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We consider four variants of the RSA cryptosystem with an RSA modulus N = pq where the public exponent e and the private exponent d satisfy an equation of the form ed -k p 2 -1 q 2 -1 = 1. We show that, if the prime numbers p and q share most significant bits, that is, if the prime difference |p -q| is sufficiently small, then one can solve the equation for larger values of d, and factor the RSA modulus, which makes the systems insecure.

Introduction

The RSA cryptosystem [START_REF] Rivest | A Method for obtaining digital signatures and public-key cryptosystems[END_REF] is one of the most used public key cryptosystems. The arithmetic of RSA is based on a few parameters, namely a modulus of the form N = pq where p and q are large primes, a public exponent e satisfying gcd(e, φ(N )) = 1 where φ(N ) = (p -1)(q -1), and a private exponent d satisfying ed ≡ 1 (mod φ(N )). To encrypt a message m, one simply computes the ciphertext c ≡ m e (mod N ), and to decrypt it, one computes m ≡ c d (mod N ).

To ease the exponentiation in the decryption phase, a natural way is to choose a mall private exponent. Unfortunately, Wiener [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF] showed that if d < 1 3 N

1 4 , then one can factor N by computing the convergents of the continued fraction expansion of e N . Later on, Boneh and Durfee [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF] extended the bound up to d < N 0.292 by applying Coppersmith's method [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] and lattice reduction techniques. Also, there are plenty of attacks on RSA that depend on the arithmetical structure of its parameters [START_REF] Boneh | Twenty years of attacks on the RSA cryptosystem[END_REF][START_REF] Hinek | Cryptanalysis of RSA and Its Variants, Chapman & Hall/CRC, Cryptography and Network Security Series[END_REF]. A typical attack on RSA with a specific structure, presented by de Weger [START_REF] De Weger | Cryptanalysis of RSA with small prime difference, Applicable Algebra in Engineering[END_REF] in 2002, exploits the size of the difference of the prime factors |p -q|. It notably improves the attack of Wiener, as well as the attack of Boneh and Durfee when |p -q| is suitably small. Since its invention by Rivest, Shamir and Adleman in 1978, many variants of RSA have been proposed such as Multi-prime RSA [START_REF] Collins | Public key cryptographic apparatus and Method[END_REF], Rebalanced RSA [START_REF] Wiener | Cryptanalysis of short RSA secret exponents[END_REF], and RSA-CRT [START_REF] Quisquater | Fast decipherment algorithm for RSA public key cryptosystem[END_REF]. These variants use more or less the same arithmetic. However, some variants of RSA with notably different structures have been proposed in the literature. In the following, we present four of such variants having similar moduli and key equations. [START_REF] Boneh | Cryptanalysis of RSA with private key d less than N 0.292[END_REF] In 1993, Smith and Lennon [START_REF] Smith | LUC: a new public-key cryptosystem[END_REF] proposed a system, called LUC, based on Lucas sequences. The modulus is N = pq, and the public and the private exponents are positive integers e and d satisfying ed ≡ 1 (mod p 2 -1 q 2 -1 ). 2) In 1995, Kuwakado et al. [START_REF] Kuwakado | A new RSA-type scheme based on singular cubic curves y 2 = x 3 +bx 2 (mod n)[END_REF] presented a cryptosystem based on the singular cubic curve with the equation y 2 ≡ x 3 + ax 2 (mod N ) where N = pq is an RSA modulus, and a, x, y ∈ Z/N Z. In this system, the public exponent e and the private exponent d satisfy ed ≡ 1 (mod p 2 -1 q 2 -1 ). [START_REF] Castagnos | An efficient probabilistic public-key cryptosystem over quadratic field quotients[END_REF] presented a probabilistic cryptosystem over quadratic field quotients. As in LUC, this cryptosystem uses Lucas sequences, and the modulus is in the form N = pq. As in the previous cryptosystems, the public exponent e, and the private exponent d are positive integers satisfying ed ≡ 1 (mod p 2 -1 q 2 -1 ).

