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Abstract 

From planification to execution, cerebellar microcircuits encode different features of skilled 

movements. However, it is unknown whether cerebellar synaptic connectivity maps encode 

movement features in a motor context specific manner. Here we investigated the spatial 

organization of excitatory synaptic connectivity in mice cerebellar cortex in different locomotor 

contexts: during development and in normal, trained or altered locomotor conditions. We 

combined optical, electrophysiological and graph modelling approaches to describe synaptic 

connectivity between granule cells (GCs) and Purkinje cells (PCs). Synaptic map maturation 

during development revealed a critical period in juvenile animals before the establishment of a 

stereotyped functional organization in adults. However, different locomotor conditions lead to 

specific GC-PC connectivity maps in PCs.  Ultimately, we demonstrated that the variability in 

connectivity maps directly accounts for individual specific behavioral features of mice 

locomotion, suggesting that GC-PC networks encode a general motor context as well as 

individual specific internal models underlying motor adaptation.  

 

Introduction 

Sensorimotor adaptation and motor learning rely on a combination of neuronal computation 

performed in different brain areas embedded in multiple cerebello-cortical loops1–5. The 

population dynamic of cortical networks encodes stimulus features, which are communicated 

to different topological nodes of the brain dedicated to motor planning and motor control. If 

these neuronal dynamics succeed in producing an adapted behavior, they are stabilized in 

specific areas through synaptic plasticity yielding specific routing of action potentials across 

the network6–9. Recent experiments described how different types of neurons in the cerebral 

cortex are selectively connected depending on stimulus features they have to encode10–13. 

Similarly, in the cerebellar cortex, stereotyped albeit plastic and structured connectivity maps 

across individuals have been described in identified modules14. However, what connectivity 

maps encode precisely in the cerebellar cortex is still unclear. In a first scenario, connectivity 

maps reflect features (e.g., limb movement or velocity) that could be used for context specific 

sensorimotor adaptation by other brain areas (e.g., during walking, running, or swimming). 

Maps would be context-independent as an invariant internal model of the features15,16. In this 

scenario, plasticity would be essentially related to modification of relative body coordinates 

(e.g., limb size during development) and maps should not be modified in different contexts. 

Alternatively, in a second scenario, a given map would encode features in a specific context 

(e.g., limb movement when running). Connectivity maps would represent individual-specific 
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engrams of adaptive behaviors established throughout motor learning and such feature-based 

maps should be animal and context specific. Experiments suggesting that the cerebellum 

stores in its neuronal network internal models of the body predicting an expected sensory 

feedback of motor commands are compatible with both scenario 17–22.  

We therefore investigated whether cerebellar connectivity maps are modified during 

development and by altering locomotor contexts. We targeted the anterior vermal lobule III-IV, 

an area involved in postural adaptation of locomotion23–25 as pointed out by gait impairment 

and altered locomotion occurring after lesions or alteration of cerebellar plasticities in the 

cerebellum23,26,27. Functional studies have identified task-related modules involved in specific 

movements and described the cerebellum as an array of anatomo-functional modules and 

microzones defined by the topographical organization of a major excitatory input of the 

cerebellum, the climbing fibers (CF) 28–31. Microzones are composed of a group of PCs, the 

sole output of the cortex, having similar CF receptive fields and can be identified through 

differential expression of molecular markers (known as Zebrins) in PCs30,32–35 (Fig 1a). PCs 

combine information from excitatory granule cells (GC) relaying mossy fiber inputs (MFs) and 

from the CF which control plasticity at the GC-PC synapses 36–39.  Sensorimotor MF inputs are 

multimodal and project to many different patch of GCs in different lobules, defining a fractured 

somatotopy 40–42. Furthermore, GCs that receive MFs from different modalities43,44 compute 

and distribute this information to many different microzones via their long axons, the parallel 

fibers (PFs) leading to specific excitatory connectivity maps patterns conserved between 

animals14. Therefore, GC-driven synaptic connectivity maps define how cerebellar modules 

are coordinated in a given cerebellar lobule and may encode common and generic adapted 

behavior 14,41.  

We, here, use a combination of electrophysiological recordings and systematic glutamate 

uncaging to establish GC-PC connectivity maps in different locomotor contexts and 

development. We then describe map spatial organization using a novel graph-based modelling 

of synaptic weights. Through functional reconstruction, graph representations and the 

quantification of their graph-theoretical features, we showed that the behavioral context leaves 

a trace in the spatial organization of maps. We also found that while connectivity maps are 

correlated to behavioral conditions, each mouse developed a specific individual combination 

of connectivity traits linked to its individual and highly specific locomotor activity, suggesting 

that behavior may causally shape the spatial (re)organization of connectivity maps. 
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Results 

Stereotyped synaptic transmission in the GC-PC pathway  

We established synaptic connectivity maps between GCs and PCs in lobule III-IV of the 

anterior vermis and selected a group of medial PCs (0-120 µm, medial P1- band of the A 

zone14; Fig.1a, Fig.S1) which are involved in postural adaptation during locomotion. PCs from 

this microzone were whole-cell patch-clamped on acute cerebellar slices from AldolaseC-

Venus fluorescent transgenic mice45 (Fig.1a; N=83 mice, Table 1) and inhibition was blocked. 

In situ fluorescence of AldolaseC-venus (Zebrin II) in PCs allowed direct visualization of 

cerebellar microzones and accurate targeting of the medial PCs (microzone of interest in Fig 

1a). Rubi-Glutamate46 was sequentially photostimulated on the granule cell layer (GCL) 

following a grid of 128 or 384 square sites (20x20 or 40x40µm corresponding to high vs low 

resolution, respectively) while EPSCs were recorded in PCs (n=148 PCs, Fig.1a,b, S1, S2 and 

Table 1; see Methods). For each PC, a single GC-PC connectivity map was built from the 

averaged EPSCs elicited by each of the 128 or 384 photostimulated GCL sites (Fig.1b, S2, 

each average built from 6-10 mappings). To define whether a site is functional or silent, EPSC 

amplitudes were normalized to noise level and expressed as z-scores (Fig.1b, S2 and 

methods). MF inputs originating in a specific precerebellar nuclei14,42,47,48 project onto GCs at 

several location in a lobule and in most of the GCL height, defining a fractured and patchy 

columnar somatotopy (Fig S1; see14,40,41). We therefore treated the GCL either as a grid of 384 

or 128 GC sites or as a collection of GC columns of 20 or 40-µm width, respectively. Each 

connectivity map was then represented either as a 2D map or a projected 1D pattern 

corresponding to the maximal synaptic weight of GC columns (Fig.1b and Methods). 

We also developed an analytical method allowing us to investigate the “patchiness” of GC-PC 

connectivity maps that could consider the fractured MF projections projecting onto distant 

connected GC patches. To do this, we used an analytic workflow based on mathematical graph 

representation of the connectivity maps (Fig.1c, d, methods). Graphs (or networks) are generic 

abstract entities composed of nodes and links between them49. We considered each 

connectivity map as a matrix M, whose Mxy entry denotes the EPSC amplitude recorded at the 

GC site coordinates (x,y) (Fig.1c). We computed the normalized Pearson correlations (Cxx’) for 

every pair of columns (mapped to graph nodes) x and x’ along the mediolateral axis of the 

connectivity maps. Cxx’ entries become the strengths (i.e., weights) of links between graph 

nodes associated to the positions x and x’. Cxx’ values were compiled in a correlation matrix 

C(M) (“Raw Graph matrix” on Fig.1c) which can be considered as the adjacency matrix of an 

undirected graph (Methods). Map columns traversed by one or multiple patches will have 

similar synaptic profiles, and the corresponding graph nodes will thus be strongly connected, 
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Figure 1: Stereotyped and structured GC-PC connectivity maps

(a) Upper left panel, diagram illustrating cerebellar cortical anatomy in brain slices. Recorded PCs (green and red) are close to the midline (<120 µm) and 
belong to the P1-medial microzone in the A zone of lobule III/V. ZebrinII positive (ZII+) and ZebrinII negative (ZII-) PCs coincide with some microzonal 
boundaries. GCs relay MF multimodal information to PCs across cerebellar microzones via monosynaptic excitation or disynaptic inhibition through 
molecular layer interneurons (MLIs). Bottom left panel, picture of �uorescent PCs in an acute cerebellar slice from an ALDOC-Venus mouse. Right panel, 
photostimulation apparatus for glutamate uncaging. Systematic release of caged-glutamate was done in 20x20 or 40x40µm GCL areas using 
patterned-light illumination while PCs are recorded in voltage-clamp (holding=-60mV). GCL, granule cell layer; ML, molecular Layer; PCL, Purkinje cell layer. 
(b) Example of GC-PC synaptic map. Upper part, post-hoc reconstruction of a recorded PC. Scale bar = 50µm. Light-evoked EPSCs from each stimulation 
site are averaged. Lower part, resulting synaptic maps are translated in z-score maps (methods and Fig.S2). The maximal z-score value for each GCL 
column (pink-dashed box) along the mediolateral axis is projected on a 1D map to de�ne GC synaptic patterns. Blue areas show GC areas connected to the 
recorded PC (z≥3). (c) Connectivity map preprocessing for graph network analyses. Column-wise Pearson correlations (e.g., x and x’ columns) of synaptic 
weights lead to a spatial correlation matrix (“Raw graph matrix”), highlighting GCL columns eliciting similar responses in the recorded PCs. The raw matrix 
was rearranged using the Louvain community detection algorithm giving the “Rearranged graph matrix” with well-de�ned graph modules (A, B, C). 
Modules are visualized using a force-spring algorithm in an arbitrary space (Force spring layout, i.e., distance between nodes represents the degree of 
correlation and the colors represent the module identity from the “Rearranged matrix”) or according to nodes positions along the mediolateral axis (linear 
layout). (d) Graph parameters. The module degree z-score illustrates how a given node is connected to nodes from the same module while participation 
illustrates how uniformly a node is connected to nodes from di�erent modules. Assortativity illustrate the potency of nodes to connect with nodes having 
similar degree. (e) GC-PC connectivity maps of the CTRL group of mice (n=14, see Table 1). Upper panel, averaged 2D map. Lower panel, median 1D 
pattern. White bar, averaged PC position. Inset, distribution of graph parameters measured in CTRL graphs. 

500µm

300µm Lobule IV

+

-

+

Zones

microzone of interest

Zebrins 

ML
MLI
GC
MF

ZII+ ZII-

PCL
GCL +

B
P2- P2+ P1- P1+ P1- P2+ P2-

contralateral ipsilateral
AXAlat AlatAmed Amed AX B

P2+ P2+P1+ GCL

40x

-60mV

20x20µm
or 40x40µm

460nm @ 12mW/mm² - 30ms

150300450600

G
cL

 (µ
m

)160

90

20

0

-120

-20

-1
00

 p
A

250 ms
stim

Zs
co

re ≥ 3.09
< 3.09

max

GC
L

PC
L

M
L

contralateral ipsilateral

P2+P2- P1-
lat P1-

latP1-
med P1-

med P2+ P2-P1+

AldolaseC - ZII
Biocytin

20

120

20

120

10

15

M
ax

 Z
sc

or
e

 µ
m

 µ
m

5

0
Position on mediolateral axis (µm)

300 600-300-600

0

local GCs
connected areas
n.s.

Am
p. (pA)

Zscore
>3.09
<3.09

20

120

  

Zebrins

connected GCs
silent areas
MAD

Local GCs

 µ
m

20

M
ed

ia
n 

Zs
co

re

-580 0-300 300 600

Control

0

10

20

XX

n=14

Distance from midline (µm)

120

contralateral ipsilateral
P2+P2- P1-

lat P1-
latP1-

med P1-
med P2+ P2-P1+

Am
plitude
 (pA)

10

75

0.15

M
od

ul
ar

ity
 in

de
x

Pa
rt

ic
ip

at
io

n

A
ss

or
ta

tiv
ity

 D
eg

. z
-s

co
re

0.15

0.60 0.60

0.05

0.35

0.003

0.012

Pearson Louvain

Graph 
representation

Raw Graph 
MatrixSynaptic map

Force-spring graph layoutLinear graph layout

module
A  B  C

Rearranged 
Graph
Matrix

 µ
m

A
A

B

B

C

C
20

120
x x’

x

x’

P2-
ipsiP2+

ipsiP1-
ipsi

Modular Not modular
MODULARITY

High
deg z-score

High
deg z-score

High
participation

ASSORTATIVITY
Assortative Not assortative

Low degreeHigh degree

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 24, 2021. ; https://doi.org/10.1101/2021.02.24.432563doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432563


42 
 

Table 1: Group description. 

