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ABSTRACT 

In carefully designed experiments, cognitive scientists interpret the mean event-related 

potentials (ERP) in terms of cognitive operations. However, the huge signal variability from 

one trial to the next, questions the representability of such mean events. We explored here 

whether this variability is an unwanted noise, or an informative part of the neural response. 

We took advantage of the rapid changes in the visual system during human infancy and 

analyzed the variability of visual responses to central and lateralized faces in 2-to 6-month-

old infants and adults using high-density electroencephalography (EEG). We observed that 

neural trajectories of individual trials always remain very far from ERP components, only 

moderately bending their direction with a substantial temporal jitter across trials. However, 

single trial trajectories displayed characteristic patterns of acceleration and deceleration when 

approaching ERP components, as if they were under the active influence of steering forces 

causing transient attraction and stabilization. These dynamic events could only partly be 

accounted for by induced microstate transitions or phase reset phenomena. Furthermore, 

these structured modulations of response variability, both between and within trials, had a 

rich sequential organization, which, in infants, was modulated by the task difficulty. Our 
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approaches to characterize Event Related Variability (ERV) expand and reinterpret classic 

ERP analyses, making them compliant with pervasive neural variability and providing a more 

faithful description of neural events following stimulus presentation.  

 

INTRODUCTION 
 

Since Wundt (1832-1920), the purpose of psychology has been to decompose 

complex cognitive functions into simpler processes, or mental operations, that could be 

studied in relative isolation thanks to the careful manipulation of experimental parameters 

(Posner and DiGirolamo, 2000). Following this ambition, thousands of studies have been 

published each year in which the peaks and troughs of average, stimulus-locked neural time-

series (i.e. Event-Related Potentials: ERPs) have been explained as neural correlates of 

cognitive operations. It is indeed quite remarkable that averaging neural signals across 

multiple presentations of the same stimulus recovers robust and reproducible responses 

across participants. The ERP literature has progressively identified specific neural 

components whose latency and scalp-topography have been related to particular cognitive 

operations, from sensory processes (e.g. recognition of faces: N170)(Ghuman et al., 2014), to 

high-level processes (e.g. detecting lexicon incongruencies: N400)(Kutas and Federmeier, 

2000), or monitoring our own behavioral errors (ERN: Error Related Negativity)(Dehaene, 

Posner and Tucker, 1994). 

 

In this framework, the ongoing/background activity is considered as an unwanted noise 

discarded through the averaging process (Jasper, 1937). While measurement errors and 

artefacts are indeed unwanted (Verleger, Gasser and Möcks, 1982), the trial-by-trial variation 

of the recorded signal could also be a genuine property of the participant’s brain. 

Furthermore, since complete cognitive processes take place within each individual trial, and 

mental operations can vary from one trial to the next (e.g. stimulus visibility at threshold, 

confidence variation, change of strategy, etc), the signature of these operations should be 

detectable within individual trials –without averaging. This methodological tour-de-force is 

sometimes accomplished by powerful time-series pre-processing or machine learning 

algorithms (Jung et al., 2001; Vahid et al., 2020). However, all these methods implicitly 

assume that the pertinent ERP is a weak signal sunk in uncorrelated noise. Is this tenet itself 

as straightforward as it seems? 
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An increasing number of studies suggest that the background activity fluctuations are part 

of the cognitive process itself and can bias perceptual reports and affect stimulus detection 

(Hesselmann et al., 2008; Sadaghiani, Hesselmann and Kleinschmidt, 2009). Specifically the 

oscillatory components of the background activity, notably in the alpha band (8-12 Hz), are 

long known to be suppressed at stimulus presentation (Adrian and Matthews, 1934) and 

whose pre-stimulus power inversely correlate with behavioral performance (Van Dijk et al., 

2008). Nonetheless, these oscillations are never completely suppressed and such “ongoing 

oscillations” display rich phase dynamics that plays an important role in top-down cognitive 

processes (Palva and Palva, 2007) and contributes to the detection of the ERP itself 

(Hanslmayr et al., 2007). Moreover, post-stimulus activity and ongoing fluctuations do not 

simply add up but nonlinearly interact (He, 2013) explaining the resulting perception 

(VanRullen et al., 2011). Finally, similarities between spontaneous and stimulus-related 

activity increases along development (Kenet et al., 2003), possibly suggesting that such 

spontaneous activity encodes the structure of the environment as priors (Berkes et al., 2011; 

Pezzulo, Zorzi and Corbetta, 2021). In such an alternative framework, brain activity is 

thought to be sampling a high-dimensional space of possible neural configurations. Such 

brain activity is considered to unfold along trajectories that are seemingly erratic and 

stochastic, and yet are loosely shaped by a latent “dynamical landscape” defined by attractor 

valleys and ridges connecting them (Mazor and Laurent, 2005; Gu et al., 2018; Chaudhuri et 

al., 2019). Spontaneous activity can thus organize in reproducible “microstates” which are 

visited in complex sequences, differing from mere random walks (Van de Ville, Britz and 

Michel, 2010). This irregular activity can still be modulated by the task demands, arousal, 

vigilance, etc. at the moment of stimulus presentation (Huk, Bonnen and He, 2018). 