A common characteristic of the former cryptosystems is that they share the key equation ed ≡ 1 (mod p 2 -1 q 2 -1 ). The cryptanalysis of such systems started in 2016 with the work of Bunder et al. [START_REF] Bunder | A new attack on three variants of the RSA cryptosystem[END_REF]. They transformed the key equation into an equation of the form ed -k p 2 -1 q 2 -1 = 1, and showed that k d can be computed by a convergent of the continued fraction expansion of

e N 2 -9 4 N +1 if d < 2N 3 -18N 2 e
. Then, in 2017, Bunder et al. [START_REF] Bunder | A generalized attack on RSA type cryptosystems[END_REF] studied the case when N = pq, and the public exponent e satisfies an equation of the form ex -p 2 -1 q 2 -1 y = z. They combined Coppersmith's technique, and the continued fraction method and showed that one can factor 4 . The same equation ex -p 2 -1 q 2 -1 y = z was later considered by Nitaj et al. [START_REF] Nitaj | a generalized attack on some variants of the RSA cryptosystem[END_REF]. For e = N α , and d = N δ , they showed that the equation ed -k p 2 -1 q 2 -1 = 1 can be solved and N can be factored if δ < 7 3 -2 3 √ 1 + 3α. In [START_REF] Peng | An improved analysis on three variants of the RSA cryptosystem[END_REF], Peng et al. obtained the better bound δ < 2 -√ α by mixing Coppersmith's method and unravelled linearization techniques. Finally, Zheng et al. [START_REF] Zheng | Cryptanalysis of RSA Variants with Modified Euler Quotient[END_REF] reconsidered the key equation ed -k p 2 -1 q 2 -1 = 1, and obtained a similar bound on d which is applicable for 1 ≤ α < 4.

N if xy < 2N -4 √ 2N 3 4 and |z| < |p -q|N 1 4 y. For z = 1, the equation becomes ed -k p 2 -1 q 2 -1 = 1, and the bound on d is d < 2N -4 √ 2N 3 
In this paper, we study the cryptanalysis of the former four variants of RSA if the RSA modulus N = pq is such that q < p < 2q, and p-q = N β . We note here that, for q < p < 2q, we have always 0 < β < 1 2 . However, if β < 1 4 , then one can find p and q by Fermat's method (see [START_REF] De Weger | Cryptanalysis of RSA with small prime difference, Applicable Algebra in Engineering[END_REF]), or by Coppersmith's method [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF]. Our starting point is the key equation ed -k p 2 -1 q 2 -1 = 1 which is common to the four variants. More precisely, for q < p < 2q, we set e = N α , p -q = N β , d = N δ . Then, by applying the continued fraction algorithm, we show that, under the condition δ < 2 -β -1 2 α, the rational number k d is a convergent of the continued fraction expansion of e (N -1) 2 . This leads us to find p and q, and break the system. Also, we show that the key equation can be transformed to a modular polynomial equation of the form f (x, y) = xy + Ax + 1 ≡ 0 (mod e), with A = -(N -1) 2 , where (x, y) = -k, (p -q) 2 is a solution. Then by applying Coppersmith's method and lattice reduction techniques, we show that, under the condition δ < 2 -√ 2αβ, one can factor the RSA modulus N . If we apply our attacks to the case where p and q are randomly chosen, that is p -q = O N β with β = 1 2 , then our bounds on δ and d retrieve the existing bounds in the previous attacks in [START_REF] Bunder | A new attack on three variants of the RSA cryptosystem[END_REF][START_REF] Nitaj | a generalized attack on some variants of the RSA cryptosystem[END_REF][START_REF] Peng | An improved analysis on three variants of the RSA cryptosystem[END_REF][START_REF] Zheng | Cryptanalysis of RSA Variants with Modified Euler Quotient[END_REF].

The paper is organized as follows. Section 2 presents the preliminaries to the next sections. In Section 3, we present our first attack based on the continued fraction algorithm. In Section 4, we present our second attack based on Coppersmith's method and lattice reduction techniques. In Section 5, we compare the new results to existing ones in the literature. We conclude the paper in Section 6.

Preliminaries

In this section, we present some fundamental concepts and results relevant to our methods.

A useful lemma

We start by the following result (see [START_REF] Bunder | A new attack on three variants of the RSA cryptosystem[END_REF]).

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Then

N 2 - 5 2 N + 1 < p 2 -1 q 2 -1 < N 2 -2N + 1.

