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a b s T R a c T 
 

In carefully designed experimental paradigms, cognitive scientists interpret the mean event-related potentials 

(ERP) in terms of cognitive operations. However, the huge signal variability from one trial to the next, questions  

the representability of such mean events. We explored here whether this variability is an unwanted noise, or 

an informative part of the neural response. We took advantage of the rapid changes in the visual system during  

human infancy and analyzed the variability of visual responses to central and lateralized faces in 2-to 6-month-old 

infants compared to adults using high-density electroencephalography (EEG). We observed that neural trajectories 

of individual trials always remain very far from ERP components, only moderately bending their direction with 

a substantial temporal jitter across trials. However, single trial trajectories displayed characteristic patterns of  

acceleration and deceleration when approaching ERP components, as if they were under the active influence of  

steering forces causing transient attraction and stabilization. These dynamic events could only partly be accounted 

for by induced microstate transitions or phase reset phenomena. Importantly, these structured modulations of  

response variability, both between and within trials, had a rich sequential organization, which in infants, was 

modulated by the task difficulty and age. Our approaches to characterize Event Related Variability (ERV) expand  

on classic ERP analyses and provide the first evidence for the functional role of ongoing neural variability in 

human infants. 
 

 

 

Introduction 

Since Wundt (1832-1920), the purpose of psychology has been to 

decompose complex cognitive functions into simpler processes, or men- 

tal operations, that could be studied in relative isolation thanks to the 

careful manipulation of experimental parameters (Posner and DiGiro- 

lamo, 2000; Zylberberg et al., 2011). Following this ambition, thousands 

of studies have been published each year in which the peaks and troughs 

of average, stimulus-locked neural time-series (i.e. Event-Related Poten- 

tials: ERPs) have been explained as neural correlates of cognitive opera- 

tions. It is indeed quite remarkable that averaging neural signals across 

multiple presentations of the same stimulus recovers robust and repro- 

ducible responses across participants. The ERP literature has progres- 

sively identified specific neural components whose latency and scalp- 

topography have been related to particular cognitive operations, from 

sensory processes (e.g. recognition of faces: N170; Ghuman et al., 2014), 

to high-level processes (e.g. detecting lexicon incongruencies: N400; 

Kutas and Federmeier, 2000), or monitoring our own behavioral errors 

(ERN: Error Related Negativity; Dehaene et al., 1994). 

In this framework, the ongoing/background activity is   consid- 

ered as an unwanted noise discarded through the averaging process 

(Jasper, 1937). While measurement errors and artefacts are indeed un- 

wanted, the trial-by-trial variation of the recorded signal could also be 

a genuine property of the participant’s brain. Furthermore, since com- 

plete cognitive processes take place within each individual trial, and 

mental operations can vary from one trial to the next (e.g. stimulus 

visibility at threshold, confidence variation, change of strategy, etc.), 

the signature of these operations should be detectable within individual 

trials –without averaging. This methodological tour-de-force is some- 

times accomplished by powerful time-series pre-processing or machine 

learning algorithms (Vahid et al., 2020; Jung et al., 2001). However, all 

these methods implicitly assume that the pertinent ERP is a weak signal 

sunk in uncorrelated noise. Is this tenet itself as straightforward as it 

seems? 
An increasing number of studies suggest that the background ac- 

tivity fluctuations are part of the cognitive process itself and can bias 

perceptual reports and affect stimulus detection (Hesselmann et al., 

2008; Sadaghiani et al., 2009). Specifically, the oscillatory components 
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of the background activity, notably in the alpha band (8-12 Hz), have 

long been known to be suppressed at stimulus presentation (Adrian and 

Matthews, 1934). Furthermore, pre-stimulus power is inversely corre- 

lated with behavioral performance (Van Dijk et al., 2008). Nonetheless, 

these oscillations are never completely suppressed, and such ongoing 

oscillations display rich phase dynamics that play an important role in 

top-down cognitive processes (Palva and Palva, 2007; Klimesch, 2012; 

Michalareas et al., 2016) and contribute to the emergence of the ERP it- 

self (Hanslmayr et al., 2007). Beyond phase reset, post-stimulus activity 

and ongoing fluctuations do not simply add up but nonlinearly inter- 

act (He, 2013) explaining the resulting perception (VanRullen et al., 

2011; Baria et al., 2017). Finally, similarities between spontaneous 

and stimulus-related activity increase along development (Kenet et al., 

2003), possibly suggesting that such spontaneous activity might en- 

code the structure of the environment as priors (Berkes et al., 2011; 

Pezzulo et al., 2021). In such an alternative framework, brain activity 

is thought to be sampling a high-dimensional space of possible neural 

configurations (Mazor and Laurent, 2005; Gu et al., 2018). Such brain 

activity is considered to unfold along trajectories that are seemingly 

erratic and stochastic, and yet are loosely shaped by a latent dynami- 

cal landscape defined by attractor valleys and ridges connecting them 

(Chaudhuri et al., 2019). Spontaneous activity can thus organize in re- 

producible microstates which are visited in complex sequences, differing 

from mere random walks (Van de Ville et al., 2010). This irregular ac- 

tivity can still be modulated by the task demands, arousal, vigilance, 

etc. at the moment of stimulus presentation (Huk et al., 2018). 
Compatible with this scenario, it was observed that inter-trial vari- 

ability (which reflects the background activity fluctuations) is not con- 

stant but is characteristically reduced in the post-stimulus period with 

respect to baseline at rest. This variability quenching (VQ) after stim- 

ulus presentation is a cortex-wide phenomenon robustly observed at 

many spatiotemporal scales and across many different tasks (Churchland 

et al., 2010; Arazi et al., 2017; Wainio-ThebergeS and Northoff, 2021). 

Although different mechanisms may be responsible for it at different 

scales –e.g. change in excitatory/inhibitory synaptic currents at the 

micro-scale (Hensch and Fagiolini, 2005; Hennequin et al., 2018) or 

power increase or phase reset of ongoing oscillations at the macro-scale 

(Van Diepen et al., 2015; Iemi et al., 2019; Daniel et al., 2019), the 

net functional effect in all cases is similar and corresponds to an in- 

creased reproducibility of neural trajectories, which, in human adults, 
can be further improved by active attention (Broday-Dvir et al., 2018; 

Arazi et al., 2019) or conscious awareness (Schurger et al., 2015). Fur- 

ther evidence is nevertheless needed to understand whether this vari- 

ability reduction is an epiphenomenon or plays a direct role in informa- 

tion processing. We argue that if variability modulations are functionally 

important (rather than noise), they should have a temporal structure as 

is the case with ERPs and this structure should emerge relatively early in 

life. Moreover, this phenomenon might get progressively more complex 

along development, reflecting the scaffolding of perceptual and cogni- 

tive processes. 

To test our hypothesis, here we sought to understand the organiza- 

tion of response variability in 5 to 24-week-old human infants as well 

as in adults when they were presented with human faces. We chose to 

study this question in human infants for three reasons: Firstly, because 

during the first semester of life, rapid maturation takes place in the vi- 

sual domain (Braddick and Atkinson, 2011), allowing age to be used 

as a factor to separate different neural/cognitive processes that might 

overlap in more mature brains such as in adults. The second reason is 

the observation that human infants are exceptional learners (Dehaene- 

Lambertz and Spelke, 2015). If variability modulation is an intrinsic part 

of the building and manipulation of internal models, the fast learning 

pace of infanthood might reveal more complex dynamical changes than 

the adults who possess relatively stable internal models. Finally, it is a 

common belief to disregard ongoing activity as a nuisance that compro- 
mises the robustness and reproducibility of infant ERPs. We might thus 
miss important information on the potential structure of the variability 

modulation in single-trial responses that might lead to better hypotheses 

and tools to gauge infant cognition. 

Using multivariate pattern analysis to track systems level variabil- 

ity induced by visual stimuli, we show that both across and within-trial 

variability has a complex organization that gradually evolves through 

early infancy, which by the second trimester of life, reaches a spatiotem- 

poral structure remarkably like that of adults. Moreover, applying our 

measures of variability for the same infants observing easy and diffi- 

cult stimuli, we show that stimulus-driven modulations of variability 

are not only dependent on structural changes of their brain since the 

same infant is able to flexibly modulate neural variability depending on 

the task demands. Finally, through distinct but converging analyses of 

alpha oscillations and microstate transitions, we find that visual stim- 

uli do not induce a sharp reset of system’s dynamics but modulate trial 

trajectories by affecting the speed of topography reconfiguration (inde- 

pendently from the single-trial topographies which can eventually be 

very diverse). 

Taken together, our results suggest that the stimulus does not impact 

“where the system is” as much as it impacts “how the system flows” 

after stimulus presentation. We propose the term Event-Related Variabil- 

ity (ERV) to collectively describe this remarkable sequential and task- 

specific organization of variability quenching and boosting events, both 

between and within trials, which complements the classic descriptions 

of the modulations of average response (ERP). Such nontrivial ERV dy- 

namics reveals an immediate richness of structured states in infants com- 

parable to adults, confirming a potential role of variability modulations 

as a computing resource since the earliest ages. 

Materials and methods 

In this study, we re-analyzed high-density (128 channels) 

Electroencephalography   (EEG)   data   previously   reported   by 

Adibpour et al. (2018) and compared our results with adults per- 

forming the same paradigm. Adult data were acquired independently 

from the infant data and have never been published. We derived three 

novel measures based on multivariate pattern analysis to track the 

single trial dynamics and variability induced by the visual stimuli: 

First, we sought to quantify how individual trial trajectories approach 

the well-known ERP components (referred hereafter as ERP flybys). 

This allowed us to evaluate how the single-trial distributions of latency 

and distances to the ERP templates develop during the first semester of 

life in comparison to adults. Secondly, we examined the between-trial 

variability to quantify how close (or far) individual trial trajectories re- 

mained from each other as they evolved through time. This corresponds 

to the variability quenching phenomenon described earlier. Thirdly, 

we introduced a novel metric of instantaneous rate of brain state 

reconfiguration i.e. Within-trial speed to track the moment-to-moment 

fluctuations along individual trials. Finally, as activity fluctuations 

have oscillatory components, we also studied how the dynamics of the 

three metrics above relate to alpha (and slower) oscillatory dynamics 

and, specifically to alpha phase reset, since stimulus-induced alpha 

phase reset has been proposed as one of the mechanisms for variability 

quenching (Iemi et al., 2019; FoXe and Snyder, 2011). 