Condition Acronym 
N 

(mice) 

n 

(maps) 
Description 

Pups PND9-10 5 11  

Juvenile PND12-13 6 12 Mice raised in standard conditions 

Adolescent PND14-18 7 15  

Adult PND>30 7 10  

Control CTRL 9 14 Mice raised in standard conditions 

Short Training STR 6 12 7 daily sessions in the running wheel 

Long Training LTR 6 11 
10 daily sessions in the running 

wheel 

Early Cuff EC 13 25 Cuff implant on the right sciatic nerve 

Early Sham ES 7 10 Cuff surgery only 

Late Cuff LC 8 16 Cuff implant on the right sciatic nerve 

Late Sham LS 9 12 Cuff surgery only 

Total  83 148  
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forming network modules. These modules are highlighted as matrix blocks, appearing in the 

adjacency matrix after sorting its rows and columns according to a Louvain community 

detection algorithm50,51 (“Re-arranged Graph matrix” in Fig.1c). Hence, spatially distant GC 

sites can belong to the same graph module. In Fig.1c, nodes belonging to 3 different modules 

have been colored into two alternative visualization of the graph associated to a map. A first 

linear layout, in which node positions follow the original mediolateral axis alignment, manifests 

that modules tend being made of spatially contiguous nodes, with some exceptions (spatial 

distance between nodes in a same module is ~10% smaller on average than distances 

between modules). We show as well –and prefer in the following– an alternative network 

layout, optimized for module visualization by a force-spring algorithm, which reduces 

(increases) the distance between the strongly (weakly) connected nodes.  

We quantified the structuration of graph networks using 4 standard metrics (Fig.1d, see 

methods). (1) The modularity index is a measure of how modular or “patchy” is a graph. (2) 

The average module degree z-score which can be used as a marker of degree heterogeneity 

within modules. (3) The average participation coefficient measures the probability that a node 

in a module is also connected to nodes in other modules. (4) The average local assortativity 

measures the tendency of nodes to connect to other nodes with similar strength (i.e., the sum 

of weights of connections to a node). Together these abstract metrics convey concrete and 

complementary information about the geometry of the connectivity maps: the larger the 

modularity, the larger the general degree of “patchiness”; the larger the degree z-score, the 

more intricate the patch shapes; the larger the participation, the more overlapping the patches; 

the larger the assortativity, the clearer the separation between small and big patches. Using 

connectivity maps and graph properties, we assessed whether and how the maps are modified 

at different stages of postnatal development (pups, juvenile and young adults), after an injury 

(right-hindlimb impairment via sciatic nerve cuffing) and after locomotor training in a running 

wheel (see methods and Table 1).  

First, we established high resolution connectivity maps in naive adult animals (CTRL, n=14 

maps, N=9 animals, PND>30, Table 1, Fig.1e). Medial PCs individual maps were composed 

of GC sites eliciting a wide range of responses from silent sites to strong connections resulting 

in EPSCs of hundreds of pA (mean±SD = 72.3±49.8 pA, from 0 to 393.2 pA). Local and distant 

patches of connected GCs interleaved with silent GC areas were systematically observed 

(Fig.1e) and the distribution of connected GC sites was skewed in the GCL depth (Fig.S3a). 

Building the median of all the 1D patterns of connectivity (Fig.1e, methods) we showed that in 

CTRL condition at least 50% of the patterns lacked functional GC sites in ipsi- and contralateral 

P2- and P1-
lateral bands while most of the connected GC sites were observed in P1-

medial and 

P2+ bands (ipsi/contralateral). To assess the robustness of the median 1D pattern, we used a 

bootstrap analysis after shuffling 1D patterns (Fig.S4). This analysis confirmed that 
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connectivity maps are not randomly distributed  but rather shared a similar GC-PC synaptic 

organization across animals as shown in our previous study14. Hence, the stereotyped patchy 

organization of GC-PC excitatory connectivity maps suggests specific microzonal 

communication. The existence of a non-random organization with patches simple in shape, 

imperfectly separated and with a continuum spectrum of possible sizes is suggested as well 

by graph representations, which display a relatively large modularity (0.43±0.1, inset in Fig. 

1e) and average participation coefficient (0.38+0.09), while averaged module degree z-scores 

(0.17+0.08) and assortativity (0.007±0.003) are low.  

Network connectivity rules mature during development 

We first addressed how GC-PC connectivity maps were established and structured during 

postnatal development (i.e., in a normal adaptive locomotor context). Since the motor 

apparatus and motor coordination undergo progressive adaptation, especially when animals 

open their eyes and start walking52–54, we assessed whether conserved connectivity maps 

observed in adults originate from a linear and progressive functional wiring. If connectivity 

maps reflect the strict establishment of the input/output relationships in a topographic manner, 

we expect to observe a corresponding structuration of the patchy microzonal organization. We 

then established GC-PC connectivity maps at different time point during mouse development: 

from PND9-10 before proper quadrupedal locomotor activity (mice crawl, eyes are closed) to 

young adults (PND>30) when locomotion is well adapted (Fig.2, Table 1).  

At PND9-10, low-resolution photostimulation triggered EPSCs (mean = 62.1±55.4 pA, Fig.2a) 

mostly from GCs located below the recorded PC (Fig.2b). Connected GC sites represent on 

average 5.5±3.6% of the total illuminated area (Fig.2c, d). However, distant GC inputs were 

already observed (Fig.2d) as PF lengths in the medial vermis already exceed several hundred 

µm long (Fig.S5a). Graph parameters are similar to the CTRL groups suggesting that synaptic 

maps are already patchy, unstructured internally and overlap between patch boundaries 

(modularity=0.52±0.06; participation=0.33+0.06; module degree z-scores=0.23+0.09; 

assortativity=0.014±0.002; Fig 2h-k). 

At PND12-13 (just before eye opening 52–54) we observed a three-fold increase in the number 

of active sites (PND12-13: 17.6±9.9% vs PND9-10: 5.5±3.6%, p=0.0148, Mann-Whitney U 

test, Fig.2c) and larger EPSCs (mean EPSCs PND12-13: 87.3±94.2pA vs PND9-10: 

62.1±55.4pA, p=0.011, Mann-Whitney U test, Fig.2a). This increase in connectivity illustrates 

the appearance of new functional GC-PC synapses rather than a change in GC excitability as 

no difference could be observed in GC firing rates between pups and PND12-13 following 

glutamate uncaging (Fig.S5b). With maturation, modularity and participation decreased while 

module degree z-score and assortativity increased illustrating a stronger internal structuration 
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Figure 2 : Postnatal development of connectivity maps
(a) Distribution of GC-PC signi�cant synaptic weights during postnatal development (PND 9-10, 12-13, 14-18, 30-40); left, normalized and cumulative 
representation (inset); right, boxplots. For statistics, see table in Figure S10. (b) Proportion of GC active sites in GCL height. (Up), upper GCL, 0-80µm; (Lo), 
lower GCL, 80-160µm. For statistics, see table in Figure S10. (c) Proportion of GC active sites measured in the total GCL of GC-PC maps. For statistics, see 
table in Figure S10. (d, e, f, g) Connectivity maps at PND9-10, PND12-13, PND14-18 and adult mice. Left column, examples of GC-PC map; middle column 
corresponding graph plots; right column, average 2D maps and median 1D patterns. Median absolute deviation (MAD) is shown in light grey. (h, i, j, k) 
Graph properties (modularity, participation, module degree z-score and local assortativity) of GC-PC synaptic maps at PND9-10, PND12-13, PND14-18 and 
adult mice. Average values and statistical comparison are availiable in Figure S10.  
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of the modules (i.e., graph modules are less compact, better defined and overlap less, Fig.2e 

Fig S10).  

PND14-18 epoch corresponds to a very active motor period in mice when animals open the 

eyes and start walking53. Strikingly, GC inputs were spread all along the mediolateral axis from 

P1+ to P2- bands (Fig.2f) with a significant increase in the amount of active GC sites (PND14-

18=34.7±15.6% vs PND12-13=17.6±9.9% at, p=0.03008, Mann-Whitney U test, Fig.2c), 

particularly in the first upper part of the GCL (mean=57.7±20.5%, Fig.2b). Concurrently, 

modularity, participation and assortativity indexes reached a minimal value (0.15±0.08; 

0.1±0.08; 0.02±0.005 respectively, Fig.2h, I, Fig S10) while the module degree z-score was 

maximal (0.41±0.08, Fig.2j, and S10). These results indicate that the limits between patches 

became blurry, with responses organized around a center with maximum amplitude of evoked 

response (confirmed by low modularity index at PND14-18: 0.15±0.09 when compared to 

PND9-10: 0.52±0.06; PND12-13: 0.4±0.13 and PND>30: 0.37±0.18, p=0.0005; 0.002 and 0.01 

respectively, Mann-Whitney U test, Fig.2h).  These findings suggest a loss of network structure 

around this critical age.  

Beyond PND30 while the number of active sites remain stable (30.6±11.4% vs 34.7±15.6%, 

p=0.99, Mann-Whitney U test, Fig.2c), connectivity maps resumed to a more refined patchy 

organization (Fig.2g). Indeed, modularity increased again for most maps (0.38±0.18, Fig.2h, 

S10) corresponding to a re-emergence of multiple patches, as before PND14, but with stronger 

internal organization, as visible from the smaller average participation coefficient (0.2+0.1, 

Fig.2i and S10) and higher average degree z-score (0.34±0.07, Fig.2j and S10) and 

assortativity (0.026±0.004, Fig.2k and S10). Therefore, as suggested by connectivity maps, 

the analysis of graph properties showed that network properties do not mature linearly with 

age. Rather, they first display dense and unstructured connectivity in young PND14-18 

animals, then they evolve toward the appearance of a patchy well-structured connectivity in 

adulthood. Altogether, these results suggest that connectivity maps are not built solely by 

following strict anatomical input/output rules, but likely rely on adaptive mechanisms occurring 

during development.  

Adapted locomotor activity correlates with specific connectivity 

maps  

Development leads to conserved adult connectivity maps. We now asked whether different 

locomotor contexts yielding specific locomotor adaptations affect synaptic maps organization 

in adults. We performed high-resolution connectivity mappings (20x20µm/GCL site) in mice 

that underwent different locomotor adaptive behaviors (see Table 1): (1) two groups of mice 

were trained (TR) to run on a wheel (1h/day) for 7 (STR) or 19 (LTR) days (Fig.3a) learning a 
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Figure 3 : Locomotor adaptation in di�erent contexts
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(a) Top left, distributions of synaptic amplitudes of signi�cant sites recorded in each behavioral condition. For statistics, see table in Figure S10. Top right, 
average synaptic weights at di�erent time points of locomotor adaptation. Sham (in grey, ES and LS pooled); CUFF (in red, EC and LC pooled) and TR (in 
green, STR and LTR pooled). For statistics, see table in Figure S10. Bottom, proportion of active sites in maps. Kruskal-Wallis test, p=0.12681. (b) Percentage 
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new type of gait, gallop55. In the last session, LTR mice have traveled 2.8-fold more distance 

compared to first session (mean distance D1: 331±107m; D19: 932±97m, paired t-test between 

D1 and D19, p=2.10-4; Fig.3a). Connectivity maps were established at 7 or 19 days of training 

time.  (2) In other groups, locomotion was impaired by inserting a cuff around the sciatic nerve 

of the right hindlimb (Fig.3b) and connectivity maps were established at 2-9 days (early cuff, 

EC) or after 21 days (late cuff, LC) after the surgery to allow animals to fully re-adapt. Two 

sham groups (surgery only) were also included (early sham, ES and late sham, LS).  