Continued fractions

Let ξ be real number. The continued fraction expansion of ξ is an expression of the form

ξ = a 0 + 1 a 1 + 1 a 2 + 1 a 3 + • • •
, where a 0 ∈ Z, and a i ∈ N * for i ≥ 1. If ξ is a rational number, the list [a 0 , a 1 , a 2 , . . .] of partial quotients is finite and can be computed in polynomial time. For n ≥ 0, [a 0 , a 1 , a 2 , . . . , a n ] is a rational number and is called a convergent of the continued fraction expansion of ξ. There are various properties of the continued fraction expansion of real numbers, and the following is useful to check whether a rational number a b is a convergent of a real number ξ Lattices are used in several domains, especially in cryptography for creating new systems and for cryptanalysis. As a lattice has infinitely many bases, it is crucial to find a basis with good properties, typically with short vectors. In 1982, Lenstra, Lenstra, and Lovász [START_REF] Lenstra | Factoring polynomials with rational coefficients[END_REF] proposed an algorithm, called LLL, to find a good basis and short vectors in a lattice. A useful property of the LLL algorithm is the following result [START_REF] May | New RSA Vulnerabilities Using Lattice Reduction Methods[END_REF] Theorem 2. Let L be a lattice spanned by a basis (u 1 , u 2 , . . . , u ω ). The LLL algorithm produces a new basis

(b 1 , b 2 , . . . , b ω ) satisfying b 1 ≤ . . . ≤ b i ≤ 2 ω(ω-1) 4(ω+1-i) det(L) 1 ω+1-i , i = 1, . . . , ω.
Let e be an integer and

f (x 1 , x 2 , . . . , x n ) = i1,i2,...,in a i1,i2,...,in x i1 1 x i2 2 • • • x in n
with a i1,i2,...,in ∈ Z. The Euclidean norm of the polynomial f is defined by

f (x 1 , x 2 , . . . , x n ) = a 2 i1,i2,...,in .
In 1997, Coppersmith [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] developed a technique to find the small solutions of the modular polynomial equation f (x 1 ) ≡ 0 (mod N ) with one variable, and the small roots of the polynomial f (x 1 , x 2 ) = 0 with two variables, by applying lattice reduction. Later, the technique has been extended to more variables, especially to find the small solutions of the modular polynomial equation f (x 1 , x 2 , . . . , x n ) ≡ 0 (mod e). The following result, due to Howgrave-Graham [START_REF] Howgrave-Graham | Finding small roots of univariate modular equations revisited[END_REF], is a cornerstone in Coppersmith's method.

Theorem 3 (Howgrave-Graham). Let f (x 1 , x 2 , . . . , x n ) ∈ Z[x 1 , x 2 , . . . , x n ] be a polynomial with at most ω monomials, and e a positive integer. Suppose that

f (x 1 , x 2 , . . . , x n ) ≡ 0 (mod e) and f (x 1 X 1 , x 2 X 2 , . . . , x n X n )) < e √ ω ,
where

|x 1 | < X 1 , |x 2 | < X 2 , . . . , |x n | < X n . Then f (x 1 , x 2 , . . . , x n ) = 0 holds over the integers.
The starting step in Coppersmith's method for finding the small solutions of the modular polynomial equation f (x 1 , x 2 , . . . , x n ) ≡ 0 (mod e) is to generate ω polynomials g i (x 1 , x 2 , . . . , x n ) satisfying g i (x 1 , x 2 , . . . , x n ) ≡ 0 (mod e) for 1 ≤ i ≤ ω. The coefficients of the polynomials g i (x 1 , x 2 , . . . , x n ) are then used to build a matrix of a lattice L. Applying the LLL algorithm to the lattice produces a new matrix from which ω new polynomials h i (x 1 , x 2 , . . . , x n ) are extracted such that h i (x 1 , x 2 , . . . , x n ) ≡ 0 (mod e). If, in addition, at least n of such polynomials satisfy Theorem 3, then using resultant techniques or Gröbner basis method, one can extract the small solution (x 1 , x 2 , . . . , x n ). We note that for n ≥ 3, Coppersmith's method to extract the solutions is heuristic. It depends on the assumption that the polynomials derived from the reduced basis are algebraically independent. In this paper, we always successfully extracted the solutions by Gröbner basis computation.

The Attack Based on Continued Fraction Algorithm

In this section, we present our first attack which is based on the continued fraction algorithm.

