9 6

600 164 240 348 505 84 82 38 16

800 178 259 356 482 129 152 103 34

1000 203 275 394 555 166 198 195 102

80

200 53 76 34 − 3 5 3 −

400 86 120 187 261 7 5 4 3

600 154 226 331 490 15 8 5 8

800 164 244 338 466 37 22 8 5

1000 184 256 370 529 74 36 14 7

160

200 53 28 1 − 2 4 1 −

400 83 119 183 43 3 3 3 3

600 146 218 322 480 4 3 3 6

800 154 228 333 458 6 5 3 4

1000 177 243 358 520 9 5 4 3

320

200 38 1 1 − 2 1 1 −

400 81 117 43 1 3 2 3 1

600 138 211 315 278 3 3 3 5

800 147 221 326 448 3 3 3 3

1000 169 233 346 512 4 3 3 3

The case of 10 points per wavelength is covered in Tables 11 and 12 and, again, we broadly see a picture akin to
the full 3D problem. In this setting the coarse grid approach provides good performance but the DtN method yields
lower iteration counts when sufficiently many eigenvectors are taken, again giving a very effective approach for this
problem.
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Table 11: Results using the one-level and coarse grid methods for the 2D COBRA cavity problem when using 10 points per wavelength, varying
the wave number k and the number of subdomains N.

One-level Coarse grid

k \ N 20 40 80 160 20 40 80 160

200 85 124 171 239 10 11 11 11

400 137 184 270 356 11 11 12 12

600 253 329 478 705 20 20 20 21

800 203 323 448 611 18 18 18 18

1000 217 316 470 656 19 19 19 19

Table 12: Results using the H-GenEO and DtN spectral coarse space methods for the 2D COBRA cavity problem when using 10 points per
wavelength, varying the wave number k, the number of subdomains N, and the number of eigenvectors used per subdomain ν.

H-GenEO DtN

ν k \ N 20 40 80 160 20 40 80 160

20

200 77 114 159 221 36 42 20 16

400 136 195 273 367 111 147 172 123

600 241 332 454 658 208 265 346 434

800 220 338 485 692 186 282 396 533

1000 242 363 561 787 202 293 419 608

40

200 75 108 153 220 10 7 7 5

400 137 187 260 354 66 46 21 13

600 236 320 439 632 152 167 128 51

800 221 349 470 673 159 236 270 182

1000 254 378 545 785 186 269 365 394

80

200 73 104 152 219 4 4 4 4

400 130 174 256 347 11 8 6 5

600 220 295 414 590 54 22 11 8

800 213 329 454 642 88 74 25 13

1000 256 365 528 727 141 147 80 22

160

200 71 104 148 180 2 3 4 3

400 121 165 246 342 5 4 4 3

600 210 282 396 577 9 5 5 3

800 203 308 435 601 13 8 6 4

1000 245 344 501 688 27 14 8 6

320

200 69 103 137 1 2 3 4 1

400 116 158 239 338 3 3 4 3

600 197 266 375 568 4 3 3 3

800 192 295 412 579 5 4 3 3

1000 225 324 464 653 6 5 4 4

6.3. The Overthrust problem
We will now assess our methods on the 3D 20 × 20 × 4.65 km SEG/EAGE Overthrust model, as introduced

and detailed in [44]. We use a homogeneous Dirichlet boundary condition at the surface and first-order absorbing
boundary conditions along the other five faces of the model. The source is located at (2.5, 2.5, 0.58) km and we
perform a simulation with P2 finite elements on tetrahedral meshes for 0.5 Hz, 1 Hz and 2 Hz frequencies. For higher
frequencies and large-scale computations on the Overthrust problem utilising the grid coarse space see [7] and [8].
The Overthrust model can be seen as the three-dimensional counterpart of the Marmousi model and presents the
difficulty of the latter (heterogeneities and high frequencies) at a larger scale since we have an extra space dimension.
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We will start by testing the different approaches when using 5 points per wavelength, varying the frequency f and
the number of subdomains N. Results with the one-level and coarse grid methods are shown in Table 13 while results
for the H-GenEO and DtN spectral coarse space methods, varying the number of eigenvectors used per subdomain
ν, are provided in Table 14. We see that in the case of low resolution the grid coarse space proves to be robust. In
this scenario the H-GenEO method fails to bring improvement over the one-level method. On the other hand, the DtN
approach performs well provided sufficiently many eigenvectors are included and can generally give an improvement
over the coarse grid method in terms of reducing the iteration counts.

