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For a backward differentiation formula (BDF) applied to the gradient flow of a semiconvex function, quadratic stability implies gradient stability. Namely, it is possible to build a Lyapunov functional for the discrete-in-time dynamical system, with a restriction on the time step. The maximum time step which can be derived from quadratic stability has previously been obtained for the BDF1, BDF2 and BDF3 schemes. Here, we compute it for the BDF4 and BDF5 methods. We also prove that the BDF6 scheme is not quadratically stable. Our results are based on the tools developed by Dahlquist and other authors to show the equivalence of A-stability and G-stability.

Introduction

Backward differentiation formulae (BDF) were first introduced by Curtiss and Hirschfelder for the numerical resolution of stiff ordinary differential equations [START_REF] Curtiss | Integration of stiff equations[END_REF]. They have been extensively studied (see [START_REF] Hairer | Solving ordinary differential equations. I[END_REF][START_REF] Hairer | Solving ordinary differential equations[END_REF][START_REF] Stuart | Dynamical systems and numerical analysis[END_REF] and references therein). In recent years, BDF methods have been proved to be very powerful for the time discretization of semilinear parabolic problems in various situations. In particular, the Nevanlinna-Odeh multipliers which date back to 1981 [START_REF] Nevanlinna | Multiplier techniques for linear multistep methods[END_REF] have been used to obtain stability and errors estimates on finite time intervals in the works [START_REF] Akrivis | Stability of implicit-explicit backward difference formulas for nonlinear parabolic equations[END_REF][START_REF] Lubich | Backward difference time discretization of parabolic differential equations on evolving surfaces[END_REF].

BDF methods also have very nice properties regarding the asymptotic behaviour of solutions. This is well illustrated by the Allen-Cahn equation, which reads ∂u ∂t -∆u + f (u) = 0, x ∈ Ω, t > 0, (1.1) where Ω is a bounded subset of R d with smooth boundary (d = 1, 2 or 3). The unknown function u is the order parameter and the function f is the derivative of a double-well potential. A standard choice is the quartic potential

f (s) = 1 4ε 2 (s 2 -1) 2 (s ∈ R), (1.2) 
1
where ε > 0 represents the typical thickness of the interface between two phases. The Allen-Cahn equation is usually endowed with homogeneous Neumann boundary conditions. It is the L 2 (Ω)-gradient flow of the energy

E(u) = Ω 1 2 |∇u| 2 + f (u)dx. (1.3)
This can be used to prove that every solution to (1.1) with the quartic potential (1.2) converges to a steady state as t goes to infinity. This result is based on Lasalle's invariance principle and on a Lojasiewicz-Simon inequality, which involves the analycity of f [START_REF] Simon | Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems[END_REF]. We refer the reader to the review [START_REF] Haraux | The convergence problem for dissipative autonomous systems[END_REF] for more details.

In [START_REF] Elliott | The global dynamics of discrete semilinear parabolic equations[END_REF], Elliott and Stuart proposed several time and space discretizations of (1.1) which preserve the gradient flow structure. In particular, they proved that for k = 1, 2 and 3, the k-step BDF method (BDFk) has this property, with a restriction on the time step. They managed to build a Lyapunov functional which is a modified version of (1.3) for the discrete-in-time dynamical system. As a consequence, every solution to the time discrete problem converges to a steady state: this result is based on arguments similar to the time continuous problem [START_REF] Alaa | Convergence to equilibrium for discretized gradient-like systems with analytic features[END_REF][START_REF] Antonietti | Convergence to equilibrium for a second-order time semi-discretization of the Cahn-Hilliard equation[END_REF][START_REF] Bouchriti | Gradient stability of high-order BDF methods and some applications[END_REF][START_REF] Horsin | On the convergence to equilibria of a sequence defined by an implicit scheme[END_REF][START_REF] Merlet | Convergence to equilibrium for the backward Euler scheme and applications[END_REF].

In [START_REF] Stuart | Dynamical systems and numerical analysis[END_REF], Stuart and Humphries generalized the result in [START_REF] Elliott | The global dynamics of discrete semilinear parabolic equations[END_REF] to the case of semiconvex functions. They also proposed to investigate the gradient stability of the k-step BDF method for k = 4, 5 and 6. In [START_REF] Bouchriti | Gradient stability of high-order BDF methods and some applications[END_REF], the author and his collaborators generalized the construction in [START_REF] Stuart | Dynamical systems and numerical analysis[END_REF] and proved that the BDF4 and BDF5 are gradient stable, with a restriction on the time step. For this purpose, they introduced a notion of quadratic stability involving quadratic forms. Quadratic stability implies gradient stability and it is a definition easier to work with, because of its algebraic nature. Numerical simulations suggested that the BDF6 method is not quadratically stable. For k ≥ 7, k-step BDF methods are not zero stable [START_REF] Hairer | Solving ordinary differential equations. I[END_REF] and so they cannot be gradient stable [START_REF] Bouchriti | Gradient stability of high-order BDF methods and some applications[END_REF]Remark 2.8].