Theorem 4. Let N = pq be an RSA modulus with q < p < 2q and |p-q| = N β . Let e = N α be a public exponent satisfying the equation ed-k p 2 -

1 q 2 -1 = 1 with d = N δ . If δ < 2 -β - 1 2 α,
then one can find p and q in polynomial time.

Proof. Suppose that N = pq with q < p < 2q and that a public exponent e satisfies the key equation ed -

k p 2 -1 q 2 -1 = 1. Then ed -(N -1) 2 k = k p 2 -1 q 2 -1 + 1 -(N -1) 2 k = 1 + k p 2 -1 q 2 -1 -(N -1) 2 = 1 -k(p -q) 2 .
This leads to

e (N -1) 2 - k d = 1 -k(p -q) 2 d(N -1) 2 < k(p -q) 2 d(N -1) 2 .
Using the key equation, we get k p 2 -1 q 2 -1 = ed -1 < ed. Then

k d < e (p 2 -1) (q 2 -1)
,

and e (N -1) 2 - k d < e(p -q) 2 (N -1) 2 (p 2 -1) (q 2 -1)
.

By Lemma 1, we have

(N -1) 2 p 2 -1 q 2 -1 > (N -1) 2 N 2 - 5 2 N + 1 = N 4 - 9 2 N 3 + 7N 2 - 9 2 N + 1 > 1 2 N 4 ,
where the last inequality is valid for N ≥ 8. Hence using e = N α , |p -q| = N β , and d = N δ , we get

e (N -1) 2 - k d < e(p -q) 2 (N -1) 2 (p 2 -1) (q 2 -1) < 2N α+2β-4 . If 2N α+2β-4 < 1 2 N -2δ , that is δ < 2 -β -1 2 α, then e (N -1) 2 - k d < 1 2 N -2δ = 1 2d 2 .
It follows that one can find k d amongst the convergents of the continued fraction expansion of e (N -1) 2 . Then, using the values of k and d in the key equation ed -k p 2 -1 q 2 -1 = 1, we get p 2 + q 2 = N 2 + 1 -ed-1 k . Combining this with N = pq, we find p and q.

We note that if p and q are such that p -q ≈ N 1 2 , then β ≈ 1 2 , and the bound on δ in Theorem 4 is δ < 3 2 -α 2 . This retrieves the results of [START_REF] Bunder | A new attack on three variants of the RSA cryptosystem[END_REF].

The Attack Based on Coppersmith's Method

In this section, we apply Coppersmith's method and lattice reduction techniques to launch an attack on the RSA variants with a modulus N = pq where the prime difference |p -q| is sufficiently small, and the exponents e and d satisfy the equation ed -k p 2 -1 q 2 -1 = 1.

Theorem 5. Let (N, e) be a public key for the RSA variants where N = pq with q < p < 2q, and e = N α . Suppose that e satisfies the equation ed -

k p 2 -1 q 2 -1 = 1 with d = N δ and |p -q| < N β . If δ < 2 -2αβ -ε,
for a small positive constant ε, then one can factor N in polynomial time.

Proof. Suppose that N = pq and e = N α satisfy the equation ed-k p 2 -1 q 2 -1 = 1 with d = N δ and |p -q| = N β . By Lemma 1, for N ≥ 5, we have

p 2 -1 q 2 -1 > N 2 + 1 - 5 2 N > 1 2 N 2 . Then k = ed -1 (p 2 -1) (q 2 -1) < 2ed N 2 = 2N α+δ-2 ,
which gives an upper bound for k. On the other hand, the key equation can be rewritten as

(-k)(p -q) 2 -(N -1) 2 (-k) + 1 ≡ 0 (mod e).
Consider the polynomial f (x, y) = xy + Ax + 1, with A = -(N -1) 2 . Then (x, y) = -k, (p -q) 2 is a solution of the modular polynomial equation f (x, y) ≡ 0 (mod e). To find the small solutions, we apply Coppersmith's method [START_REF] Coppersmith | Small solutions to polynomial equations, and low exponent RSA vulnerabilities[END_REF] to the polynomial F (x, u) = u + Ax where u = xy + 1 with the bounds

|x| < 2N α+δ-2 , |y| < N 2β , |u| < 2N α+δ+2β-2 .
Let m and t be two positive integers to be specified later. Consider the polynomials