(a) Velocity data (b) Solution

Figure 4: The Overthrust problem.

Table 13: Results using the one-level and coarse grid methods for the Overthrust problem when using 5 points per wavelength, varying the frequency
f and the number of subdomains N.

One-level (min. overlap) One-level (coarse overlap) Coarse grid

f \ N 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160

0.5 16 21 28 35 − 14 17 20 19 − 9 10 10 10 −

1 27 36 55 62 78 24 30 48 50 62 17 19 23 23 25

2 32 47 64 81 104 27 40 53 68 86 18 22 25 27 28

Table 14: Results using the H-GenEO and DtN spectral coarse space methods for the Overthrust problem when using 5 points per wavelength,
varying the frequency f , the number of subdomains N, and the number of eigenvectors used per subdomain ν.

H-GenEO (min. overlap) DtN (min. overlap) H-GenEO (coarse overlap) DtN (coarse overlap)

ν f \ N 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160

20
0.5 11 14 17 30 − 6 6 7 8 − 12 15 19 19 − 5 5 4 5 −

1 25 33 47 52 60 21 28 43 45 49 25 34 44 49 56 19 28 42 48 42

2 33 47 62 78 99 31 45 59 72 89 32 48 74 101 134 28 41 56 70 97

40
0.5 10 12 15 25 − 5 5 6 7 − 12 15 18 19 − 3 4 4 4 −

1 24 32 44 52 59 17 25 36 38 32 24 34 45 50 56 15 20 28 14 6

2 34 50 70 104 123 30 42 55 67 87 35 61 87 112 146 28 42 62 85 138

80
0.5 9 11 14 26 − 4 5 5 6 − 12 14 18 18 − 3 3 4 5 −

1 22 31 44 52 60 13 19 20 14 8 23 33 45 50 56 9 9 10 5 4

2 38 61 84 111 139 27 38 53 70 96 41 63 91 116 158 27 44 71 85 65

160
0.5 9 11 11 28 − 4 5 5 − − 12 14 17 19 − 4 3 4 − −

1 19 29 44 52 60 10 10 10 7 7 23 33 46 50 56 7 6 7 5 5

2 36 54 77 107 136 23 34 50 56 56 41 62 90 117 159 23 34 42 20 12
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We consider now the case of higher resolution, using 10 points per wavelength with results for smaller frequencies
being given in Tables 15 and 16. Here we see that all two-level methods can perform relatively well and both H-
GenEO and DtN can yield lower iteration counts than the coarse grid method without needing too many eigenvectors.
If we allow for many eigenvectors then the DtN method typically requires the fewest iteration, however, we also note
that for fewer eigenvectors the H-GenEO provides a greater reduction in iteration counts than DtN in the f = 1 Hz
case and, furthermore, relatively little is gained when adding additional eigenvectors.

Table 15: Results using the one-level and coarse grid methods for the Overthrust problem when using 10 points per wavelength, varying the
frequency f and the number of subdomains N.

One-level (min. overlap) One-level (coarse overlap) Coarse grid

f \ N 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160

0.5 19 25 33 39 47 16 21 27 30 36 12 13 14 15 16

1 31 45 61 75 95 26 39 51 62 78 18 24 25 27 27

Table 16: Results using the H-GenEO and DtN spectral coarse space methods for the Overthrust problem when using 10 points per wavelength,
varying the frequency f , the number of subdomains N, and the number of eigenvectors used per subdomain ν.

H-GenEO (min. overlap) DtN (min. overlap) H-GenEO (coarse overlap) DtN (coarse overlap)