In [START_REF] Pierre | Maximum time step for the BDF3 scheme applied to gradient flows[END_REF], the author computed the maximum time step which can be derived from quadratic stability for the BDF3 scheme applied to a gradient flow. The purpose was also to try and have a better understanding of the BDF6 scheme, but the method was incomplete to achieve this goal. In this paper, we manage to compute the maximum time step for the BDF4 and BDF5 schemes, and we prove that the BDF6 scheme is not quadratically stable. The idea is to apply to our situation the powerful tools developped by Dahlquist [START_REF] Dahlquist | G-stability is equivalent to A-stability[END_REF], Baiocchi and Crouzeix [START_REF] Baiocchi | On the equivalence of A-stability and G-stability[END_REF] (see also [START_REF] Hairer | Solving ordinary differential equations[END_REF]Section V.6]) to show the equivalence of A-stability and G-stability.

The situation for quadratic stability is therefore very analogous to what happens with the Nevanlinna-Odeh multipliers, which are valid for BDF schemes up to order 5 only. However, for k ≥ 2, there is a possible gap between quadratic stability and gradient stability [START_REF] Pierre | Maximum time step for the BDF3 scheme applied to gradient flows[END_REF]Section 3.5]. Therefore, there is still a slight chance to prove that the BDF6 is gradient stable. In a related manner, stability results on finite time intervals have recently been obtained in the work [START_REF] Akrivis | The energy technique for the six-step BDF method[END_REF] for the BDF6 scheme applied to semilinear parabolic equations.

The manuscript is organized as follows. In Section 2, we compute a maximum value related to quadratic stability for the BDF4, BDF5 and BDF6 schemes, by using tools developped for Dahlquist's equivalence theorem. In Section 3, we show how quadratic stability implies gradient stability with a maximum time step for this approach. We also derive some consequences for the asymptotic behaviour of discretized gradient flows, including the non-autonomous case. Our analysis is made in the Euclidean space R N , but we stress that the tools developped here also apply to the infinite dimensional case, for PDEs such as the Allen-Cahn equation [START_REF] Bouchriti | Gradient stability of high-order BDF methods and some applications[END_REF] or the Cahn-Hilliard equation [START_REF] Antonietti | Convergence to equilibrium for a second-order time semi-discretization of the Cahn-Hilliard equation[END_REF][START_REF] Brachet | Convergence to equilibrium for time and space discretizations of the Cahn-Hilliard equation[END_REF].

Optimal constants for quadratic stability

We consider the k-step BDF scheme applied to the gradient flow

y (t) = -∇F (y(t)), t ≥ 0 in R N , where F : R N → R is of class C 1 .
The k-step BDF method with fixed time step ∆t > 0 reads: let y 0 , . . . , y k-1 in R N and for n = 0, 1, . . . , let y n+k solve 1 ∆t

k j=1 1 j ∂ j y n+k = -∇F (y n+k ), (2.1) 
where ∂y n+k = y n+k -y n+k-1 is the backward difference operator and by induction, ∂ j y n+k = ∂ j-1 (∂y n+k ) for j ≥ 2.

If F is a semiconvex function, in order to find a Lyapunov function for the discrete-in-time dynamical system (2.1), we take the inner product of (2.1) with ∂y n+k (see (3.15)) and we are led to consider the quantity

Γ k = k j=1 1 j ∂ j y n+k , ∂y n+k , (2.2) 
where •, • denotes the inner product in R N . By induction, it is easily seen that for j ≥ 1, ∂ j y n+k is a linear combination of ∂y n+1 , . . . , ∂y n+k . Thus, it is convenient to see Γ k as a quadratic form depending on the variables ∂y n+1 , . . . , ∂y n+k in R N , namely

Γ k = k j=1 1 j ∂ j-1 ∂y n+k , ∂y n+k .
We introduce the polynomial of degree k -1

δ k (z) = k j=1 1 j (1 -z) j-1 = k-1 i=0 δ i z i , (2.3) so that Γ k = k-1 i=0 δ i ∂y n+k-i , ∂y n+k (2.4)
The polynomial δ k is analogous to the "defining polynomial" used for the analysis of multistep schemes (see, e.g., [START_REF] Hairer | Solving ordinary differential equations. I[END_REF][START_REF] Stuart | Dynamical systems and numerical analysis[END_REF]), but we use here the variables ∂y n+1 , . . . , ∂y n+k instead of y n , . . . , y n+k . The fundamental idea is to apply Dahlquist's theorem, which is stated below, to the polynomials δ(z) = δ k (z)-β and µ(z) = 1, where β ∈ R is optimal.