G k,i1,i2,i3 (x, y, u) = x i1 F (x, u) k e m-k , with k = 0, . . . m, i 1 = 0, . . . , m -k, i 2 = 0, i 3 = k, H k,i1,i2,i3 (x, y, u) = y i2 F (x, u) k e m-k , with i 1 = 0, i 2 = 1, . . . t, k = m t i 2 , . . . , m, i 3 = k.
In the expansion of the polynomial H k,i1,i2,i3 (x, y, u), each term xy is replaced by u -1. The monomials of G k,i1,i2,i3 (x, y, u) and H k,i1,i2,i3 (x, y, u) are ordered by the following rule

• A monomial of G k,i1,i2,i3 (x, y, u
) is prior to every monomial of H k,i1,i2,i3 (x, y, u).

• The monomials of G k,i1,i2,i3 (x, y, u) are ordered following the output of the procedure for k = 0, . . . m, for i 1 = 0, . . . , m -k, for i 2 = 0, for i 3 = k, output x i1 y i2 u i3 . • The monomials of H k,i1,i2,i3 (x, y, u) are ordered following the output of the procedure for i 1 = 0, for i 2 = 1, . . . t, for k = m t i 2 , . . . , m, for i 3 = k, output x i1 y i2 u i3 . The polynomials are ordered by similar rules. We set

X = 2N α+δ-2 , Y = N 2β , U = 2N α+δ+2β-2 .
(

We consider the lattice L where the rows of the basis matrix is built by considering the coefficients of the monomials of the polynomials G k,i1,i2,i3 (Xx, Y y, U u) and H k,i1,i2,i3 (Xx, Y y, U u). We note that the lattice L is different from the lattices used in [START_REF] Peng | An improved analysis on three variants of the RSA cryptosystem[END_REF][START_REF] Zheng | Cryptanalysis of RSA Variants with Modified Euler Quotient[END_REF][START_REF] Nitaj | a generalized attack on some variants of the RSA cryptosystem[END_REF]. Table 1 shows the lattice basis matrix generated by m = 2 and t = 2.

1 x x 2 u xu u 2 yu yu 2 y 2 u 2 G0,0,0,0(x, y, u) e 2 0 0 0 0 0 0 0 0 G0,1,0,0(x, y, u) 0 Xe 2 0 0 0 0 0 0 0 G,2,0,0(x, y, u) 0 0 X 2 e 2 0 0 0 0 0 0 G1,0,0,1(x, y, u) 0 Xa1e 0 U e 0 0 0 0 0 G1,1,0,1(x, y, u) 0 0 X 2 a1e 0 XU e 0 0 0 0 G2,0,0,2(x, y, u) 0 0 X 2 a 2 1 0 2U Xa1 U 2 0 0 0 H1,0,1,1(x, y, u) -a1e 0 0 U a1e 0 0 U Y e 0 0 H2,0,1,2(x, y, u) 0 -a 2 1 X 0 -2U a1 a 2 1 U X 2U 2 a1 0 U 2 Y 0 H2,0,2,2(x, y, u) a 2 1 0 0 -2U a 2 1 0 U 2 a 2 1 -2U a1Y 2U 2 a1Y U 2 Y 2
Table 1. The lattice basis matrix for m = 2 and t = 2.

The lattice basis matrix is triangular and the determinant of the lattice is of the form det

(L) = X n X Y n Y U n U e ne , (2) 
and the dimension is ω with

n X = m k=0 m-k i1=0 i 1 = 1 6 m 3 + o(m 3 ), n Y = t i2=1 m k= m t i 2 = 1 2 mt 2 - 1 3 
m t t 3 + o(mt 2 ), n U = m k=0 m-k i1=0 k + t i2=1 m k= m t k = 1 6 m 3 + 1 2 m 2 t - 1 6 m t 2 t 3 + o(m 3 )
,

n e = m k=0 m-k i1=0 (m -k) + t i2=1 m k= m t (m -k) = 1 3 m 3 + 1 2 m 2 t + 1 6 m t 2 t 3 - 1 2 m t mt 2 + o(m 3 ). ω = m k=0 m-k i1=0 1 + t i2=1 m k= m t 1 = 1 2 m 2 + mt - 1 2 m t t 2 + o(m 2 ).
If we set t = mτ and replace m t by 1 τ in the above approximations, we get

n X = 1 6 m 3 + o(m 3 ), n Y = 1 6 τ 2 m 3 + o(m 3 ), n U = 1 6 (2τ + 1)m 3 + o(m 3 )
,

n e = 1 6 (τ + 2)m 3 + o(m 3 ), ω = 1 2 (τ + 1)m 2 + o(m 2 ). (3) 
Applying the LLL algorithm to the lattice L, we get a new matrix satisfying the inequalities of Theorem 2. To combine it with Theorem 3, we set 2 ω(ω-1) -2) . Using (2), we get

