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Abstract

Solving time-harmonic wave propagation problems in the frequency domain
and within heterogeneous media brings many mathematical and computa-
tional challenges, especially in the high frequency regime. We will focus here
on computational challenges and try to identify the best algorithm and nu-
merical strategy for a few well-known benchmark cases arising in applications.
The aim is to cover, through numerical experimentation and consideration
of the best implementation strategies, the main two-level domain decompo-
sition methods developed in recent years for the Helmholtz equation. The
theory for these methods is either out of reach with standard mathematical
tools or does not cover all cases of practical interest. More precisely, we will
focus on the comparison of three coarse spaces that yield two-level methods:
the grid coarse space, DtN coarse space, and GenEO coarse space. We will
show that they display different pros and cons, and properties depending on
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the problem and particular numerical setting.
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1. Introduction

This work is motivated by the computational challenges that arise in
frequency domain simulations of wave propagation and scattering problems in
heterogeneous media. Such problems appear in a broad range of engineering
applications, including acoustics, electromagnetics, and seismic inversion.

The discretisation of models describing frequency domain wave problems
using finite element methodology typically results in large, indefinite, and ill-
conditioned linear systems. These linear systems are difficult to solve using
standard methods, particularly for high frequencies and in the presence of
complex heterogeneities. In order to maintain accuracy, the number of grid
points must grow as a function of the frequency in such a way that, for
high frequency problems, the size of the linear systems to be solved becomes
prohibitive for direct methods. In such a regime, carefully designed iterative
methods are required. Here, we consider a two-level domain decomposition
approach for the robust parallel solution of the linear systems.

To model the wave problem, we utilise the Helmholtz equation on a do-
main Ω ⊂ Rd, d = 2, 3, for the field u(x) : Ω→ C given by

−∆u− k2u = f in Ω, (1a)

C(u) = 0 on ∂Ω, (1b)

where C incorporates some appropriate boundary conditions, k(x) > 0 is the
wave number, and f(x) is a suitable forcing function. A key parameter is the
wave number k, which relates the angular frequency ω and the wave speed
c as k = ω/c. The wave speed c(x) depends on the position x in the media
for heterogeneous problems. Since k is proportional to the frequency, the
high frequency regime constitutes the case of large k and presents particular
challenges for designing effective solvers.

The difficulty in designing a good solver for the Helmholtz equation is
shown very clearly in the review papers [1, 2] where one can see that there are
no straightforward extensions to state-of-the-art methods for symmetric pos-
itive definite problems that tackle the indefinite or non-self adjoint problem
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well. When the problems are large, however,—the case when one discretises
the Helmholtz equation accurately for high wave numbers—domain decom-
position methods are a natural choice [3]. Nevertheless, despite recent efforts
and in view of the latest results obtained both at the theoretical [4, 5, 6]
or numerical level [7, 8, 9], there is no established method outperforming all
others in the case of the Helmholtz problem.

Domain decomposition methods are well suited to solve large systems of
equations arising from discretisation of PDEs and are among the best-known
strategies for many types of problem. However, classical versions fail to be
effective and may diverge for wave propagation problems. Two key con-
stituent parts require a more careful treatment: the transmission conditions
used to transfer information between adjoining subdomains and the coarse
space that allows for capturing of global behaviour and passing information
between subdomains globally. In this work we consider overlapping Schwarz
methods.

The use of different transmission conditions at the interfaces (artificial
boundaries arising from the decomposition into subdomains) has been ex-
tensively studied over the past two decades and various works [10, 11, 12]
show that these conditions can improve the convergence of Schwarz methods
and preconditioners. However, good transmission conditions are not suffi-
cient to ensure a robust behaviour with respect to heterogeneities in the
problem to solve or when the number of subdomains increases. To tackle
these difficulties, we need coarse information that is cheap to compute and
immediately available to all subdomains.

The focus in this work is on appropriate coarse spaces. A coarse space is
typically required to provide scalability with respect to the number of sub-
domains used. More recently, however, coarse spaces have been designed
to provide robustness to model parameters, especially for large contrasts in
complex heterogeneous problems. For example, the GenEO (Generalised
Eigenproblems in the Overlap) coarse space has been successfully employed
for the robust solution of highly heterogeneous elliptic problems [13, 14]. For
the Helmholtz equation, finding a suitable coarse space is not an easy task
and, being an indefinite problem, choosing a larger coarse space need not im-
prove performance [15]. In designing coarse spaces for Helmholtz problems,
we might also wish to reduce the dependence of the domain decomposition
method on the wave number k. A natural idea to capture global behaviour
is to use plane waves as a basis for the coarse space but it is not clear that
this is suitable for heterogeneous media. Plane waves were first used within
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the multigrid approach [16] before later being used to build coarse spaces for
domain decomposition methods. We can cite the example of FETI(-DP)-H
methods [17, 18] but they have also been used in other domain decomposi-
tion methods [19]. Nonetheless, plane waves have mainly been employed for
homogeneous problems and do not have a straightforward extension to the
heterogeneous case.

Even if coarse space information needs to be global and available to all
domains, coarse spaces can be built locally and based on local functions.
Spectral coarse spaces use basis vectors deriving from the solution of local
eigenvalue problems associated with appropriate operators. Within the con-
text of the Helmholtz equation, this is exemplified in the DtN coarse space
[20]. Here, eigenproblems are formulated on subdomain interfaces based on
a Dirichlet-to-Neumann (DtN) map, extending an approach for elliptic prob-
lems [21, 22]. In this work we consider two spectral coarse spaces, the DtN
approach and a GenEO-type approach suited to the Helmholtz problem. We
will also consider a grid coarse space approach which utilises the addition of
absorption in the problem.

Our consideration of coarse spaces for Helmholtz problems in the high
frequency regime provide the following main contributions of the paper:

• We bring together and outline recent work on developing coarse spaces
that can be utilised to enhance domain decomposition methods for the
Helmholtz problem in heterogeneous media. These approaches are then
implemented in a common software, namely FreeFEM.

• We discuss implementation details and practical aspects of the methods
as well as contrasting the benefits and drawbacks.

• We provide extensive numerical results on several well-known bench-
mark problems in 2D and 3D and compare the different approaches
within a variety of settings.

• Based on the results of our numerical tests and our understanding of the
implementation aspects involved, we provide an outlook on scenarios
where certain methods may be more, or less, favourable.

The outline for the remainder of this work is as follows. In Section 2
we detail the boundary value problem considered, i.e., the heterogeneous
Helmholtz problem and its discretisation by finite elements. In Section 3 we
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introduce the basic principles of domain decomposition methods and present
two versions of the one-level method, namely RAS and ORAS. A second
level, or coarse space, is usually added by deflation. The three different
coarse space strategies, namely the grid coarse space, DtN coarse space, and
GenEO coarse space, are introduced in Section 4. Parallel implementation
details of these methods are given in Section 5 and an extensive numerical
study is provided in Section 6. Conclusions are then given in Section 7.