Participants 

The reported results included data from two cohorts. The first group 

of healthy full-term infants (N = 39, Mean age: 14. 15 ± 4. 79 weeks, 

age range: 5. 6 to 23. 6 weeks, 11 girls) was studied elsewhere to investi- 

gate the functional maturation of visual Event Related Potentials (ERP) 

to lateralized faces (Adibpour et al., 2018). A subset of these infants 

(N = 22, Mean age: 14 ± 4. 96 weeks, age range: 5. 6-22 weeks, 7 girls) 

was also tested to study ERP responses to central faces. To compare the 

results obtained for infants with adults, we additionally included a sec- 

ond group of young adults (N = 13, Mean age: 23. 39  ± 2.  32  years, 

age range: 21 to 27. 1 years, 6 females) who were presented with the 
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Fig. 1.   Task Paradigm and Infant visual ERPs. A) Infants (and adults) were presented with unfamiliar faces consecutively in the left and right hemi-field. A subset 

of infants was also presented with faces in center. B) Grand Average voltage topographies for the three conditions for infants (without baseline correction). Early 

(P1) and late (P400) ERP components (marked with red and green horizontal bars respectively) are visible for each condition. 

 

 
lateralized faces following the same paradigm as infants. To further in- 

vestigate the maturation effect in some of the analyses, we split the data, 

and contrasted the youngest (<12weeks, N = 14) with the oldest infants 

(>16 weeks, N = 13), because the first trimester (<12 weeks) is a pe- 

riod of rapid maturation of the visual pathways, from the retina to V1 

in term of cell maturation, tracts myelination and synaptogenesis lead- 

ing to drastic changes in visual perception followed by slower changes 

(Dehaene-Lambertz and Spelke, 2015). This study has been approved by 

the Comité de Protection des Personnes (CPP) Ile de France VII and was 

authorized by the AFSSAPS under the reference ID-RCB 2011-A00058- 

33. All adult subjects and parents of infants gave written informed con- 

sents before participating in the study. 

Experimental paradigm 

For the lateralized faces, the experiment started by a rotating colored 

bull’s-eye that remained at the center of the screen during the whole ex- 

periment to attract infants’ attention to the center of the screen. Streams 

of face images (male or female face out of 6 neutral, unfamiliar front 

faces) appeared consecutively on the left and right side of the bull’s 

eye for 250ms followed by a random delay between images (550 to 

950ms post-offset of the image with a 50-ms step). The random delay 

ensured minimal anticipatory gaze to the left or right side. For central 

faces, one female and one male face, not used during the lateralized 

paradigm, were presented at the center of the screen for 250ms, spaced 

by a random interval of 550-950ms during which the colored bull’s eye 

was presented. Fig. 1A summarizes the task paradigm. 

EEG protocol and pre-processing 

EEG recordings were acquired with EGI net comprising 128 elec- 

trodes for infants and 256 electrodes for adults and digitized in real- 

time at a sampling rate of 250 Hz. EEG data were further pre-processed 

in EEGLAB software. Recordings were band-pass filtered between 0. 5 

and 20 Hz. The choice of low-pass cutoff was guided by the previous ob- 

servation that upto 54 weeks of age, only ∼2-4% of total band-limited 

power was concentrated in frequencies >10Hz (Marshall et al., 2002). 

The signal was further segmented into epochs of 1. 9 s (−0. 4 to 1. 5s 

relative to the onset of face presentation). Channels and trials contami- 

nated by motion or eye-blink artifacts were automatically rejected (after 

epoching) by an algorithm developed to detect abrupt changes as large 

drifts within each trial (>150 μv). Electrodes were rejected for the entire 

recording if they were detected as “bad” in more than 70% of the epochs. 

Trials were rejected if half of the electrodes were marked bad (see Table 

S1 for numbers of retained and rejected trials). For infants, additional 

trials were rejected when the eye-gaze moved away from the central at- 

 
tractor by inspection of video-recordings. Epochs were re-referenced by 

reference averaging, but no baseline correction was applied to allow un- 

biased analyses of post-stimulus variability as compared to pre-stimulus 

variability. Finally, EEG topographies were normalized by dividing the 

activity of each sensor by the global field power (GFP, i.e. standard de- 

viation across sensors) at each time-point. This step was performed to 

avoid confounding variability analyses by the absolute voltage magni- 

tudes (signal strength / SNR) on each sensor as recommended in the 

literature for topographic pattern matching analyses (Skrandies, 1990). 

For the three event-related variability (ERV) matrices (i.e. Flyby, 

between-trial variability and within-trial speed), temporal smoothing 

was applied by averaging the activity at each sensor in a 100-ms over- 

lapping sliding window centered at a given time point in each trial, to 

capture single trial effects that are robust against sudden jumps in to- 

pographies due to faulty sensors or external noise. However, all the three 

variability analyses were repeated without this temporal smoothing as 

well as for one shorter (20ms) and one larger window size (180ms), 

yielding very similar results (Fig. S7). By design, there were fewer tri- 

als for central faces as compared to lateral faces (cf. Table S1). Hence, 

we made sure that comparisons between these conditions were not con- 

founded by the difference in trial numbers by downsampling the trials 

of lateral faces condition to match with the central faces condition when 

pertinent. Additional information about data acquisition, pre-processing 

and task paradigm not pertaining to the current study is detailed in 
Adibpour et al. (2018). 

 
Microstates analysis and trajectory in principal components (PC) space 

To derive combined microstates for infants, we used K-means clus- 

tering on concatenated multivariate EEG signals, ignoring bad segments. 

The number n = 4 of microstates was selected for comparison with previ- 

ously reported results (Michel and Koenig, 2018). Using the microstate 

templates as cluster centroids, we determined the closest microstate 

template for all instantaneous topographies, that is, the one with the 

least correlation distance (1- Pearson correlation). Symbolic sequences 

of microstate transitions (labeled from “A” to “D”) were further seg- 

mented into epochs to align them to stimulus onset times. Every mi- 

crostate transition (irrespectively of the specific microstates involved) 

was labeled as a “spike” (a point process event occurring at a specific 

time t) and generic microstate transition rates were estimated convolv- 

ing trains of transition events with a 100ms smoothing Gaussian ker- 

nel. These smooth transition curves were averaged across trials to con- 

vert the transition trains into transition probabilities. We also estimated 

probabilities of observing specific microstates, evaluating the fraction of 

trials the system was in each given microstate in a given peristimulus- 

time bin across stimulus-aligned trials, pooling over all subjects. 
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For one example subject, we projected a 12s long segment of clean, 

continuous, smoothed (100 ms sliding window) EEG data containing 

10 consecutive (left and right faces) trials using a standard principal 

component (PC) analysis. The 128-dimensional signal segment was thus 

projected for visualization on the three-dimensional space spanned by 

the first three PCs (explaining 82% of signal variance). 

 
Extracting ERP templates 

For each condition (left, right and central) and for each cohort (in- 

fants and adults), we derived grand average ERP topography by averag- 

ing subject-specific ERP activity separately for each sensor across sub- 

jects (Fig. 1B for infants, Fig. S1A for adults). For infants, we identi- 

fied ‘P1 template’ as grand-average topography in the range of ∼225- 

275ms post-stimulus for lateralized faces and in the range of ∼125- 

responses as identified previously in Adibpour et al. (2018). The result- 

ing subject-specific templates were also compared to the grand average 

ERP-templates to ensure that no specific infants’ ERP dominated the 

grand average ERPs (Fig. S5A). Finally, all flyby analyses were also re- 

performed by comparing single-trial topographies of subject i, to grand- 

average ERP topography built by excluding the ith subject to account for 

equal variance from each subject specific ERPs (Fig S5 B, C). 

 
Between-trial variability 

For each subject and for each condition, between-trial variability at 

time 𝜏 was calculated as the average of all pair-wise spatial correlation 

distances between all trial-pairs i and j; 

Δ(𝜏)   =   
   1    ∑ 

(1 − CC(Φ(𝜏,  𝜏),  Φ(𝜏,  𝜏)) 

175ms post-stimulus for central faces. Similarly, ‘P400-template’ was 

derived as the average topography in the range of ∼525-575ms post- 

(
𝜏
) 

 

 
𝜏𝜏 

stimulus for both lateral and central faces (Fig. S3 A). For adults, we 

identified ‘P1 template’ as the grand average topography in ∼75-125ms 

post-stimulus while ‘P400 template’ was identified as ∼375-425ms post- 

stimulus (Fig. S3 B). These time-ranges were chosen by selecting a 50ms 

long time-window around the peak of the global field power (GFP) in 

grand-averaged ERP topography as inspected visually (Fig. 1B). 

Measures of trial-variability (i.e. flyby to known ERP templates, 

between-trial variability and within-trial speed) were calculated as topo- 

graphic dissimilarity using spatial correlation distance (1- Pearson corre- 

lation coefficient) as dispersion metric. Hence, absolute distances varied 

from 0 (absolute positive correlation) to 2 (negative correlation). Cor- 

relation distance decouples the topographic patterns from their magni- 

tudes, allowing focusing on the relative spatial patterns rather than their 

Where, 𝜏 = number of trials,   𝜏   suggests all pair-wise combinations 

of trials, 𝜏 𝜏 is Pearson correlation coefficient and Φ(𝜏, 𝜏) represents 

sensor topography at trial 𝜏 and time-point 𝜏. 

Absolute single-subject between-trial variability time-courses were 

derived per condition and further z-scored across time, to obtain rel- 

ative between-trial variability. These z-scored time-series were further 

averaged in the previously defined time-range for P1 and P400-flybys to 

obtain relative between-trial variability around flybys (Fig. 4, Fig. S6). 

Topography of Between-trial Variability Quenching: If sensor 𝜏 has d 

(𝜏 ) neighboring channels, between-trial variability is calculated for this 

sensor at time 𝜏 as follows: 
Δ(𝜏, 𝜏) =   

   1   ∑  
(1 − CC(Φ𝜏 (𝜏, 𝜏), Φ𝜏 (𝜏, 𝜏)) 

absolute magnitudes. (
𝜏
) 

 

 
𝜏𝜏 

‘Flyby’ to ERP templates 

For each subject and for each condition, flyby distance from trial 

𝜏 to a certain ERP template 𝜏 at time 𝜏 was calculated as correlation 

distance, 

Δ(𝜏, 𝜏) = 1 − CC(X, Φ(𝜏, 𝜏)) 

Where, CC(𝜏, 𝜏) denotes Pearson’s correlation coefficient and Φ(𝜏, 𝜏) 

represents topography at trial   𝜏  and time 𝜏. These single-trial distance 

time-series were further averaged across trials for each ERP template to 

obtain a single time-series per subject for P1 and P400 templates and 

for each condition (Fig. 3 A). 