ν f \ N 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160

20
0.5 8 9 10 11 12 8 7 7 7 7 7 8 10 19 27 7 5 5 5 5

1 24 29 34 30 17 23 31 40 44 45 22 30 42 51 64 21 30 38 45 49

40
0.5 8 9 9 11 12 6 6 6 6 6 7 8 9 18 26 4 4 4 4 4

1 17 18 19 13 14 20 25 29 31 26 19 23 32 44 63 18 25 31 38 43

80
0.5 8 8 9 10 12 5 5 5 6 5 7 8 9 18 26 4 3 4 4 4

1 12 11 12 11 13 15 18 22 23 15 14 14 21 37 60 15 19 26 24 13

160
0.5 7 8 9 10 11 4 5 5 5 7 7 7 8 17 26 3 4 4 4 5

1 10 10 10 11 12 11 13 14 17 6 11 12 16 30 57 10 13 12 6 5

Finally, we examine a higher frequency case of f = 2 Hz where the number of degrees of freedom is now
11,334,869 and, as such, we consider utilising a larger number of subdomains N. Results for the grid coarse space
are given in Table 17 and show again that the method performs well; for reference, we also report in parentheses the
average number of inner iterations required for solving the coarse problem. For the spectral coarse spaces, results
are given in Table 18 where we see a similar picture emerge as in the f = 1 Hz case. When fewer eigenvectors are
used, the H-GenEO approach can converge faster than the DtN method. When more eigenvectors are used, the DtN
approach becomes the method that converges fastest and can do so in fewer iterations than the grid coarse space;
nonetheless, the H-GenEO method also continues to improve this time and performs similarly to the grid coarse space
in terms of iteration counts. Note that the missing entries in Table 18, for the largest coarse space to be computed, are
due to fact that the coarse operator (having dimension 1280 × 320 and dense blocks of size 320) is costly to compute
and cannot be handled with current black-box direct solvers.

Table 17: Results using the one-level and coarse grid methods for the Overthrust problem when using 10 points per wavelength for f = 2 Hz,
varying the number of subdomains N. The number of degrees of freedom is 11,334,869.

One-level (min. overlap) One-level (coarse overlap) Coarse grid

f \ N 320 640 1280 320 640 1280 320 640 1280

2 149 185 226 125 156 189 24 (7) 24 (9) 23 (13)
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Table 18: Results using the H-GenEO and DtN spectral coarse space methods for the Overthrust problem when using 10 points per wavelength
for f = 2 Hz, varying the number of subdomains N and the number of eigenvectors used per subdomain ν. The number of degrees of freedom is
11,334,869.

H-GenEO (min. overlap) DtN (min. overlap) H-GenEO (coarse overlap) DtN (coarse overlap)

ν \ N 320 640 1280 320 640 1280 320 640 1280 320 640 1280

40 69 73 77 102 97 106 170 209 234 103 146 187

80 29 39 41 66 70 64 149 206 245 123 124 59

160 21 28 30 50 61 53 118 189 249 63 17 6

320 18 26 − 42 33 − 97 161 − 9 7 −

6.4. Discussion of numerical results

Numerical assessment of the three coarse spaces considered shows that, depending on the physical parameters
(low or high frequency) or on the resolution considered (low resolution at 5 points per wavelength or high resolution
at 10 points per wavelength), there is no systematic advantage of one method over another, as shown in the overview
in Table 19. The underlying problem characteristics (spatial heterogeneities, low or high frequency) can play a strong
role in the performance of each of these methods and each method has potential tuning parameters that can affect
their efficacy, such as the splitting parameter s for the grid coarse space (which is maintained throughout these tests at
its best value, namely 2, which gives the finest possible coarse space), or the number of local eigenvectors requested
for the spectral coarse spaces. The resolution, in turn, can be dictated by the fact that the linear solver is used in
the context of an inverse or a direct problem. Further, very often in geophysical computations, especially in full
waveform inversion (FWI), one needs to solve repeatedly a linear system with multiple right-hand sides. In these
situations, the additional precomputation required by the spectral coarse spaces becomes less of a burden compared
to the inner iterations required to solve the coarse problems when using the grid coarse space. Although apparently
more expensive as they require solving local eigenvalue problems, spectral methods are potentially very promising in
the context of inverse problems.

Nonetheless, we can provide some general observations from our numerical tests. The coarse grid approach is
overall fairly robust in terms of the outer iteration counts required and for high wave numbers, so long as enough
points per wavelength are used for discretisation. This method tended to be most favourable in the 10 points per
wavelength scenarios, which is considered to be too high a level of precision in large-scale geophysical computations
as it leads to a substantial, often prohibitive, number of degrees of freedom. The H-GenEO approach, while able
to give some positive results for the geophysical test cases at sufficient resolution, failed to be robust for the cavity
problems tested, suggesting it may only be a suitable solver method for certain types of problems. Nonetheless, in
some scenarios it provides a greater reduction in iteration counts compared to the DtN method when only a relatively
small number of eigenvectors are available. The DtN approach performed relatively well in our tests, arguably being
the most robust method overall, so long as sufficiently many eigenvectors were utilised and, in particular, tended to
be the favourable method in the 5 points per wavelength scenarios. Nonetheless, for the large 3D tests the method
started to struggle somewhat unless a large number of eigenvectors were computed, but in this case the approach
ultimately becomes rather memory demanding and it is challenging to deal with the coarse operator, which has large
dense blocks.
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Table 19: An overview of which coarse spaces perform well in the different problem scenarios tests. A 3 indicates that the method performs well,
with 33 indicating this method was most favourable in a particular instance (note that for the Overthrust problem it is difficult to say that any one
method is uniformly the most favourable in each case and so we omit this). A 7 indicates that a method provided relatively little to no gain over
the one-level method.