We evaluated locomotor deficits in cuffed and sham mice on a corridor equipped with two 

streams of force sensors to monitor weights from either side of the body when walking (see 

methods). The balance index (BI) is the ratio of the total weight generated by left vs right side 

of the body along the corridor (Fig.3b; Methods). The BI was measured during one month after 

cuff or sham surgeries before connectivity maps were recorded in acute slices. As expected, 

before surgery BI index was close to 0 in all mice (Cuff, -0.04±0.20; Sham, -0.11±0.15; CTRL, 

-0.23±0.17).  After surgery balance was altered in Cuff and Sham animals (p=0.0433, F=2.16, 

one-way RM-MANOVA, Fig.3c). In the first few days after surgery, sham and cuff mice limp on 

the right side and the negative BI indicate a higher weight on the side of the surgery (Cuff, -

0.45±0.09; Sham, -0.37±0.08; Ctrl, 0.12±0.13; p=4.45.10-3, F=7.18, one-way ANOVA at D4, 

“Early phase”, Fig.3c). The following week, while mice were not limping anymore, sham and 

cuff mice did not recover full balance. The BI switched to a positive value, illustrating 

compensatory behavioral strategies, with a peak 15 days after surgery (Cuff, 0.82±0.13; Sham, 

0.27±0.12; Ctrl, -0.06±0.19; p=2.47.10-3, F=8.23, one-way ANOVA at D15, “Late phase”, 

Fig.3c). Ultimately, after one month all mice recovered balance and no apparent locomotor 

impairment remained (Cuff, 0.11±0.06; Sham, -0.01±0.05; Ctrl, 0.10±0.09; p=0.368, F=1.052, 

one-way ANOVA at D28, “Recovery phase”, Fig.3c). While we observed that sham animals 

(LS) quickly recovered their ability to walk after the surgery, balance recovery followed a similar 

time-course than cuffed animals albeit with a smaller maximal impairment (area under the 

curve at D15, Cuff, 1.27±0.76; Sham, 0.59±0.88; Fig.3d, p=0.0226, Mann-Whitney U test).  

Connectivity maps were established in acute slices either before locomotor adaptation (ES and 

EC) or after full recovery (LS, LC, or TR). We first analyzed the overall distribution of the 

synaptic weights (Fig.4a). Synaptic weights in active sites (z-score>3.09) were significantly 

larger in LC, Sham and TR animals compared to CTRL group (Kruskal-Wallis test, p=1.10-71; 

Fig.4a and S10). Furthermore, the mean synaptic weights increased with the time post-surgery 

in cuffed and Sham animals (EC vs LC, p=5.10-12; ES vs LS, p=2.10-15; Mann-Whitney U test, 

Fig.4a and S10). While the proportion of active sites per full map were not significantly different 

between conditions (Fig.4a and S10, p=0.132159, Kruskal-Wallis test) we found regional 

differences when comparing from local vs distal GCL inputs in all conditions but CTRL (Fig.4b, 

S3b, c, d). Similarly, synaptic amplitudes were larger in local vs distal GCL areas in EC, LC, 
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and TR animals, but not in sham (Fig.4b and S10, S3a). Altogether, these findings indicate 

that long-term locomotor adaptation either promotes the appearance of new active synapses 

or potentiates existing ones in connected GC sites at specific locations. 

We then analyzed the spatial organization of GC connectivity to medial PCs across all 

conditions. As in the CTRL condition (Fig.1e), all the averaged connectivity maps established 

using photostimulation showed a clear patchy organization (Fig.4c). Median synaptic patterns 

showed that local GCs systematically elicited significant inputs and showed distal hotspots and 

non-connected areas at the exception of LC animals in which connected GC sites were 

observed in most GCL columns. Each condition yielded a specific conserved median pattern 

different from the CTRL group (STR, p=7.10-7; LTR, p=2.10-3; ES, p=8.10-10; LS, p=8.10-06; EC, 

p=4.10-08; LC, p=7.10-18, Kolmogorov-Smirnov test). While connected GC sites were rare in 

ipsi and contralateral P2- bands in CTRL and LS animals, 1 or 2 hotspots were observed at a 

similar location in ipsilateral P2- band (typically 450-600µm from the midline) in TR (S and LTR) 

and cuffed (EC and LC) animals. Connectivity also differed in the P1-
lateral and P2+ bands: in 

CTRL, few GC sites were connected in P1-lateral bands; in TR animals, connected sites 

appeared in STR and strengthened in LTR in contralateral P1- band. In LS, both ipsi and 

contralateral P1- bands were also highly connected to medial PCs. Conversely, while P2+ 

bands were both connected in CTRL, connections disappeared in ipsilateral P2+ bands in L-

TR and in contralateral P2+ bands in LS. In addition, 2D maps revealed an increased 

connectivity in the upper part of the GCL, especially in LC mice (Fig.S3a). Altogether, these 

results demonstrate that different adapted contexts of locomotion directly influence 

connectivity maps in the cerebellum. However, in a given locomotor context, maps do share a 

common architecture across animals, suggesting that the synaptic re-organization might 

operate by selecting new condition-specific MF inputs relaying information from different 

muscles or limbs.  

Graph descriptions of connectivity maps but not synaptic 

weights can discriminate different locomotor adaptation 

conditions 

The median distribution of the 1D patterns illustrates the overall probability of connection 

between medial PCs and distant microzones, however, the distribution of the median absolute 

deviations (MAD; Fig.4c) suggests that despite common architecture, non-negligeable 

variability remains between animals in the same group. To quantify this variability (intra-

condition) we assessed whether synaptic weights in identified microzones co-varied between 

slices and animals. Synaptic weights from all active GC sites in each microzone were averaged 

and pairwise linear regressions between microzones were performed across animals in each 
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condition (see methods). We found specific pairs of correlated microzones in each locomotor 

condition (Fig.5a). Notably, we observed a 5-fold increase in the number of correlated bands 

in the LC condition, the most invasive protocol (Fig.5b, S6a). These findings suggest that the 

relationships between connected microzones and medial PCs are conserved between slices 

and animals, which may illustrate common integration of specific MF inputs. 

To evaluate the robustness of the condition-specificity of the connectivity maps we tested 

whether single maps could be classified in their underlying locomotor condition by considering 

only microzonal synaptic weight distribution. Connectivity maps were first vectorized in an 8-

dimensional space, each dimension being the average synaptic weight found in a microzone 

(8 microzones). We used a non-linear dimensionality reduction algorithm (t-Stochastic 

Neighbor Embedding technique, t-SNE, Methods, Fig.5c) to possibly visualize clusters of maps 

with similar synaptic weight profiles in our dataset. When maps were labelled by conditions 

(L/EC, L/ES, TR and CT), 2D projections showed strong scattering and overlapping center of 

gravity (group medians of tSNE projection coordinates, Figure 5c), indicating a poor 

discrimination of behavioral groups. We also used a supervised machine-learning algorithm 

(random forest classifier56 , methods) to predict one of the possible adaptive condition labels 

based on the same vectors of average synaptic weights used as inputs. A confusion matrix in 

which rows represent the actual condition labels and columns the predicted ones reports the 

inference performance achieved by the classifier (Fig.5d). We found that cross-validated 

classification performance was poor (mean accuracy for all conditions upon cross validation 

trials ~18%; Fig.5d, 5g; see also Fig.S8). Therefore, we could not extract sufficient information 

from synaptic weights distribution in microzones to sort connectivity maps between conditions. 

We then described the fine structuration of connectivity maps in terms of graph-based metrics. 

Unlike microzone synaptic weights, graph metrics have a complex dependency on map details 

at many different scales simultaneously and can thus transcend anatomical subdivisions. In 

this alternative description, we included similar number of graph-based features as in the 

aforementioned descriptions in terms of microzone synaptic weights: the whole-map 

modularity and lateralized (ipsi vs contralateral nodes) participation, degree z-score and 

assortativity. We then compared these features across conditions. For all groups and for all 

features we found a large variability across different maps and specimens (Fig.S7). Such large 

within-group variability of each individual feature prevented us from detecting any significant 

group-level difference between the different adaptive conditions and the CTRL maps (Fig.S7). 

Nevertheless, these individual graph metrics carried useful information for condition 

discrimination when considered together. A t-SNE projection based on these alternative 

vectors of graph-based metrics showed that the cloud of maps for the different conditions were 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 24, 2021. ; https://doi.org/10.1101/2021.02.24.432563doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.24.432563


0.3 0.5 0.7
Amp. in P1-

lat ipsi

0.2

0.6

1.0
A

m
p.

 in
 P

1- m
ed

 c
on

tr
a

0.1

CT LTR

LS LC

0.3 0.5 0.7
Amp. in P2- ipsi

0.0

0.4

0.8

p=1.73e-06
R2=0.86

p=0.0046
R2=0.71

p=2.431e10-4
R2=0.76

p=4.31e-03
R2=0.61

A
m

p.
 in

 P
2+  ip

si

0.1 0.3 0.5 0.7

0.2

0.6

1.0

0.0 0.2 0.4 0.6 0.8
Amp. in P1-

med ipsi

Amp. in P1-
med ipsi

A
m

p.
 in

 P
1- la

t ip
si

0.2
0.4
0.6
0.8
1.0

A
m

p.
 in

 P
2- ip

si

contralateral

ipsilateral

P2 -

P2 -

P2 +

P2 +

P1 -
lat

P1 -
lat

P1 -
med P1 -

med

contralateral

ipsilateral

P2 -

P2 -

P2 +

P2 +

P1 -
lat

P1 -
lat

P1 -
med P1 -

med

contralateral

ipsilateral

P2 -

P2 -

P2 +

P2 +

P1 -
lat

P1 -
lat

P1 -
med P1 -

med

contralateral

ipsilateral

P2 -

P2 -

P2 +

P2 +

P1 -
lat

P1 -
lat

P1 -
med P1 -

med

contralateral

ipsilateral

P2 -

P2 -

P2 +

P2 +

P1 -
lat

P1 -
lat

P1 -
med P1 -

med

contralateral

ipsilateral

P2 -

P2 -

P2 +

P2 +

P1 -
lat

P1 -
lat

P1 -
med P1 -

med

P2 -

P2 -

contralateral

ipsilateral

P2 +

P2 +

P1 -
lat

P1 -
lat

P1 -
med P1 -

med

CT LTR LS LS

ECESSTRpositive
correlation

(p<0.05)

negative
correlation

(p<0.05)

p(correct prediction)

EC S/LTR ES

Predicted

LC LS CT

EC
S/

LT
R

ES
LC

LS
CT

 

.0

.1

.2

.3

.4

.5
.80 .02 .05 .07 .08 .01

.10 .71 .06 .08 .03 .04

.39 .03 .47 .05 .15 .10

.23 .14 .03 .60 .00 .02

.31 .03 .02 .02 .58 .11

.15 .15 .03 .17 .06 .50

graph properties (bilateral)

EC
S/LTR

ES
LC

LS

CT

Xt-SNE

Yt-
SN

E

EC
S/LTR

ES
LC

LS

CT

Xt-SNE

Yt-
SN

E

synaptic weights (zonewise) graph properties (bilateral)

EC
S/

LT
R

ES

A
ct

ua
l

LC
LS

CT

EC S/LTR ES

Predicted

LC LS CT

.26 .20 .11 .20 .11 .12

.27 .21 .08 .17 .15 .12

.34 .16 .09 .17 .12 .11

.26 .16 .06 .29 .11 .11

.26 .24 .09 .18 .11 .12

.28 .18 .08 .21 .13 .13

synaptic weights (zonewise)

Sorted 
Labels

Shu�ed
Labels

0

20

40

60

80

A
cc

ur
ac

y 
(%

)