‘Fly-by’ Latency and Distance: In the predefined time range for each 

ERP template, moments of closest ‘flybys’ to these templates were iden- 

tified as the time-points when the distance Δ(𝜏, 𝜏) fell into the lowest 

5 percentile of the overall distance distribution. Latency of these mo- 

ments was used for the analyses of median and jitter in flyby latencies 

for each infant (Fig. 3B, Fig. S4C, D). The time-range to derive flybys 

was restricted to 150-350ms for P1 template and 400-600ms for P400 

template in case of lateral faces. For central faces, 0-150ms for P1 tem- 

plate and 350-550ms for P400 template. For adults, the analysis was 

restricted to 0-150ms for P1 and 150-500ms for P400 template. These 

time-ranges were chosen based on the lowest flyby distance in the grand- 

average time-curves. Mean and S. D. of all single-trial flyby distances in 

these time-ranges were calculated for the comparison across subjects. 

(Fig. 3C, Fig. S4 E-F). 
Since the choice of ERP templates can confound the flyby analyses, 

various control checks were performed to make sure that these templates 

represent a reasonable statistical estimate of the true evoked responses. 

First, all flyby metrics (defined below) for lateralized faces were also 

reanalyzed with “Subject-specific ERP templates”. Whereby, for each 

subject, the ERP template was defined independently from other sub- 

jects (as the average topography at the time of peak of P1 or P400 ERP 

Where, 𝜏 𝜏 is Pearson correlation coefficient; (Φ𝜏 (𝜏, 𝜏)) is the d (𝜏 ) + 

1  dimensional  activity  vector  at  time  𝜏 and  trial 𝜏,  where  each  dimen- 

sion represents the activity of a different neighbor of sensor 𝜏 (includ- 

ing itself). Neighbors of each channel were extracted from the channel- 

connectivity matriX estimated using the “find_ch_connectivity” function 

of MNE-python (Gramfort et al., 2013). For each subject, instead of sin- 

gle global between-trial variability time-series, now we obtained one 

time-series each for each sensor. This absolute sensor-level between-trial 

variability was further z-scored across time to obtain relative variabil- 

ity for each sensor. These (channel times time) matrices for each subject 

were further averaged to obtain group-level between-trial variability to- 

pography (Fig. S8C). 

 
Within-trial speed 

For each trial𝜏, within-trial speed at time t was calculated as spa- 

tial correlation distance between topography at that time-point and the 

same at the consecutive time-point. 

Δ(𝜏, 𝜏) = 1 − 𝜏 𝜏 (Φ(𝜏, 𝜏), Φ (𝜏, 𝜏 + 1) ) 

where, 𝜏 𝜏 is Pearson correlation coefficient and Φ(𝜏, 𝜏) represents 

sensor topography at trial 𝜏 and time-point𝜏. Overall absolute within- 

trial speed for each subject was obtained by first averaging speed time- 

courses across trials and then averaging the mean speed time-courses 

across time (Fig. 5, S10). 

Fly-by Triggered Speed Profiles: For each subject, moments of ‘fly-by’ 

to known ERP templates were identified as described above (i.e., trial- to-

template distance falling in the lowest 5th percentile). Trial-speed 

segments at each occurrence of ‘fly-by’ were extracted as speed time- 

course from 400-ms before to 400-ms after ‘fly-by’. Each of these 800-ms 

long speed time-courses were averaged to obtain a single speed profile 

per template (Fig. 5B). These subject-specific absolute speed profiles 

2 

2 
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were z-scored along the time dimension to obtain relative speed pro- 

files around fly-by and further averaged to obtain group-average speed- 

profiles (Fig. 5B, S10C). To compare flyby triggered instantaneous speed 

across infants, peak speed (for P1 template) and lowest speed (for P400 

template) were identified in the 100ms time-window centered at ‘flyby’ 

moment (Fig. S10D-F). 

Trial Speed Distribution: To obtain trial-speed distribution for each 

age-group per condition, all single-trial speed time-courses were con- 

catenated along time and along subjects in that age-group to obtain one 

single speed distribution. Probability density was obtained by normal- 

izing area under each bin to 1. Normalized bin-counts (density) were 

plotted on a log-log scale (Fig. S10B). 

Quantifying features of ongoing oscillations 

To compare ERV measures to oscillatory events, we measured low- 

frequency oscillatory power and single-trial instantaneous phases of “al- 

pha” (9-12 Hz) oscillations, and then computed phase-synchrony across 

trials for each subjects using circular variance (CV). Many studies have 

previously shown that infants and children have considerably slower al- 

pha oscillations than adults (Marshall et al., 2002; Chiang et al., 2011; 

Hill et al., 2022; Freschl et al., 2022; Stroganova et al., 1999). There- 

fore, we also repeated all the analyses in a lower frequency band of 4-

9Hz (later denoted as “theta” or “infant alpha”). After bandpass filter- ing 

into the narrow “alpha” or “theta” bands, we applied Hilbert trans- form 

to the signals to extract envelope amplitude and phase for each channel. 

Based on the phase time-series, we quantified at every time the 

standard metric of Circular Variance (CV), as a normalized index of 

variability in instantaneous phases across stimulus-aligned trials, which 

varies between 0 to 1, with 1 indicating complete synchrony. We used 

the envelope time-series as a quantification of narrow-band-specific sig- 

nal amplitude at each time-point. 

Statistics 

Linear trends were tested using Pearson’s r correlation and the asso- 

ciated p-values were estimated by permutation testing, i.e. largest (low- 

est) percentile of the null distribution being smaller (larger) than the 

sample-based r coefficient (1000 replicas). The associated confidence 

intervals are computed under normality assumption (ȓ ± z0. 975 S, where 

ȓ is the Fisher-transformed correlation coefficient r). Linear regression 

lines are surrounded by a shaded band, estimated via bootstrap with re- 

placement, such that the “true” regression line is contained within this 

band with 95% of probability. We also computed rank-based Spearman 

correlations coefficients, comparing them with corresponding Pearson’s 

r, to confirm their robustness. Note that the small sample size can lead 

to broad confidence intervals approaching zero indicating weak correla- 

tions. Significant reductions in variability time-courses were tested us- 

ing one-sample t-test and correction for multiple comparisons and tem- 

poral non-independence was applied using cluster-based permutation 

test as implemented in MNE-python (Gramfort et al., 2013). Group- 

level differences between paired groups of variables (lateral vs cen- 

tral faces) were tested using nonparametric two-tailed WilcoXon signed 

rank test. Group differences between age groups were tested using non- 

parametric Kruskal-Wallis test, followed by pair-wise comparisons using 

Mann-Whitney U test with Bonferroni correction. 

Data availability 

The working examples and computational codes for calculating 

variability measures are publicly available at https://github.com/ 

transpersonify/variability_quenching. Due to ethical reasons, infants 

and adults EEG data are not yet publicly available. However, pre- 

processed and original anonymized data can be made available upon 

reasonable request to Ghislaine Dehaene-Lambertz (ghislaine.dehaene- 

lambertz@cea. fr). 

Results 

Event-related potentials (ERP) to faces in infants and adults 

Both infants (N = 39, 5-24 weeks) and young adults (N = 13, 21-27 

years) were presented with unfamiliar faces, alternatively between the 

lateral hemi-fields, and for a subset of infants (N = 22, 5-22 weeks), sepa- 

rately in the central visual field (Fig. 1A, cf. Adibpour et al., 2018). Clas- 

sical ERP analyses revealed two prominent ERP components: an early 

“P1” and a late “P400”. These components, commonly identified in in- 

fants in response to visual images and particularly faces, correspond to 

different cognitive stages: P1 is considered as the first cortical response 

in primary visual areas whereas the P400 is a higher order response re- 

lated to face perception and stimulus familiarity, with sources in the 

fusiform region (De Haan et al., 2003; Ghuman et al., 2014). These 

components, visible in the grand average topography in Fig. 1B for in- 

fants, also had clear equivalent topographies in adults (Fig. S1A). For 

adults, latencies were faster, voltage topographies qualitatively similar 

and overall ERP signal amplitude weaker as compared to infants. For 

lateral faces, the P1 response corresponded to the first positivity on the 

contra-lateral posterior electrodes around 250-300ms following face on- 

set in infants (∼100ms in adults). The P400 response was a large bilat- 

eral positivity on occipitotemporal clusters following the P1 response 

around 500-600ms (∼400ms in adults). 
For central faces, latencies were faster relative to lateralized faces: 

around 150ms for the P1 visible on medial posterior electrodes and 

around 450-550ms for the P400 on occipitotemporal channels (Fig. 1B 

bottom row). The overall signal amplitude was larger for central than 

for the lateral faces. These results agree with previous literature on ERP 

dynamics following face presentation in adults and infants. Concern- 

ing other ERP components described in the literature, infant “N290” 

topography was not prominent and adult “N170” topography did not 

find clear equivalence in infants, hence we avoided these intermediate 

components. 

Ongoing variability dominates ERP 

While characteristic ERPs existed, single-trial responses were noisy 

and hardly resembled grand averaged responses (Fig. 2A; Fig. S1B), typ- 

ically remaining one- or two- order of magnitude larger than ERP ampli- 

tudes in both adults and infants, with extremely variable topographies 

and no clear peaks or valleys corresponding to the ERP. 

To illustrate the relationship between the ongoing and evoked activ- 

ity, we show a 12 s-long-segment of continuous EEG data for a represen- 

tative infant (age = 15. 4 weeks) in Fig. 2B. At every time point, brain 

topography is represented as a point in a three-dimensional projection 

after dimensionality reduction (performed by applying Principal Com- 

ponent Analysis (PCA) to activity amplitudes, see methods). If stimulus 

presentation always evoked a similar single-trial trajectory, the EEG tra- 

jectory time points recorded immediately following the presentation of 

a face stimulus should cluster together within this low-dimensional pro- 

jection. On the contrary, post-stimulus trajectory snippets (highlighted 

in red in Fig. 2B) were distributed nearly uniformly throughout the sam- 

pled space. This dispersion suggests that post-stimulus temporal fluctu- 

ations of neural trajectory were predominantly determined by the on- 

going activity. Individual stimulus presentation events did not lead to a 
radical reset of the activation topographies and did not flatten them to 

reproduce grand-average topographies. 