2. The heterogeneous Helmholtz problem

Our model problem consists of solving the interior Helmholtz equation
(1). To be concrete, we let Ω is a bounded polygonal domain and consider
specific boundary conditions on Γ = ∂Ω. We suppose Γ is partitioned into a
disjoint union Γ = ΓD ∪ ΓN ∪ ΓR where Dirichlet conditions are imposed on
ΓD, Neumann conditions on ΓN and a Robin condition on ΓR. Namely, we
wish to solve

−∆u− k2u = f in Ω, (2a)

u = uΓD
on ΓD, (2b)

∂u

∂n
= 0 on ΓN , (2c)

∂u

∂n
+ iku = 0 on ΓR, (2d)

where uΓD
is known. The Robin condition in (2d) is a standard first order

approximation to the far field Sommerfeld radiation condition and, in essence,
enables appropriate wave behaviour to be described in a bounded domain,
allowing for incoming or outgoing waves along ΩR. We do not require that
a problem instance includes all types of boundaries but note that if ΓR = ∅
then the problem will be ill-posed for certain choices of k. Furthermore, when
ΓR 6= ∅ the resulting linear systems, while being complex symmetric, are
not Hermitian and this will be important in our choice of iterative method.
However, classical iterative methods on their own are not enough to be able
to solve Helmholtz problems effectively [1]. This is further amplified when
applied to highly heterogeneous problems.

The heterogeneity in our model is present in the wave number k(x) > 0,
being given by ratio of the angular frequency ω and the wave speed c(x) as
k = ω/c. We allow k to have jumps across different media and otherwise
vary within the domain Ω such that k ∈ L∞(Ω).
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To discretise (2), we use the finite element method. In order to prescribe
the weak formulation, we let V = {u ∈ H1(Ω) : u = uΓD

on ΓD} and, in a
similar fashion, V0 = {u ∈ H1(Ω) : u = 0 on ΓD}. The weak form of the
problem is then to find u ∈ V such that

a(u, v) = F (v) ∀ v ∈ V0, (3)

where

a(u, v) =

∫
Ω

(
∇u · ∇v̄ − k2uv̄

)
dx +

∫
ΓR

ikuv̄ ds, (4a)

and

F (v) =

∫
Ω

fv̄ dx, (4b)

are the bilinear and linear parts, respectively. To discretise, we consider
piecewise polynomial finite element approximation on a simplicial mesh T h
of Ω which has a characteristic element diameter h. Denoting the associated
trial space V h ⊂ V and test space V h

0 ⊂ V0, the discrete problem is to find
uh ∈ V h such that

a(uh, vh) = F (vh) ∀ vh ∈ V h
0 . (5)

Let {φj}nj=1 be the nodal basis for V0 and {φj}n+d
j=n+1 be the nodal basis for

the Dirichlet boundary ΓD, for which T h is assumed to conform. Then we
can rewrite (5) as a (complex) linear system

Au = f , (6)

where the coefficient matrix A ∈ Cn×n and right-hand side vector f ∈ Cn are
given by Ai,j = a(φj, φi) and fi = F (φi) −

∑n+d
l=n+1 a(φl, φi)ūl−n respectively,

for i, j ∈ 1, 2, . . . , n. Here ūj, for j = 1, 2, . . . , d, are the known Dirichlet
values along ΓD corresponding to uΓD

. We then seek the solution u ∈ Cn of
the (in general) complex symmetric indefinite system (6) to give

uh(x) =
n∑
j=1

ujφj(x) +
n+d∑
l=n+1

ūl−nφl(x). (7)
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The wave nature of solutions to the Helmholtz equation requires a suffi-
ciently fine mesh in order to obtain a good approximation to the true solution
and this should be kept in mind when considering the choice of discretisation
of the problem. In terms of increasing the wave number k, if one is to main-
tain the same level of accuracy of discrete solutions then the number of grid
points must increase faster than k increases, due to the pollution effect [23].
This growth depends on the discretisation chosen. For instance, in the case
of using a piecewise linear (P1) finite element approximation on simplicial
elements of diameter h, then k3h2 must be bounded, requiring h to shrink as
O(k−3/2). For piecewise quadratic (P2) finite elements on simplicial meshes
the criteria relaxes to require that h decreases as O(k−5/4). For higher order
finite elements, the requirement becomes less stringent but the interpola-
tion properties when using such approximation spaces ultimately begin to
degrade.

Due to these restrictions and the desire for faster simulation times, it
is common that practitioners simply consider a fixed number of points per
wavelength instead, resulting in h decreasing as O(k−1). Given a fixed num-
ber, nppwl, of points per wavelength we ensure that nppwlh ≈ λ, where the
wavelength is given by λ = 2πk−1. A prevalent engineering practice is to
use 10 points per wavelength and in some large real-world problems of inter-
est, such as in imaging science, it may be adequate or necessary to insist on
less resolution. In light of this, we consider both 5 and 10 points per wave-
length scenarios and make use of standard P2 finite element approximation
throughout this work.

3. Domain decomposition

We now give details of the overlapping domain decomposition approach
that we will utilise. This will be applied as a preconditioner rather than a
stand-alone iterative method. Our approach is based on a two-level version
of the optimised restricted additive Schwarz (ORAS) method. To provide a
domain decomposition, we first partition Ω into non-overlapping subdomains
{Ω′s}

N
s=1 which are resolved by the mesh T h. A layer of adjoining mesh

elements is then added to provide overlapping subdomains {Ωs}Ns=1 through
the extension

Ωs = Int

 ⋃
supp(φj)∩Ω′s 6=∅

supp(φj)

 , (8)
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where Int(·) denotes the interior of a domain and supp(·) the support of
a function. Note that more than one layer of elements can be added in a
recursive manner if subdomains with larger overlap are required.

Now that we have a domain decomposition, we can define the restriction
to a given subdomain Ωs as an operator from V h into V h(Ωs) =

{
v|Ωs : v ∈ V h

}
,

namely Rs : V h → V h(Ωs) where Rsv = v|Ωs . Let Rs ∈ Rns×n be the matrix
form of Rs where ns is the number of degrees of freedom in Ωs. Since our
subdomains overlap, we also make use of a partition of unity having matrix
form Ds ∈ Rns×ns which is diagonal and satisfies

∑N
s=1R

T
sDsRs = I; this

removes “double counting” in the additive Schwarz method. Note that RT
s

acts as an extension by zero outside of Ωs.
We can now define the restricted additive Schwarz (RAS) preconditioner

M−1
RAS =

N∑
s=1

RT
sDsA

−1
s Rs, (9)

where As = RsAR
T
s is the local Dirichlet matrix on Ωs, that is, Dirichlet

conditions are implicitly assumed on ∂Ωs \ ∂Ω. This corresponds to using
Dirichlet transmission conditions in the additive Schwarz method. Note that
each contribution from the sum in (9) can be computed locally in parallel.