Compatible with this scenario, it was observed that inter-trial variability (which reflects 

the background activity fluctuations) is not constant but is characteristically reduced in the 

post-stimulus period with respect to baseline at rest. This “variability quenching”(VQ) after 

stimulus presentation is a cortex-wide phenomenon robustly observed at many spatiotemporal 

scales and across many different tasks (Churchland, Yu, et al., 2010; Arazi, Censor and 

Dinstein, 2017). Although different mechanisms may be responsible for it at different scales 

–e.g. change in excitatory/inhibitory synaptic currents at the micro-scale (Hennequin et al., 

2018), or power increase or phase reset of ongoing oscillations at the macro-scale (Daniel et 

al., 2019; Iemi et al., 2019)–, the net functional effect in all cases is similar and corresponds 

to an increased reproducibility of neural trajectories, which, in human adults, can be further 
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improved by active attention (Broday-Dvir et al., 2018) or conscious awareness (Schurger et 

al., 2015). Further evidence is nevertheless needed to understand whether this variability 

reduction is an epiphenomenon or plays a direct role in information processing. We argue 

that if variability modulations are functionally important (rather than noise), they should have 

a temporal structure as is the case with ERPs and this structure should emerge relatively early 

in life. Moreover, this phenomenon might get progressively more complex along 

development, reflecting the scaffolding of perceptual and cognitive processes. 

Here we sought to understand the organization of response variability by reanalyzing high-

density EEG data (128 channels) obtained in 5 to 24-week-old human infants (Adibpour, 

Dubois and Dehaene-Lambertz, 2018) as well as in adults when they were presented with 

human faces. We chose to study this question in human infants for three reasons: Firstly, 

because during the first semester of life, rapid and inhomogeneous maturation takes place, 

especially in the visual domain (Braddick and Atkinson, 2011), allowing age to be used as a 

factor to separate different neural/cognitive processes that might overlap in already mature 

adult brains. The peripheral visual structures reach maturity during the first semester, 

accompanied by a rapid myelination of optical radiations and synaptogenesis in primary 

visual areas. This leads to a remarkable acceleration in the latency of ERP component P1, 

from around 350 ms at birth to 100ms (the adult value) around 12 weeks(McCulloch, Orbach 

and Skarf, 1999). Interestingly, the left and right hemispheres do not mature at the same 

rate(Chiron et al., 1997), in the motor, language (Dubois et al., 2009) or visual system 

(Adibpour, Dubois and Dehaene-Lambertz, 2018) allowing for a direct comparison of the 

impact of maturation on similar neural pathways as a function of the hemifield of stimulus 

presentation. The second reason is the observation that human infants are exceptional learners 

(Ghislaine Dehaene-Lambertz and Spelke, 2015). If variability modulation is an intrinsic part 

of the building and manipulation of internal models (Berkes et al., 2011) the fast learning 

pace of infanthood might reveal more complex dynamical changes than the adults who 

possess relatively stable internal models. Finally, it is a common belief to disregard ongoing 

activity as a nuisance that compromises the robustness and reproducibility of infant ERPs. 

We might thus miss important information on the potential structure of the variability 

modulation in single-trial responses that might lead to better hypotheses and tools to gauge 

infant cognition. 
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We derived three novel measures based on multivariate pattern analysis to track the single 

trial dynamics and variability induced by the visual stimuli: First, we sought to quantify how 

individual trial trajectories approach the well-known ERP components (referred hereafter as 

“ERP flybys”). This allowed us to evaluate how the single-trial distributions of latency and 

distances to the ERP templates develop during the first semester of life in comparison to 

adults. Secondly, we examined the “between-trial variability” to quantify how close (or far) 

individual trial trajectories remained from each other as they evolved through time. This 

corresponds to the variability quenching phenomenon described earlier. Thirdly, we 

introduced a novel metric of instantaneous rate of brain state reconfiguration i.e. “within-trial 

speed” to track the moment-to-moment fluctuations along individual trials. Finally, as 

activity fluctuations have oscillatory components, we also studied how the dynamics of the 

three metrics above relate to alpha oscillatory dynamics and, specifically to alpha phase reset, 

since stimulus-induced alpha phase reset has been proposed as one of the mechanisms for 

variability quenching (Iemi et al., 2019). 

 Our results reveal a surprisingly complex temporal organization of response variability in 

our young participants. This organization gradually emerged through early infancy, and by 

the second trimester of life, reached a spatiotemporal structure remarkably similar to that of 

adults. Moreover, these characteristic sequences of variability modulations in infants were 

task-dependent. While many measures were modulated by age, we also observed in the same 

infants, differences in variability modulation depending on the perceptual difficulty of the 

task -- central faces being easier than lateralized faces. Importantly, the variability of 

trajectories across different trials remained daunting in both phase and amplitude of alpha 

oscillations even during the events of stronger variability quenching. Ongoing rest 

fluctuations of activity were never suppressed, as we could track by identifying microstate 

transitions (Michel and Koenig, 2018) and showing that their rate and probability of 

occurrence are barely affected by stimulus presentation. Visual stimuli neither exerted a 

complete reset of the system toward specific positions in the high-dimensional space of 

possible configurations, nor constrained the trajectories to follow specific paths with 

precision. On the contrary, the effects of stimulus presentation were “modulatory”, slightly 

bending the trial trajectories towards specific directions and accelerating or decelerating the 

speed of topography reconfiguration at precise post-stimulus latencies. In other words, the 

stimulus did not impact “where the system is” as much as it impacted “how the system flows” 

after stimulus presentation.  
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Classic ERP components were approached by single trials with very large distances and 

with conspicuous temporal jitter. Yet, they acted as “attractors” or “repellers” for system’s 

trajectories, exerting biasing forces, visible in the acceleration and deceleration patterns of 

within-trial reconfiguration, getting more marked and structured as development progresses. 

These speed modulations tended to be phase-locked to transient alpha oscillations, however 

the complexity of their spatiotemporal organization could not be fully accounted by phase 

reset events alone. We propose the term Event-Related Variability (ERV) to collectively 

describe this remarkable sequential and task-specific organization of flybys, variability 

quenching and boosting events, both between and within trials, which complements the 

classic descriptions of the modulations of average response (ERP). Such nontrivial ERV 

dynamics reveals an immediate richness of structured states in infants comparable to adults, 

confirming a potential role of variability modulations as a computing resource since the 

earliest ages. 