Synaptic weights

Graph properties

100

a

b

c

d

E

Figure 5 : Graph features of synaptic maps can predict locomotor conditions

(a) Examples of microzone-wise Pearson correlations of normalized averaged synaptic weights in connectivity maps. Shaded curves represent con�dence 
interval. (b) Diagram illustrating Pearson correlation between microzones in each locomotor condition. Colored squares indicate signi�cant correlations 
(p<0.05) while dashed squares represent signi�cant anti-correlations (p<0.05). (c) Left panel, t-SNE representation of connectivity maps based on averaged 
synaptic weights by microzones. Individual synaptic maps were de�ned as a vector composed of the average synaptic weight in each microzone. This 
8-dimensional space has been reduced via t-SNE to be visualized in a 2D space. Individual dots represent the position of each map in the t-SNE space. Big 
dots represent supervised cluster median, and error bars show .75 median quartile. Right panel, t-SNE representation of maps based on graph properties. 
Right panel, Identical analysis as in (c, left panel) but with graph-based vectors.
(d) Left panel, classi�cation of synaptic maps based on synaptic weights. Map vectors described in (c) were used to train a supervised random forest 
classi�er. Accuracy of classi�cation is displayed as a confusion matrix, where values show the probability (from 0 to 1) to sort a map with actual label (right) 
to predicted category (down). Right panel, classi�cation of synaptic maps based on graph properties. Right panel, Identical analysis as in (d, left panel) but 
with graph-based vectors. (e) Average accuracy of random forest classi�er. Accuracy of the classi�cation with synaptic parameters or graph properties in 
each cross-validation iteration were pooled and shown here as box plots. Random forest classi�cation was done either with exact label correspondence 
(i.e., map vector is correctly labeled, “Sorted labels”) or with shu�ed labels (i.e., each map vector has been given a random label among CT/TR/ES/EC/LC/LS 
groups). 
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displaced with respect to the CTRL maps (Fig 5c) and that LS/ES and LC/EC clouds were 

shifted away from the cloud of the STR/LTR conditions. Furthermore, our supervised machine 

learning classifier now yielded a cross-validated classification performance larger than with 

synaptic parameters and well above chance level (Fig.5c, e). In particular, ~80% of EC and 

~70% of ENR maps were correctly classified. The largest correspondence occurred between 

maps in EC condition, whereas the mean accuracy for all the subtypes across cross validation 

trials was >60% (Fig.5e). See Fig.S8, for coarser (global) or finer (microzone-level) graph 

parameterizations which do not further improve the performance. Taken together, these 

findings suggest that while connectivity maps varied between animals in each condition, the 

reproducible correlation between some microzones (Fig. 5b) and the fact that the locomotor 

condition in which a map was obtained can be inferred to a certain extent from the graph 

descriptors (Fig. 5d, e) suggest that the network structure exhibits invariant features for each 

of these behavioral conditions.  

 

Individual connectivity maps reflect individual-specific 

behavioral features: map individualities 

 

The large variability between maps may be due to experimental “noise” or reflect on the 

contrary fine levels of behavioral differences across individuals, rather than adaptive 

conditions. To investigate this hypothesis, we tried predicting individual-level specificities in 

adaptive locomotor behavior from graph descriptions of the global maps and behavioral 

performance either on the wheel (TR) or on the force pressure corridor (LS, LC). We used the 

multi-dimensional graph-based map vectors and trained generalized linear models (GLMs) to 

predict individual-level behavior from spatial organization of their maps. In the TR condition, 

an individual mouse had a short (7 days) or long (19 days) training in the running wheel yielding 

different total cumulative distance performed more or less eagerly (as quantified by the slope 

of distance travelled vs days trajectory, Fig 3a). Figures 6a and 6b show the correlation 

between, respectively, the actual values of total training distance/training slope (Fig3a, and the 

corresponding values predicted by a generalized linear model trained on graph-based map 

vectors (methods). The cross-validated generalization performance was significantly above 

chance level for both features (insets of Figures 6a and 6b), reaching an actual-to-predicted 

R-values fits of 0.64±0.06 (actual) vs -0.02±0.07 (shuffled, CI=95% permutation testing) for 

total distance and 0.37±0.06 (actual) vs 0.04±0.07 (shuffled, 95% CI, permutation testing) for 

motor training slope.  
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Figure 6 : Graph properties of connectivity maps predict behavioral individualities

Results of behavioral features prediction based on graph properties of synaptic maps using Generalized Linear Models (GLMs). In TR animals, the slope of 
performance (a) and the total travelled distance (b) on the running wheel were considered for prediction. In LC and LS groups, post-surgery imbalance 
(AUCearly, c) and maximal impairment (BIday15, d) were considered for prediction.  In every plot, average predictions are scattered on left panels, and 
regression coe�cients (r values) are plotted in right panels. Linear models with actual data are shown in blue while results with shu�ed data (i.e., chance 
level) are shown in gray. 

Trained: slope
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We then considered the LC and LS groups, for which it was possible to follow the locomotor 

recovery following surgery across several weeks. We used the AUCearly, AUClate and BIday15 

features (see Fig. 3c, d) as possible prediction targets. The prediction of the early component 

AUCearly (Fig.6c) was only marginally significant (cross-validated R-value fit of 0.15±0.08 vs -

0.05±0.08 for shuffled; 95% CI, permutation testing), even if it raised to 0.33±0.1 vs -0.06±0.12 

for shuffled (95% CI, permutation testing) when limiting the analysis uniquely to LC specimens. 

The prediction of the late component (AUClate) gave similar poor results (Fig. S9). Nonetheless, 

we were able to significantly predict the evolution of locomotor unbalance monitored by the 

BIday15 component from graph description characterizations of connectivity maps (Fig.6d), with 

a cross-validated R-value fit of 0.65±0.05 vs 0.01±0.1 for shuffled (95% CI, permutation 

testing).  

We thus conclude that the characteristic variability of the fine spatial structure of GC-to-PC 

connectivity maps is not mere “noise” but rather reflects specific overtraining or post-traumatic 

recovery adaptation at the single individual level. 

 

Discussion  

Multi-microzonal connectivity maps adaptation to locomotor 

context in the cerebellar cortex 

We identified patchy GC connectivity maps to medial PCs as observed in our previous study14. 

These maps are deeply modified when the locomotor context is modified and during the 

PND14-PND18 developmental stage. Spatial synaptic analyses were based on CF/MF inputs 

topography 32,42,47,57 (Fig.S1).  In CTRL animals, connected patches were specifically found in 

zones receiving information from the distal and proximal hindlimbs either from lumbar and 

thoracic spinocerebellar (P2+/P1-
lateral and P1-/P1+

medial) or from ponto-cerebellar MFs (P1+ and 

P2+)14,47,48,57–61. Conversely, central P1- patches which are mainly innervated by the external  

cuneate nucleus and mediate forelimb proprioceptive inputs are rarely connected. These 

results indicate that medial PCs integrate both somatosensory and cerebral MF information 

from both hindlimbs. In TR and perturbed conditions (sham and cuffed), we observed an 

increase in synaptic weights and context specific spatial synaptic reorganization of connected 

GC patches, particularly in the ipsilateral side of the GCL. While in CTRL condition connectivity 

maps were symmetrical (Fig.1e), in cuffed (EC/LC) and TR conditions symmetry vanished and 

synaptic weight as well as percentage of active site increased in the ipsilateral part (Fig.4, S3). 

Moreover, in invasive conditions (cuffed/sham) the asymmetry increased after full recovery 
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(EC/ES vs LC/LS). These results not only suggest that synaptic plasticity remodel connectivity 

maps as shown already in14 but also locomotor conditions requesting intense re-adaptation 

such as LC recovered with denser connectivity maps including new GCL areas receiving MFs 

from both forelimbs and hindlimbs (e.g. P2-, Fig S1 and Fig4). We postulate that P2- 

microzones which target hindlimb extensor muscles29,62,63 are more involved in postural control 

in cuffed and TR animals as an intense reorganization of the cooperation between forelimbs 

and hindlimbs is required64. Hence, medial PCs in LC animals have extended receptive fields 

to both limbs as shown in vivo after electric parallel fiber stimulation in the molecular layer65.  

Such structuration is in agreement with the fractured somatotopy identified with 

micromappings66 and recent imaging studies showing dense GC activation upon activity67–69. 

We suggest that the fractured somatotopy of the MF inputs underlie the topography of the 

context specific reorganization of connectivity maps.  

In vivo and in vitro experiments suggested that PCs have a high probability of connection with 

local GCs70–72. We confirmed these results (Fig.4) as local GC sites were strongly connected 

in all individual maps and all contexts suggesting that they provide a non-conditional input. 

During development, we observed that strong connections arose from local GCs although PFs 

are already hundreds µm long (Fig.S5a). It has been shown that local GCs are unable to elicit 

LTD through their ascending axon73. We suggest that MF inputs always significantly influence 

PCs belonging to their incoming microzone, indicating that the topography of MF inputs predict 

a minimal arrangement of coordinated microzones during movement as it has been recently 

observed for CF activated microzones31. Therefore, MFs conveying information from hindlimbs 

and forelimbs which project to multiple microzones (Fig.S1) are likely to activate medial PCs 

as well as PCs in the other microzones in a coordinated manner. We further demonstrate here 

that GCs will favor and refine this population code in a context dependent manner yielding a 

timely organized sequence of activations. This spatial arrangement of multi-microzonal 

communication may define a functional module dedicated to a specific adaptive behavior in a 

given locomotor context41.   

Graph networks identified a critical period 

Graph-based modules which describe the functional structuration of GC areas were built by 

aggregating correlated columns of GCL in an unsupervised manner (Fig.1 and methods), 

without a priori on the map spatial organization.  As such, the features of the graph community 

structure can account simultaneously for the degree of patchiness and for the tight links 

between distant GC patches, being thus able to account for the complexity of MF somatotopy. 

Graph networks are a powerful tool in the description of functional microcircuit organization 
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(see below). For example, during postnatal development, we observed that between P14 and 

P18, connectivity maps were highly variable with a median 1D pattern similar to randomized 

organization74. Synaptic weights were larger, and the proportion of active site increased by 2-

fold in the upper part of the GC layer. Graph parameters allowed us to quantify and highlight 

significant changes in the graph encoding of synaptic maps, as modularity and participation 

dropped to minimal values indicating that modular structuration vanished at this stage before 

resuming to higher values in adulthood. Between P14-P18, mice start to walk and open their 

eyes52,53,75. They are hyperactive with bouts of vigorous jumping called ‘hoppy’ or ‘popcorn’ 

stage resulting from synchronous contraction of fore and hind limb extensors53,76. Moreover, 

several important molecular and morphological modifications occur at this stage. For example, 

the GluN2C subunit incorporation in GC NMDA receptors leading to an enhancement of GC 

excitability77 and the regression of CF multi-innervation allowing proper LTD induction at the 

GC-PC synapses78. Therefore, we postulate that the P14-P18 period is a critical period 

allowing thorough reorganization of connectivity maps as observed in the visual cortex79.  

Capturing the shape of map organization 

Since connectivity maps are not only non-randomly organized, but that their organization is 

highly and specifically adaptive, it is therefore a question of utmost importance to understand 

how to appraise the spatial complexity of this maps’ adaptive organization into a few 

quantitative metrics. Here, we designed a mapping from 2D maps to graph descriptions and 

described topological features of synaptic maps. The pertinence of our mapping can be 

validated post hoc by the superiority in prediction that descriptions in terms of graph metrics 

confer with respect to other descriptions apparently more tightly linked to physiology (Figures 

5d, e). Such superior performance may be linked to the fact that the fine parameterizations of 

connectivity correlations used, capture aspects of network organization which are neither 

purely local (depending on a single map location), nor exclusively global (properties common 

to all map locations) as for example the redundancy of specific MF inputs in lobule IV (Fig.S1). 

In particular, even when they are site-specific and heterogenous across map locations, graph 

features describe properties of the coupling of these locations with many other locations. They 

thus reflect structure at many different and nested intermediate scales80, that overlap only 

imperfectly with traditional anatomical subdivisions and that reveal, in a sense, a mixture of 

“segregation” and “integration”, two notions more commonly invoked in reference to 

neuroimaging data81. As a matter of fact, individual-specific adaptive behavior can be predicted 

by graph features even when averaged over all the sites in the map, thus fully ignoring anatomy 

(Fig.6). At the same time, the discrimination between conditions is improved by using 

lateralized (ipsi vs contra) with respect to global graph metric averages but averaging to the 
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level of individual microzones does not yield additional improvement (Fig.5d vs Fig.S8). It is 

thus likely that the number of available data for classifier training puts a limit to the amount of 

information that can be extracted without overtraining82 and that more precise 

characterizations could be still achieved by using larger datasets. 

We remark that classification and prediction of adaptation behavior is necessarily polythetic83 

, i.e. require to simultaneously monitor correlations between a multiplicity of graph features, 

since features taken one at a time have a dramatic variability and largely overlapping ranges 

between classes, as happens also e.g. for neuronal types84. Different adaptive conditions thus 

give rise to broad phenotypes of maps, in which connectivity is, nevertheless, not 

deterministically constrained, but preserves a large freedom, exploitable to give rise to 

accurate behavior adjustments. Graph-based features are only a first step toward the 

quantitative characterizations of the connectivity maps specificities at the single individual 

level. In the future, more powerful and general topological data analysis approaches85 may be 

used to capture the own “shape” of each map and how the individualities of this shape reflect 

individual behavioral histories86.  