Ongoing spontaneous activity has been shown to have a rich spa- 

tiotemporal organization, which has been previously characterized in 

terms of discrete ‘Microstate transitions’, i.e. switching between tran- 

siently stable patterns of scalp topographies (Van de Ville et al., 2010). 

Here we extracted microstate sequences from EEG recordings as a pos- 

sible, simple way to apprehend the organization of global ongoing fluc- 

tuations. We describe them as transitions between a set of unsupervised 

reference topographies, which can be thought as an average orienta- 

https://github.com/transpersonify/variability_quenching
https://github.com/transpersonify/variability_quenching
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Fig. 2. Ongoing Variability dominates Event Related Potentials. A) EXample voltage time-courses averaged across right occipital electrodes for a representative 

infant (age = 15. 4 weeks) for faces presented in left hemi-field. Amplitude and latency of single-trial responses (blue lines) are highly variable in comparison with 

average ERP response (red bold line). Single-trial voltage topographies in P1 and P400 response range are notably different from the grand average ERP topography. 

B) Trajectory of continuous time-segment (∼ 12 s) reduced to 3-dimensional PC space from 128-channel EEG sensor space for the same infant. Each point corresponds 

to single instantaneous voltage topography. Time-points falling in the 450-500ms post-stimulus time range are marked in red. C) Top sub-panel: Topographies of 

infant microstates. Middle sub-panel: Raster plots of single-trial microstate transition trains. Each dot marks a change in microstate at that time point. The color of 

dots indicates which microstate was transitioned into at that time point (corresponding to the colors of let ters indicated below the microstate topographies). 100 

randomly chosen trials for a representative infant are plotted for visibility. No clear pattern of transitions is visible. Bo ttoms sub-panel: Gaussian smoothed microstate 

transition rates averaged across all trials and infants (see Methods). Red horizontal lines represent the 5-th and the 95-th percentile of the distribution of chance-level 

transition probability (computed through shuffling microstate labels, Npermutations = 10000). The absence of peak in this curve shows the microstate dynamics remain 

unperturbed. D) Schematic summary of methods used to gauge single-trial variability: Flyby to ERP templates (how far a trial transits from reference ERP-like 

configurations); Between-trial variability (how far are single trial trajectories between them); and Within-trial speed (how fast EEG topographies evolve along each 

trial). 

 

tion frame. We checked whether presentation of the stimulus led to a 

perturbation of ongoing dynamics, in terms of enhanced probabilities 

to observe certain microstates or stimulus-triggered microstate transi- 

tions (see Methods). Fig. 2C (top) shows the four microstates extracted 

by the standard k-means clustering of the continuous EEG time segments 

across all infants during the lateralized face paradigm. The topogra- 

phies were reminiscent of the ones commonly observed for adults in 

microstate studies. In Fig. 2C (middle panel), we visualize the transitions 

from one microstate to another as a raster plot, to understand whether 

the transition probabilities were modified by the stimulus presentation. 

If microstate transitions became more frequent at a certain fiXed post- 

stimulus latency, one would observe the formation of vertical stripes in 

this raster (depicting time-aligned transition for each trial) possibly of 

relatively uniform color (indicating a specific microstate being associ- 

ated to post-stimulus activity). On the contrary, the raster plot appears 

unstructured and “asynchronous”, with a salt-and-pepper arrangement 

of colored dots, denoting that stimulus presentation does not induce a 

strong selection of a specific microstate. As shown in Fig. 2C (bottom 

panel), the probability of observing a microstate switching transition as 

a function of peri-stimulus time, all microstate transitions confounded, 
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Table 1 

Average closest  flyby  distances  across  age-groups:  5-12  week-old  infants 

(N = 14, first trimester infants); 16-24 week-old infants (N = 13, second 

trimester infants); and adults (N = 13) were compared using separate Kruskal- 

Wallis tests for different ERP templates (P1, P400 responses) and for faces 

presented in the left and right hemi-field. The main effects are reported be- 

fore post-hoc Mann-Whitney U-test for pair-wise comparisons. P values are 

corrected for multiple comparisons using Bonferroni correction. 

Comparison of P1 and P400 Flyby Mean Amplitude Across Age-Groups 

Left Faces Right Faces 

 

P1 H (2) = 11. 48, p = 0. 003 H (2) = 9. 76, p = 0. 007 

5-12 wo vs 16-24 wo: 

p = 0. 21n. s. 

5-12 wo vs 16-24 wo: 

p = 0. 34n. s. 

5-12 wo vs adults: p = 0. 009 5-12 wo vs adults: p = 0. 014 

16-24 wo vs adults: p = 0. 015 16-24 wo vs adults: 0. 072 n. s. 

P400 H (2) = 13. 29, p = 0. 0013 H (2) = 13. 47, p = 0. 001 

5-12 wo vs16-24 wo: 

p = 0. 18 n. s. 

5-12 wo vs 16-24 wo: 

p = 0. 4 n. s. 

5-12 wo vs adults: p = 0. 001 5-12 wo vs adults: p = 0. 003 

16-24 wo vs adults: p = 0. 25 n. s. 16-24 wo vs adults: p = 0. 028 
 

 

was not significantly modulated by stimulus presentation. Only when 

looking at the probabilities of observing specific microstates, we could 

find some mild modulations (see Fig. S2 for details), nevertheless far 

from denoting a deterministic reset. 

These analyses suggest that the ongoing dynamics is not radically re- 

conFig.d or perturbed by stimulus presentation in its global aspects. On 

the contrary, stimulus-induced effects appear to be riding on top of on- 

going fluctuations. System’s trajectories can be virtually “everywhere” 

in the high-dimensional space of possible topographies and stimulus- 

related effects must correspond to small local amplitude or phase mod- 

ulations of current trajectories rather than a radical channeling of the 

trajectories along specific paths. 

With the hypothesis that this tremendous response variability and 

moment-to-moment fluctuations is informative about underlying neural 

and cognitive processes, we considered three indicators to detect weak 

stimulus-related modulations on top of highly variable signals (see car- 

toon representations in Fig. 2D) as previously described (see Methods): 

ERP component flybys, between trial variability and within-trial variability 

(or trial Speed). 

Single-trial flybys to classic ERP components are modulated by age 

Despite erratic trajectories, grand average ERP topographies are re- 

producible across studies suggesting they capture stimulus-relevant in- 

formation. Hence, we analyzed how individual trials approach (or flyby) 

these “landmark” events. We defined the grand averaged P1 and P400 

topographies (separately for infants and adults) as ERP-templates (Fig. 

S3, see Methods). The distances to these templates at flyby and the laten- 

cies at which the flybys occurred stochastically fluctuated across trials. 

Therefore, beyond computing average values, we also computed stan- 

dard deviations of distance and latency across trials. We then assessed 

whether flyby-related quantities and their variability depended on age 

(eventually, displaying or not a trend) or stimulus type (lateral vs central 

faces). A few selected trends are shown in Fig. 3, and additional trends 

in Fig. S4. Table 1 reports average closest P1 and P400 fly-by distances 

across age groups. Table 2 reports significant correlations with age of 

distances and latencies of flybys (we list both Pearson and Spearman 

correlation values to confirm robustness of results). We comment here 

briefly, however, on the most remarkable findings. 
Firstly, for all task-conditions, individual trial trajectories slightly 

and significantly reduced their distance to the ERP-templates around 

specific latencies (distance drops in Fig. 3A and S4A respectively for 

right and left faces, emphasized by red vertical lines). However, even 

at these events of closest flyby they remained quite far from the ERP- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Maturation of single-trial Flyby statistics for faces presented on the 

right hemi-field. A) Average flyby distances to P1 (left) and P400 (right) ERP 

templates (shown on top) for each infant. Each row represents a single infant,  

sorted in ascending order according to their age (from youngest = 5. 6 weeks 

to oldest = 23. 1 weeks). Red vertical lines emphasize the reduction in average 

flyby distance from ∼150-350ms for P1 and ∼400-600ms for P400 templates. 

The slopes of red lines suggest that latency of closest distance reduces with 

age. B) Median flyby latency was significantly negatively correlated with age 

for both P1 (top  left) and P400-flyby  (top  right panel). At the same time, S.  D. 

of single-trial flyby latencies significantly positively correlated with age for P1 

(bottom left panel) and showed a negative trend with age for P400 template 

(bottom right panel). Inset boX-plots represent the same statistics for adults. C) 

Average flyby distances to P1 template showed non-significant increase with 

age (top left panel), while the same for P400 template decreased with age (top 

right panel). BoX-plots indicate that once again adults followed the same trends. 

Shaded areas indicate 95% confidence interval for regression estimates, all r- 

values corrected for multiple comparisons with 1-tailed permutation t-test). See 

Table 2 for correlation values (Pearson and Spearman coefficients) and Fig. S4 

for additional scatter plots. 
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Table 2 

Correlation trends with age of latency and distance mean and variability of flybys to P1  and P400 ERP  components, 

for right, left and centrally presented faces. The letter r denotes Pearson correlation and the letter 𝜏 Spearman rank- 

based correlation. Only significant correlations are indicated (i.e. 95% confidence interval not containing 0, for both 

types of correlations). None of the age-correlations of flyby distance mean and variability for the P1 component and 

of latency variability for the P400 component were significant (hence the missing table rows). 