The RAS approach, using the classical choice of Dirichlet transmission
conditions, applied as a stand-alone stationary iterative method need not
converge since frequencies in the error smaller than the wave number k are
not diminished [3]. When used as a preconditioner, the iterative solver used
will typically suffer from slow convergence and may stagnate. Further, the
local Dirichlet problems involving As are not necessarily well-posed as k2 may
be an eigenvalue of the corresponding Laplace problem, in which case As is
singular. While methods to handle such singular systems can be applied,
a different approach, which provides a convergent stand-alone method, is
to change the Dirichlet transmission conditions to Robin conditions. This
results in the so-called optimised restricted additive Schwarz (ORAS) method
given by

M−1
ORAS =

N∑
s=1

RT
sDsÂ

−1
s Rs, (10)
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where now Âs is the discretisation of the local Robin problem

−∆ws − k2ws = f in Ωs, (11a)

C(ws) = 0 on ∂Ωs ∩ ∂Ω, (11b)

∂ws
∂ns

+ ikws = 0 on ∂Ωs \ ∂Ω, (11c)

with C representing the underlying problem boundary conditions on ∂Ω. The
local problem (11) will always have a unique solution ws. We note that the
use of Robin conditions is not the only remedial choice. Optimal transmission
conditions can also be studied and are given using a Dirichlet-to-Neumann
(DtN) map [3]. However, this results in requiring pseudodifferential operators
and is somewhat less practical without further approximation. We do not
follow the pursuit of more advanced transmission conditions in this work.

The above approaches, RAS and ORAS, are one-level methods: they rely
only on local subdomain solves and the local transmission of data. Such
domain decomposition methods do not scale as we increase the number of
subdomains used; that is, their convergence behaviour depends on N . To
achieve robustness with respect to N , a coarse space is typically included,
giving a two-level method. The coarse space is represented by a collection
of column vectors Z, having full column rank. A coarse space operator E =
Z†AZ is constructed as well as the coarse correction operator Q = ZE−1Z†;
note the similarity to terms in (9). The inclusion of the coarse space can be
done in a number of ways, the simplest being additively as

M−1
2-level = M−1

1-level +Q, (12)

where M−1
1-level is the underlying one-level preconditioner used, such as (9) or

(10). Hybrid approaches are often more effective and we shall consider the
adapted deflation technique

M−1
2-level = M−1

1-levelP +Q = M−1
1-level(I − AQ) +Q, (13)

where P = I − AQ is a projection. The most crucial choice is that of Z,
which provides the coarse space. This is what we shall now consider.

4. Coarse spaces

The construction of a suitable coarse space can be achieved in different
ways. One natural approach is to utilise a coarse grid in order to approximate
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the global behaviour. Often, the slow convergence in the one-level method
can be characterised by “slow modes” which should be incorporated into the
coarse space. For instance, in the Poisson problem slow modes correspond to
constant functions in the kernel of the Laplace operator in each subdomain
and these are used to give the Nicolaides coarse space. On the other hand,
for homogeneous elasticity problems the slow modes are rigid body motions.

The notion that certain modes are responsible for slow convergence and
must be incorporated into the coarse space can be made more general, in
particular in the framework of spectral coarse spaces. Such coarse spaces use
spectral information from an appropriate eigenproblem to identify relevant
modes that should feature in the coarse space. Before considering spectral
coarse spaces we first outline the grid coarse space.

Remark 1 (Notation). Following on from Section 3, for a variational prob-
lem giving rise to a system matrix B we denote by Bs the corresponding local
Dirichlet matrix on Ωs. Where Robin conditions are used on internal subdo-
main interfaces (the artificial boundaries) the local problem matrix is denoted

by B̂s. Meanwhile, when Neumann conditions are used on such interfaces,
the local matrix is denoted by B̃s.

4.1. The grid coarse space method

The grid coarse space was first introduced in [24] for the absorptive
Helmholtz problem and extended to incorporate impedance (or Robin) con-
ditions in [5]. In this case the one-level method is based on the following
formula

M−1
1,ε =

N∑
s=1

RT
sDsÂ

−1
s,εRs. (14)

where matrices Âs,ε stem from the discretisation of the following local Robin
problems with absorption (given by the parameter ε 6= 0)

−∆us − (k2 + iε)us = f in Ωs,

C(us) = 0 on ∂Ωs ∩ ∂Ω,

∂us
∂ns

+ ikus = 0 on ∂Ωs \ ∂Ω.
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In order to achieve weak dependence on the wave number k and number of
subdomains N , the two-level preconditioner can be written in a generic way
as follows

M−1
2,ε = M−1

1,εP + ZE−1Z†, (15)

where M−1
1,ε is the one-level preconditioner (14), Z is a rectangular matrix

with full column rank, E = Z†ÂεZ is the so-called coarse grid matrix, Q =
ZE−1Z† is the so-called coarse grid correction matrix, and P = I − AεQ.

Perhaps the most natural coarse space is the one based on a coarser
mesh, which we call the “grid coarse space”. Let us consider T Hcoarse , a
simplicial mesh of Ω with mesh diameter Hcoarse, and V Hcoarse ⊂ V , the
corresponding finite element space. Let I0 : V Hcoarse → V h be the nodal
interpolation operator and define Z as the corresponding matrix. Then, in
this case, E = Z†ÂεZ is really the stiffness matrix of the problem (with
absorption) discretised on the coarse mesh. Related preconditioners without
absorption are used in [19].

4.2. The DtN coarse space

The Dirichlet-to-Neumann (DtN) coarse space [21, 20] is based on solving
local eigenvalue problems on subdomain boundaries related to the DtN map.
To define this map for the Helmholtz problem we first require the Helmholtz
extension operator from the boundary of a subdomain Ωs.

Let Γs = ∂Ωs \ ∂Ω and suppose we have Dirichlet data vΓs on Γs, then
the Helmholtz extension v in Ωs is defined as the solution of

−∆v − k2v = 0 in Ωs, (16a)

v = vΓs on Γs, (16b)

C(v) = 0 on ∂Ωs ∩ ∂Ω, (16c)

where C(v) = 0 represents the original problem boundary conditions, as in
(1b). The DtN map takes in the Dirichlet data vΓs on Γs and gives as output
the corresponding Neumann data, that is

DtNΩs(vΓs) =
∂v

∂ns

∣∣∣∣
Γs

(17)

where v is the Helmholtz extension defined by (16).
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We now seek eigenfunctions of the DtN map locally on each subdomain
Ωs, given by solving

DtNΩs(uΓs) = λuΓs (18)

for eigenfunctions uΓs and eigenvalues λ ∈ C. To provide functions to go
into the coarse space, we take the Helmholtz extension of uΓs in Ωs and then
extend by zero into the whole domain Ω using the partition of unity.

To formulate the discrete problem, we require the coefficient matrices Ãs
corresponding to local Neumann problems on Ωs with boundary conditions
C = 0 on ∂Ωs ∩ ∂Ω, defined analogously to that of the local Robin problems
in (11). Further, we need to distinguish between degrees of freedom on the
boundary Γs and the interior of the subdomain Ωs, as such we let Γs and Is
be the set of indices on the boundary and interior respectively. We also let

MΓs =

(∫
Γs

φjφi

)
i,j∈Γs

(19)

denote the mass matrix on the subdomain interface. Using standard block
notation to denote submatrices of As and Ãs the discrete DtN eigenproblem
is (

ÃΓs,Γs − AΓs,IsA
−1
Is,Is

AIs,Γs

)
uΓs = λMΓsuΓs . (20)

The Helmholtz extension of uΓs to degrees of freedom in Is is then given
by uIs = −A−1

Is,Is
AIs,ΓsuΓs . Letting us denote the Helmholtz extension, the

corresponding vector which enters the coarse space Z is RT
sDsus. For further

details and motivation behind the DtN eigenproblems see [20].
It remains to determine which eigenfunctions of (20) should go on to

be included in the coarse space. Several selection criteria were investigated
in [20] and it was clear that the best choice was to select eigenvectors cor-
responding to eigenvalues with the smallest real part. That is, we use a
threshold on the abscissa η = Re(λ) given by

η < ηmax, (21)

where ηmax depends on ks = maxx∈Ωs k(x). In particular, the choice ηmax = ks
is advocated in [20]. Note that for larger ηmax more eigenfunctions are in-
cluded in the coarse space, increasing its size and the associated computa-
tional cost. Nonetheless, it was recently showed that taking a slightly larger
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threshold ηmax = k
4/3
s can be beneficial in certain cases in order to gain

robustness to the wave number [25]. However, this only occurs for the ho-
mogeneous problem with sufficiently uniform subdomains. Since it is not
necessarily known in advance how many eigenvalues are below the thresh-
old and in order to make a fair comparison in our numerical tests, we will
consider using a fixed number of eigenvectors per subdomain.