RESULTS 

1. Event-Related Potentials (ERP) evoked by face presentation in infants and adults 

Both infants (N=39, 5-24 weeks) and young adults (N=13, 21-27 years) were presented 

with unfamiliar faces, alternatively between the lateral hemi-fields, and for a subset of infants 

(N=22, 5-22 weeks), separately in the central visual field (Fig 1A, Adibpour, Dubois and 

Dehaene-Lambertz, 2018). Classical ERP analyses revealed two prominent ERP components: 

an early “P1” and a late “P400”. These components, commonly identified in infants in 

response to visual images and particularly faces, correspond to different cognitive stages: P1 

is considered as the first cortical response in primary visual areas whereas the P400 is a 

higher order response related to face perception and stimulus familiarity, with sources in the 

fusiform region (De Haan, Johnson and Halit, 2003). These components, visible in the grand 

average topography in Fig 1B for infants, also had clear equivalent topographies in adults 

(Fig S1A). For adults, latencies were faster, voltage topographies qualitatively similar and 

overall ERP signal amplitude weaker as compared to infants. For lateral faces, the P1 

response corresponded to the first positivity on the contra-lateral posterior electrodes around 

250-300 ms following face onset in infants (~100 ms in adults). The P400 response was a 

large bilateral positivity on occipitotemporal clusters following the P1 response around 500-
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600 ms (~400 ms in adults). For central faces, latencies were faster relative to lateralized 

faces: around 150 ms for the P1 visible on medial posterior electrodes and aroun

ms for the P400 on occipitotemporal channels (Fig 1B bottom row). The overall signal 

amplitude was larger for central than for the lateral faces. These results are in agreement with 

previous literature on ERP dynamics following face presentation 

Haan, Johnson and Halit, 2003; Conte 

Infant N290 topography was not prominent and adult N170 topography 

equivalence in infants, hence we avoided these “intermediate” components.

Fig 1 Task Paradigm and Infant

unfamiliar faces consecutively in the left and right hemi

with faces in center. B) Grand Average voltage topographies for the three conditions for infants. Early 

(P1) and late (P400) ERP components (marked with red and green horizontal bars respectively) are 

visible for each condition.   Human 

compliance with the Biorxiv privacy policy.

2. Ongoing Variability Dominates ERP

While characteristic ERPs existed, single

grand averaged responses (Fig 2A; Fig S1B), typically remaining one

magnitude larger than ERP amplitudes in both adults and infants, with extremely variable 

topographies and no clear peaks or valleys corresponding to the ERP. 

To illustrate the relationship between the ongoing and evoked activity, we show a 12 s

long-segment of continuous EEG data for a representative infant (age=15.4 weeks) in Fig 2B. 

At every time point, brain topography is represented as a point in a three

projection after dimensionality reduction (performed by applying Principal Component 

Analysis (PCA) to activity amplitudes, see 

a similar single-trial trajectory, the EEG trajectory time points recorded immediately 

600 ms (~400 ms in adults). For central faces, latencies were faster relative to lateralized 

faces: around 150 ms for the P1 visible on medial posterior electrodes and aroun

ms for the P400 on occipitotemporal channels (Fig 1B bottom row). The overall signal 

amplitude was larger for central than for the lateral faces. These results are in agreement with 

previous literature on ERP dynamics following face presentation in adults and infants 

Haan, Johnson and Halit, 2003; Conte et al., 2020)(Conte et al., 2020; De Haan et al., 2003). 

Infant N290 topography was not prominent and adult N170 topography did not find clear 

equivalence in infants, hence we avoided these “intermediate” components. 

Infant visual ERPs. A) Infants (and adults) were presented with 

unfamiliar faces consecutively in the left and right hemi-field. A subset of infants was also presented 

Grand Average voltage topographies for the three conditions for infants. Early 

(P1) and late (P400) ERP components (marked with red and green horizontal bars respectively) are 

Human Face stimuli are replaced by gray boxes (here and elsewhere

with the Biorxiv privacy policy. 
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magnitude larger than ERP amplitudes in both adults and infants, with extremely variable 

topographies and no clear peaks or valleys corresponding to the ERP.  

ionship between the ongoing and evoked activity, we show a 12 s

segment of continuous EEG data for a representative infant (age=15.4 weeks) in Fig 2B. 

At every time point, brain topography is represented as a point in a three

ter dimensionality reduction (performed by applying Principal Component 

Analysis (PCA) to activity amplitudes, see methods). If stimulus presentation always evoked 

trial trajectory, the EEG trajectory time points recorded immediately 

600 ms (~400 ms in adults). For central faces, latencies were faster relative to lateralized 

faces: around 150 ms for the P1 visible on medial posterior electrodes and around 450-550 

ms for the P400 on occipitotemporal channels (Fig 1B bottom row). The overall signal 

amplitude was larger for central than for the lateral faces. These results are in agreement with 

in adults and infants (De 

(Conte et al., 2020; De Haan et al., 2003). 

did not find clear 

 

Infants (and adults) were presented with 

of infants was also presented 

Grand Average voltage topographies for the three conditions for infants. Early 

(P1) and late (P400) ERP components (marked with red and green horizontal bars respectively) are 

here and elsewhere) in 

trial responses were noisy and hardly resembled 

or two- order of 

magnitude larger than ERP amplitudes in both adults and infants, with extremely variable 

ionship between the ongoing and evoked activity, we show a 12 s-

segment of continuous EEG data for a representative infant (age=15.4 weeks) in Fig 2B. 