Coarse grid H-GenEO DtN

Problem d freq 5 ppwl 10 ppwl 5 ppwl 10 ppwl 5 ppwl 10 ppwl

Marmousi 2D
low 3 3 3 3 33 33

high 33 3 7 33 3 3

COBRA Cavity 2D
low 3 3 7 7 33 33

high 7 3 7 7 33 33

COBRA Cavity 3D
low 3 33 7 7 33 3

high 7 33 7 7 33 3

Overthrust 3D
low 3 3 7 3 3 3

high 3 3 7 3 3 3

In order to give an idea of the advantages and drawbacks of the coarse grid and spectral methods in terms of
computational time, we report timings for the setup and solution phases for each method for the Marmousi test case
with 10 points per wavelength in Table 20. The frequency is f = 20 Hz and the number of degrees of freedom is
7,813,665. Timings are reported for 40, 80, and 160 subdomains, with ν = 80 and ν = 160.

Table 20: Reported timings (in seconds) for the Marmousi problem when using 10 points per wavelength at a frequency of f = 20 Hz for several
choices of the number of subdomains N and number of eigenvectors used per subdomain ν. The number of degrees of freedom is 7,813,665. The
setup column for the one-level method corresponds to the assembly and factorisation of local matrices. The CS setup columns correspond to the
assembly of the necessary operators for the second level of each two-level method; for the spectral coarse spaces this includes the solution of the
local eigenvalue problems as well as the assembly and factorisation of the coarse grid matrix. The GMRES columns correspond to the solution
phase, with the number of iterations recalled in parenthesis.

One-level Coarse grid H-GenEO DtN

N ν setup GMRES CS setup GMRES CS setup GMRES CS setup GMRES

40
80

14.9s 113.6s (198) 1.8s 81.9s (48)
148.8s 43.0s (78) 123.8s 52.6s (93)

160 478.9s 23.6s (34) 377.7s 31.3s (47)

80
80

6.9s 86.2s (272) 0.8s 31.2s (49)
84.2s 14.4s (53) 61.2s 29.0s (100)

160 338.6s 10.2s (25) 189.8s 21.7s (56)

160
80

3.2s 72.7s (389) 0.4s 18.6s (49)
52.5s 7.0s (39) 33.8s 20.2s (107)

160 270.9s 7.1s (19) 124.5s 20.7s (59)

We see that the setup time of the one-level method, corresponding to the assembly and factorisation of local
matrices, decreases accordingly from 14.9s to 3.2s as the size of the subdomains shrinks. The setup time for the
coarse space of the coarse grid method follows a similar trend with much smaller timings, from 1.8s to 0.4s, as it
corresponds to the assembly and factorisation of the smaller local matrices of the problem defined on the coarse mesh.
The GMRES solution time of the one-level method shows poor scaling as the number of subdomains increases, going
from 113.6s to 72.7s, because the number of iterations increases from 198 to 389. In contrast, the number of iterations
of the coarse grid method is stable as N grows, and the solution time shows good scaling from 81.9s to 18.6s.

For this Marmousi test case, we see that the better spectral coarse space is given by the H-GenEO method: for
example, when ν = 160 the number of iterations goes from 34 to 19 as N grows from 40 to 160, whereas for the
DtN method it goes from 47 to 59. In terms of GMRES solution time, H-GenEO performs significantly better than
the coarse grid method thanks to the significant reduction in the number of iterations and shows decent scaling: from
23.6s to 7.1s when ν = 160. The DtN method performs more poorly and exhibits a worse scaling than the H-GenEO
method, primarily because of the increased number of iterations: solution time when ν = 160 goes from 31.3s to
20.7s. However, it performs better than (or, when N = 160, similar to) the coarse grid method, even though the
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number of iterations is higher. This can be explained by the relative cost of applying the coarse correction operator
Q for the two methods: as mentioned in Section 5, the coarse problem in the coarse grid method is solved iteratively
with inner GMRES iterations preconditioned by a one-level method, whereas in the spectral methods E−1 is applied
using its LU factorisation, which is cheaper at these coarse space sizes.