Correlations between ERP fly-by properties and age 
 

Right faces Left faces Central faces 

 
P1 Latency (mean) r = -0. 39, p = 0. 006, 

95% c. i. [-0. 63, -0. 09] 

 
𝜏 = -0. 36, p = 0. 02, 

95% c. i. [-0. 61, -0. 05] 

Latency (variability) r = 0. 45, p = 0. 002, 

95% c. i. [0. 16, 0. 67]) 

 
𝜏 = 0. 37, p = 0. 003, 

95% c. i. [0. 06, 0. 61] 

P400 Latency (mean) r = -0. 38, p = 0. 009, 

95% c. i. [-0. 62, -0. 07] 

𝜏 = -0. 40, p = 0. 007, 

95% c. i. [-0. 63, -0. 1] 

Distance (mean) – 

– 

 
 
 

Distance (variability) r = 0. 34, p = 0. 02, 95% 

c. i. [0. 03, 0. 59] 

𝜏 = 0. 33, p = 0. 02, 95% 

c. i. [0. 02, 0. 58] 

 
– 

– 

 

 
– 

 
– 

 
– 

 
– 

r = -0. 35, p = 0. 018, 

95% c. i. [-0. 6, -0. 04] 

 
𝜏 = -0. 33, p = 0. 018, 

95% c. i. [-0. 58, -0. 02] 

 
r = 0. 42, p = 0. 003, 

95% c. i. [0. 12, 0. 65] 

𝜏 = 0. 39, p = 0. 006, 

95% c. i. [0. 08, 0. 63] 

 
– 

– 

 

 
– 

 
– 

 
r = 0. 46, p = 0. 02, 95% 

c. i. [0. 05, 0. 74]) 

𝜏 = 0. 44 (p=0. 01), 95% 

c. i. [0. 02, 0. 73]) 

r = -0. 52, p = 0. 006, 

95%c. i. [-0. 77, -0. 13] 

𝜏 = -0. 52, p = 0. 005, 

95%c. i. [-0. 77, -0. 13] 

 
r = 0. 53, p = 0. 007, 

95% c. i. [0. 14, 0. 78] 

𝜏 = 0. 60, p = 0. 003, 

95% c. i. [0. 24, 0. 81] 
 

 

 
templates, with closest flyby distances close to ∼0. 8, i.e. not so far away 

from the unit value which would correspond to complete lack of corre- 

lation (cf. Fig. 3A, Fig. S4A, B). This is in line with the intuition that 

stimulus induces small trajectory inflections independently from where 

exactly the system is transiting (cf. Fig. 2). For lateral faces, trials ap- 

proached the P1-template around [150, 350] ms; and the P400-template 

about [400, 600] ms post-stimulus onset. For the central faces, closest 

approach to ERP templates occurred, within the broad ranges between 

-150 and 150ms for the P1 template, and for the P400 template between 

350 and 550ms (Fig. S4 B). 

Secondly, latencies of ERP flybys tended to decrease with age, but 

not necessarily their variability (e.g. the jitter of flyby latencies to the 

P1 component even tended to increase with age, moderately but signifi- 

cantly, cf. Fig. 3B, S4 C-D and Table 1). Thirdly, the distance of flybys at 

the P1 component did not vary significantly with age, while there was a 

tendency for the distance at flybys to the P400 component to reduce (sig- 

nificantly for left and central but not for right faces, Fig. 3C, S4E-F and 

Tables 1 and 2). The variability of the flyby distances either remained 

unchanged, for the P1-template; or even grew with age, for the P400- 

template (Table 2). Fourthly, there were hemispheric asymmetries. Age 

effects in fly-by latency for left or centrally presented faces were not 

marked, but the same for the faces presented in the right hemifield were 

quite prominent (cf. Fig. S4 and Table 2). The effect of age on latencies 

for the right faces (processed by the left-hemisphere) shown in Fig. 3B 
was related to an initial delay in flyby latencies in the youngest infants. 
Thus, the “catch-up” relatively to the more mature right hemisphere dur- 

ing this period is congruent with several results showing a slower mat- 

uration of the left hemisphere compared to right (Chiron et al., 1997). 

Similar catch-up of the maturation of the left dorsal linguistic pathway 

relative to the right has also been described during the first semester 

post-term (Leroy et al., 2011). 

We also verified that the trends found in Table 2 were not the ar- 

tifactual manifestation of maturation in single-subject ERP templates, 

rather than maturation in variability. To check for this, we repeated 

flyby analyses using subject-specific ERP templates rather than grand- 

 
average templates (see Methods and Fig. S5A). As shown in Fig. S5B, 

all trends in Table 2 were reproduced even in this case, apart from the 

increase in latency jitter for the P1 component that was not anymore 

significant. 

Altogether, these results, suggest that variability and loose relation 

to ERP templates may not be a “bug” of early infancy to correct for, but 

a feature preserved and evolving through development (see Discussion). 

Between-trial variability quenching after stimulus presentation 

Irrespective of their approach to the templates, trials can remain far 

or close to each other at any point. Hence, we investigated between-trial 

variability. Again, we found that trajectories remained highly dissimilar, 

as denoted by an average correlation distance of 0. 95 ± 0. 12 between 

the time-aligned trajectories of different trials. Although large in abso- 

lute terms, the between trials distance relatively reduced at specific peri- 

stimulus times. We observed a significant post-stimulus decrease in the 

between trial variability for all task-conditions and for both infants and 

adults (Blue plots in Fig. 4A-B, Fig. S6). For infants, between-trial vari- 

ability significantly remained ∼1-2. 5 standard deviations lower than the 

average baseline variability ∼200-700ms post-stimulus (p = 0. 001 for 

left, right faces and p = 0. 003 for the central faces), while in adults, sig- 

nificant Variability Quenching (VQ) occurred ∼150-500ms (p = 0. 005), 

similar to the duration previously reported for variability quenching in 

adults (Schurger et al., 2015). 

Between-trial variability quenching is not automatically induced by ERP 

component flybys 

The latency of the largest post-stimulus VQ (lowest variability) sig- 

nificantly differed across age-groups and task conditions. Strikingly, for 

lateralized faces, the latency of the significant VQ coincided with the 

latency of the closest P1-flyby in the youngest infants (First trimester: 5-

12 week-old infants, N = 14) whereas in the older infants (Second 

Trimester: 16-24 weeks, N = 13), the moments of VQ co-occurred with 
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Fig. 4. Maturation of Between-trial vari- 

ability and its relation to Flyby dis- 

tances. A) Group average between-trial 

correlation distance (blue curves, Z-scored) 

for 5–12-week-old infants (top panel) and 

16–24-week-old infants (bottom panel) 

plotted together with grand-average flyby 

distances (Z-scored) to P1 (red line) and 

P400 templates (orange line), for the lateral 

faces. Significant reduction in  between- 

trial variability coincides with the closest- 

flyby to P1-template for 5-12wo infants 

(top panel), and with the  P400-template 

for 16-24wo infants (bottom panel). B) For 

central faces, significant between-trial vari- 

ability (blue line) reduction coincides with 

P400-flyby (orange line) for both groups. 

Shaded areas indicate standard error to the 

mean. C) Synoptic view, across conditions 

and age groups, of the time ranges when 

between-trial variability (blue), between- 

trial circular variance of phases of theta and 

alpha oscillations (light green and green 

respectively) and flyby distance (red /or- 

ange) are significantly reduced (Horizontal 

bars indicate timepoints of significant re- 

ductions from mean; p<0. 05, corrected us- 

ing cluster-based permutation t-test). BoXes 

highlight correspondence between clusters 

of between-trial variability and P1/P400 

flyby distance reductions in different con- 

ditions. 16-24 wo infants qualitatively look 

like adults. 5-12 wo infants when presented 

with central faces also  quench  variability 

at P400 but at  P1  for  lateralized  faces. 

In all conditions, Circular Variance (CV) 

reduction precedes variability quenching 

(VQ) events. D) Between-trial variability 

during P1-flyby positively correlated with 

age (top) while the same during P400-flyby 

negatively correlated with age for lateral 

but not central faces. (All r-values corrected 

for multiple comparison with one-tailed 

permutation test). Shaded area indicates 95 

% confidence interval for regression esti- 

mates. BoX-plots show between-trial vari- 

ability distributions for adults. 

 
 
 
 

 
the P400-flyby (Fig. 4A). In other words, in younger infants, the bundle 

of single trial trajectories remained on an average more compact when 

flying by the P1-template (significant VQ times: 204-352ms, window 

of closest P1-flyby: 175-400ms). By contrast, in older infants, trials re- 

mained the closest to each other when passing near the P400-template 

(significant VQ: 432 – 616ms, closest P400-flyby: 432-620ms). 

Importantly, the absence of between-trial VQ did not imply absence 

of a flyby. Indeed, in first-trimester infants, trials still had a marked P400-

flyby even when there was no between-trial VQ at the correspond- ing 

latency. Analogously, there was still a P1-flyby for second-trimester 

infants despite the lack of a P1 VQ. These effects were consistent for 

both left and right face presentation (Fig. S6A-B). Fig. S7A further con- 

firmed that these effects were not methodological artifacts dependent 

on the choice of window-length for temporal smoothing, but was robust 

against such manipulation, i.e. same qualitative effects were present 

without any temporal smoothing and for a range of different sliding 

window widths. 

 
Thus, flying by an ERP component appears to be a necessary but 

not a sufficient condition for between-trial VQ. In adults too, a single 

window of VQ coincided with the P400-flyby, like the second-trimester 

infants’ pattern (Fig. 4C, Fig. S6 C-D). However, the VQ was much larger 

in adults than in infants, trials remaining significantly close to each 

other during the entire duration of the P400-flyby (significant VQ: 140 

– 460ms, P400-Flyby: 120-528ms). 

Between-trials variability quenching depends on both stimulus configuration 

and age 

The temporal shift of the between-trial VQ, from P1 to P400 gives the 

first proof of a change in the ongoing dynamics occurring over the first 

semester of life. However, such a shift may also be due to the structural 

changes in the peripheral visual pathway and visual cortex V1 which are 

known to reach a milestone around 12 weeks post-term (Braddick and 

Atkinson, 2011; McCulloch et al., 1999; Adibpour et al., 2018). To in- 
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Table 3 

Between-trial variability (z-scores) were compared for the three age-groups (5- 

12 wo, 16-24 wo and adults, group sizes as in Table 1) in their respective mo- 

ments of P1 and P400 closest flybys using separate Kruskal-Wallis tests for dif- 

ferent ERP templates (P1, P400) and for faces presented in the left and right 

hemi-field. The main effects are reported before post-hoc Mann-Whitney U-test 

for pair-wise comparisons. P-values are corrected for multiple comparisons us- 

ing Bonferroni correction. 
 

 

Age Difference in Between-trial Variability around Flybys (z-scores) 

Left Faces Right Faces 

 

P1 H (2) = 11. 72, p = 0. 003 H (2) = 12. 95, p = 0. 001 

5-12 wo vs 16-24 wo: p = 0. 25n. s. 5-12 wo vs 16-24 wo: p = 0. 5 n. s. 

5-12 wo vs adults: p = 0. 003 5-12 wo vs adults: p = 0. 002 

16-24 wo vs adults: p = 0. 229 n. s. 16-24 wo vs adults: p = 0. 05 

P400 H (2) = 16. 68, p = 0. 0002 H = 14. 10 (2), p = 0. 0009 

5-12wo vs 16-24 wo: p = 0. 001 5-12 wo vs 16-24 wo: p = 0. 08 n. s. 

5-12 wo vs adults: p = 0. 001 5-12 wo vs adults: p = 0. 002 

16-24 wo vs adults: p = 0. 8 n. s. 16-24 wo vs adults: p = 0. 1 n. s. 
 