4.3. The GenEO coarse space

The GenEO (Generalised Eigenproblems in the Overlap) coarse space was
derived in [13] to provide a rigorously robust approach for symmetric positive
definite problems even in the presence of heterogeneities. The fundamental
generalised eigenproblems on Ωs at the variational level are given by

aΩs(u, v) = λaΩ◦s (Ξs(u),Ξs(v)) ∀ v ∈ V (Ωs), (22)

where Ξs represents the action of the partition of unity on Ωs and Ω◦s is
the overlapping zone, that is the part of Ωs which overlaps with any other
subdomain. Here aD(·, ·) stems from the underlying variational problem on
the domain D, in particular with problem boundary conditions on ∂Ω and
natural (Neumann) conditions on parts of ∂D internal to Ω. The particular
form of eigenproblem in (22) arises naturally in the analysis of [13]. We also
note that (22) possesses infinite eigenvalues when there exists u 6= 0 such that
aΩ◦s (Ξs(u),Ξs(v)) = 0 ∀ v ∈ V (Ωs) but aΩs(u, v) 6= 0 for some v ∈ V (Ωs), for
example when u is supported only outside Ω◦s.

The discrete form of the eigenproblem (22) is

Ãsu = λDsÃ
◦
sDsu (23)

where Ã◦s is the (Neumann) matrix built from assembling only over elements
in the overlapping zone Ω◦s. The eigenfunctions selected to enter the coarse
space are the low frequency modes, that is those corresponding to the smallest
eigenvalues. Typically, either a fixed number of eigenfunctions are taken per
subdomain or a threshold λ < λmax on the corresponding eigenvalues is used,
where λmax can be chosen based on problem parameters to achieve a specified
condition number of the preconditioned system; see [13].

The precise formulation of the eigenproblem and use of the overlapping
zone is somewhat flexible. In particular, the overlapping zone can be replaced
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with the whole subdomain, as in [14] which utilises an eigenproblem of the
form

Ãsu = λDsAsDsu. (24)

It is this form of GenEO that we shall build upon shortly. We note that two
separate GenEO eigenproblems can also be formulated to provide bounds on
both ends of the preconditioned spectrum, as is found when using a symmet-
ric ORAS approach in [14]. This flexibility and robustness of GenEO-type
methods has yet to be fully explored, especially for problems which are not
symmetric positive definite where current theory breaks down. We now con-
sider the utility of using GenEO as basis for constructing a coarse space for
the heterogeneous Helmholtz problem.

4.4. A GenEO-type coarse space for the Helmholtz equation
In pursuing a GenEO approach for the Helmholtz equation we must first

note the matrices Ãs and As, now stemming from the bilinear form (4a),
are no longer symmetric positive definite. As such, eigenvalues λ of the
eigenproblem (24) are no longer real and positive (or infinite). As a threshold
criterion, as with the DtN approach, we can consider the abscissa η = Re(λ)
instead and seek eigenfunctions corresponding to η < ηmax. Further, since
the theory breaks down without the symmetric positive definite assumption,
it is no longer clear that (24) provides appropriate eigenvectors for the coarse
space. Indeed, applying out of the box the GenEO method using (24) fails
to provide a satisfactory method.

Since GenEO is designed for positive definite problems, a natural proposal
is to use a nearby positive definite problem in the formulation of the eigen-
problem, namely a Laplace problem, that is setting k = 0 for the purpose of
constructing the coarse space. Let Ls be local Dirichlet matrix corresponding
to the discrete Laplacian and L̃s the equivalent Neumann matrix on Ωs, then

L̃su = λDsLsDsu. (25)

has positive real eigenvalues. While this approach can perform reasonably
well when the wave number k is small, the behaviour as k grows becomes
increasingly poor, as might be expected given the coarse space is independent
of k.

To incorporate k, we instead link the underlying Helmholtz problem to the
positive definite Laplace problem to formulate a GenEO-type eigenproblem

Ãsu = λDsLsDsu. (26)
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Eigenvalues of (26) are now, in general, complex (though we note they pri-
marily appear to cluster close to the real line) and so we suggest to threshold
based on the abscissa η < ηmax. We call this GenEO-type approach for the
Helmholtz problem “H-GenEO”. Some initial exploration of this method can
be found in [26], where the approach is seen to perform well for a 2D wave-
guide problem and provide robustness to heterogeneity as well as to the wave
number k, albeit requiring a comparatively large coarse space. Again, in our
numerical experiments we take a fixed number of eigenvectors and vary this
quantity, aiming to give a relatively fair comparison of the spectral coarse
space methods.

5. Implementation details

Numerical results within this paper have been obtained using FreeFEM [27].
More precisely, ffddm—a light-weight layer in FreeFEM domain specific lan-
guage that generates all domain decomposition data structures—was used
on top of HPDDM [28], which handles the underlying computations such as
matrix–vector products or preconditioner applications. When it comes to
spectral two-level methods, as depicted in the previous Sections 4.2 to 4.4,
the bulk of the work comes from the local eigensolves, see, e.g., eqs. (20), (23)
and (26). These are performed concurrently in each subdomain, using solvers
such as ARPACK [29] or SLEPc [30]. Then, the construction of the alge-
braic Galerkin operator Q introduced in Section 3 is performed in HPDDM.
In order to deal efficiently with both large numbers of subdomains and large
numbers of local eigenvectors, the assembly and exact LU factorization of
Q is performed on a subset of processes from the global communicator. We
use MUMPS [31] both as a subdomain solver and a coarse operator solver in
our experiments. Again, we refer interested readers to [28] for more details
about this subject.

For the grid coarse space method from Section 4.1, two meshes of the
same domain must be considered simultaneously. First a coarse one, see
an example fig. 1a, and then a fine one, see examples figs. 1b and 1c. We
generate fine meshes using a uniform refinement in which edges of all triangles
or tetrahedra are divided uniformly in s. In the aforementioned example,
s = 2. Note that if one wants nppwlh ≈ λ on the fine grid, on which the
original algebraic system of equations eq. (6) stems from, then the coarse
mesh has to satisfy Hcoarse = h

s
. When it comes to the underlying domain

decomposition preconditioners, two options will be considered next. One
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where both levels of overlap on fine and coarse grids are minimal, i.e. 1,
see fig. 1b, and another where the level of overlap on the coarse grid is
minimal, i.e. 1, and where the level of overlap on the fine grid is s, see fig. 1c.
In the latter case, note that subdomains on the fine grid are merely uniformly
refined subdomains of the coarse grid. While the setup cost of such a two-level
preconditioner is much lower than for a spectral method as described in the
previous paragraph, applying it to a vector, for example in a Krylov method,
is usually costlier. Indeed, the coarse problem is in this case often solved
iteratively, instead of using an exact factorization of the coarse operator.
This outer–inner strategy, which also makes the use of flexible methods such
as FGMRES [32] mandatory, may not perform very well prior to some tuning
of the inner (coarse) solver.