Lemma 2.1 ( [START_REF] Baiocchi | On the equivalence of A-stability and G-stability[END_REF][START_REF] Dahlquist | G-stability is equivalent to A-stability[END_REF] and Section V.6 in [START_REF] Hairer | Solving ordinary differential equations[END_REF]). Let δ(z) and µ(z) be real polynomials of degree at most k -1 (at least one of them of exact degree k -1)

that have no common divisor. If Re δ(z) µ(z) > 0 for |z| < 1, (2.5) 
then there exist a symmetric positive definite matrix

G = (g ij ) ∈ R k-1 × R k-1 and real numbers a 1 , . . . , a k such that for all v 1 , . . . , v k ∈ R N , k-1 i=0 δ i v k-i , k-1 j=0 µ j v k-j = k-1 i,j=1 g ij v i+1 , v j+1 - k-1 i,j=1 g ij v i , v j + k i=1 a i v i 2 . (2.6) 
Hereafter, • denotes the Euclidean norm in R N . We have

δ 2 (z) = 3 2 - 1 2 z, δ 3 (z) = 11 6 - 7 6 z + 1 3 z 2 , δ 4 (z) = 25 12 - 23 12 z + 13 12 z 2 - 1 4 z 3 , δ 5 (z) = 137 60 - 163 60 z + 137 60 z 2 - 21 20 z 3 + 1 5 z 4 , δ 6 (z) = 49 20 - 71 20 z + 79 20 z 2 - 163 60 z 3 + 31 30 z 4 - 1 6 z 5 .
For 2 ≤ k ≤ 6 we consider the region

D k = {δ k (z) : |z| < 1} (2.7)
which is drawn in pink in Figures 123and we define

β k = inf{Re δ k (z) : |z| < 1}.
By examing the curve θ → δ k (e iθ ) for θ ∈ [0, 2π] we find that

β k = min {Re δ k (z) : |z| = 1} .
and we obtain The exact value of β 4 is

β 2 = 1, β 3 = 95 
β 4 = 664 729 - 43 √ 43 2916
and the exact value of β 5 is rather lengthy (see (2.10)). It is easy to check that β 6 < 0. For instance, we have

β 6 < Re δ 6 (e -2iπ/3 ) = - 9 10 < 0. (2.9)
Example 2.2. Let us compute β 5 (the other cases are similar). We consider the curve {δ 5 (e iθ ) : θ ∈ [0, 2π]} in C (cf. Figure 2, right). We have

x(θ) = Re δ k (e iθ ) = p 5 (cos(θ)),
where

p 5 (X) = 8 5 X 4 - 21 5 X 3 + 89 30 X 2 + 13 30 X + 1 5 . Thus, d dθ x(θ) = -sin(θ)p 5 (cos θ) with p 5 (X) = 32 5 X 3 - 63 5 X 2 + 89 15 X + 13 30 .
The critical points of x(θ) are obtained for sin θ = 0 or p 5 (cos θ) = 0. The only real root of p 5 is

X 1 = 21 32 - 1121 96 3 49041 -16 √ 3891895 - 1 96 3 49041 -16 √ 3891895.
Among these critical points, the minimal value of x(θ) is obtained for cos θ = X 1 and so The analysis above shows: Lemma 2.3. Let 2 ≤ k ≤ 6. Then for every β ≤ β k , we have

β 5 = p 5 (X 1 ) = 0.1855459753 . . . . ( 2 
Re δ k (z) -β > 0 for |z| < 1, (2.11) 
where β k given by (2.8). Moreover, if β > β k , then property (2.11) fails.

From these considerations, we deduce:

Theorem 2.4. Let 2 ≤ k ≤ 6 and let δ k be defined by (2.3). For each β < β k , there exist a symmetric positive definite matrix

Q k = (q ij ) ∈ R k-1 × R k-1 and a symmetric positive definite matrix R k = (r ij ) ∈ R k × R k such that for all v 1 , . . . , v k ∈ R N , k-1 i=0 δ i v k-i , v k = β v k 2 + k-1 i,j=1 q ij v i+1 , v j+1 - k-1 i,j=1 q ij v i , v j + k i,j=1 r ij v i , v j .
(2.12) The value β k is the supremum of the numbers for which this property holds.