 

 
Table 4 

Correlation trends with age of the strength of between-trial variability quench- 

ing, for right, left and centrally presented faces. The letter r denotes Pearson 

correlation and the letter 𝜏 Spearman rank-based correlation. Only significant 

correlations are indicated (i.e. 95% confidence interval not containing 0, for 

both types of correlations). None of the age-correlations of variability quench- 

ing strength for central faces significant (hence the missing table column). 

Correlations between strength of between-trial variability quenching and age 

Right faces Left faces 

Between-trials variability quenching is not equivalent to phase reset 

dynamics 

EEG responses have oscillatory components, with a spectral reso- 

nance in the alpha band (9-12 Hz) which was relatively prominent peak 

in adult subjects, but way less marked in infants (Fig. S8A). To inves- 

tigate the relation between VQ and reconfiguration of alpha oscillatory 

dynamics, we narrow-band filtered the EEG signals in two bands of in- 

terest corresponding to the adult “alpha” and “theta” (or “infant alpha”) 

range (respectively, 9-12 Hz and 4-9 Hz) and extracted phase and am- 

plitude of the oscillations through Hilbert transform (see Methods). Fig. 

S8 reports analyses about the standard “alpha” band and Fig. S9 about 

the lower frequency “theta” band. We first quantified the time-courses 

of trial-averaged power modulations (Fig. S8B, top and Fig. S9A) as well 

as the circular variance (CV) of phases across time-aligned trials (Fig. 

S8B, bottom and Fig. S9B). Average alpha power was not significantly 

modulated in the peri-stimulus duration in infants and was slightly but 

significantly reduced in adults (-12% below the baseline from [0, 656] 

ms, p = 0. 007, permutation cluster test). 
The effect of stimulus presentation was slightly more pronounced on 

the oscillation phases. The measured CV across stimulus-aligned trials 

denoted a poor phase-alignment between-trials, with an average value 

of ∼0. 80 (± 0. 06) in infants and ∼0. 93 (± 0. 02) in adults, close to the 

unit value that would correspond to a complete asynchrony of phases 

across trials. Although face presentation did not fully reset ongoing os- 

cillations, the CV significantly dropped in specific time-ranges following 

the stimulus, to values ∼0. 4 S. D. below its mean for infants and ∼1. 

5S. D. below the mean for adults in both frequency bands (Fig. S8B, Fig. 

   S9B). 

P1 – 

– 

P400 r = -0. 35, p = 0. 03, 95% c. i. 

[-0. 6, -0. 04] 

𝜏 = -0. 34, p = 0. 04, 95% c. i. 

[-0. 59, -0. 03] 

– 

– 

r = -0. 43, p = 0. 003, 95% c. i. 

[-0. 65, -0. 13] 

𝜏 = -0. 45, p = 0. 004, 95% c. i. 

[-0. 67, -0. 15] 

Remarkably, CV drop and VQ had partially dissociated spatiotempo- 

ral dynamics in infants. In most infant subjects, drops of “alpha” phase 

CV tended to precede VQ (cf. peak with a negative latency in the cross- 

correlogram between the time-courses of VQ and “alpha” CV, Fig. S8D). 

Moreover, in infants, significant VQ episodes lasted longer (Fig. 4C, dark 

green lines) and affected a spatially more extended set of channels (see 

topographies in Fig. S8C, VQ at ∼35% of channels vs CV drop at ∼10% 

in infants). The CV drops, occurring in largely overlapping ranges for 

vestigate the possible origin of such a shift, we repeated the same anal- 

ysis in the subset of infants who were also presented with central faces 

(Fig. 4B). We found that the VQ at P1 but not P400-flyby significantly 

differed in the same infant for the two different face stimuli configura- 

tions (WilcoXon signed rank z (21, 1) = 58, p = 0. 025 for P1, z (21, 

1) = 123, p = 0. 92 for P400). This result remained unaffected when 

comparing central and lateral faces by equalizing the number of trials 

across conditions, confirming that the difference of variability quench- 

ing across conditions was not due to the difference in number of trials 

(WilcoXon signed rank z (21, 1) = 46, p = 0. 007 for P1, z (21, 1) = 31, 

p = 0. 001 for P400). Interestingly, when presenting central face stimuli, 

the 5-12 weeks infants now showed a significant VQ at the P400-flybys, 

similarly to the response to lateral faces observed in 16-24 weeks infants. 

The absence of VQ at P400 for lateral faces in 5-12 weeks infants thus, 
does not reflect uniquely a poor maturation of connection pathways. 

Fig. 4C summarizes the time-ranges of between-trials variability 

quenching and P1/P400-flybys across all experimental conditions and 

age groups (p<0. 05, all analyses were corrected for multiple compari- 

son and temporal independence using one-sided cluster-based permuta- 

tion t-test). Age affected not only the latency but also the strength of VQ 

events, in similar directions for both stimulus configurations. Quenching 

strength decreased with age within the P1-range and increased within 

the P-400 range (Fig. 4D), with both these trends confirming the ob- 

served inter-group differences. Specifically, we found a linear increase 

of the strength of between-trials variability quenching with age at the 

P400-flyby latency for lateral faces, significant for left and right, but not 

central, faces (Fig. 4D, see Table 4 for Pearson and Spearman correlation 

values and confidence intervals). Table 3 and the boX plots in Fig. 4D 

show that adult values further continue the trends observed in infancy. 

the two bands, were quantitatively larger for the “theta” range (to val- 

ues ∼0. 5-0. 7 S. D. below its mean for infants and ∼2S. D. below its 

mean for adults) and more synchronized with VQ events (compare cross- 

correlation peaks in Fig. S9C vs Fig. S8D). However, in both cases, the 

timing relations were loose (peak cross-correlation at only ∼0. 1). 

These results collectively suggest the existence of a rich temporal 

structure in the dynamics of between-trials variability, qualitatively and 

quantitatively maturing over the first semester post-term birth. Further- 

more, in the same infants, its temporal structure can be modulated de- 

pending on the task at hand. For infants, phase reset and VQ are inter- 

twined but distinct events: substantial VQ can exist even in the absence 

of an increased phase alignment between trials as made clear by analy- 

ses of variability dynamics. 

Absolute within-trial variability increases with age 

Our third and last approach was the analysis of within-trial variabil- 

ity (the only one that, not requiring information from multiple trials 

at a time could inform us about features potentially relevant for actual 

neural computations, see Discussion). To track within-trial variability, 

we quantified the amount of variation in the topography of EEG activa- 

tion from one time-point to the next. This corresponds to the distance 

traveled in the space of possible activity topographies over a unit time 

or, equivalently, to the speed of motion in this high-dimensional space 

(see Methods). With this approach, topographies of activation which 

are stable over time and fluctuate very little from one moment to the 

next will yield instantaneous within-trial variability close to zero. Con- 

versely, abrupt changes of topographies occurring at specific instants – 

e.g. eventual switching between microstates (Michel & Koenig, 2018; cf. 
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Fig. 5. Maturation of Within-trial Speed and its relation to alpha oscillations. A) Trial speed around P1 and P400 flyby events for each subject was extracted 

by considering within-trial speed (i.e. correlation distance between topographies from one time-point and next) in 800ms time-window around the closest 5 % flyby 

distances to the respective template. B) Group averaged trial speed profiles around P1 and P400 flybys for different age-groups. Significant speed difference existed 

between 5-12 weeks and 16-24 weeks old infants as indicated by black horizontal bars, cluster-based permutation t-test, p<0. 05, permutation t-test without clustering 

for P400). C) Schematic energy landscapes that may underlie the speed profiles at P1 and P400 templates (solid line for 5-12 wo and dotted line for 16-24 wo infants 

respectively). The observed speed profiles could be interpreted as if motion along trajectories was driven by sampling of a structured potential energy landscape (like 

the rolling of a ball across hills and valleys on a surface). D) Group averaged flyby triggered instantaneous phase of alpha oscillations for each channel, separated by  

age-groups. Y-axis represents channels ordered according to their nomenclature. Topographies were derived by plotting instantaneous phase on the scalp s urface at 

the first peak before the closest flyby for each age group. E) Circular Variance (CV) of alpha phases across closest flybys. As an effect of phase-reset preceding fly-by, 

CV dropped for all age groups in a range ∼[-200, 200] ms surrounding the closest flyby. Shaded bars represent S. E. M. for each group. 

 

Figs. 2C and S2) – would map to sudden increases of the instantaneous 

within-trial speed. Again, analogously to between-trial variability anal- 

yses, we related the changes of within-trial variability to the dynamics 

of “alpha” and “theta” band oscillations (Figs. 5 and S10). 

We first measured average within-trial variability, irrespective of the 

time relative to stimulus presentation. We found that time-averaged ab- 

solute within-trial variability significantly increased with age for all task 

conditions (Fig. S10A (left panel) for lateral faces: r = 0. 38, p = 0. 01, 

95% c. i. [0. 07, 0. 62]; (right panel) for central faces: r = 0. 56, p = 0. 

009, 95% c. i. [0. 18, 0. 79]). Once again, this trend continued into 

adulthood, with a within-trial speed (or variability) significantly higher 

in adults compared to infants (boX plot in Fig. S10A, H (2) = 24. 33, 

p = 10−5 , Kruskal-Wallis test). Thus, development boosted speed of ex- 

ploration along neural trajectories. 

We also noted, however, that within-trial speed was not homoge- 

neous in time but had a heavy-tailed distribution of instantaneous val- 

ues for both infants and adults (Fig. S10 B), with extreme values pos- 

sibly reflecting long jumps due to microstate switching events. Given 

this heterogeneity of speed modulation in time, we then moved to study 

whether faster or slower speeds were systematically associated to spe- 

cific neural configurations being visited, notably at ERP component fly-

bys. 

Speed profiles around ERP flybys are structured and modulated by age 

To understand how within-trial speed is specifically modulated dur- 

ing the approach to known evoked ERP components, we first performed 

flyby-triggered averages of within trial speed of topography transitions 

from one moment to the next, by pulling together all individual events 

of closest flyby to ERP templates (possibly multiple events per trial) and 

averaging within-trial speed in an 800-ms window around these events 

(peri-flyby speed profiles, Fig. 5A, also see Methods). Fig. 5B shows aver- 

age within-trial speed in the vicinity of respectively P1 and P400-flybys 

for lateral faces (Fig. S10C for central faces). In these profiles, peaks and 

troughs of within-trial speed are clearly visible, distributed symmetri- 

cally around the flyby time, and tend to get more prominent with age. 
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Table 5 

Flyby triggered within-trial speed profile time-series (z-scores) across the three 

age-groups (5-12 wo, 16-24 wo infants and Adults, group sizes as in Table 1) 

were compared using cluster-based permutation F-tests separately for each ERP 

template and for each hemi-field to find the significant time clusters (p<0. 05). 