In the numerical experiments presented in this paper, the inner coarse
problem in the grid coarse space method is defined with a splitting level
s = 2 and is solved approximately with GMRES preconditioned by a one-
level method, with a tolerance of 0.1. Additionally, in the spirit of “shifted
Laplacian preconditioning” (see [33, 34]), the coarse problem is defined with
added absorption in the equation. This improves the convergence of the one-
level method, which then requires fewer iterations to reach the prescribed
inner tolerance. Two-level domain decomposition preconditioners with added
absorption have been proposed in the literature for the Helmholtz [35] and
Maxwell [36] equations. The amount of added absorption needs to be chosen
carefully: if the amount of added absorption is too small, there is no gain
in the convergence of the inner coarse problem. On the other hand, if the
amount is too large, the coarse problem becomes a bad approximation of the
original problem (without absorption), and the number of outer iterations
increases. We choose the additional imaginary term to be proportional to
the wave number k as a compromise.

We conclude this section by mentioning that all the spectral precondition-
ers may be used in PETSc [37] through the PCHPDDM preconditioner [38].
When it comes to the grid coarse space method, we have a custom imple-
mentation in HPDDM that handles systems with multiple right-hand sides,
which are encountered frequently in wave propagation phenomena [39, 40, 7].
PCMG, the PETSc machinery for geometric multigrid, does not handle such
systems as of version 3.14.1.
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(a) Coarse mesh

(b) Refined mesh with minimal
overlap

(c) Refined mesh with coarse over-
lap

Figure 1: Different overlap definitions (bottom) for a uniformly refined simple 2D coarse
mesh (top).

6. Comparative numerical studies

In this section we compare the domain decomposition preconditioners for
several challenging heterogeneous test problems. We include problems in
both 2D and 3D and vary different characteristics of the problem to under-
stand how they can affect performance. In particular, we are interested in the
behaviour for larger wave numbers (or equivalently larger frequencies) and
for an increasing number of subdomains within the domain decomposition.
We will also consider discretisations with differing number of points per wave-
length and will see how this can affect performance of the preconditioners.
For the approaches that use a spectral coarse space, we further investigate
the choice of how many eigenvectors should be taken per subdomain.

In the results that follow, a tabulated value of − signifies that the par-
ticular test instance did not run, typically this is for the smallest problem
when trying to solve on too many subdomains. When the maximum number
of iterations is reached before convergence, we denote this by ×. Depending
on the test problem, the maximum number of iterations is set at either 500
or 1000.
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6.1. The Marmousi problem

The Marmousi problem, see [41], has become a benchmark geophysics
test case for the assessment of numerical methods and solvers when used in
a direct or inverse problem context. It features a 2D rectangular domain
with velocity data modelling a heterogeneous subsurface. We utilise this
as the wave speed within our Helmholtz model with a point source placed
close to the surface; see the example solution in Figure 2. The problem is
posed on the domain (0, 9.2) × (−3, 0) with homogeneous Dirichlet condi-
tions imposed on the top (surface) boundary and Robin conditions on the
remaining (subsurface) boundaries, the latter being artificial boundaries set
for computational purposes.

Figure 2: The real part of the solution to the Marmousi problem at a frequency of 20 Hz.

The difficulty of this test case stems both from the heterogeneous nature
of the problem but also from the presence of a substantial number of wave-
lengths and for this reason, the problem is considered to be high-frequency.
Therefore, it is important to have a sufficiently accurate discretisation, keep-
ing in mind that for inverse problems the accuracy requirements are different
(usually 5 points per wavelength) and weaker than in the case of only solving
the forward problem (in common engineering practice, we use 10 points per
wavelength).

We first consider discretisation with 5 points per wavelength. In Table 1
we show results for the one-level method with minimal overlap and also with
minimal overlap from the coarse grid (twice the overlap—see Figure 1) as
references to compare to. Further, Table 1 gives results for the two-level
coarse grid approach with minimal overlap from the coarse grid. We see
that both cases of the one-level method are not scalable (iteration counts
increase as the number of subdomains N increases) and perform worse as
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the frequency f becomes higher. On the other hand, the two-level coarse
grid approach is reasonably scalable and with only mildly increasing iteration
counts as the frequency increases.

Table 1: Results using the one-level and coarse grid methods for the Marmousi problem
when using 5 points per wavelength, varying the frequency f and the number of subdo-
mains N .

One-level (min. overlap) One-level (coarse overlap) Coarse grid

f \ N 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160

1 30 46 78 98 − 26 39 47 64 − 15 18 19 20 −
5 57 82 117 170 236 53 76 105 154 213 26 29 28 29 31

10 75 111 173 232 330 68 102 158 212 302 32 35 41 40 42

20 89 133 193 268 373 82 125 178 248 347 34 35 42 43 44

We now turn to the two spectral coarse space methods with results in
Table 2 being given for varying number of eigenvectors taken per subdomain
ν. We first see that the H-GenEO method within this scenario performs
poorly and, without sufficiently many eigenvectors being taken, often ex-
hibits iteration counts worse than the one-level method. On the other hand,
the DtN method generally converges faster than the one-level method and,
with enough eigenvectors, can give reasonable performance. However, as the
frequency increases the approach begins to struggle a little with larger iter-
ation counts typically required for convergence even with more eigenvectors
being utilised. Nonetheless, for small frequencies the approach can beat the
coarse grid method with relatively few eigenvectors per subdomain and even
for the larger frequency tested, when using the most subdomains and suffi-
cient eigenvectors per subdomain the DtN approach converges faster than the
coarse grid method. We note by way of caution though that taking too many
eigenvectors per subdomain can eventually lead to some deterioration in the
performance of the DtN method. We can also see from Table 2 that the larger
coarse overlap is beneficial for the DtN method and primarily yields smaller
iterations counts. On the other hand, minimal overlap appears preferable for
H-GenEO.

Overall, while the DtN approach can reduce the number of iterations re-
quired for convergence compared to the coarse grid method in some cases,
particularly low frequencies, the coarse grid approach exhibits greater ro-
bustness and requires relatively low iterations counts, suggesting it is the
favourable approach in this scenario of using 5 points per wavelength.
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We now consider the case of discretisation with 10 points per wavelength
and similarly compare the different approaches. In Table 3 we show results for
the one-level methods along with the coarse grid method. We notice that the
iteration counts in this situation are slightly higher than when using 5 points
per wavelength but otherwise the picture remains similar with coarse grid
approach giving a reasonably robust method albeit with some slow growth
in iteration counts as the frequency is increased.

Table 3: Results using the one-level and coarse grid methods for the Marmousi prob-
lem when using 10 points per wavelength, varying the frequency f and the number of
subdomains N .