Proof. By Lemma 2.3, we may apply Lemma 2.1 to the polynomials δ(z) = δ k (z) -β k and µ(z) = 1. Thus, there exist a positive definite matrix G =

(g ij ) ∈ R k-1 × R k-1 and real numbers a 1 , . . . , a k such that k-1 i=0 δ i v k-i , v k = β k v k 2 + k-1 i,j=1 g ij v i+1 , v j+1 - k-1 i,j=1 g ij v i , v j + k i=1 a i v i 2 .
(2.13) Let β < β k . We consider for ε > 0 the symmetric matrix

G ε = (g ε ij ) ∈ R k-1 × R k-1 defined by g ε ij = g ij if i = j, g ii + iε if i = j. By expressing G in terms of G ε , equation (2.13) becomes k-1 i=0 δ i v k-i , v k = β v k 2 + k-1 i,j=1 g ε ij v i+1 , v j+1 - k-1 i,j=1 g ε ij v i , v j +(β k -β -(k -1)ε) v k 2 + ε k-1 i=1 v i 2 + k i=1 a i v i 2 . (2.14) 
By continuity, for ε > 0 small enough, the matrix G ε is positive definite and

β k -β -(k -1)ε > 0. (2.15)
This shows that formula (2.12) holds with Q k = G ε and R k defined by the second line of (2.14). Conversely, we assume now that (2.12) holds for a number β ∈ R, a symmetric positive definite matrix Q k and a positive definite matrix R k . We may assume that N = 1 since R R × {0} N -1 ⊂ R N . Then (2.12) shows that for all v 1 , . . . , v k ∈ R, we have

k-1 i=0 δ i v k-i v k = β|v k | 2 + V T 2 Q k V 2 -V T 1 Q k V 1 + V T R k V,
where

V = (v 1 , . . . , v k ) T , V 1 = (v 1 , . . . , v k-1 ) T and V 2 = (v 2 , . . . , v k ) T .
If we consider R k and Q k as hermitian matrices, this implies that for all

Z = (z 1 , . . . , z k ) T ∈ C k , we have Re k-1 i=0 δ i z k-i zk = β|z k | 2 + Z T 2 Q k Z2 -Z T 1 Q k Z1 + Z T R k Z,
where

Z 1 = (z 1 , . . . , z k-1 ) T and Z 2 = (z 2 , . . . , z k ) T . Let ζ ∈ C such that |ζ| > 1. On choosing Z = (ζ 1 , ζ 2 , . . . , ζ k ), we obtain |ζ| 2k Re k-1 i=0 δ i ζ -i = β|ζ| 2k + (|ζ| 2 -1)Z T 1 Q k Z1 + Z T R k Z. Since |ζ| > 1 and Q k , R k are positive definite, this shows that Re k-1 i=0 δ i ζ -i -β > 0.
By Lemma 2.3, we necessarily have β ≤ β k and the proof is complete.

Remark 2.5. Since β 6 < 0, Theorem 2.4 shows that the BDF6 scheme is not quadratically stable in the sense defined in [START_REF] Bouchriti | Gradient stability of high-order BDF methods and some applications[END_REF]. The cases k > 6 and k < 6 have been considered in [START_REF] Bouchriti | Gradient stability of high-order BDF methods and some applications[END_REF]. Therefore, the k-step BDF method is quadratically stable if and only 1 ≤ k ≤ 5.

Remark 2.6. For a given β < β k , the couple (Q k , R k ) in Theorem 2.4 is generally not unique. For instance, if k = 2 and β = 1/2 < β 2 = 1, we have

3 2 v 2 2 - 1 2 v 2 , v 1 = β v 2 2 + 1 4 v 2 2 - 1 4 v 1 2 + 1 4 v 1 -v 2 2 + 1 2 v 2 2 , (2.16) in which case Q 2 = (1/4), or 3 2 v 2 2 - 1 2 v 2 , v 1 = β v 2 2 + 1 2 v 2 2 - 1 2 v 1 2 + 1 2 v 1 - 1 2 v 2 2 + 3 8 v 2 2 , (2.17) in which case Q 2 = (1/2).
Remark 2.7. There is a constructive proof of Lemma 2.1, as explained in [16, Section V.6]. In turn, this gives a constructive proof of Theorem 2.4. Formula (2.13) can be obtained as follows. We first introduce the polynomials