4(ω-2) det(L) 1 ω-2 < e m √ ω , or equivalently det(L) < 2 -ω(ω-1) 4 ( √ ω) 2-ω e m(ω
X n X Y n Y U n U e ne < 2 -ω(ω-1) 4 √ ω 2-ω e m(ω-2) .
Then, using (3), and by a straightforward calculation, we get the inequality

1 6 (α + δ -2) + 1 6 τ 2 (2β) + 1 6 (2τ + 1)(α + δ + 2β -2) + 1 6 (τ + 2)α - 1 2 (τ + 1)α < -ε 1 ,
where ε 1 is a small positive constant that depends only on N and m. The left side is optimized for τ 0 = 2-δ-2β 2β

. Plugging τ 0 in the former inequality, we get

-δ 2 + 4δ + 2αβ -4 < -ε 2 ,
with a small positive constant ε 2 . This leads to the inequality

δ < 2 -2αβ -ε,
where ε is a small positive constant. Note that we also need τ 0 ≥ 0, that is 2 -δ -2β ≥ 0 and δ ≤ 2 -2β. Consequently, δ should satisfy

δ < min 2 -2αβ -ε, 2 -2β For α ≥ 2β, that is e ≥ |p -q| 2 , we have 2 - √ 2αβ ≤ 2 -2β
, and the condition becomes δ < 2 -√ 2αβ -ε. Under these conditions, the reduced lattice has three polynomials h 1 (x, y, u), h 2 (x, y, u) and h 2 (x, y, u) sharing the root (x, y, u) = (-k, (p -q) 2 , -k(p -q) 2 + 1). Then, applying Gröbner basis or resultant computations, we can extract the solution from which we deduce p-q = √ y.

Combining with the equation pq = N , this leads to the factorization of N = pq, and terminates the proof.

Comparison with Former Attacks

Before starting comparing our results to existing ones, we notice that the bound on δ in Theorem 5 is always better than the bound in Theorem 4. To ease the comparison, we neglect the term ε in Theorem 5. For the same parameters α and β, the difference between the bounds in Theorem 5 and Theorem 4 is

2 -2αβ -2 -β - 1 2 α = β + 1 2 α -2αβ = β + 1 2 α 2 -2αβ β + 1 2 α + √ 2αβ = β -1 2 α 2 β + 1 2 α + √ 2αβ ≥ 0, which implies that 2 - √ 2αβ ≥ 2 -β -1 2 α. In [3], Bunder et al. studied the key equation ed -k p 2 -1 q 2 -1 =
1 by the method of the continued fractions. They showed that if d satisfies

d < 2N 3 -18N 2 e
, then k d is a convergent of the continued fraction expansion of e N 2 -9 4 N +1 , the key equation can be solved and N can be factored. If we set d = N δ , and e = N α , then the former inequality gives δ < 3 2 -1 2 α which is the same than the bound of Theorem 4 with |p -q| = N β and β = 1 2 . As a consequence, the results of [START_REF] Bunder | A new attack on three variants of the RSA cryptosystem[END_REF] can be retrieved by our method as in Theorem 4.