One-level (min. overlap) One-level (coarse overlap) Coarse grid

f \ N 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160

1 34 49 72 143 − 30 43 63 97 − 16 18 19 21 −
5 62 94 137 191 268 58 87 126 175 246 29 29 34 34 36

10 85 136 185 272 371 78 124 172 251 346 35 41 43 46 45

20 101 152 213 299 419 92 142 198 272 389 39 47 48 49 49

Turning to the spectral coarse space approaches, we see in Table 4 that
H-GenEO now becomes competitive. For larger frequencies and equivalent
numbers of eigenvectors taken per subdomain, the H-GenEO method gener-
ally requires fewer iterations and this is particularly true for the large fre-
quencies with many subdomains. We note that the minimal overlap case is
preferable for H-GenEO while for DtN there is no longer a clear-cut prefer-
ence between the coarse overlap and minimal overlap cases. Provided suffi-
ciently many eigenvectors are taken per subdomain, we see that H-GenEO
now outperforms the coarse grid approach in terms of iterations counts and
is particularly strong for the large frequency and many subdomain situation.

Overall, in the scenario of 10 points per wavelength, we have different
findings from the 5 point per wavelength scenario. Now, while the coarse
grid approach is still relatively robust, the H-GenEO method can be seen as
strong alternative which is able to markedly reduce the number of iterations
required in the case of large frequencies and many subdomains. One possible
explanation is that spectral information is not relevant or sufficiently well
approximated in the case of a low number of points per wavelength.
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6.2. The COBRA cavity

The COBRA cavity problem consists of a plane wave incident upon a
curving cavity aperture and scattering in 3D. The geometry is shown within
an example solution in Figure 3. The problem was devised by EADS Aerospa-
tiale Matra Missiles for Workshop EM-JINA 98 and is described in [42, 43].
The COBRA cavity problem is a benchmark problem in electromagnetism
(when we use the time-harmonic Maxwell’s equations as the underlying
model) but here we present the Helmholtz version. The main difficulty comes
from the presence of metallic curved waveguide which can cause trapping
in addition to the inherent difficulties present in mid-high frequency regime
wave propagation problems. This problem is naturally three-dimensional but
a similar two-dimensional test can be designed making use of a cross-section
of the cavity.

(a) 3D view (b) 2D cross-section

Figure 3: The COBRA cavity problem.

We first consider discretisation of the problem with 5 points per wave-
length using P2 finite elements. In Table 5 we display results for the under-
lying one-level method and the two-level coarse grid approach. The one-level
method performs poorly as expected, however, we also see that the coarse
grid approach lacks robustness in this setting and performs poorly for larger
wave numbers.

21



Table 5: Results using the one-level and coarse grid methods for the COBRA cavity
problem when using 5 points per wavelength, varying the wave number k and the number
of subdomains N .

One-level Coarse grid

k \ N 20 40 80 160 20 40 80 160

100 71 83 104 − 21 21 22 −
200 161 203 259 303 87 90 91 91

300 326 429 574 727 277 309 330 562

400 326 426 581 705 375 450 463 471

Comparing now the spectral coarse space methods, in Table 6 we observe
that, in this scenario, the H-GenEO method performs poorly and is often
worse than the one-level method, even when taking fairly large numbers of
eigenvectors per subdomain. The DtN method can also perform worse than
the one-level method in some cases without sufficiently many eigenvectors
being taken. However, the DtN approach begins to show relatively low it-
eration counts once enough eigenvectors are utilised, especially in the many
subdomain cases, and can significantly reduce the iteration counts compared
to the one-level or coarse grid approaches. Nonetheless, it appears for this
3D problem that the number of eigenvectors required in order to drive down
the overall iteration count is rather high.
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Table 6: Results using the H-GenEO and DtN spectral coarse space methods for the
COBRA cavity problem when using 5 points per wavelength, varying the wave number k,
the number of subdomains N , and the number of eigenvectors used per subdomain ν.

H-GenEO DtN

ν k \ N 20 40 80 160 20 40 80 160

20

100 66 86 107 − 47 58 74 −
200 165 214 284 366 154 199 250 324

300 334 453 611 809 326 429 569 742

400 342 440 624 810 337 425 582 727

40

100 65 85 108 − 32 34 28 −
200 164 216 291 377 145 187 233 262

300 348 468 638 852 319 424 567 768

400 366 500 716 981 337 438 594 778

80

100 64 85 108 − 16 12 8 −
200 155 214 285 382 116 132 99 63

300 345 461 636 845 301 399 542 573

400 408 558 771 × 335 453 650 918

160

100 63 85 108 − 7 5 5 −
200 150 210 282 382 46 41 17 11

300 324 441 617 830 247 263 249 144

400 417 547 749 × 350 476 576 483

320

100 − − − − − − − −
200 145 207 281 383 10 10 50 55

300 308 422 601 817 100 60 45 29

400 401 527 730 994 271 233 147 44

We also consider the case of discretising the problem with 10 points per
wavelength, again using P2 finite elements. Results in Table 7 show that in
this case the coarse grid method performs very well and consistently leads
to a small number of iterations being required for convergence; this is in
stark contrast to the 5 points per wave case. For the spectral coarse spaces,
as detailed in Table 8, the H-GenEO method remains poor, especially for
large wave numbers, while the DtN method can perform reasonably well
when enough eigenvectors are employed. In particular, the DtN method can
require fewer iterations than the coarse grid method, especially for smaller
frequencies, but in general struggles to compete in line with the coarse grid
approach in terms of robustness.
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Table 7: Results using the one-level and coarse grid methods for the COBRA cavity
problem when using 10 points per wavelength, varying the wave number k and the number
of subdomains N .

One-level Coarse grid

k \ N 20 40 80 160 20 40 80 160

50 27 38 47 52 8 8 8 9

100 80 103 115 147 11 23 11 11

150 143 181 235 292 16 16 17 17

200 192 268 308 427 15 15 16 16

Table 8: Results using the H-GenEO and DtN spectral coarse space methods for the
COBRA cavity problem when using 10 points per wavelength, varying the wave number
k, the number of subdomains N , and the number of eigenvectors used per subdomain ν.

H-GenEO DtN

ν k \ N 20 40 80 160 20 40 80 160

20

50 26 31 41 46 19 22 20 20

100 73 94 111 130 63 77 87 112

150 128 171 230 278 120 157 209 244

200 186 264 315 427 178 246 283 380

40

50 25 31 40 45 13 12 10 8

100 72 89 109 132 51 58 66 57

150 129 168 228 279 112 130 181 211

200 197 279 328 433 163 225 251 330

80

50 24 31 40 44 6 6 5 4

100 68 89 106 132 28 28 19 10

150 131 167 224 281 87 101 109 74

200 200 270 327 428 142 193 218 255

160

50 24 29 40 44 5 4 4 4

100 65 87 109 132 11 9 8 5

150 126 164 220 279 50 31 21 14

200 192 267 324 430 109 134 83 41

320

50 23 30 40 44 6 6 5 5

100 63 85 107 133 6 6 6 5

150 119 158 219 279 14 9 8 7

200 182 246 311 430 44 28 15 11
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6.2.1. The COBRA cavity in 2D

While the COBRA cavity is a 3D problem, we can additionally consider
a 2D cross section, as illustrated in Figure 3b, and formulate the problem on
such a slice. This allows us to consider a cavity problem in 2D and further
consider higher wave numbers.