ρ k (z) = z k-1 (δ k (1/z) -β k ) and σ k (z) = z k-1 .
Then, we consider the function

E k (z) = 1 2 ρ k (z)σ k (1/z) + ρ k (1/z)σ k (s) .
It can be factorized as

E k (z) = a k (z)a k (1/z) with a k (z) = k-1 i=0 a i+1 z i . (2.18)
The coefficients a 1 , . . . , a k in (2.13) are given by the coefficients of the polynomial a k (z). Next, we consider the polynomial

P k (ω, ζ) = 1 2 ρ k (ω)σ k (ζ) + ρ k (ζ)σ k (ω) -a k (ω)a k (ζ).
By (2.18), P k vanishes when ωζ -1 = 0. It can therefore be written as

P k (ω, ζ) = ωζ -1 k-1 i,j=1 g ij ω i-1 ζ j-1 .
This gives the matrix G k = (g ij ) in (2.13). Once formula (2.13) is known, it is easy to find ε > 0 small enough such that G ε is positive definite and (2.15) holds (cf. examples below). We note that in many applications, formula (2.13) is sufficient but in some cases, it is best to have a positive definite matrix R k (see, e.g., Theorem 3.7).

Example 2.8. If k = 2, we have ρ 2 (z) = z/2 -1/2 and σ 2 (z) = z. Thus,

E 2 (z) = 1 4 2 -z -1/z = a 2 (z)a 2 (1/z) with a 2 (z) = z/2 -1/2.
The polynomial P 2 is

P 2 (ω, ζ) = 1 4 (ωζ -1), so G 2 = (1/4). Thus, formula (2.13) reads 3 2 v 2 - 1 2 v 1 , v 2 = β 2 v 2 2 + 1 4 v 2 2 - 1 4 v 1 2 + 1 4 v 2 -v 1 2 .
If we choose β = 1/2 and ε = 1/4 in (2.14), we recover formula (2.17).

Example 2.9. For k = 3, we have

ρ 3 (z) = 81 96 z 2 - 7 6 z + 1 3 and σ 3 (z) = z 2 .
The algorithm described in Remark 2.7 gives

a 3 (z) = 1 √ 6 (z 2 - 7 4 z + 1)
and

P 3 (ω, ζ) = ωζ -1 1 6 + 65 96 ωζ - 7 24 (ω + ζ) ,
and so

G 3 = 1 6 1 -7/4 -7/4 65/16
.

The Cholesky factorization of

G 3 is G 3 = L 3 L T 3 with L 3 = 1 √ 6 1 0 -7/4 1 .
We recover the same formula as in [25, Theorem 1], where β 3 was obtained by maximizing the constant β in (2.12).

Remark 2.10. In Theorem 2.4, it is possible to replace R N by a Hilbert space H and •, • by the inner product •, • H in H. The Euclidean norm is replaced by the Hilbertian norm in H, • H . For the Allen-Cahn equation, H = L 2 (Ω) [START_REF] Bouchriti | Gradient stability of high-order BDF methods and some applications[END_REF] and for the Cahn-Hilliard equation,

H = H -1 [8].
3. Gradient stability of BDF schemes 3.1. The continuous problem. We consider the gradient flow

y (t) = -∇F (y(t)), t ≥ 0, (3.1) 
where y : [0, +∞) → R N and F ∈ C 1 (R N , R). Hereafter, we assume that F satisfies the following two conditions,

∇F (v) -∇F (w), v -w ≥ -c F v -w 2 , ∀v, w ∈ R N , (3.2) 
for some constant c F ≥ 0 and

lim v →+∞ F (v) = +∞. (3.3) Condition (3.
3) is a coercivity condition. Condition (3.2) is known as a onesided Lipschitz condition for ∇F . Equivalently, we can say that v → ∇F + c F v is a maximal monotone operator on R N or that the function

v → F (v) + c F 2 v 2 is convex on R N . A function F which satisfies (3.2) is called a semiconvex function.
If F is semiconvex, then there exists a minimum number c F ≥ 0 for which property (3.2) holds and we denote by c F this optimal constant. In particular, F is convex if and only if c F = 0.