Individualities: implications for internal model storage 

Many computational models suggest that the cerebellar microcircuits learn internal models of 

the body that are designed to predict an expected sensory feedback of a given command or 

simply update a motor command as suggested by many models17,20,21. A change in the 

relationships between muscles or a modification of limb alternation during locomotion as we 

have performed in our experiments should affect the workflow of computation involving internal 

models in the cerebello-thalamo-cortical loop as also suggested in87,88. We here provide strong 

evidence that PCs learn to adapt locomotor behavior by adjusting GC-PC connectivity maps 

in a context dependent manner. In medial PCs, each context (e.g., gallop vs walk or sham vs 

cuff) lead to connections with a specific set of microzones through GCs. Moreover, 

multidimensional analysis of graph parameters (Fig 5 and 6) defines a mathematical fingerprint 

of each connectivity map which is predictive of individual behavioral features. We therefore 

argue that the specific distribution of GC sites associated with medial PCs in the different 

behavioral conditions relates directly to locomotor adaptation and internal model adjustments.  
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Methods 

Ethics & Animals 

All experiments were conducted in accordance with the guidelines of the Ministère de 

l’Education Supérieure et de la Recherche and the local ethical committee, the Comité 

Régional En Matière d’Expérimentation Animale de Strasbourg (CREMEAS) under the 

agreement n° A67-2018-38 (delivered on the 10th of December 2013 to the animal 

facility Chronobiotron UMS3415). 83 AldoC-venus45 male mice from PND9 to PND60 under 

CD1 background were used for this study. Mice were housed by 3 or 4 littermates per cage, in 

conditions required to fulfil their ethogram with food and water ad libitum in a 12/12 light/dark 

cycle.  

Surgical procedures for Cuff and Sham mice  

Mice were anesthetized by inhalation of isoflurane (Verflurane, Virbac, France, 4% for 

induction then 1-2% for the surgery). Mice were laid at rest on the left side of the body to 

expose the right hindlimb. A mix of lidocaïn/bupivacaïne (2 mg/kg each) was subcutaneously 

injected prior to incision. A 0.5 cm incision was made parallel to the femur to expose leg 

muscles. Muscles were gently separated using sterilized wooden sticks to expose the main 

branch of the sciatic nerve. The nerve was pulled out of the limb and a sterile 2 mm section of 

split PE-20 polyethylene tubing (cuff), 0.38 mm ID / 1.09 mm OD, was wrapped around the 

nerve with the help of a pointed steel stick and a bulldog clamp. The nerve was then pushed 

back under the muscle fascia, and skin was sutured91. For sham mice, the same procedure 

was followed except that no cuff was implanted. After surgeries mice received an 

intraperitoneal injection of non steroidal anti-inflammatory drug ( Metacam, 2 mg/kg) and were 

left at rest for 24h minimum before behavioral assessment. In cuffed animals, the plastic cuff 

remained around the sciatic nerve until the sacrifice of the animals. 

Monitoring Balance 

To assess and quantify cuff-induced gait and balance impairments during locomotion, we built 

a force-sensor device. Mice were trained to walk in an 80 cm-long corridor covered with two 

parallel strip-shaped force-sensors on each side of the corridor. The width of the corridor and 

the space between the two strips were adjusted to ensure that left and right limbs of CD1 mice 

activate the same strip. Force sensors (FSR, 10x622mm each, FSR 408, Interlink Electronics, 
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USA) are two-wire devices with a resistance that depends on applied force, allowing simple 

force-to-voltage conversion when tied to a measuring resistor in a voltage divider. As mice 

enter the corridor, force and video acquisition were triggered by a Raspberry Pi microcomputer 

(Raspberry Pi Foundation, UK) connected to an IR-barrier. Voltage-divider output was linked 

to an Analog-Digital interface (NI USB 62-11, National Instruments, USA). Force signals for 

the left and right side of the body were acquired simultaneously using WinWCP 4.2.2 freeware 

(John Dempster, SIPBS, University of Strathclyde, UK). Recordings were digitized at 15-20 

kHz.  

The balance index (BI, Fig.3) corresponds to the ratio of the integrated force-signal from each 

side of the body. All recordings contained at least 5 consecutives strides, otherwise they were 

discarded. or further technical details (i.e., apparatus dimensions, scripts and wiring diagrams) 

see https://github.com/ludo67100/cerebellarMaps/tree/main/Balance_supplementary 

 

In cuffed (EC/LC), sham (ES/LS) and CTRL animals, the balance index was determined before 

and after surgeries every 2-3 days for 1 month. A time-course was established, and we 

estimated the cumulative gait imbalance during the early days (AUC-early for area under the 

curve; see Fig.3), late phase (4-21 days after surgery; AUC-late) and maximum imbalance 

(balance index on the 15th day after surgery). 

Locomotor training in a wheel 

TR group of Mice had access to a running wheel for 1h/day during 7 (S-TR group) or 19 (L-TR 

group) consecutives days. For each session, mice were removed from their housing cage and 

placed in another individual cage equipped with a vertical, access-free running wheel. 

Locomotor activity was monitored using a piezoelectric sensor on the cage coupled to a 

magnet on the wheel to count the number of wheel turns during each session. We measured 

the total distance covered during the training period of 7 or 19 days and the slope of the  training  

trajectory using linear regression analysis.  

 

Di-I injections to measure parallel fiber extension 

PND8-9 CD1 pups were placed in crushed ice for 2-3 minutes to be anesthetized. A small 

incision was rapidly made over the cerebellum and .5 to 1µL fluorescent dye (Vybrant DiI cell 

labeling solution, Thermo Fisher) was injected at the midline of lobules IV/V of the cerebellar 

cortex using a glass pipette and a pressure pump (Picospritzer III, Parker, USA). Location and 

depth of the injection were determined by eye using visual cues. After injection, the opened 
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skin was closed with a drop a biocompatible glue (Vetbond, 3M, USA) and pups were placed 

on a heat pad a few minutes prior return to the mother in the homecage.  

PND30 CD1 mice were anesthetized by inhalation of isoflurane (Verflurane, Virbac, France, 

4% for induction then 1-2% for the surgery) and mounted on a stereotaxic frame (Model 68526, 

RWD Life Science). Body temperature was monitored using a rectal probe and maintained 

with a heat pad. A mix of lidocaïn/bupivacaïne (2 mg/kg each) was subcutaneously injected 

over the skull prior to incision, followed by an intraperitoneal injection of a non-steroidal anti-

inflammatory drug (Metacam, 2 mg/kg). A parasagittal incision was made over the skull to 

expose lambda and bregma landmarks. The skull was cleaned using cotton sticks soaked in 

sterile 0.9% NaCl solution (saline). A 0.5 mm diameter hole was drilled at AP =-2mm, ML = 0 

(from Lambda) to expose lobules IV/V. DiI was injected as described for pups. Skin was 

sutured after injection and animals were put back in their home cage 

Slice preparation for electrophysiology and photostimulation 

Slices were prepared from P9–P90 male CD1 ALDOC mice. P12 to P90 Mice were 

anesthetized by inhalation of isoflurane 4% (Verflurane, Virbac, France) and then killed by 

decapitation. P9 and P10 pups were sedated by hypothermia prior to decapitation. The 

cerebellum was rapidly dissected out and placed in ice-cold (<4°C) artificial cerebrospinal fluid 

(ACSF) continuously bubbled with carbogen (95% O2, 5% CO2), containing (in mM): NaCl 120, 

KCl 3, NaHCO3 26, NaH2PO4 1.25, CaCl2 2.5, MGCl2 2, glucose 10 and minocycline 0.00005 

(Sigma- Aldrich, USA). 300 µm-thick transverse acute cerebellar slices were then prepared 

(Microm HM 650V, Microm, Germany) Fig.in ice-cold (>4°C) N-methyl-D-aspartate (NMDG) 

based solution containing (in mM) : NMDG (93), KCl (2.5), NaH2PO4 (1,2), NaHCO3 (30), 

HEPES (20), Glucose (25), sodium ascorbate (5), Thiourea (2), sodium pyruvate (3), N-

acetylcysteine (1), Kynurenic acid (1), MgSO47H2O (10), CaCL2.2H2O (0.5). After cutting, 

slices were maintained in 34°C ACSF at least 45 min, then kept at room temperature until the 

end of the experiment.  

Patch clamp recordings 

Whole-cell patch-clamp recordings in voltage-clamp mode were obtained using a Multiclamp 

700B amplifier (Molecular Devices, USA) and acquired with WinWCP 4.2.2 freeware (John 

Dempster, SIPBS, University of Strathclyde, UK). Patch pipettes (3-4MΩ) were pulled with 

borosilicate capillaries (Warner instruments) using a gravitational puller (model PC12, 

Narishige, Japan). Series resistance was monitored and compensated (70%–80% typically) in 

all experiments, and cells were held at -60 mV to isolate excitatory postsynaptic currents 

(EPSCs. The internal pipette solution contained (in mM): CsMeSO4 135, NaCl 6, HEPES 10, 
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MgATP 4 and Na2GTP 0.4. pH was adjusted to 7.3 with KOH and osmolarity was set at 300 

mOsm. Biocytin (Sigma Aldrich) or neurobiotin (Vector Laboratories, USA) were added (1 

mg/ml each) for cell reconstruction. Voltages were not corrected for the liquid junction potential, 

which was calculated to be 9 mV (i.e., the membrane potential was 9 mV more hyperpolarized 

than reported). We accepted recordings for which the inward current at -60 mV did not exceed 

1 nA. Synaptic currents in PCs were low pass filtered at 2.4-2.6 kHz, then sampled at 20 to 50 

kHz. All recorded cells were in lobule III or IV. All experiments were performed at room 

temperature using the same bubbled ACSF than for dissection. We systematically blocked 

NMDA, adenosine, CB1, GABAB and mGluR1 receptors to limit the modulation of 

EPSCsamplitude by activity-dependent activation of these receptors. They were respectively 

blocked using (in mM): D-AP5 0.05 (Ascent Scientific, Abcam Inc), DPCPX 0.0005, AM251 

0.001, CGP 52432 0.001 and JNJ16259685 0.002 (Tocris-Cookson, UK). For excitatory maps 

only, inhibitory transmission was blocked with Picrotoxin (0.1mM). 

Photostimulation 

Uncaging experiments were performed using RuBi-Glutamate (100µM) perfused in the 

recording chamber in a closed circuit (Abcam, UK). To map GC-PC synaptic connections, 

slices were positioned according to the horizontal plane in the recording chamber. In ALDOC 

mice45, Venus fluorescence allowed precise visualization of PCs of the P1-
medial zebrin band. A 

micromirror DMD device control by the IQ3 software (Mosaïc, Andor Technology, Belfast, 

Ireland) mounted on an optic microscope (Olympus BX51, Japan) allowed systematic blue light 

photostimulation (pulses of 30 ms) of 20*20µm or 40*40µm squared GCL regions with LED- 

(460nm, Prizmatix, Israel) through a 40X objective (Zeiss, Germa (Fig.1B). The developmental 

dataset was performed with a grid of 128 sites (40µm² per site; low-resolution) while synaptic 

maps recorded after locomotor adaptation were obtained with a high-resolution 

photostimulation grid containing 384 sites (20µm² per site). A single grid covers 320 µm of the 

GC layer in the mediolateral axis. However, one synaptic was composed of 4 fields of view 

covering up to 1230 µm in the mediolateral axis.  Two stimulations of the same GC site were 

separated by 60 seconds minimum. For each experiment, a single site of the granular layer 

was photostimulated between 5 and 10 times in total (yielding 5 to 10 recordings for averaging 

and analysis). 