Results for this 2D COBRA cavity problem at 5 points per wavelength
are given in Tables 9 and 10. Similarly to the full 3D problem, we see
that the coarse grid method again lacks robustness in this scenario as the
wave number k increases and the H-GenEO is unable to provide any benefit
over the one-level method. The DtN approach is able to provide the lowest
iteration counts, even with relatively few eigenvectors per subdomain, and
provides a very effective method with more eigenvectors.

Table 9: Results using the one-level and coarse grid methods for the 2D COBRA cavity
problem when using 5 points per wavelength, varying the wave number k and the number
of subdomains N .

One-level Coarse grid

k \ N 20 40 80 160 20 40 80 160

200 74 99 122 − 30 30 30 −
400 103 155 211 279 67 69 70 70

600 204 303 429 668 145 155 158 160

800 184 287 392 559 197 214 218 219

1000 188 278 400 551 242 265 269 270
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Table 10: Results using the H-GenEO and DtN spectral coarse space methods for the 2D
COBRA cavity problem when using 5 points per wavelength, varying the wave number k,
the number of subdomains N , and the number of eigenvectors used per subdomain ν.

H-GenEO DtN

ν k \ N 20 40 80 160 20 40 80 160

20

200 59 85 122 − 24 29 17 −
400 101 135 202 277 78 87 77 40

600 177 271 371 531 161 228 254 221

800 192 293 390 517 179 274 341 371

1000 213 302 428 597 203 288 415 521

40

200 54 83 107 − 6 7 6 −
400 94 126 192 271 30 16 9 6

600 164 240 348 505 84 82 38 16

800 178 259 356 482 129 152 103 34

1000 203 275 394 555 166 198 195 102

80

200 53 76 34 − 3 5 3 −
400 86 120 187 261 7 5 4 3

600 154 226 331 490 15 8 5 8

800 164 244 338 466 37 22 8 5

1000 184 256 370 529 74 36 14 7

160

200 53 28 1 − 2 4 1 −
400 83 119 183 43 3 3 3 3

600 146 218 322 480 4 3 3 6

800 154 228 333 458 6 5 3 4

1000 177 243 358 520 9 5 4 3

320

200 38 1 1 − 2 1 1 −
400 81 117 43 1 3 2 3 1

600 138 211 315 278 3 3 3 5

800 147 221 326 448 3 3 3 3

1000 169 233 346 512 4 3 3 3

The case of 10 points per wavelength is covered in Tables 11 and 12 and,
again, we broadly see a picture akin to the full 3D problem. In this setting
the coarse grid approach provides good performance but the DtN method
yields lower iteration counts when sufficiently many eigenvectors are taken,
again giving a very effective approach for this problem.
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Table 11: Results using the one-level and coarse grid methods for the 2D COBRA cavity
problem when using 10 points per wavelength, varying the wave number k and the number
of subdomains N .

One-level Coarse grid

k \ N 20 40 80 160 20 40 80 160

200 85 124 171 239 10 11 11 11

400 137 184 270 356 11 11 12 12

600 253 329 478 705 20 20 20 21

800 203 323 448 611 18 18 18 18

1000 217 316 470 656 19 19 19 19
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Table 12: Results using the H-GenEO and DtN spectral coarse space methods for the 2D
COBRA cavity problem when using 10 points per wavelength, varying the wave number
k, the number of subdomains N , and the number of eigenvectors used per subdomain ν.

H-GenEO DtN

ν k \ N 20 40 80 160 20 40 80 160

20

200 77 114 159 221 36 42 20 16

400 136 195 273 367 111 147 172 123

600 241 332 454 658 208 265 346 434

800 220 338 485 692 186 282 396 533

1000 242 363 561 787 202 293 419 608

40

200 75 108 153 220 10 7 7 5

400 137 187 260 354 66 46 21 13

600 236 320 439 632 152 167 128 51

800 221 349 470 673 159 236 270 182

1000 254 378 545 785 186 269 365 394

80

200 73 104 152 219 4 4 4 4

400 130 174 256 347 11 8 6 5

600 220 295 414 590 54 22 11 8

800 213 329 454 642 88 74 25 13

1000 256 365 528 727 141 147 80 22

160

200 71 104 148 180 2 3 4 3

400 121 165 246 342 5 4 4 3

600 210 282 396 577 9 5 5 3

800 203 308 435 601 13 8 6 4

1000 245 344 501 688 27 14 8 6

320

200 69 103 137 1 2 3 4 1

400 116 158 239 338 3 3 4 3

600 197 266 375 568 4 3 3 3

800 192 295 412 579 5 4 3 3

1000 225 324 464 653 6 5 4 4

6.3. The Overthrust problem

We will now assess our methods on the 3D 20×20×4.65 km SEG/EAGE
Overthrust model, as introduced and detailed in [44]. We use a homogeneous
Dirichlet boundary condition at the surface and first-order absorbing bound-
ary conditions along the other five faces of the model. The source is located
at (2.5, 2.5, 0.58) km and we perform a simulation with P2 finite elements
on tetrahedral meshes for 0.5 Hz, 1 Hz and 2 Hz frequencies. For higher fre-
quencies and large-scale computations on the Overthrust problem utilising

28



the grid coarse space see [7] and [8]. The Overthrust model can be seen as
the three-dimensional counterpart of the Marmousi model and presents the
difficulty of the latter (heterogeneities and high frequencies) at a larger scale
since we have an extra space dimension.

We will start by testing the different approaches when using 5 points per
wavelength, varying the frequency f and the number of subdomains N . Re-
sults with the one-level and coarse grid methods are shown in Table 13 while
results for the H-GenEO and DtN spectral coarse space methods, varying
the number of eigenvectors used per subdomain ν, are provided in Table 14.
We see that in the case of low resolution the grid coarse space proves to be
robust. In this scenario the H-GenEO method fails to bring improvement
over the one-level method. On the other hand, the DtN approach performs
well provided sufficiently many eigenvectors are included and can generally
give an improvement over the coarse grid method in terms of reducing the
iteration counts.

(a) Velocity data (b) Solution

Figure 4: The Overthrust problem.

Table 13: Results using the one-level and coarse grid methods for the Overthrust prob-
lem when using 5 points per wavelength, varying the frequency f and the number of
subdomains N .

One-level (min. overlap) One-level (coarse overlap) Coarse grid

f \ N 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160

0.5 16 21 28 35 − 14 17 20 19 − 9 10 10 10 −
1 27 36 55 62 78 24 30 48 50 62 17 19 23 23 25

2 32 47 64 81 104 27 40 53 68 86 18 22 25 27 28

We consider now the case of higher resolution, using 10 points per wave-

29



length with results for smaller frequencies being given in Tables 15 and 16.
Here we see that all two-level methods can perform relatively well and both
H-GenEO and DtN can yield lower iteration counts than the coarse grid
method without needing too many eigenvectors. If we allow for many eigen-
vectors then the DtN method typically requires the fewest iteration, however,
we also note that for fewer eigenvectors the H-GenEO provides a greater re-
duction in iteration counts than DtN in the f = 1 Hz case and, furthermore,
relatively little is gained when adding additional eigenvectors.

Table 15: Results using the one-level and coarse grid methods for the Overthrust prob-
lem when using 10 points per wavelength, varying the frequency f and the number of
subdomains N .