By the Cauchy-Peano theorem and by monotonicity (see, e.g., [START_REF] Brezis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]), for every y 0 ∈ R N , there exists a unique y ∈ C 1 ([0, +∞), R N ) of (3.1) such that y(0) = y 0 . On taking the inner product of (3.1) by -y (t), we obtain that

d dt F (y(t)) = -y (t) 2 , (3.4) 
for all t ≥ 0. In particular, F (y(t)) is nonincreasing, and the coercivity condition (3.3) implies that y is bounded. By Lasalle's invariance principle [START_REF] Haraux | The convergence problem for dissipative autonomous systems[END_REF], the ω-limit set of y(0), defined by

ω(y(0)) = y ∈ R N : ∃t n → +∞, y(t n ) → +∞ ,
is a nonempty compact and connected subset of R N , which is included in the set S of critical points of F , that is

S = y ∈ R N : ∇F (y) = 0 . (3.5)
If the critical points of F are isolated, this implies that y(t) tends to a critical point y of F in R N as t tends to +∞. Otherwise, convergence to equilibrium may fail. We refer to [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF][START_REF] Haraux | The convergence problem for dissipative autonomous systems[END_REF][START_REF] Palis | Geometric theory of dynamical systems[END_REF] for such counterexamples where the ω-limit set is a cycle. Lojasiewicz [START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF][START_REF] Lojasiewicz | Sur les trajectoires du gradient d'une fonction analytique[END_REF] proved that if F is real analytic, then y(t) converges to a critical point of F as t tends to +∞. In [10, Section 5.1], Chill and Jendoubi proved that a similar convergence result holds for the non-autonomous gradient flow y (t) = -∇F (y(t)) + g(t), t ≥ 0, (3.6) where g : [0, +∞) → R is a given function which tends to 0 at infinity in an appropriate sense. In this case, the system (3.6) is asymptotically autonomous.

3.2. BDFk scheme applied to a gradient flow. Let ∆t > 0 denote the time step. The general k-step backward differentiation formula (BDF) for (3.1) reads: let y 0 , . . . , y k-1 in R N and for n = 0, 1, . . . , let y n+k solve

k j=1 1 j ∂ j y n+k = -∆t∇F (y n+k ). (3.7) 
The one-step BDF method is the backward Euler scheme:

y n+1 -y n = -∆t∇F (y n+1 ), n ≥ 0. ( 3.8) 
The two-step BDF method reads

3 2 y n+2 -2y n+1 + 1 2 y n = -∆t∇F (y n+2 ), n ≥ 0. (3.9) If F ∈ C k+2 (R N , R) (k ≤ 6
) and if the initial conditions are well chosen, the error between the solution y of (3.1) and its approximation given by the BDF scheme (3.7) is of order O(∆t k ) on finite time intervals [27, Theorem 3.5.7].

We will consider a non-autonomous version of (3.7), namely

k j=1 1 j ∂ j y n+k = -∆t∇F (y n+k ) + ∆tg n+k , n ≥ 0, (3.10) 
where (g n ) n∈N is a given sequence in R N which belongs to l 2 (N) N . In particular, g n → 0 and the scheme (3.10) is asymptotically autonomous. It is a discrete version of (3.6). For 1 ≤ k ≤ 6, we define

α k = k j=1 1/j > 0. (3.11) 
At every step n ≥ 0, the vector y n+k in (3.10) is computed from y n , y n+1 , . . . , y n+k-1 by solving a nonlinear equation. The assumptions (3.2)-(3.3) on F imply that the scheme is solvable for all ∆t and uniquely solvable if ∆t is small enough [START_REF] Bouchriti | Gradient stability of high-order BDF methods and some applications[END_REF].

Proposition 3.1. Let y 0 , . . . y k-1 be given in R N . For each ∆t > 0, there exists a least one sequence (y n ) n∈N in R N with initial values y 0 , . . . y k-1 which complies with (3.10). If c F ∆t < α k , this sequence is unique.

If c F ∆t ≥ α k , uniqueness may fail [25, Example 1].
3.3. Gradient stability of BDFk schemes. Let us see how quadratic stability implies gradient stability. We assume that 2 ≤ k ≤ 5 since the BDF6 method is not quadratically stable. The case k = 1 is considered in [START_REF] Grasselli | Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems[END_REF]. By Theorem 2.4, for each β ∈ (0, β k ), there exist a symmetric positive definite matrix

Q β k = (q ij ) ∈ R k-1 × R k-1 and a symmetric positive definite matrix R β k = (r β ij ) ∈ R k × R k such that for all v 1 , . . . , v k ∈ R N , formula (2.12 
) holds. We denote by q β k and r β k the positive definitive quadratic forms on (R N ) k-1 and (R N ) k associated to Q β k and R β k , respectively. Namely,

q β k (v 1 , . . . , v k-1 ) = k-1 i,j=1 q ij v i , v j and r β k (v 1 , . . . , v k ) = k i,j=1 r ij v i , v j .
For a sequence (y n ) n∈N in R N , we write ŷn+k = (y n+k , ∂y n+k , . . . , ∂y n+2 ) and Fβ (ŷ n+k ) = F (y n+k ) + 1 ∆t q β k (∂y n+2 , . . . , ∂y n+k ). In other words, the function Fβ is defined for every