During post-hoc analyses, average within-trial speed in these significant time- 

windows was compared using Kruskal-Wallis test. Pair-wise comparisons were 

tested using Mann-Whitney U-test. P-values are corrected for Bonferroni correc- 

tion. 
 

 

Age-differences in Within-Trial Variability Around Flybys 

Left Faces Right Faces 

 

P1 S. C.: None S. C.: [8 80] ms, H (2) = 6. 07, 

p = 0. 048 

5-12 wo vs 16-24 wo: p = 0. 08 
5-12 wo vs adults: p = 0. 17 

system’s trajectory in the proXimity of critical points associated to ERP 

components. Through development, this energy landscape gets progres- 

sively more sculpted, and the neural trajectories can be thought of as 

being more actively controlled (see Discussion). 

ERP flybys are associated with transient phase reset but not amplitude 

modulation events 

As in the case of between-trial variability, modulations of single-trial 

oscillatory dynamics may be an important contribution to the observed 

variations of the within-trial speed. We thus analyzed phase dynamics 

in the surrounding of fly-by events. In Fig. 5D we show for all chan- 

nels flyby-triggered averages of the phase of “alpha” oscillations. In the 

surrounding of the closest flyby time, oscillatory patterns can be clearly 

distinguished, suggesting that flyby events tend to occur at similar in- 

S. C.: [-384 -308] ms: H (2) = 14. 87, 16-24 wo vs adults: p = n. s. 
14. 

stantaneous “alpha” phase. These analyses thus provide evidence for 

P400 S. C. [-400 -268] ms, H (2) = 
p = 0. 0006 

phase reset in the surrounding of the flybys: (i) for all age groups; and, 

5-12wo vs 16-24 wo: p = 0. 51n. s 42, p = 0. 0007, = 0. 41 n. s (ii) with a distinct global topography for each ERP component. This 

5-12 wo vs adults: p = 0. 008 
5-12wo vs 16-24 wo: p 
5-12 wo vs adults: p = 0. 015 phase alignment between the oscillations at different ERP flybys begins 

16-24 wo vs adults: p = 0. 0008 16-24 wo vs adults: p = 0. 0005 

 
S. C. [-72 -12] ms, H (2) = 16. 

266, p = 0. 0003 

5-12wo vs 16-24 wo: p = n. s. 

5-12 wo vs adults: p = 0. 0003 

16-24 wo vs adults: p = 0. 03 
 

 

S. C = Significant Clusters (p<0. 05, cluster-based permutation tests) 

 
 

Irrespective of their absolute within-trial speed, on an average, trials 

transiently slowed down around both P1 and P400-flybys, for all condi- 

tions and age-groups (always significantly, except for P1 flyby in adults, 

Table 5). These results remained qualitatively robust even when no tem- 

poral smoothing was applied to the single-trial topographic patterns as 

well as for range of different lengths of sliding window smoothing (Fig. 

S7B). Although the sliding window length determined the upward and 

downward slopes of within-trial speed curves at the time of flyby, signif- 

icant age-difference existed in these curves for first and second trimester 

infants in all except for very large smoothing window (180ms, where the 

two curves were smudged). Slowing down was larger around P400-flyby 

than for P1 (condition-paired signed rank test: H (2) = 30, p = 0. 001, 

H (2) = 55, p = 10−5 and H (2) = 1. 0, p = 0. 0005 for infant central, 

lateral, and adult lateral faces respectively). As shown by Fig. S10D-F 

(left panels), speed of exploration nearby P1 flybys increased with age, 

significantly for lateral faces; but not for central faces (age correlation: 

r = 0. 47, p = 0. 001, 95% c. i. [0. 18, 0. 68] for left, r = 0. 35, p = 0. 
02, 95% c. i. [0. 04, 0. 6] for right and r = 0. 1, p = 0. 7, 95% c. i. 

[-0. 34, 0. 5] for central faces). This increase was due to the emergence 

of more marked positive acceleration, preceding and following the time 

of closest flyby. On the contrary, speed of exploration decreased with 

age nearby P400 flybys, due to a progressively marked deceleration, for 

both lateral and central faces (respectively, Fig. S10D-E right panels, age 

correlation: r = -0. 45, p = 0. 001, 95% c. i. [-0. 67, -0. 16]for left, r = -0. 

45, p = 0. 001, 95% c. i. [-0. 67, -0. 16] for right and r = -0. 33, p = 0. 

07, 95% c. i. [-0. 66, 0. 11] for central faces, not significant, though, for 

this latter). 

These characteristic speed profiles are reminiscent of the acceler- 

ations and decelerations that a physical ball would experience when 

rolling on a non-flat surface, accelerating while descending into a val- 

ley and decelerating while ascending out of the valley due to gravity 

(see illustration in Fig. 5C). It is thus tempting to interpret these speed 

profiles as if reflecting the sampling of a structured “energy landscape” 

(Ezaki et al., 2017; Gu et al., 2018). In this statistical physics-like view, 

neural trajectories would unroll under the influence of force fields gen- 

erated by an effective potential, due to underlying but unspecified con- 

straints in collective neural dynamics. These forces act as biases on the 

∼200ms before the flyby event and ends around the same time after the 

flyby. This indicates that fly-by events are not the cause of reset (oth- 

erwise, oscillatory patterns would be visible in the average phase time- 

series only after the fly-by). On the contrary, fly-by arise dominantly at 

a specific phase during a pre-existing oscillatory event, and the number 

of cycles visible in the fly-by triggered averages of Fig. 5D before and 

after the fly-by are just indicative of the average duration of regular 

oscillatory episodes (i.e. intrinsic decorrelation time of ongoing oscil- 

lations). In line with this phase alignment of alpha oscillations to ERP 

component flybys, the flyby-triggered Circular Variance (CV) of “alpha” 

phase across single-flyby events also dropped significantly (Fig. 5E). A 

qualitatively similar dynamics occurred for “theta” oscillations, with an 

even larger CV drop (Fig. S9D). 
Importantly, within-trial   speed   modulations   were   paralleled   by 

phase modulations but not as clearly by amplitude modulations. Con- 

sidering the amplitude of the signal “alpha” component, alpha power 

surrounding ERP flybys did not significantly deviate from baseline val- 

ues for any of the groups (Fig. S11A). These results hold also for the 

“theta” band. Indeed, more in general, beyond band-restricted oscil- 

latory dynamics, it is broadband power which appears poorly modu- 

lated by stimulus and flybys. We considered more general modulations 

of signal-to-noise ratio, by quantifying the L2-norm of the topography 

of activation to track average activity levels at all channels. Averages 

of L2-norm of activation over stimulus-aligned trials did not show any 

significant upward or downward modulation in any time range follow- 

ing the stimulus (Fig. S11B, neither for lateral faces (top panel), nor for 

central faces (bottom panel)). This corresponds to the fact that strong 

voltage activity can be found at any time within individual trials, due to 

ongoing fluctuations (cf. Fig. 2A-C) and are not restricted to the classic 

ERP time-ranges. As shown by Fig. S11C, we again found flat profiles 

of L2-norm change around flyby events for most combinations of age 

and stimulus type (the only exception being a significant increase at 

P400-flyby, limited to the adult group). 

Discussion 

In this study, we demonstrate the existence of a rich temporal orga- 

nization of the neural responses to stimulus in adults and infants that 

goes beyond the mean response captured by ERPs. We propose the con- 

cept of Event-Related Variability (ERV) to refer to the temporally struc- 

tured dynamics of the response fluctuations. To characterize ERV, we 

focused on the complementary aspects of: single-trial (dis)-similarity to 

known ERP components (ERP flyby analyses, Fig. 3); reproducibility 

of response trajectories across different trials (between-trials variability 

analyses, Fig. 4); and speed of reconfiguration of the induced activity to- 

pographies along individual trials (within-trial speed analyses, Fig. 5). 

We furthermore put these three aspects in relation with the dynamics of 
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ongoing oscillations to study the contribution of phase reset to ERP fly- 

bys and variability quenching. Our results confirm that, for both infants 

and adults, the trial variability remains very large and that stimulus 

presentation does not suppress ongoing fluctuations. Yet this variability 

is significantly modulated by face presentation in a non-trivial way, as 

exposed by the ERP flybys and variability quenching. 

In all conditions, a period of decreased variability across trial tra- 

jectories (variability quenching) is detected after stimulus presentation, 

confirming many previous reports in adults (Ito et al., 2020; Arazi et al., 

2017; Schurger et al., 2015; Schurger et al., 2010). Beyond these previ- 

ous studies, we observe that the time-range of between-trial variability 

quenching evolves through age and that, at a given age, is strongly and 

qualitatively modified by the task at hand. Furthermore, we observe 

that variability quenching always occurs in time ranges in which trials 

approach ERP landmark topographies (ERPs flybys). The converse how- 

ever is not true (cf. Fig. 4). This establishes ERP flybys and between- 

trial variability quenching as partly independent phenomena. Variabil- 

ity quenching (VQ) is also partially independent of the phase reset of 

ongoing oscillations. Thus, reset of oscillatory dynamics may be only 

one facet of the complex variability modulations that system’s response 

trajectories experience in response to a stimulus. 

Might Variability Quenching denote Top-down Processes? 

Various elements suggest that quenching events are not a mere au- 

tomatic consequence of stimulus presentation, but might signal a more 

controlled system’s trajectory, possibly implementing a form of top- 

down regulation: First, quenching could occur late after the stimulus 

onset, for example ∼400-600ms, i.e. in P400 time-window in older in- 

fants. Second, age did not simply extend the time-window of quenching 

but shifted its target, from P1 to P400, and third, even at a given age, the 

quenching dynamics was qualitatively modified by changes in the stim- 

ulus configuration. First-trimester infants showed P1-component flybys 

for both central and lateral faces, but variability quenching at P1 flyby 

occurred only for lateralized faces, i.e. for the most challenging task. 