At every time point, brain topography is represented as a point in a three-dimensional 

ter dimensionality reduction (performed by applying Principal Component 

). If stimulus presentation always evoked 

trial trajectory, the EEG trajectory time points recorded immediately 
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following the presentation of a face stimulus should cluster together within this low-

dimensional projection. On the contrary, post-stimulus trajectory snippets (highlighted in red 

in Fig. 2B) were distributed nearly uniformly throughout the sampled space. This dispersion 

suggests that post-stimulus temporal fluctuations of neural trajectory were predominantly 

determined by the ongoing activity. Individual stimulus presentation events seemed not to 

lead to a radical reset of the activation topographies and did not constrain them to strongly 

resemble the grand-average topographies. 

Ongoing spontaneous activity has been shown to have a rich spatiotemporal organization, 

which has been previously characterized in terms of discrete ‘Microstate transitions’ (da Cruz 

et al., 2020). Microstates are patterns of scalp topographies extracted through unsupervised 

clustering procedures and are transiently stable for ~60–120 ms in adults. They are shown to 

stochastically alternate between themselves during spontaneous resting activity, with a scale-

free distribution of their dwell-times (Van de Ville, Britz and Michel, 2010). Here we 

extracted microstate sequences from EEG recordings as a possible, simple way to apprehend 

the organization of global ongoing fluctuations. We describe them as transitions between a 

set of unsupervised reference topographies, which can be thought as an average orientation 

frame (without necessarily committing on their exact number or spatial pattern). We checked 

whether presentation of the stimulus led to a perturbation of ongoing dynamics, in terms of 

enhanced probabilities to observe certain microstates or stimulus-triggered microstate 

transitions (see Methods).  Fig 2C (top) shows the 4 microstates extracted by the standard k-

means clustering of the continuous EEG time segments across all infants during the 

lateralized face paradigm. The topographies were reminiscent of the ones commonly 

observed for adults in microstate studies. In Fig 2C (middle panel), we visualize the 

transitions from one microstate to another as a raster plot, to understand whether the 

transition probabilities were modified by the stimulus presentation. If microstate transitions 

became more frequent at a certain fixed post-stimulus latency, one would observe the 

formation of vertical stripes in this raster (depicting time-aligned transition for each trial) 

possibly of relatively uniform color (indicating a specific microstate being associated to post-

stimulus activity). On the contrary, the raster plot appears unstructured and “asynchronous”, 

with a salt-and-pepper arrangement of colored dots, denoting that stimulus presentation does 

not induce the selection of a specific microstate. This is quantitatively confirmed by Figure 

S2 in which we show the near-absence of modulations in the probability of visiting specific 

microstates as a function of stimulus onset time (with mild variation across age-groups). We 
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then quantified whether stimulus presentation modifies the rate of generic microstates 

transitions, irrespectively of microstate identity. The time-course of this average microstate 

transition rate, shown in Fig. 2C (bottom panel), reveals once again a complete absence of 

significant modulations of microstate transition dynamics. Spontaneous ongoing fluctuations 

continued to occur in an unaltered fashion, as if virtually unaffected by stimulus presentation. 

These analyses suggest that the ongoing dynamics is not radically reconfigured or 

perturbed by stimulus presentation in its global aspects. On the contrary, stimulus-induced 

effects appear to be riding on top of ongoing fluctuations. System’s trajectories can be 

virtually “everywhere” in the high-dimensional space of possible topographies and stimulus-

related effects must correspond to small local amplitude or phase modulations of current 

trajectories rather than a radical channeling of the trajectories along specific paths. 

With the hypothesis that this tremendous response variability and moment-to-moment 

fluctuations is informative about underlying neural and cognitive processes, we considered 

three indicators in order to detect weak stimulus-related modulations on top of highly 

variable signals (see cartoon representations in Fig. 2D) as previously described: ERP 

component flybys ,between trial variability and within-trial variability (or trial Speed). To 

quantify (dis-)similarity between topography patterns, occurring in different trials or at 

different times along a trial, we used a multivariate metric of correlation distance, i.e. 1 – 

Pearson Correlation Coefficient (see Methods). Such a measure is sensitive to variations of 

the relative strengths –or activity patterns– rather than to the absolute voltage amplitudes 

observed at specific EEG channels. For this reason, we believe it is suitable to identify weak 

local reconfiguration events that ride on top of simultaneously ongoing global fluctuations. 

Finally, we verified the relation between the dynamics of our metrics of variability with the 

phase and amplitude of the signals filtered in a narrow alpha band (Methods), to study their 

eventual relation with phase reset events. Results from all the three approaches are 

summarized and put in relation with alpha oscillation dynamics in the following sections. 
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 Fig 2 Ongoing Variability dominates Event Related Potentials. 

courses averaged across right occipital electrodes for a representative infant (age =12.1 

weeks) for faces presented in left he

(blue lines) are highly variable in comparison with average ERP response (red bold line). 

Single-trial voltage topographies in P1 and P400 response range are notably different from 

the grand average ERP topography.

reduced to 3-dimensional PC space from 128

Each point corresponds to single instantaneous voltage topography. Time

450-500 ms post-stimulus time range are marked in red.

microstates. (Middle) Raster plots of single

a change in microstate at that time point. The color of dots indicates whi

transitioned into at that time point (corresponding to the colors of letters indicated below the 

Fig 2 Ongoing Variability dominates Event Related Potentials. A)  Example voltage time

courses averaged across right occipital electrodes for a representative infant (age =12.1 

weeks) for faces presented in left hemi-field. Amplitude and latency of single-trial responses 

(blue lines) are highly variable in comparison with average ERP response (red bold line). 

trial voltage topographies in P1 and P400 response range are notably different from 

ge ERP topography.  B) Trajectory of continuous time-segment (~ 12 s) 

dimensional PC space from 128-channel EEG sensor space for the same infant.