Immunohistochemistry 

After recordings, the patch pipette was gently removed from the recorded PC and the slice 

was immediately transferred from the recording chamber to a fixation solution composed of 

4% paraformaldehyde (Electron Microscopy Sciences) in ACSF for a maximum of 24h (4°C). 
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Zebrin bands were identified using intrinsic venus fluorescence. Recorded cells were labeled 

using Alexa 555-Streptavidin (Thermo-Fisher, 1/1000, 3 hours at room temperature). Ipsi- and 

contralateral P1+, P1-, P2+ and P2- Zebrin bands and distance between the recorded PC and 

the midline (P1+) were measured in each experiment. In adult CD1 mice, averaged Zebrin 

band lengths in lobule III/IV were (in µm±SD) : P2- contralateral 416.6±70.72; P2+ contralateral 

71.56±24.59; P1- contralateral 320.516±62.94; P1+ 34.63±16.18; P1- ipsilateral 

320.46±60.54; P2+ ipsilateral 69.75±22.53; P2- ipsilateral 438.04±64.25. Recorded PCs were 

located at 52.42±29.8 µm from the midline of lobules III/IV, corresponding to the cluster 1 

defined by Valera et al.14. 

Data processing and analysis of synaptic connectivity 

Data processing and analysis of synaptic parameters were performed via homemade scripts 

and routines written in Python 3.6 using the following packages : Pandas, Scipy, Sci-kit learn, 

Numpy, Matplotlib, Neo 0.8, Orange Data Mining92. Multivariate analysis (one way repeated 

Manova) was performed using the Real Statistics Resource Pack software (Release 6.8). 

www.real-statistics.com. Python-based code is available at:  

https://github.com/ludo67100/cerebellarMaps 

Reconstruction of 2D connectivity maps and 1D input patterns 

In each GC site of the grids, EPSCs elicited by RuBi-glutamate uncaging were measured in a 

200ms time window from stimulation onset (Astim, Fig.S2B). Each GC sites was 

photostimulated 5-10 times and EPSCs were averaged. For comparison, spontaneous activity 

in the slice was measured on each averaged recording of the map as the minimum amplitude 

in a 200ms window 1s before or after the photostimulation (Anoise, Fig.S2B). Histogram of 

spontaneous activity was then fitted with a gaussian function and the standard deviation (σ) of 

the synaptic noise was used to estimate z-scores of EPSCs (Fig.S2B).   

Zscore = (Astim – X) / σ 

A zscore > 3.09 corresponds to a significant synaptic with an alpha=0.01. Z-scores were then 

used to draw 2D synaptic maps  (Fig.1). For each GCL column, we used the maximum z score 

value to define a 1D projection pattern (Fig.1).  
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Median input pattern and averaged synaptic maps  

In each behavioral condition, we built the median 1D GC-PC inputs patterns and the averaged 

2D synaptic maps. Individual 1D input patterns (described above) were interpolated and 

convolved with a triangular kernel (width=9µm) prior to median computation. For averaged 2D 

maps, individual maps and corresponding positional arrays were concatenated in separate 

vectors. The positional vector was sorted in ascending order along the mediolateral axis (from 

contralateral to ipsilateral positions in the GCL) and the exact same sorting rule was applied in 

parallel to the map-based vector. The resulting, spatially sorted meta-map vector was then 

divided in 30µm-wide bins for averaging, yielding average maps shown in Fig.1, 2 and 4.  

 

Synaptic weights correlations between microzones  

In each map, synaptic weights from GC sites were normalized to the maximal amplitude.  

Amplitudes from significant GC sites (i.e., Z score > 3.09) were averaged by microzonesand 

Pearson correlation between microzones were computed in each condition (Fig.5A).  

Graph properties 

GC-PC maps pre-processing 

We considered each two-dimensional connectivity map as a matrix M, whose Mxy entry 

denotes the EPSC amplitude recorded at the position coordinates (x,y). We then focused on 

the column vectors Mx of this matrix and for every pair of positions x and x’ along the scanned 

mediolateral axis we computed the normalized Pearson correlations Cxx’ = corr(Mx, Mx’ ) 

between the connectivity profiles at the two considered positions. Cxx’ values were then 

compiled in a correlation matrix C(M) (“Raw matrix” on Fig.1D) that captured the patchy 

structure of the original map. C(M) can be considered as the adjacency matrix of an undirected 

graph. The entries Cxx’ thus become the strengths of links between graph nodes associated to 

the positions x and x’. The more similar are the connectivity profiles between two positions x 

and x’ and the stronger will be the weight Cxx’ of the connection between them. A standard 

Louvain algorithm51 is then used to optimally partition graph nodes into non-overlapping 

communities such that total weight of within group edges are maximized and weight of between 

group edges are minimized. A resorting of node labels according to the extracted community 

labels leads to the “Rearranged Graph Matrix” in Fig.1D in which a block structure is better 

visible than before reordering of nodes. 
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Graph-based features 

All the graph properties were calculated using the Brain Connectivity Toolbox for python 

(https://pypi.org/project/bctpy/) designed by M Rubinov and Olaf Sporns50  

 

We characterized the GC-PC maps using graph properties such as: 

a) Modularity index - Modularity index maximizes the number of within group edges and 

minimizes the number of between group edges using community the Louvain algorithm. It is a 

measure of how modular or “patchy” a graph is, i.e. higher the modularity index, higher is the 

number of modules or “patches” in a graph. Modularity index is a graph centric measure and 

hence we get one value per map/graph. We use a variant of modularity index measure 

designed for weighted graphs given by the following equation (Newman 2004, Rubinov & 

Sporns 2010):  

 

𝑄𝑤 =
1

𝑙𝑤
∑ [𝑤𝑖𝑗 −

𝑘𝑖
𝑤𝑘𝑗

𝑤

𝑙𝑤
] 𝛿𝑚𝑖,𝑚𝑗

𝑖𝑗∈𝑁

 

 

Where 𝑙𝑤= total weight of the graph; 𝑊𝑖𝑗 = weight of the edge between node i and node j; 𝑘𝑖
𝑤, 

𝑘𝑗
𝑤 = weighted degrees of node i and j respectively; 𝛿𝑚𝑖,𝑚𝑗

= 1 if 𝑚𝑖 = 𝑚𝑗 and 0 otherwise; 

𝑚𝑖,𝑚𝑗 are the modules containing nodes i and j respectively.  

 

b) Module degree z-score (weighted) – is a measure of within-module version of degree 

centrality. Degree centrality is a measure of edges connected to a node. Hence, a weighted 

module degree z-score measures how strongly is the node connected to other nodes within 

the module. A high average module degree z-score for a correlation map indicates that patches 

in the map tend to be organized around a center, fading in a graded manner into the 

background which does not elicit stimulation responses in the considered PC. On the contrary, 

maps with lower average module degree z-score have internally homogeneous patches with 

sharper edges. Module degree z-score is a node centric measure i.e, we get a value per node. 

The module degree z-score of a map/graph is calculated as the median of the distribution of 

module degree z-scores of all its (gglobal(M)). The vector (gbilateral(M)) is denoted by medians 

calculated separately over nodes on the ipsilateral and contralateral sides. Similarly, the 

median degree z-scores can be calculated on the resolution of microzones by pooling the 

nodes that lie within the zone gzonewise(M). The weighted module degree z-score is given by 

the following equation (Rubinov & Sporns, 2010):  
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𝑧𝑖
𝑤 =

𝑘𝑖
𝑤(𝑚𝑖) − 𝑘

𝑤
(𝑚𝑖)

𝜎𝑘
𝑤(𝑚𝑖)

 

 

Where 𝑘𝑖
𝑤(𝑚𝑖)= weighted degree of node i with links between i and all nodes in 𝑚𝑖; 𝑚𝑖= module 

containing the node i;  𝑘
𝑤
(𝑚𝑖) = mean of the within-module degree distribution; 𝜎𝑘

𝑤(𝑚𝑖) = 

standard deviation of the within-module degree distribution.  

 

c) Participation coefficient (weighted) - measures how strongly does a node in a module 

connect to nodes of the other modules. Participation coefficient is close to 1 if the connections 

received by the node are uniformly distributed among all modules and close to 0 if it favors 

connections to the nodes within its own modules. A high participation coefficient for a graph 

indicates that patches in the map tend to be partially overlapping in their range or imperfectly 

separated, as islands in an archipelago linked by narrow “peers”. Participation coefficient is 

also a node centric measure, i.e., we get a value per node. The graph property on different 

resolutions (gglobal(M) ,gbilateral(M) and gzonewise(M)) are calculated as described for module 

degree z-score.   The weighted participation coefficient is calculated as the equation (Rubinov 

& Sporns, 2010):  

 

𝑦𝑖
𝑤 = 1 − ∑ (

𝑘𝑖
𝑤(𝑚)

𝑘𝑖
𝑤 )

2

𝑚∈𝑀

 

 

Where 𝑀 = set of modules; 𝑘𝑖
𝑤(𝑚) = weighted degree of links between node i and all nodes in 

module 𝑚;𝑘𝑖
𝑤= weighted degree of links between node i and all nodes.  

 

d) Local assortativity (weighted) - is a measure of the tendency of a node to connect to other 

nodes with the similar degree. A positive local assortativity coefficient indicates that nodes tend 

to link to other nodes with the similar degrees (e.g., if hubs tend to connect to hubs). Local 

assortativity is a node centric measure. Note that the node degree of a site within a map patch 

measures to how many other sites the response profile of the considered site is similar and 

that it is thus an indirect measure of the patch size scale. Thus, a map displaying both smaller 

and large patches well separated between them would result in a graph with a large 

assortativity. The graph property on different resolutions (gglobal(M), gbilateral(M) and 

gzonewise(M)) are calculated as described for module degree z-score. The weighted local 

assortativity is calculated with the following equation (Rubinov & Sporns, 2010, Leung et al, 

2006):  
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𝑟𝑤 =
𝑙−1 ∑ 𝑤𝑖𝑗𝑘𝑖

𝑤𝑘𝑗
𝑤 − [𝑙−1 ∑

1
2
𝑤𝑖𝑗(𝑘𝑖

𝑤 + 𝑘𝑗
𝑤)(𝑖,𝑗)∈𝐿 ]

2

(𝑖,𝑗)∈𝐿

𝑙−1∑
1
2
𝑤𝑖𝑗 ((𝑘𝑖

𝑤)
2
+ (𝑘𝑗

𝑤)
2
)(𝑖,𝑗)∈𝐿 − [𝑙−1 ∑

1
2
𝑤𝑖𝑗(𝑘𝑖

𝑤 + 𝑘𝑗
𝑤)(𝑖,𝑗)∈𝐿 ]

2 

 

Where 𝑙= total weight of all links in the network; 𝐿= set of links between pairs of nodes i and j; 

𝑤𝑖𝑗= weight of the link between node i and j; 𝑘𝑖
𝑤= weighted degree of node i; 𝑘𝑗

𝑤= weighted 

degree of node j.  

 

Dimensionality reduction using t-SNE 

t-SNE is a nonlinear dimensionality reduction technique that transforms vectors in a high 

dimensional metric space into vectors within a lower dimension metric space (usually 2 or 3 

target dimensions for the sake of visualization) while ensuring that close points in the higher 

dimensional space are mapped to points which are still close in the lower dimensional space, 

whereas dissimilar points are mapped farther away. t-SNE projection were used to reduce the 

dimensionality for two kinds of data: (1) the zone wise distribution of synaptic weights 

(Gweights_zonewise) and (2) lateralized values of graph properties (Ggraph_bilateral). The 

sklearn.manifold.TSNE function in python was used.  Centroids of point clouds corresponding 

to maps obtained in similar locomotor adaptation conditions have been obtained by computing 

the median projected coordinates of all the maps in the considered point cloud. 

Subtype Classification using random forest classifier 

The graph features of different resolutions (gglobal(M), gbilateral(M) and gzonewise(M)) and zone 

wise synaptic weights (gweights_zonewise(M)) were used to train and test  four random forest 

classifiers in order to classify the different locomotion contexts (CT, E/LC, E/LS, S/LTR). A 

random forest classifier uses multiple decision trees and combines their results to enhance the 

classification performance. The classifier used a maximum depth of 30 and 150 estimators. 