Indeed, lateralized faces were much more difficult to perceive because 

they were presented briefly at a random interval and in a competition 

with the central attractor that helped avoid infants’ saccades. Moreover, 

the slow maturation of parafovea compared to fovea (Allen et al., 1996) 

made this brief lateral stimulus even less discernible for the younger 

infants. We hypothesize that variability quenching events through top- 

down control processes helped the infants’ guide their attention in the 

absence of a strong bottom-up signal. For e.g. younger infants might try 

to shift their attention towards the lateralized stimuli in order to “de- 

tect” it, without recognizing a specific face, or even extracting facial 

features, while the older infants and adults might focus their attention 

on guessing/recognizing the face, thus quenching variability at a later 

stage of processing. This could explain the shift of variability quenching 

from the P1 component (related merely to the detection of the visual 

input) to the P400 ERP component that is related to the face process- 

ing. Similarly, when the face was centrally presented, younger infants 

could also focus on the face identity, the detection part being plainly 

evident. From this interpretation, a quenching event (that indicates a 

transient constraining of the system’s dynamics to a specific trajectory) 

might reflect more intensive information processing than the “hit and run” 

visit to the P1-component observed in older participants and in the case 

of an easily perceived visual event (central faces) for younger partici- 

pants. The existence of top-down regulatory mechanisms in infants has 

been confirmed experimentally (Emberson et al., 2015; Kabdebon and 

Dehaene-Lambertz, 2019; Kouider et al., 2015). Notably, the shift of 

focus for variability quenching, from P1 to P400 after 12 weeks for lat- 

eral faces corresponds to the first milestone in visual development when 

several peripheral structures reach maturity (e.g. lens, fovea) and myeli- 

nation of the optical fibers and maturation of V1 reach a plateau after 

a period of rapid change. These changes translate in the convergence 

to adult values of the P1 latency for centrally presented stimuli around 

12 weeks ( Dubois et al., 2008), while peripheral vision matures more 

slowly (Allen et al., 1996). Feed-back connectivity is also progressively 

restructured after term-birth ( Kennedy et al., 2007), passing from dis- 

perse growth to selective pruning which may allow for more effective 

and selective attention control or predictive influences resulting into 

variability quenching at later stages for older infants. In future, task 

difficulty and information processing load should be parametrically ad- 

justed to investigate their respective influence on ERV dynamics, from 

early infancy to adulthood. 

 
Within-Trial Variability Modulation 

Beyond the common focus on modulations of variability between tri- 

als, we emphasized variability modulation events taking place within 

individual trials. We confirmed previous results obtained for adults 

(Schurger et al., 2015) and extended them to infants. If a between-trial 

variability quenching event denotes that the flow of system’s trajectories 

is restrained to a specific manifold when reaching and leaving an ERP 

component, the phenomenon of within-trial slowing-down suggests that 

the flow of each of the individual trajectories on this manifold characteris- 

tically decelerates when the system approaches certain landmarks (ERP 

component flyby). This is important, because perception and cognition 

happen in real time (without waiting for multiple stimulus presenta- 

tions before perceiving a face). Therefore, instantaneous modulations 

of response variability can be instrumental only if they occur within in- 

dividual trials. The slight slowing-down of individual trials near P1and, 

in a particularly marked way, P400-flybys, correspond to the system tra- 

jectories lingering in an orbit around the corresponding ERP template 

for a short time. Such transient slowing down (or speeding up when en- 

tering or leaving the orbit, as for P1 flybys) might be detected, by an 

integrator neuron –serving as a tempotron readout (Gütig & Sompolin- 

sky, 2006) – to signal that a given stage in cognitive processing has been 

reached and thus initiate the next processing step in a sequence. These 

speed modulation profiles can remain well identifiable by the system, 

despite the large variability of spatial topographies at ERP flybys. 
Together, our results suggest that more than the current position 

of the system in its configuration space, ERPs are marked by “how” 

the system is flowing through and away from its current position. The 

evolution of the system seems far from being at a stable attractor. The 

fact that dynamics is dominated by structured fluctuations make such a 

system compliant with reservoir computing systems, in which intrinsic 

chaotic fluctuations are only transiently reduced by the applied inputs 

and are needed to boost learning capabilities. 

 
Mechanisms underlying Variability Modulations and their Possible 

Functional Relevance 

The question remains as to what mechanisms could be responsible 

for the emergence of such a structured ERV components. This question 

has been explored in some depth for the quenching of firing rate vari- 

ability in neuronal population responses to a stimulus where mecha- 

nisms such as attractor stabilization (Litwin-Kumar and Doiron, 2012), 

chaos suppression (Rajan et al., 2010) or “supra-linear stabilization” 

(Hennequin et al., 2018) have been proposed. Large-scale computational 

efforts (Ponce-Alvarez et al., 2015) have demonstrated that such mi- 

croscopic properties could indeed be an ingredient for the macroscopic 

variability quenching, which are sampling a more global activity than 

the neural firing recordings reviewed by (Churchland et al., 2010). Con- 

trarily, some studies have suggested that macroscopic quenching could 

be due to the variations in the baseline power and/or the phase of ongo- 

ing alpha oscillations( Jensen et al., 2012; Daniel et al., 2019; Wainio- 

ThebergeS and Northoff, 2021). These views are akin in spirit to earlier 

and more recent proposals that oscillatory phase and amplitude modu- 

lations are responsible for the generation of ERP components and their 

trial-to-trial fluctuations (Hanslmayr et al., 2007). Here we have found 
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however that variability quenching can persist longer even after the re- 

turn to baseline levels of circular variance, especially in the younger in- 

fants. This means that neural response trajectories keep being restrained 

to a common manifold even when ongoing oscillations have decorre- 

lated and are not anymore aligned in phase. More general forms of tra- 

jectory control may thus be acting, and oscillatory phase reset could be 

just an early component of them (causal trigger), or, alternatively, just 

their epiphenomenal manifestation. 

Moreover, the characteristic kinematics of system’s evolution was 

observed here as neural trajectories approach ERP components. Such 

type of kinematics and effective landscapes may naturally emerge 

because of the non-linear dynamics of multi-scale neural circuits, self-

organizing into structured flows on low-dimensional manifolds (Pillai 

and Jirsa, 2017). Trajectory deflections at ERP component flybys 

(including phase reset for oscillatory trajectories, but not exclusively) 

could be conceptualized as driven by the sampling of a landscape of ef- 

fective free energy. If the observed speed profiles had to be explained as 

due to motion in a force field associated to this landscape, then, the free 

energy minima (the troughs of the landscape valleys) would be located 

at the first maximum of speed, which precedes the time of closest pas- 

sage near ERP templates by∼50-100ms. Thus, ERP-like configurations, 

associated to the lowest speed, would not be the “attractors” but rather 
signal the moment of crossing from one critical point to the next. 

In this framework, changes of ERV dynamics through development 

and learning would be accounted for by the growth of more marked 

barriers and sinks in the effective energy landscape or, equivalently, 

bifurcations causing the birth, fusion or death of different attractors 

or saddle points in the system’s high dimensional phase space. Such 

conjectures may be potentially validated by estimating the morphol- 

ogy of an effective energy landscape surrounding the ERP templates 

(Ezaki et al., 2017). Like previous studies, we find here also the increase 

of overall within-trial variability along early development (Fig. S10A- 

B) (Garrett et al., 2011; McIntosh et al., 2010). This increased 

structur- ing of the landscapes that shaped the brain activity may 

mediate the capability to learn internal statistical models of 

environment, for bet- ter inferences in perception (Berkes et al., 2011). 

Additional theoretical and computational investigation will be needed 

to disambiguate which of the possible scenarios is leading to the 

observed quenching, possi- bly also linking them to maturation of the 

underlying excitatory and inhibitory local circuits. 
To probe the functional relevance of ERV, a focus on an early devel- 

opmental period (and, particularly, as early as the first trimester post- 

term birth), may be once again crucial. Indeed, learning in early infancy 

is exceptionally fast (Dehaene-Lambertz and Spelke, 2015). At the same 

time, ERV dynamics is already rich and still evolving yet separable from 

phenomena such as alpha modulations that are dominated in adults and 

may conceal subtler functional aspects of response variability. 

Methodological Considerations 

Our approach has methodological limitations that could be overcome 

by future developments. For instance, the extraction of ERP templates 

in our case depended on a manual inspection based on the develop- 

mental literature, but more sophisticated algorithms for the temporal 

clustering of single-trial ERP topographies could be used and combined 

with our variability analyses schemes (Vahid et al., 2020). The occur- 

rence of large within-trial variations and particularly of extreme within- 

trial speed values at certain times (Fig. S10B) – also need to be put in 

correspondence with the scale-free dynamics of microstate transitions, 

neuronal avalanching (O’Byrne and Jerbi, 2022) or other approaches to 

describe spontaneous dynamics as random walks in high-dimensional 

state spaces (Hansen et al., 2015; Naik et al., 2017), which also cor- 

relate speed variations with development and cognitive performance 

(Battaglia et al., 2020; Lombardo et al., 2020) and are shaped by intrin- 

sic dynamical landscapes. Finally, linking activity to network state dy- 

namics –what is the functional connectivity triggered by an ERP flyby?– 

may allow assessing whether exchange of information is dominated by 

bottom-up or top-down flows at different ages or ERP stages. Note that 

our measures were very sensitive to age, allowing capturing even subtle 

differences between the left and right hemisphere maturational calen- 

dar. The ERV approach might thus be a more sensitive tool than classical 

ERPs to capture differences between experimental conditions in infant 

cognitive studies, but above all to explore neurodevelopmental disor- 

ders. 

Conclusion 

ERPs have been an attractive description of the post-stimulus brain 

activity, described as successive steps defined by their reproducible la- 

tency and brain sources, allowing obtaining neural algorithms underly- 

ing cognition. However, this description was somewhat misleading, ig- 

noring the ongoing activity. The framework proposed here encompasses 

both aspects. We recovered that ERP components serve as a “compass” 

to identify special dynamical points for the on-going activity sampling 

erratically vast volumes of the neural configurations space, confirming 

that ERPs are indeed capturing neural consequences of a stimulus pre- 

sentation. At the same time, we also showed that they are far from cap- 

turing the entire activity patterns following a stimulus. We proposed the 

term ERV, as a better concept to describe the neural consequences of a 

stimulus. This proposal is not purely semantic since it allows describing 

the ERP maturation in integrated manner on one hand and emphasizes 

the structured variability of the background EEG on the other. It al- 

lows thus speculating that the gradual change of ongoing activity might 

reflect the increasing knowledge of the environment throughout devel- 

opment of a structured internal landscape biasing neural trajectories 

(that, on their turn, through their volatility, can efficiently sample this 

landscape). This approach might be particularly fruitful to investigate 

neurodevelopmental disorders and their cognitive consequences. 
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