Each point corresponds to single instantaneous voltage topography. Time-points falling in the 

stimulus time range are marked in red. C)  (Top) Topographies of infant 

Raster plots of single-trial microstate transition trains. Each dot marks 

a change in microstate at that time point. The color of dots indicates which microstate was 

transitioned into at that time point (corresponding to the colors of letters indicated below the 

Example voltage time-

courses averaged across right occipital electrodes for a representative infant (age =12.1 

trial responses 

(blue lines) are highly variable in comparison with average ERP response (red bold line).   

trial voltage topographies in P1 and P400 response range are notably different from 

segment (~ 12 s) 

channel EEG sensor space for the same infant.  

points falling in the 

Topographies of infant 

trial microstate transition trains. Each dot marks 

ch microstate was 

transitioned into at that time point (corresponding to the colors of letters indicated below the 
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microstate topographies). 100 randomly chosen trials for a representative infant are plotted 

for visibility. No clear pattern of transitions is visible.  (Bottom) Gaussian smoothed 

microstate transition rates averaged across all trials and infants (see Methods).  Red 

horizontal lines represent [5-95] % confidence interval. The absence of peak in this curve 

shows the microstate dynamics remain unperturbed. D) Schematic summary of methods used 

to gauge single-trial variability: Flyby to ERP templates (how far a trial transits from 

reference ERP-like configurations); Between-trial variability (how far are single trial 

trajectories between them); and, Within-trial speed (how fast EEG topographies evolve along 

each trial). 

 

3.   Single-trial flybys to classic ERP components are modulated by age and 

hemisphere 

Despite erratic trajectories, grand average ERP topographies are reproducible across 

studies suggesting they capture stimulus-relevant information. Hence, we analyzed how 

individual trials approach (or flyby) these “landmark events”. We defined the grand averaged 

P1 and P400 topographies (separately for infants and adults) as “ERP-templates” (Fig S3) 

and examined the distributions of the latencies and distances of the single-trial flybys to these 

templates (Fig 3 and S4, see Methods). 

For all task-conditions, trials remained quite far from the ERP-templates most of the time 

(flyby distance ~0.8- 1; Pearson correlation: 0-0.2, Fig3A, FigS4A, B), in line with the 

finding that system’s trajectories fill the entire configuration space. However, individual trial 

trajectories slightly and significantly reduced their distance to the ERP-templates around 

specific latencies (Distance drops in Fig. 3A and S4A respectively for right and left faces, 

emphasized by red vertical lines), in line with the intuition that stimulus induces small 

trajectory inflections independently from where exactly the system is transiting. For lateral 

faces, trials approached the P1-template around [150, 350] ms; and the P400-template about 

[400,600] ms post-stimulus onset. For the central faces, closest approach to ERP templates 

occurred, within the broad ranges between -150 and 150 ms for the P1 template, and for the 

P400 template between 350 and 550 ms (Fig S4 B). 

To quantify age-dependency of flyby latencies and latency jitters around the ERP 

components, we estimated the distribution of closest single-trial flybys for each infant and 
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adult and studied whether their medians and standard deviations were correlated with age. In 

agreement with P1 latency measures across ages in previous studies, we found that flybys to 

ERP components tended to occur at earlier latencies with increasing age. However, flybys did 

not necessarily become more accurate, i.e. with a more precise timing at each trial. On the 

contrary, for some of the ERP components, the jitter in the timing at which the closest flybys 

occurs (dissimilarity from reference ERP component topography) increased with age, 

suggesting that trajectory variability is not always a “bug” to correct for, but a feature 

growing through development. 

More specifically, for flyby latencies: The median of the flyby latencies to both the P1- 

and P400-templates significantly decreased with infant’s age for the faces presented on the 

right hemifield (P1: r= -0.39, p<0.006 from ~280 ms at 5 weeks to ~200 ms at 24 weeks; 

P400: r= -0.38, p<0.009 from ~600 ms to ~500 ms, Fig. 3A). This decreasing trend was 

confirmed in adults whose median flyby latencies were much faster than in infants (inset box-

plots in Fig.3B: P1 median latencies across adults: 96 ± 13 ms and P400 median latencies: 

312 ± 20 ms for right faces). In each infant, the dispersion around the median latency value 

was ~40-60ms. Age also affected this dispersion but differently for the P1 (Fig 3B left bottom 

panel, r = 0.45, p<0.002) and P400 component (Fig 3B, right bottom panel, r = -0.26, 

p<0.055). There was an increase with age in the spread of the flyby latency distribution, 

suggesting that the timing of approach to the P1-template became less accurate, or more 

flexible, through early development. It contrasted with the inverse and moderate trend for the 

P400-flybys. Interestingly, adults also showed a ~40-60 ms jitter across trials, but similar for 

the two components (Figure 3 B box plots: P1-latency jitters: 54 ± 4ms and P400 latency 

jitters: 57 ± 3 ms for right faces). 

For left and central faces, we observed no effect of age on these measures in infants (Fig 

S3 C, D top panels). The effect of age for the right faces (processed by the left-hemisphere) 

was related to an initial delay in flyby latencies in the youngest infants. Thus, the catch-up 

relatively to the more mature right hemisphere during this period is congruent with several 

results showing a slower maturation of the left hemisphere compared to right (Chiron et al., 

1997). Similar catch-up of the maturation of the left dorsal linguistic pathway relative to the 

right has also been described during the first semester post-term (Leroy et al, 2011) 

Similar age-effect analyses can be performed on the flyby distance to the template for each 

trial (flyby distance amplitude distributions: Fig 3C, Supp. Fig S4 E, F). No age-effect was 
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significant for P1 flybys. For P400 flybys, the mean distances reduced with age in the case of 

left, right and central faces, suggesting that on an average, trials for older infants passed 

closer to P400-template than those for young infants. (r = -0.37, p<0.02, r=-0.52, p<0.006, r = 

-0.26, p <0.06 for left, right and central faces respectively). For P400-flybys, these trends 

continued well into the adulthood, i.e., trials passed on average much closer to the template 

(Fig 3C, right box insets and Fig S4 E, F box-plots and table 1). Finally, the variability of the 

flyby distances either remained unchanged, for the P1-template; or even grew with age, for 

the P400-template (age correlation for infants, left faces: r = 0.42, p<0.003; right faces: r = 

0.34, p<0.02 and central faces: r = 0.53, p<0.007, with the similar trend continuing for 

adults).  