The data was divided into 100 stratified trials, with training:testing ratio of 80:20%. Proportion 

of correctly and misclassified samples (evaluated as generalization performance, i.e., applying 

the classifier on the testing subset not used for training) were quantified in a confusion matrix 

and the accuracy was calculated as a percentage of samples that were correctly classified. To 

compare the accuracy score with chance level scores, a shuffled version of the random forest 

was also trained and tested with the identical hyper parameters except the labels of the 

locomotion contexts in the data were shuffled. The sklearn.ensemble.RandomForestClassifier 

function from the sklearn package in python was used.  
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Generalized linear models 

In order to check how well the behavioral features are predicted from the graph features, we 

trained and cross validated generalized linear models for 100 trials with training:testing split of 

75:25%. The accuracy of the predictions on testing data (once again, generalization 

performance) was quantified by calculating r-values of fit between predicted and actual data 

for all 100 cross validation trials. To check the comparison with the chance level prediction, 

GLM was also trained and tested for the shuffled values of behavioral features in the training 

data. The r-value distributions of actual and shuffled GLMs are shown for comparison.  The 

GLM equation posed the behavioral feature as a dependent variable and the graph-based 

features as independent variables. The contingency of graph features on the animal group 

(LC/LS or S-TR/L-TR) is encoded as a bias variable (±1, e.g., LC = 1, LS=-1) that is multiplied 

with the graph features:  

 

𝑌𝑖 = 𝛽0 +∑𝛽𝑗 . 𝐺𝑗𝑖
𝑗∈𝑁

+∑𝛾𝑗. 𝑇𝑖 . 𝐺𝑗𝑖 + 𝜖𝑖
𝑗∈𝑁

 

Where 𝑖= trial number; 𝑌𝑖= behavioral feature for trial 𝑖; 𝛽0= common intercept; 𝑁= set of all 

graph-based features; 𝛽𝑗= slope for graph feature j; 𝐺𝑗𝑖= value for graph property j in trial i; 

𝛾𝑗= group specific slope for graph feature j; 𝑇𝑖= ±1, for the two groups (LC/LS & S/L-TR); 𝜖𝑖= 

error. The statsmodels.api.GLM routine from the python statsmodels package was used.  
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Figure S1: Input/output relationships in lobule II-IV of the anterior vermis
MF projections from precerebellar nuclei to the anterior microzones (A, AX, B) of the cerebellar cortex and microzonal organization based on Zebrin band patterning of 
PCs. Microzones target speci�c areas of cerebellar and vestibular nuclei. The medial cerebellar nuclei (MCN) project to the ventromedial reticular formation while the 
lateral vestibular nuclei can project directly to the lumbar spinal cord both controlling hindlimb muscles. Sensory information from hindlimb and forelimb muscles 
reaches the GCL in di�erent microzones via MF originating in L3 to L5 lumbar segments and the cuneate nucleus, respectively. MFs relay on GCs (in red), that send 
paralle �bers through the transverse plane of the molecular layer contacting hundreds of PCs in several microzones. Adapted from Ji & Hawkes (1994); Ruigrok et al 
(2008); Valera et al (2016); Voogd et al (2016) & Biswas et al (2019). III/IV/V: lumbar segments, BF: biceps femoralis, Cu: Cuneate nucleus; FL/HL: forelimbs/hindlimbs, Ga: 
gastrocnemius, GCs: Granule cells; MCN: medial cerebellar nuclei, MVN: medial vestibular nuclei, LVN: lateral vestibular nuclei, PoN: pontine nuclei, SC: spinal cord, SN: 
sciatic nerve, TA: tibialis anterior, VMRF: ventromedial reticular formation.
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Figure S2: Glutamate uncaging methods
(a) Reliability of glutamate uncaging. Example traces of 9 consecutive photostimulation at 2 GCL sites (20*20µm, high resolution mapping, in shades of gray) and 
corresponding averaged EPSCs (in red). (b) Z Score calculation. In each GC site, we measured (1) the amplitude of the averaged response (Astim) in a 200ms time-win-
dow following onset of light stimulation and (2) the amplitude of the averaged background noise (Anoise  i.e. spontaneous GC activity). Distribution of Anoise values in 
a map (n=128 for low resolution and n=384 in high resolution. mappings) is (1) averaged (X) and (2) �tted with a gaussian kernel to extract standard deviation (σ). Z 
score of each GC site synaptic response (1 response per uncaging site) is then calculated as follows:

Signi�cant photostimulation-evoked EPSCs in PCs (also called “active sites”) in the main text are determined via their individual z score (> 3.09 for active sites). (c) Spatial 
accuracy of GC-PC connectivity maps. In order to assess the spatial accuracy of RuBi-glutamate uncaging, we assessed whether we could identi�ed isolated GC-PC sites 
in connectivity maps from CTRL (high resolution, top right panel) and P30-P40 (low resolution, bottom right panel) animals. 107 islands could be observed in high 
resolution (20*20µm) maps. Median of islands yielded following z scores:  site #1: 0.35±0.49; site #2: 0.53±0.49; site#3: 0.36±0.34; site #4: 0.37±38; site #5 (center): 
4.50±1.02; site #6: 0.66±0.65; site #7: 0.35±0.27; site #8: 0.41±0.34; site #9: 0.3±0.33. 24 islands could be identi�ed in low resolution (40*40µm) maps. Median of islands 
yielded following z scores:  site #1: 0.41±0.45; site #2: 0.69±0.84; site#3: 0.37±0.37; site #4: 1.29±1.27; site #5 (center): 5.25±2.45; site #6: 0.51±0.42; site #7: 0.5±0.47; site 
#8: 0.39±0.47; site #9: 0.41±0.32. Therefore, RuBi-glutamate does not di�use outside individual illumination sites. 
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Figure S3: description of 2D maps
(a) Proportion of active sites in the height of the GC layer. GCL was subdivided in three zones from PcL to WM : 0 to 40µm, 40 to 80µm and 80 to 120µm layers. Propor-
tion of active site was determined in each locomotor condition.  Intra-group statistics were assessed with Kruskal Wallis test: CT, p=0.018; E-TR, p=0.60; L-TR,p=0.016; EC, 
p=0.0056; ES, p=0.031; LC, p=1.04e-05; LS, p=0.3. Post hoc Mann Whitney test: CT 0-40 vs 80-120, p=0.00934; L-TR 0-40 vs 80-120, p=0.0078; EC 0-40 vs 80-120 p=0.0029; 
ES 0-40 vs 80-120 p=0.011; LC 0-40 vs 40-80 p=5.10-4; LC 0-40 vs 80-120 p=1.10-5. Inter-group di�erence between CTRL and LC group (range 0-40µm) was assessed with 
Mann Whitney test (p=0.016). (b) Distribution of amplitude of active GC sites from local (top) and distal (down) GCL across locomotor condition. Local sites: pairwise 
comparisons were done with Mann Whitney U test after Kruskal Wallis test on all groups (p=1.10-6). Distal sites: pairwise comparisons were done with Mann Whitney U 
test after Kruskal Wallis test on all groups (p=7.10-18). (c) Same as in B for ipsilateral vs contralateral side. Ipsilateral: pairwise comparisons were done with Mann Whitney 
U test after Kruskal Wallis test on all groups (p=6.10-12). Contralateral: pairwise comparisons were done with Mann Whitney U test after Kruskal Wallis test on all groups 
(p=1.10-13). (D)  Synaptic weights (top) and proportion of active sites (down) in the ipsi- and contralateral side of all synaptic mapsPairwise comparisons in each group 
were done with Wilcoxon Signed Rank test.  
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Figure S4: median 1D patterns of functional connectivity are conserved across animals
Individual synaptic 1D patterns used to build the median input pattern of medial PCs(�rst row) were bootstraped81 (average of 10000 unrestricted random samplings, 
second row). Patterns were either sorted by their coordinates along the mediolateral axis (blue curve) or shu�ed (gray curve) removing positional information. 
Subtraction of Median Associated Deviations (MADs, third row) highlights connected GC sites above the randomized patterns (in blue) and silent areas (in black). Local 
GC input (in dark blue) and distant hotspots in both P2+ bands (black arrows) could be identi�ed as well as silent areas in lateral P1- bands (black crosses), yielding a 
perfect match with previously described median input pattern (fourth row, adapted from14). 
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Figure S5: Parallel �bers length at PND8-30 and GC excitability
(a) Fluorescent Di-I was injected (Methods) at the midline of lobules III-V (left panel, injection site is shown with a white arrow). Fluorescence in ML and GCL were 
measured along the mediolateral axis from the injection site (right panel). (b) GCs excitability. Light-evoked action potentials in GCs were recorded via loose-cell 
attached method (left panel, Methods) in PND9 and PND14 mice. GCs (n=5 in both conditions) were randomly selected in the vermal GCL (lobules III, IV or V). Rubi-Glu-
tamate uncaging triggered 7.3±0.8 action potentials in P9 pups and 5.7±1.3 action potentials in P14 mice (p=0.079, independent t-test). Reproducibility of GC �ring 
patterns throughout consecutive photostimulation was previously assessed in82. 
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Figure S6: Zone wise Pearson correlation of synaptic weights
(a) Summary of zone wise Pearson synaptic correlation. For each microzone, we counted the amount of signi�cant pairwise correlations with all the other microzones. 
Connectivity maps from the LC group showed a 5-fold increase in the number of correlations when compared to CTRL group (30 vs 6 correlations, with each microzone 
in LC group being correlated with 4.2 other zones on average). (b) Zone wise correlations are not the result of variability in slice GC overall excitability. We plotted the 
normalized amplitude of each microzone with the total synaptic weight recorded in the corresponding map. Amongst the 56 combinations, only 5 signi�cant correla-
tions (but negative, see top panel) were found in CT, STR, LS. 
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Figure S7: Graph parameters in all conditions
Distribution of global modularity index (panel a, i.e. whole map) and lateralized (i.e. from ipsi and contralateral side of the maps); module degree z score (b), local 
assortativity (c) and participation (d) in each behavioral condition. 
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Figure S8: Random forest supervised classi�cations of synaptic maps
Confusion (i.e., correlation) matrices of Random Forest classi�cation using input vector of zone wise synaptic weights (top), whole map graph properties (second row), 
bilateral graph properties (third row) and zone wise graph properties (fourth row). Matrices on the left were computed with correct labeling of the di�erent vectors 
while matrices on the right result from shu�ed input vectors (i.e., each vector was randomly labeled among CT/TR/ES/LS/LC/EC labels). Corresponding average accuracy 
is shown in the point plots on the right. 
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Figure S9: Example of failure for prediction using GLMs
Extended results of behavioral features prediction based on graph properties of synaptic maps using Generalized Linear Models (GLMs). When considering late 
post-surgery imbalance (AUClate) for prediction, GLMs cannot predict behavioral outcome based on graph properties.  Average predictions are scattered on left panel, 
and regression coe�cients (r values) are plotted in right panel. Linear models with actual data are shown in blue while results with shu�ed data (i.e., chance level) are 
shown in gray. Analysis on LC group only is shown in dashed red. 
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Variable Mean Median Test type Sta�s�c p-value effect size

(condi�on) (SD) (MAD) (H or U) (comp. to *)