(v 1 , v 2 , . . . , v k ) ∈ (R N ) k by Fβ (v 1 , . . . , v k ) = F (v 1 ) + 1 ∆t q β k (v k , . . . , v 2 ). (3.12) 
The gradient stability of the BDFk scheme (3.10) reads as follows. (3.13)

Proof. Using assumption (3.2), we easily obtain that

F (v) -F (w) ≥ ∇F (w), v -w - c F 2 v -w 2 , ∀v, w ∈ R N . (3.14) 
We take the inner product of (3.10) with ∂y n+k . We find

Γ k = ∆t ∇F (y n+k ), y n+k-1 -y n+k + ∆t g n+k , ∂y n+k , (3.15) 
where Γ k is defined by (2.2). Using (3.14), the Cauchy-Schwarz inequality and Young's inequality, we obtain

Γ k ≤ ∆t F (y n+k-1 ) -F (y n+k ) + c F 2 ∂y n+k 2 + ε ∂y n+k 2 + ∆t 2 4ε g n+k 2 .
Now, we use (2.4) and formula (2.12). This yields (β -c F ∆t 2 -ε) ∂y n+k 2 + q β k (∂y n+2 , . . . , ∂y n+k ) -q β k (∂y n+1 , . . . , ∂y n+k-1 ) +r β k (∂y n+1 , . . . , ∂y n+k ) ≤ ∆t (F (y n+k-1 ) -

F (y n+k )) + ∆t 2 4ε g n+k 2 ,
which is equivalent to (3.13).

If (y n ) n∈N is a sequence in R N , we define its ω-limit set by ω((y n ) n∈N ) = y ∈ R N : ∃n p → +∞ such that y np → y .

We recall the following standard result (see, e.g., [START_REF] Pierre | Maximum time step for the BDF3 scheme applied to gradient flows[END_REF]Lemma 2]): Since q β k and r β k are positive definite, this shows that (F (y n+k )) n∈N is bounded from above. By coercivity of F (cf. (3.3)), (y n ) n∈N is bounded. The function F is also bounded from below, so by letting p tend to +∞, we obtain

Lemma 3.3. If (y n ) n∈N is a bounded sequence in R N such that y n+1 -y n → 0, then ω((y n ) n∈N )
1 ∆t ∞ n=0 r β k (∂y n+1 , . . . , ∂y n+k ) ≤ -inf R F + Fβ (ŷ k-1 ) + ∆t 4ε ∞ n=0 g n+k 2 < +∞.
In particular, r β k (∂y n+1 , . . . , ∂y n+k ) tends to 0 and since r β k is positive definite, we have ∂y n+1 → 0 as well. We may therefore apply Lemma 3.3. If y ∈ ω((y n ) n∈N ), we choose n p → +∞ such that y np+k → y . By letting n = n p tend to infinity in (3.10), we obtain that ∇F (y ) = 0. This concludes the proof. Remark 3.5 (Uniqueness vs. stability condition). For k = 4 or 5, we have 2β k < 2 < α k . Thus, for k = 4 or 5, a gradient stable sequence which complies with (3.10) is uniquely defined by its initial values. In contrast, for k = 1, 2 or 3, we have α We will use the following result, which is a direct consequence of [4, Theorem 2.4] and Lojasiewicz's inequality for analytic functions [START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF]. Theorem 3.6 ([4,[START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF]). Let Φ : R M → R be real analytic. Consider a bounded sequence (x n ) n∈N in R M which satisfies the following conditions: H1: There exists a positive constant c 1 such that for each n ∈ N,

k < 2β k , so if ∆t ∈ [α k /c F , 2β k /c F ),
Φ(x n ) -Φ(x n+1 ) ≥ c 1 x n+1 -x n 2 ;
H2: There exists a positive constant c 2 such that for each n ∈ N,

∇Φ(x n+1 ) ≤ c 2 x n+1 -x n .
Then the whole sequence (x n ) n∈N converges in R M .

Theorem 3.7. Let 2 ≤ k ≤ 5 and assume that c F ∆t < 2β k . If F : R N → R is real analytic and if (y n ) n∈N is a sequence in R N which complies with (3.7), then the whole sequence (y n ) n∈N converges to a critical point of F .