Note also that both spectral methods do not show any gain in solution time at N = 160 when ν goes from 80 to
160. This can be explained by the increased cost of applying E−1 as its size grows, relative to the cost of the rest of
the iteration (mainly applying the factorisation of the local matrices for the one-level preconditioner, which is cheaper
as N grows). That is why there is no decrease in the GMRES solution time even though the number of iterations is
nearly halved.

Even though the spectral methods (and especially the H-GenEO method) give good results in terms of number
of iterations and solution time, their main drawback is the setup cost of the coarse operator. Indeed, the reported
setup costs, covering the solution of the local eigenvalue problems and the assembly and factorisation of the coarse
grid matrix, are rather high, especially for large ν: ranging from 478.9s to 270.9s as N grows from 40 to 160 for the
H-GenEO method when ν = 160. This can be explained by the significant computational overhead of computing a
larger number of eigenvalues and eigenvectors of the local operators, which in practice is far from linear in the number
of requested eigenvectors: for example, when N = 160 we can see the total setup cost going from 52.5s to 270.9s for
the H-GenEO method when requesting 160 eigenvectors instead of 80. Interestingly, we can see that the solution of
the eigenvalue problems is faster for the DtN method than for the H-GenEO method for the same number of requested
eigenvectors, although the resulting coarse space is less efficient in terms of the number of iterations required.

Although the solution of the local eigenvalue problems is completely parallel and shows good scaling as the size
of the subdomains shrinks (for example, the setup cost of the H-GenEO method reduces from 148.8s to 52.5s as N
grows from 40 to 160 when ν = 80), the high setup cost of the spectral methods can appear prohibitive. However,
the setup cost could be leveraged when solving for multiple right-hand sides (for example when computing the radar
cross section of an object), or using deflation or recycling techniques when solving successive linear systems that are
close to each other.

Deriving full complexity models for our preconditioners is challenging since many parameters must be taken
account, such as the cost of matrix–vector products, exact subdomain factorisations, eigensolves, and so on. Interested
readers are referred to [45] for some bounds on the memory and operation costs of numerical factorisation and forward
plus backward substitutions of MUMPS for Helmholtz equation. These mostly exhibit that the cost of factorising and
applying the preconditioner will decrease superlinearly for a fixed-size global problem and an increasing number of
subdomains, since the latter will become smaller and smaller. However, this also makes the coarse operator grow
in size. A multilevel extension thus sounds very appealing in theory. While there are tools available for symmetric
definite problems [46], they do not trivially translate to the Helmholtz equation. For eigenanalysis, we rely on the
Krylov–Schur method [47]. There may be more appropriate mathematical tools for computing a large number of
eigenvectors, but this remains an open problem. In terms of communication between levels for spectral methods, our
implementation uses optimised MPI routines such as MPI Gather and MPI Scatter, implementation details may be
found in [28], for which there are multiple performance models [48].

7. Conclusions

We have presented in this work a comparison of several two-level overlapping Schwarz methods on a number of
challenging problems of interest from the literature for the Helmholtz problem. Our results illustrate that each of these
methods have pros and cons depending on the problem at hand and the particular numerical setting. In particular, no
method establishes itself as the superior choice within a wide range of settings, though in particular cases we observe
that a certain approach can be more favourable.

Note that our tests on these well-known benchmark problems can be further built upon and the conclusions refined.
We have not extensively measured timings or considered optimised implementations of the eigenvalue solvers and, in
the case of the grid coarse space, the coarse grid problem is the finest possible which further requires another domain
decomposition method to solve it as an inner iteration. This study is a first step in the assessment of the state-of-
the-art for two-level solvers aimed at time-harmonic wave propagation problems. Additional studies can be directed
towards both the larger numerical context (taking into account higher approximation order, for example) and further
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applicative contexts (the solution of inverse problems in FWI, or the time-harmonic model of elastic waves which
is at the same time more complex and more physically accurate). We remark that this is predominantly a numerical
study and, because of the mathematical difficulty of the models involved, a theoretical insight appears to remain out
of reach, with a particular challenge being to cover the complexity of all practical situations of interest. Nonetheless,
a general conclusion to be drawn is that coarse spaces are clearly a key feature in achieving scalability and robustness
and, further, that the heuristics required for time-harmonic wave propagation problems are necessarily very different
from the established methodology in the case of symmetric and positive definite problems.
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