Amplitude (pA) KW (amplitudes in all cond.) 28.2 1.99.10-11

(PND9-10)* 62.15 (55.43) 41.49 (21.09) MWU (PND9-10 vs 12-13) 8573.0 0.0055 0.0

(PND12-13) 87.28 (94.17) 55.67 (41.04) MWU (PND9-10 vs 14-18) 17494.0 4.74.10-6 0.29

(PND14-18) 112.71 (127.57) 74.32 (62.09) MWU (PND9-10 vs 30) 10591.0 9.05.10-6 0.41

(PND<30) 91.71 (87.94) 63.23 (39.57) MWU (PND12-13 vs 14-18) 76176.0 0.00085 0.35

MWU (PND12-13 vs 30) 48064.0 0.019

MWU (PND14-18 vs 30) 119957.0 0.071

Ac�ves sites MWU (PND9-10 Up vs Lo) 20.0 0.0079

in Up GCL (%) MWU (PND12-13 Up vs Lo) 1.92 0.16

(PND9-10) 8.38 (6.18) 6.25 (4.63) MWU (PND14-18 Up vs Lo) 210.5 5.17.10-5

(PND12-13) 21.48 (16.02) 21.88 (13.90) MWU (PND>30 Up vs Lo) 81.0 0.021

(PND14-18) 52.71 (20.52) 54.69 (20.85) KW (% in Up - all cond.) 27.538 5.0.10-6

(PND<30) 39.06 (17.89) 39.84 (15.06) MWU (Up PND9-10 vs PND12-13) 32.5 0.041

MWU (Up PND9-10 vs PND14-18) 1.0 2.56.10-5

MWU (Up PND9-10 vs PND>30) 4.5 0.00041

Ac�ves sites MWU (Up PND12-13 vs PND14-18) 18.5 0.00053

in Lo GCL (%) MWU (Up PND12-13 vs PND>30) 27.5 0.035

(PND9-10) 2.70 (3.57) 1.56 (2.32) MWU (Up PND14-18 vs PND>30) 103.0 0.13

(PND12-13) 13.8 (14.04) 11.72 (11.58) KW (% in Lo - all cond.) 21.218 0.000095

(PND14-18) 16.63 (13.78) 12.50 (9.27) MWU (Lo PND9-10 vs PND12-13) 17.0 0.0026

(PND<30) 22.19 (8.23) 20.31 (8.11) MWU (Lo PND9-10 vs PND14-18) 17.5 0.00076

MWU (Lo PND9-10 vs PND>30) 1.0 0.00015

MWU (Lo PND12-13 vs PND14-18) 74.0 0.45

MWU (Lo PND12-13 vs PND>30) 26.0 0.026

MWU (Lo PND14-18 vs PND>30) 44.5 0.096

Ac�ve sites KW (% in whole map - all cond.) 27.59 0.000004

in whole map MWU (PND9-10 vs 12-13) 16.5 0.015

(%) MWU (PND9-10 vs 14-18) 2.0 0.00019

(PND9-10) 5.54 (3.49) 4.69 (2.32) MWU (PND9-10 vs 30) 0.0 0.00072

(PND12-13) 17.64 (9.99) 14.84 (11.0) MWU (PND12-13 vs 14-18) 32.0 0.03

(PND14-18) 34.67 (15.62) 31.25 (16.22) MWU (PND12-13 vs 30) 24.0 0.11

(PND<30) 30.62 (11.43) 30.47 (11.00) MWU (PND14-18 vs 30) 85.0 1.0

Modularity KW (modularity - all cond.) 15.5 0.0014

Index MWU (PND9-10 vs 12-13) 25.0 0.0063

(PND9-10) 0.52 (0.06) 0.53 (0.03) MWU (PND9-10 vs 14-18) 0.0 0.00054

(PND12-13) 0.39 (0.13) 0.46 (0.07) MWU (PND9-10 vs 30) 35.0 0.084

(PND14-18) 0.14 (0.08) 0.12 (0.06) MWU (PND12-13 vs 14-18) 5.0 0.0021

(PND<30) 0.37 (0.17) 0.38 (0.16) MWU (PND12-13 vs 30) 58.0 0.46

MWU (PND14-18 vs 30) 9.0 0.013

Par�cpa�on MW (Par�cipa�on - all cond.) 14.67 0.0021

coeff MWU (PND9-10 vs 12-13) 24.0 0.0053

(PND9-10) 0.33 (0.06) 0.33 (0.04) MWU (PND9-10 vs 14-18) 2.0 0.0011

(PND12-13) 0.21 (0.11) 0.23 (0.08) MWU (PND9-10 vs 30) 16.0 0.0033

(PND14-18) 0.11 (0.08) 0.10 (0.08) MWU (PND12-13 vs 14-18) 19.0 0.061

(PND<30) 0.20 (0.09) 0.21 (0.05) MWU (PND12-13 vs 30) 54.0 0.36

MWU (PND14-18 vs 30) 16.0 0.072

Module KW (Mod. Deg. Zscore - all cond.) 11.84 0.0079

Degree MWU (PND9-10 vs 12-13) 23.0 0.0044

Zscore MWU (PND9-10 vs 14-18) 6.0 0.0039

(PND9-10) 0.23 (0.09) 0.20 (0.06) MWU (PND9-10 vs 30) 23.0 0.013

(PND12-13) 0.34 (0.11) 0.34 (0.05) MWU (PND12-13 vs 14-18) 25.0 0.16

(PND14-18) 0.41 (0.08) 0.40 (0.04) MWU (PND12-13 vs 30) 49.0 0.24

(PND<30) 0.34 (0.07) 0.35 (0.04) MWU (PND14-18 vs 30) 17.0 0.086

Local KW (Assorta�vity - all cond.) 24.37 2.08.10-5

Assorta�vity MWU (PND9-10 vs 12-13) 0.0 2.47.10-5

(PND9-10) 0.014 (0.003) 0.013 (0.001) MWU (PND9-10 vs 14-18) 12.0 0.018

(PND12-13) 0.024 (0.002) 0.024 (0.001) MWU (PND9-10 vs 30) 0.0 5.15.10-5

(PND14-18) 0.018 (0.004) 0.016 (0.002) MWU (PND12-13 vs 14-18) 16.0 0.033

(PND<30) 0.026 (0.003) 0.028 (0.001) MWU (PND12-13 vs 30) 48.0 0.22

MWU (PND14-18 vs 30) 8.0 0.009

K

A

B

C

H

I

J

Variable Mean Median Test type (distribu�ons) Sta�s�c p-value Effect size

(condi�on) (SD) (MAD) (comp. to *)

Amplitude (pA) KW (all cond.) 341.36 1.27.10-71

(CTRL)* 72.29 (49.80) 55.72 (28.97) MWU (CTRL vs CTRL) 172872.0 0.99 0.0

(S-TR) 89.82 (71.18) 70.15 (36.11) MWU (CTRL vs S-TR) 112495.0 8.48.10-9 0.29

(L-TR) 86.7 (48.72) 68.83 (29.26) MWU (CTRL vs L-TR) 81607.0 1.01.10-11 0.29

(ES) 91.91 (59.56) 75.32 (43.98) MWU (CTRL vs ES) 120433.0 1.53.10-11 0.35

(EC) 78.74 (61.84) 61.37 (36.17) MWU (CTRL vs EC) 447722.0 0.18 0.11

(LS) 116.2 (69.36) 95.54 (40.11) MWU (CTRL vs LS) 83145.0 4.10.10-52 0.68

(LC) 88.79 (59.07) 70.42 (36.04) MWU (CTRL vs LC) 227984.0 2.34.10-12 0.29

KW (CTRL vs S-TR vs L-TR) 55.98 6.98.10-13

MWU (S-TR vs L-TR) 86676.0 0.33

KW (CTRL vs ES vs LS) 229.82 1.24.10-50

MWU (ES vs LS) 197849.0 1.84.19-15

KW (CTRL vs EC vs LC) 64.43 1.02.10-14

MWU (EC vs LC) 903360.0 5.24.10-12

Ac�ve sites

in whole GCL

(%) KW (all cond.) 9.83 0.13

(CTRL) 12.38 (7.16) 10.81 (7.72)

(S-TR) 10.58 (8.91) 7.42 (5.02)

(L-TR) 9.9 (6.35) 6.51 (3.86)

(ES) 15.56 (9.31) 14.71 (9.01)

(EC) 16.48 (9.4) 15.62 (10.04)

(LS) 13.09 (8.69) 11.33 (11.39)

(LC) 16.00 (6.46) 13.54 (6.37)

Ac�ve sites

in local GCL (%)

(CTRL) 21.88 (20.67) 18.06 (17.06) WSR (CTRL local vs distal ac�ve sites) 24.0 0.074

(S-TR) 24.71 (19.57) 19.94 (14.27) WSR (S-TR local vs distal ac�ve sites) 4.0 0.0060

(L-TR) 21.27 (19.45) 19.05 (24.71) WSR (L-TR local vs distal ac�ve sites) 7.0 0.021

(ES) 32.73 (22.64) 35.71 (23.47) WSR (ES local vs distal ac�ve sites) 6.0 0.028

(EC) 30.22 (22.04) 30.95 (30.45) WSR (EC local vs distal ac�ve sites) 55.0 0.0038

(LS) 25.95 (22.05) 20.63 (17.85) WSR (LS local vs distal ac�ve sites) 9.0 0.017

(LC) 33.23 (15.36) 37.78 (18.12) WSR (LC local vs distal ac�ve sites) 2.0 0.00064

Ac�ve sites KW (local ac�ve sites in all cond.) 6.04 0.42

in distal GCL (%) KW (distal ac�ve sites in all cond.) 13.63 0.034

(CTRL) 9.94 (5.85) 9.25 (6.28) MWU (CTRL vs CTRL distal sites) 98.0 0.49

(S-TR) 8.76 (8.36) 7.35 (6.58) MWU (CTRL vs S-TR distal sites) 67.0 0.20

(L-TR) 7.65 (6.27) 6.03 (4.61) MWU (CTRL vs L-TR distal sites) 56.0 0.13

(ES) 11.43 (6.47) 9.27 (4.68) MWU (CTRL vs ES distal sites) 63.0 0.35

(EC) 15.14 (9.22) 12.36 (9.27) MWU (CTRL vs EC distal sites) 118.0 0.049

(LS) 10.93 (7.74) 8.03 (6.11) MWU (CTRL vs LS distal sites) 83.0 0.49

(LC) 14.17 (6.06) 12.53 (6.77) MWU (CTRL vs LC distal sites) 71.5 0.048

Amplitude 

in local GCL (pA)

(CTRL) 77.36 (35.07) 68.75 (28.45) WSR (CTRL amplitude local vs distal) 40.0 0.43

(S-TR) 99.89 (44.92) 87.99 (28.96) WSR (S-TR amplitude local vs distal) 2.0 0.0037

(L-TR) 87.23 (26.49) 83.32 (32.76) WSR (L-TR amplitude local vs distal) 7.0 0.021

(ES) 79.39 (29.78) 75.56 (43.86) WSR (ES amplitude local vs distal) 15.0 0.20

(EC) 89.04 (60.78) 73.69 (31.41) WSR (EC amplitude local vs distal) 83.0 0.032

(LS) 115.66 (43.43) 108.07 (37.53) WSR (LS amplitude local vs distal) 22.0 0.18

(LC) 111.87 (36.84) 111.45 (48.02) WSR (LC amplitude local vs distal) 12.0 0.0038

Amplitude 

in distal GCL (pA) KW (local amplitude in all cond.) 13.29 0.039

(CTRL) 66.9 (19.21) 67.92 (21.22) MWU (CTRL vs CTRL local amplitude) 98.0 0.49

(S-TR) 68.61 (20.16) 68.82 (19.91) MWU (CTRL vs S-TR local amplitude) 52.0 0.053

(L-TR) 87.45 (46.73) 85.0 (38.8) MWU (CTRL vs L-TR local amplitude) 47.0 0.053

(ES) 82.14 (27.86) 69.25 (9.86) MWU (CTRL vs ES local amplitude) 60.0 0.29

(EC) 68.13 (22.75) 65.61 (28.06) MWU (CTRL vs EC local amplitude) 157.0 0.30

(LS) 102.73 (32.54) 100.7 (28.3) MWU (CTRL vs LS local amplitude) 35.0 0.0063

(LC) 79.02 (21.66) 73.13 (24.99) MWU (CTRL vs LC local amplitude) 53.0 0.0075

KW (distal amplitude in all cond.) 12.97 0.043

MWU (CTRL vs CTRL distal amplitude) 98.0 0.49

MWU (CTRL vs S-TR distal amplitude) 72.0 0.28

MWU (CTRL vs L-TR distal amplitude) 53.0 0.10

MWU (CTRL vs ES distal amplitude) 51.0 0.14

MWU (CTRL vs EC distal amplitude) 172.0 0.47

MWU (CTRL vs LS distal amplitude) 28.0 0.0026

MWU (CTRL vs LC distal amplitude) 78.0 0.082

A

B

(H or U or W)

Figure 2: Postnatal development of connectivity maps Figure 4: Synaptic adjusments of GC-PC maps following locomotor adaptation

Figure S10: Statistic tables for Figure 2 & Figure 4
Tables containing mean and median distributions as well as statistical metrics of di�erent tests performed between distributions shown in Figure 2 (left table) and 4 
(right table). Statistic H, U and W account for Kruskall-Wallis (KW), one-sided Mann-Whitney (corrected for ties) and two-sided Wilcoxon Signed-rank (WSR) tests. E�ect 
size was calculate based on means (i.e., considers the standardized mean di�erence between two populations). 
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