To summarize, single-trial event-related dynamics significantly changed with age. ERP 

flybys became in general more fluid (faster and relatively more variable in timing or distance 

of approach). The observed developmental changes to ERP flybys were specific for the 

considered ERP component (P1 or P400) and, in the case of infants, for the hemisphere 

probed by the lateralized stimulus (indicating thus a possible influence of selective 

connectivity maturation). In all cases and at all ages, single trial trajectories remained rather 

distant from ERP templates even at the moments of closest fly-by (with correlation distances 

larger than ~0.8, not so far away the unit value which would correspond to complete lack of 

correlation), compatibly with the large variability observed earlier (c.f. Fig. 2). 
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Fig 3. Maturation of single-trial Flyby statistics for faces presented on the right hemi

field. A) Average flyby distances to P1 (left) 

for each infant. Each row represents a single infant, sorted in ascending order according to 

 

trial Flyby statistics for faces presented on the right hemi

Average flyby distances to P1 (left) and P400 (right) ERP templates (shown on top) 

for each infant. Each row represents a single infant, sorted in ascending order according to 

trial Flyby statistics for faces presented on the right hemi-

and P400 (right) ERP templates (shown on top) 

for each infant. Each row represents a single infant, sorted in ascending order according to 
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their age (from youngest = 5.6 weeks to oldest=23.1 weeks). Red vertical lines emphasize the 

reduction in average flyby distance from ~150-350 ms for P1 and ~400-600ms for P400 

templates. The slopes of red lines suggest that latency of closest distance reduces with age. B) 

Median flyby latency significantly decreased with age for both P1 (top left) and P400-flyby 

(top right panel). At the same time, S.D. of single-trial flyby latencies significantly increased 

with age for P1 (bottom left panel) and showed a negative trend with age for P400 template 

(bottom right panel). Inset box-plots represent the same statistics for adults. C) Average flyby 

distances to P1 template showed non-significant increase with age (top left panel), while the 

same for P400 template decreased with age (top right panel).  Boxplots indicate that once 

again adults followed the same trends. Shaded areas indicate 95% confidence interval for the 

slope of the least square fitting line, all r-values corrected for multiple comparisons with 1-

tailed permutation t-test). 

4. Between-trial variability quenching (VQ) after stimulus presentation 

Irrespective of their approach to the templates, trials can remain far or close to each other 

at any point. Hence, we investigated between-trial variability. Again we found that 

trajectories remained highly dissimilar, as denoted by an average correlation distance of 

0.95±0.12 between the time-aligned trajectories of different trials. Although large in absolute 

terms, the between trials distance relatively reduced at specific peri-stimulus times. We 

observed a significant post-stimulus decrease in the between trial variability for all task-

conditions and for both infants and adults (Blue plots in Fig 4A-B, sup Fig S5). For infants, 

between-trial variability significantly remained ~1-2.5 standard deviations lower than the 

average baseline variability ~200-700 ms post-stimulus (p < 0.001 for left, right faces and 

p<0.003 for the central faces), while in adults, significant Variability Quenching (VQ) 

occurred ~150-500 ms (p<0.005), similar to the duration previously reported for variability 

quenching in adults (Schurger et al., 2015). 
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Fig4 Maturation of Between-trial variability and its relation to Flyby distances.

A) Group average between-trial correlation distance (blue curves, Z

top panel) and 16-24 weeks (N= 13, bottom panel) old infants plotted

flyby distances (Z-scored) to P1 (red line) and P400 templates (orange line), for the lateral faces.

Significant reduction in between-trial variability coincides with the closest

12wo infants (top panel), and with the P400

central faces, significant between-

(orange line) for both groups.  Shaded areas indicate standard error to the me

trial variability and its relation to Flyby distances.  

trial correlation distance (blue curves, Z-scored) for 5-12 weeks (N= 14, 

24 weeks (N= 13, bottom panel) old infants plotted together with grand

scored) to P1 (red line) and P400 templates (orange line), for the lateral faces.

trial variability coincides with the closest-flyby to P1-

nel), and with the P400-template for 16-24wo infants (bottom panel).

-trial variability (blue line) reduction coincides with P400

Shaded areas indicate standard error to the mean.  C) Synoptic view, 

12 weeks (N= 14, 

together with grand-average 

scored) to P1 (red line) and P400 templates (orange line), for the lateral faces.  

-template for 5-

infants (bottom panel).  B) For 

trial variability (blue line) reduction coincides with P400-flyby 

Synoptic view, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.03.07.434162doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.07.434162
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

across conditions and age groups, of the time ranges when between-trial variability (blue), between-

trial circular variance of phases of alpha oscillations (green) and flyby distance (red /orange) are 

significantly reduced (Horizontal bars indicate timepoints of significant reductions from mean; 

p<0.05, corrected using cluster-based permutation t-test). Boxes highlight correspondence between 

clusters of between-trial variability and P1/P400 flyby distance reductions in different conditions.16-

24 wo infants qualitatively look like adults. 5-12 wo infants when presented with central faces also 

quench variability at P400. In all conditions, Circular Variance (CV) reduction precedes variability 

quenching (VQ) events. D) Between-trial variability during P1-flyby increases with age (top) while 

the same during P400-flyby decreases with age for lateral but not central faces. (All r-values corrected 

for multiple comparison with one-tailed permutation test). Shaded area indicates 95 % confidence 

interval for the slope estimation of the least square fitting.  Boxplots show between-trial variability 

distributions for adults. 