Proof. We apply Theorem 3.6 to the sequence x n = (y n , . . . , y n+k-1 ) with the function Φ(x n ) = Fβ (ŷ n+k-1 ) where Fβ is defined by (3.12). Namely, if x = (a 1 , . . . , a k ) ∈ (R N ) k , we have Φ(a 1 , . . . , a k ) = F (a k ) + 1 ∆t q β k (∂a k , . . . , ∂a 2 ).

Since F is real analytic and q β k is a polynomial, it is clear that Φ is real analytic. The relation (3.13) shows that assumption H1 is satisfied (we consider here the autonomous case (g n ) n∈N = 0). Indeed, since r β k is positive definite on (R N ) k , it is equivalent to the Euclidean norm on (R N ) k . The proof of Corollary 3.4 shows that the sequence (ŷ n+k ) n∈N is bounded, and so (x n ) n∈N is bounded. Since q β k is quadratic, for each 1 ≤ i ≤ k, ∂ a i q β k (∂a k , . . . , ∂a 2 ) is a linear function of (∂a 2 , . . . , ∂a k ). Furthermore, the scheme (3.7) shows that ∇F (y n+k ) is a linear combination of (∂y n+1 , . . . , ∂y n+k ) = ∂x n+1 . This shows that assumption H2 is satisfied and we are in position to apply Theorem 3.6. The proof is complete. f (s) = (3s 2 -1)/ε 2 ≥ -1/ε 2 . Thus, the condition on the time step reads ∆t < 2β k ε 2 . Other examples are the Swift-Hohenberg equation [START_REF] Grasselli | Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems[END_REF] or the Cahn-Hilliard equation [START_REF] Antonietti | Convergence to equilibrium for a second-order time semi-discretization of the Cahn-Hilliard equation[END_REF][START_REF] Brachet | Convergence to equilibrium for time and space discretizations of the Cahn-Hilliard equation[END_REF].

The convergence result of Theorem 3.7 can be generalized in several ways. For instance, it is possible to consider the non-autonomous case (3.10). The sequence (g n ) n∈N is assumed to satisfy a condition which implies that (g n ) n∈N belongs to l 1 (N) N [14, Remark 3]. The BDF1 and BDF2 schemes have been considered in [START_REF] Grasselli | Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems[END_REF] (see also [START_REF] Alaa | Convergence to equilibrium for discretized gradient-like systems with analytic features[END_REF]Scheme (4.4)]). In Theorem 3.7, it is also possible to require less regularity on F : the function F need not even be differentiable [START_REF] Pierre | Maximum time step for the BDF3 scheme applied to gradient flows[END_REF].
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 1 Figure 1. Region (2.7) for BDF2 (left) and BDF3 (right).

Figure 2 .

 2 Figure 2. Region (2.7) for BDF4 (left) and BDF5 (right).
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 3 Figure 3. Region (2.7) for BDF6.
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 32 Let 2 ≤ k ≤ 5. Assume that c F ∆t < 2β k , let β ∈ (c F ∆t/2, β k ) and set ε = β -c F ∆t/2 > 0. If (y n ) n∈N is a sequence in R N whichcomplies with the non-autonomous BDFk scheme (3.10), then for all n ≥ 0 we have Fβ (ŷ n+k ) + 1 ∆t r β k (∂y n+1 , . . . , ∂y n+k ) ≤ Fβ (ŷ n+k-1 ) + ∆t 4ε g n+k 2 .
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 38 Theorem 3.7 can be applied to a standard finite element discretization of the Allen-Cahn equation (1.1) with the quartic potential (1.2) and Neumann boundary conditions. In this case, the constant c F associated to the discrete version of the energy (1.3) is equal to 1/ε 2 since [4, Proposition 5.1]
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  is a nonempty compact and connected subset of R N . Corollary 3.4. Let 2 ≤ k ≤ 5 and assume that c F ∆t < 2β k . If (y n ) n∈N is a sequence in R N which complies with (3.10), then ∂y n → 0 and ω((y n ) n∈N ) is a nonempty compact and connected subset of R N included in S (cf. (3.5)).

	Proof. By summing relation (3.13) from n = 0 to p, we obtain		
	Fβ (ŷ p+k ) +	1 ∆t	p n=0	r β k (∂y n+1 , . . . , ∂y n+k ) ≤ Fβ (ŷ k-1 ) +	∆t 4ε	p n=0	g n+k	2 .

Table 1 .

 1 there may be several gradient stable sequences with the same initial values [25, Section 3.5]. These remarks are summarized in Table 1. 2 2 95/48 1.62 . . . 0.371 . . . -2.74 . . . Uniqueness and stability numbers for BDFk methods
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