One-level (min. overlap) One-level (coarse overlap) Coarse grid

f \ N 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160

0.5 19 25 33 39 47 16 21 27 30 36 12 13 14 15 16

1 31 45 61 75 95 26 39 51 62 78 18 24 25 27 27

Finally, we examine a higher frequency case of f = 2 Hz where the number
of degrees of freedom is now 11,334,869 and, as such, we consider utilising a
larger number of subdomains N . Results for the grid coarse space are given
in Table 17 and show again that the method performs well; for reference, we
also report in parentheses the average number of inner iterations required
for solving the coarse problem. For the spectral coarse spaces, results are
given in Table 18 where we see a similar picture emerge as in the f = 1 Hz
case. When fewer eigenvectors are used, the H-GenEO approach can converge
faster than the DtN method. When more eigenvectors are used, the DtN
approach becomes the method that converges fastest and can do so in fewer
iterations than the grid coarse space; nonetheless, the H-GenEO method
also continues to improve this time and performs similarly to the grid coarse
space in terms of iteration counts. Note that the missing entries in Table 18,
for the largest coarse space to be computed, are due to fact that the coarse
operator (having dimension 1280×320 and dense blocks of size 320) is costly
to compute and cannot be handled with current blackbox direct solvers.
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Table 17: Results using the one-level and coarse grid methods for the Overthrust problem
when using 10 points per wavelength for f = 2 Hz, varying the number of subdomains N .
The number of degrees of freedom is 11,334,869.

One-level (min. overlap) One-level (coarse overlap) Coarse grid

f \ N 320 640 1280 320 640 1280 320 640 1280

2 149 185 226 125 156 189 24 (7) 24 (9) 23 (13)

Table 18: Results using the H-GenEO and DtN spectral coarse space methods for the
Overthrust problem when using 10 points per wavelength for f = 2 Hz, varying the number
of subdomains N and the number of eigenvectors used per subdomain ν. The number of
degrees of freedom is 11,334,869.

H-GenEO (min. overlap) DtN (min. overlap) H-GenEO (coarse overlap) DtN (coarse overlap)

ν \ N 320 640 1280 320 640 1280 320 640 1280 320 640 1280

40 69 73 77 102 97 106 170 209 234 103 146 187

80 29 39 41 66 70 64 149 206 245 123 124 59

160 21 28 30 50 61 53 118 189 249 63 17 6

320 18 26 − 42 33 − 97 161 − 9 7 −

6.4. Discussion of numerical results

Numerical assessment of the three coarse spaces considered shows that,
depending on the physical parameters (low or high frequency) or on the
resolution considered (low resolution at 5 points per wavelength or high res-
olution at 10 points per wavelength), there is no systematic advantage of one
method over another, as shown in the overview in Table 19. The underlying
problem characteristics (spatial heterogeneities, low or high frequency) can
play a strong role in the performance of each of these methods and each
method has potential tuning parameters that can affect their efficacy, such
as the splitting parameter s for the grid coarse space (which is maintained
throughout these tests at its best value, namely 2, which gives the finest
possible coarse space), or the number of local eigenvectors requested for the
spectral coarse spaces. The resolution, in turn, can be dictated by the fact
that the linear solver is used in the context of an inverse or a direct problem.
Further, very often in geophysical computations, especially in full waveform
inversion (FWI), one needs to solve repeatedly a linear system with multiple
right-hand sides. In these situations, the additional precomputation required
by the spectral coarse spaces becomes less of a burden compared to the inner
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iterations required to solve the coarse problems when using the grid coarse
space. Although apparently more expensive as they require solving local
eigenvalue problems, spectral methods are potentially very promising in the
context of inverse problems.

Nonetheless, we can provide some general observations from our numerical
tests. The coarse grid approach is overall fairly robust in terms of the outer
iteration counts required and for high wave numbers, so long as enough points
per wavelength are used for discretisation. This method tended to be most
favourable in the 10 points per wavelength scenarios, which is considered to be
too high a level of precision in large-scale geophysical computations as it leads
to a substantial, often prohibitive, number of degrees of freedom. The H-
GenEO approach, while able to give some positive results for the geophysical
test cases at sufficient resolution, failed to be robust for the cavity problems
tested, suggesting it may only be a suitable solver method for certain types
of problems. Nonetheless, in some scenarios it provides a greater reduction
in iteration counts compared to the DtN method when only a relatively small
number of eigenvectors are available. The DtN approach performed relatively
well in our tests, arguably being the most robust method overall, so long as
sufficiently many eigenvectors were utilised and, in particular, tended to be
the favourable method in the 5 points per wavelength scenarios. Nonetheless,
for the large 3D tests the method started to struggle somewhat unless a
large number of eigenvectors were computed, but in this case the approach
ultimately becomes rather memory demanding and it is challenging to deal
with the coarse operator, which has large dense blocks.
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Table 19: An overview of which coarse spaces perform well in the different problem scenar-
ios tests. A 3 indicates that the method performs well, with 33 indicating this method
was most favourable in a particular instance (note that for the Overthrust problem it is
difficult to say that any one method is uniformly the most favourable in each case and so
we omit this). A 7 indicates that a method provided relatively little to no gain over the
one-level method.

Coarse grid H-GenEO DtN

Problem d freq 5 ppwl 10 ppwl 5 ppwl 10 ppwl 5 ppwl 10 ppwl

Marmousi 2D
low 3 3 3 3 33 33

high 33 3 7 33 3 3

COBRA Cavity 2D
low 3 3 7 7 33 33

high 7 3 7 7 33 33

COBRA Cavity 3D
low 3 33 7 7 33 3

high 7 33 7 7 33 3

Overthrust 3D
low 3 3 7 3 3 3

high 3 3 7 3 3 3

7. Conclusions

We have presented in this work a comparison of several two-level overlap-
ping Schwarz methods on a number of challenging problems of interest from
the literature for the Helmholtz problem. Our results illustrate that each of
these methods have pros and cons depending on the problem at hand and
the particular numerical setting. In particular, no method establishes itself
as the superior choice within a wide range of settings, though in particular
cases we observe that a certain approach can be more favourable.

Note that our tests on these well-known benchmark problems can be fur-
ther built upon and the conclusions refined. We have not measured timings
or considered optimised implementations of the eigenvalue solvers and, in the
case of the grid coarse space, the coarse grid problem is the finest possible
which further requires another domain decomposition method to solve it as
an inner iteration. This study is a first step in the assessment of the state of
the art for two-level solvers aimed at time-harmonic wave propagation prob-
lems. Additional studies can be directed towards both the larger numerical
context (taking into account higher approximation order, for example) and
further applicative contexts (the solution of inverse problems in FWI, or the
time-harmonic model of elastic waves which is at the same time more com-
plex and more physically accurate). We remark that this is predominantly
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a numerical study and, because of the mathematical difficulty of the models
involved, a theoretical insight appears to remain out of reach, with a par-
ticular challenge being to cover the complexity of all practical situations of
interest. Nonetheless, a general conclusion to be drawn is that coarse spaces
are clearly a key feature in achieving scalability and robustness and, further,
that the heuristics required for time-harmonic wave propagation problems
are necessarily very different from the established methodology in the case
of symmetric and positive definite problems.
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