 

Between-trial VQ is not automatically induced by ERP component flybys: The latency 

of the largest post-stimulus VQ (lowest variability) significantly differed across age-groups 

and task conditions. Strikingly, for lateralized faces, the latency of the significant VQ 

coincided with the latency of the closest P1-flyby in the youngest infants (First trimester: 5-

12 week-olds, N=14) whereas in the older infants (Second Trimester: 16-24 weeks, N=13), 

the moments of VQ co-occurred with the P400-flyby (Fig 4A). In other words, in younger 

infants, the bundle of single trial trajectories remained on an average more compact when 

flying by the P1-template (significant VQ times: 204-352 ms, window of closest P1-flyby: 

175-400 ms). By contrast, in older infants, trials remained the closest to each other when 

passing near the P400-template (significant VQ: 432 – 616 ms, closest P400-flyby: 432-620 

ms). 

Importantly, the absence of between-trial VQ did not imply absence of a flyby. Indeed, in 

first-trimester infants, trials still had a marked P400-flyby even when there was no between-

trial VQ at the corresponding latency. Analogously, there was still a P1-flyby for second-

trimester infants despite the lack of a P1 VQ. These effects were consistent for both left and 

right face presentation (Fig S5A-B). Thus, flying by an ERP component appears to be a 

necessary but not a sufficient condition for between-trial VQ. In adults too, a single window 

of VQ coincided with the P400-flyby, similar to the second-trimester infants’ pattern (Fig 4C, 

Fig S5 C, and D). However, the VQ was much larger in adults than in infants, trials 
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remaining significantly close to each other during the entire duration of the P400-flyby 

(significant VQ: 140 – 460 ms, P400-Flyby: 120-528 ms). 

Between-trials variability quenching depends on both stimulus configuration and 

age: The temporal shift of the between-trial VQ, from P1 to P400 gives the first proof of a 

change in the ongoing dynamics occurring over the first semester of life. However, such a 

shift may also be due to the structural changes in the peripheral visual pathway and visual 

cortex V1 which are known to reach a milestone around 12 weeks post-term (McCulloch, 

Orbach and Skarf, 1999; Braddick and Atkinson, 2011; Adibpour, Dubois and Dehaene-

Lambertz, 2018). To investigate the possible origin of such a shift, we repeated the same 

analysis in the subset of infants who were also presented with central faces (Fig 4B). We 

found that the VQ at P1 but not P400-flyby significantly differed in the same infant for the 

two different face stimuli configurations (Wilcoxon signed rank (z)=58, p<0.025 for P1, 

z=123,p>0.92 for P400). Interestingly, when presenting central face stimuli, the 5-12 weeks 

infants now showed a significant VQ at the P400-flybys, similarly to the response to lateral 

faces observed in 16-24 weeks infants. The absence of VQ at P400 for lateral faces in 5-12 

weeks infants thus, does not reflect uniquely a poor maturation of connection pathways. Fig 

4C summarizes the time-ranges of between-trials variability quenching and P1/P400-flybys 

across all experimental conditions and age groups (p<0.05, all analyses were corrected for 

multiple comparison and temporal independence using one-sided cluster-based permutation t-

test). 

Age affected not only the latency but also the strength of VQ events, in similar directions 

for both stimulus configurations. Quenching strength decreased with age within the P1-range 

and increased within the P-400 range (Figure 4D), with both these trends confirming the 

observed inter-group differences. Specifically, we found a linear increase of the strength of 

between-trials variability quenching with age at the P400-flyby latency for lateral faces (Fig 

4D bottom panel, r = -0.43, p <0.003 for left faces; r = -0.30, p <0.03 for right faces; but not 

for central faces, r = -0.13, p <0.3). Table 2 and the box plots in Figure 4D show that adult 

values further continue the trends observed in infancy. 

Between-trials variability quenching is not equivalent to alpha phase reset dynamics: 

EEG responses have oscillatory components, with a spectral resonance in the alpha band (9-

12 Hz) which was relatively prominent in adult subjects, but way less marked in infants (Fig. 

S6A). To investigate the relation between VQ and reconfiguration of alpha oscillatory 
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dynamics, we narrow-band filtered the EEG signals in a band of interest and extracted phase 

and amplitude of the oscillations through Hilbert transform (see Methods). We then 

quantified the time-courses of trial-averaged alpha power modulation (Fig. S6B, top) as well 

as the circular variance (CV) of alpha phases across time-aligned trials (Fig. S6B, middle). 

Average alpha power was not significantly modulated in the peri-stimulus duration in infants, 

it was only slightly reduced in adults (~0.8 S.D. below the baseline) and for infants, this 

reduction was never significant at the level of global topography averages. The effect of 

stimulus presentation was slightly more pronounced on the phase of alpha oscillations. The 

measured CV of alpha phase across stimulus-aligned trials denoted a poor phase-alignment 

between-trial, with an average value of ~0.80 (± 0.06) in infants and ~0.93 (± 0.02) in adults, 

close to the unit value that would correspond to a complete asynchrony of phases across 

trials. Face presentation did not induce a complete reset of ongoing oscillations, once again in 

line with the large variability in Fig. 2. Nevertheless, the dynamics of alpha phases, as with 

that of the EEG topographies, also experienced some bias: the CV significantly dropped in 

specific time-ranges following the stimulus, to values ~0.4 S.D. below its mean for infants 

and ~1.5 S.D. below its mean for adults (Fig S6B, middle panel).  