In [START_REF] Nitaj | a generalized attack on some variants of the RSA cryptosystem[END_REF], Nitaj et al. studied the variant equation eu -p 2 -1 q 2 -1 v = w with e = N α , u < N δ , |w| < N γ , and showed that under the conditions δ < 7 3 -γ -2 3 √ 1 + 3α -3γ, one can factor the RSA modulus N = pq. If we take γ = 0, then the equation becomes eu -p 2 -1 q 2 -1 v = 1, and the condition is δ < 7 3 -2 3 √ 1 + 3α. To compare it with the bound of Theorem 5, we take |p -q| = N β with β = 1 2 , and the bound becomes δ

< 2 - √ α. Then 2 - √ α - 7 3 - 2 3 √ 1 + 3α = 2 3 √ 1 + 3α - √ α - 1 3 = 4 9 (1 + 3α) - √ α + 1 3 2 2 3 √ 1 + 3α + √ α + 1 3 = 1 3 + 1 3 α -2 3 √ α 2 3 √ 1 + 3α + √ α + 1 3 = 1 3 (1 - √ α) 2 2 3 √ 1 + 3α + √ α + 1 3 ≥ 0,
which shows that our bound in Theorem 5 is always better than the bound of [START_REF] Nitaj | a generalized attack on some variants of the RSA cryptosystem[END_REF].

In [START_REF] Peng | An improved analysis on three variants of the RSA cryptosystem[END_REF], Peng et al. studied the key equation ed -k p 2 -1 q 2 -1 = 1 by Coppersmith's method, with e = N α , and d = N δ . The key equation is first transformed to the modular equation k N 2 + 1 -p 2 -q 2 + 1 ≡ 0 (mod e), and then to the modular equation x(y + A) + 1 ≡ 0 (mod e) with A = N 2 + 1, x = k, and y = -p 2 + q 2 . They showed that one can factor the RSA modulus if δ < 2 -√ α. In Theorem 5, if we set |p -q| = N β with β = 1 2 , we get the same condition. This shows that our method can be considered as an extension of the work in [START_REF] Peng | An improved analysis on three variants of the RSA cryptosystem[END_REF].

In [START_REF] Zheng | Cryptanalysis of RSA Variants with Modified Euler Quotient[END_REF], Zheng et al. studied the key equation ed -k p 2 -1 q 2 -1 = 1 and transformed it to k (N + 1) 2 -(p + q) 2 + 1 ≡ 0 (mod e), and also to x(y + A) + 1 ≡ 0 (mod e) with A = (N + 1) 2 , x = k, and y = -(p + q) 2 . They showed that one can solve the equation and factor N if d = N δ , e = N α , and δ < 2 -√ α. As specified before, this result can be retrieved by our method of Theorem 5.

Conclusion

In this paper, we studied the key equation ed -k p 2 -1 q 2 -1 = 1 derived from four variants of the RSA cryptosystem with a modulus N = pq, a public exponent e, and a private exponent d. Moreover, we considered the situation where the prime factors p and q are of equal bitsize, and share an amount of their most significant bits. We presented two different attacks on such variants. The first attack is based on the continued fraction algorithm, and the second attack is based on lattice reduction. For both attacks, we showed that the variants are insecure if the prime difference p -q, and the private exponent d are suitably small. Finally, we compared our new attacks to existing ones, and showed that our methods are more suitable for the cryptanalysis of the RSA variants.

[9]. Theorem 1 . 2 . 3

 123 Let ξ be a positive real number. If a and b are integers satisfying gcd(a, b) is a convergent of the continued fraction expansion of ξ. Lattice reduction Let b 1 , b 2 , . . . , b ω be ω linearly independent vectors of R n with n ≥ ω. The lattice L spanned by the vectors b 1 , b 2 , . . . , b ω is the set of their integer linear combinations, that isL = ω i=1 x i b i , x 1 , . . . , x ω ∈ Z .The list (b 1 , b 2 , . . . , b ω ) is called a basis of the lattice L, ω is its dimension, and n is its rank. When ω = n, the lattice is called full-rank. A basis matrix B for the lattice can be constructed by expanding the vectors b i in the rows. The lattice determinant is then defined by det(L) = det (BB t ), where B t is the transpose of B. When the lattice if full-rank, B is a square matrix and det(L) = | det (B) |.

  3) In 2002, Elkamchouchi et al.[START_REF] Elkamchouchi | Extended RSA cryptosystem and digital signature schemes in the domain of Gaussian integers[END_REF] proposed a cryptosystem in the ring of Gaus-

sian integers. The operations are performed modulo N = P Q where P and Q are two Gaussian primes. The public exponent e and the private exponent d are positive integers satisfying ed ≡ 1 (mod |P | 2 -1 |Q| 2 -1 ) where |P | and |Q| are prime integers. 4) In 2006, Castagnos