Remarkably, CV drop and VQ had partially dissociated spatiotemporal dynamics in 

infants. In most infant subjects, drops of alpha phase CV tended to precede VQ, as revealed 

by a peak at a negative latency of the cross-correlogram between the time-courses of VQ and 

CV (Fig. S6D). Moreover, in infants, significant VQ could be observed for longer times, even 

after CV was restored to baseline values due to loss of phase alignment between trials (Fig 

4C). Furthermore, the spatial extension of the CV drop and VQ phenomena were generally 

different, as indicated by the time-courses of the numbers of channels showing significant CV 

drop or significant VQ (Fig S6C). In infants, the channels affected by VQ extend way beyond 

the range of significant CV drop (see topographies in Fig S6C). For instance, for old infants 

at the peak of VQ, ~35% of EEG sites showed significant between-trial variability reduction 

as compared to ~10% channels that showed CV reduction. Only for adults, the time ranges 

and the spatial extension of VQ and CV drop completely overlapped. 

These results collectively prove the existence of a rich temporal structure in the dynamics 

of between-trials variability, qualitatively and quantitatively maturing over the first semester 

post-term birth. Furthermore, in the same infants, its temporal structure can be modulated 

depending on the task at hand. For infants, alpha phase reset and VQ are intertwined but 
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distinct events: substantial VQ can exist even in the absence of an increased phase alignment 

between trials as made clear by analyses of variability dynamics. However, alpha phase reset 

might trigger VQ as, in infants, more localized and shorter-lasting CV drops precede more 

broadly extended and longer lasting VQ events. 

5. Maturation of Within-trial Variability and its Relation to Alpha Phase Reset 

Our third and last approach was the analysis of within-trial variability. To track within-

trial variability, we quantified the amount of variation in the topography of EEG activation 

from one time-point to the next. This corresponds to the distance traveled in the space of 

possible activity topographies over a unit time or, equivalently, to the speed of motion in this 

high-dimensional space (see Methods). With this approach, topographies of activation which 

are stable over time and fluctuate very little from one moment to the next will yield 

instantaneous within-trial variability close to zero. Conversely, abrupt changes of 

topographies occurring at specific instants – e.g. eventual switching between microstates 

(Michel & Koenig, 2018; cf. Figs. 2C and S2) – would map to sudden increases of the 

instantaneous within-trial speed. Again, analogously to between-trial variability analyses, we 

related the changes of within-trial variability to the dynamics of alpha oscillations (Fig 5, S7). 
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Fig 5 Maturation of Within-trial Speed and its relation to alpha oscillations. 

around P1 and P400 flyby events 

speed (i.e. correlation distance between

ms time-window around the closest 5 % flyby distances to the respective template. 

averaged trial speed profiles around P1 and P400 flybys for different age

speed difference existed between 5

black horizontal bars, cluster-

landscapes that may underlie the speed profiles at P1 and P400 templates (solid line for 5

wo and dotted line for 16-24 wo infants respectively). 

interpreted as if motion along trajectories 

energy landscape (similar to rolling of a ball across hills and valleys on a sur

averaged flyby triggered instantaneous phase of alpha oscillations for each channel, separated 

by age-groups. Y-axis represents channels ordered according to their nomenclature. 

Topographies were derived by plotting instantaneous phase on t

peak before the closest flyby for each age group.

trial Speed and its relation to alpha oscillations. A)

flyby events for each subject was extracted by considering within

speed (i.e. correlation distance between topographies from one time-point and next) in 800 

window around the closest 5 % flyby distances to the respective template. 

averaged trial speed profiles around P1 and P400 flybys for different age-groups. Significant 

sted between 5-12 weeks and 16-24 weeks old infants as indicated by 

-based permutation t-test, p<0.05) C) Schematic energy 

landscapes that may underlie the speed profiles at P1 and P400 templates (solid line for 5

24 wo infants respectively). The observed speed profiles could b

interpreted as if motion along trajectories was driven by sampling of a structured potential 

rolling of a ball across hills and valleys on a surface). 

lyby triggered instantaneous phase of alpha oscillations for each channel, separated 

axis represents channels ordered according to their nomenclature. 

Topographies were derived by plotting instantaneous phase on the scalp surface at the first 

flyby for each age group. E) Circular Variance (CV) of alpha phases 

A) Trial speed 

for each subject was extracted by considering within-trial 

point and next) in 800 

window around the closest 5 % flyby distances to the respective template. B) Group 

groups. Significant 

24 weeks old infants as indicated by 

Schematic energy 

landscapes that may underlie the speed profiles at P1 and P400 templates (solid line for 5-12 

The observed speed profiles could be 

was driven by sampling of a structured potential 

face). D) Group 

lyby triggered instantaneous phase of alpha oscillations for each channel, separated 

axis represents channels ordered according to their nomenclature. 

he scalp surface at the first 
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across closest flybys. As an effect of phase-reset preceding fly-by, CV significantly reduced 

for all age groups ~ [-200 200]ms surrounding the closest flyby. Shaded bars represent 

S.E.M. for each group. 

Absolute within-trial variability increases with age: We first measured average within-

trial variability, irrespective of the time relative to stimulus presentation. We found that time-

averaged absolute within-trial variability significantly increased with age for all task 

conditions (Fig S7A (left panel) for lateral faces: r= 0.38, p<0.01; (right panel) for central 

faces: r=0.56, p<0.009). Once again, this trend continued into adulthood, with a within-trial 

speed (or variability) significantly higher in adults compared to infants (box plot in Fig S7A, 

H= 24.33, p<10-5, Kruskal-Wallis test). Thus, development boosted speed of exploration 

along neural trajectories. 

We also noted, however, that within-trial speed was not homogeneous in time but had a 

heavy-tailed distribution of instantaneous values for both infants and adults (Fig S7 B), with 

extreme values possibly reflecting long jumps due to microstate switching events. Given this 

heterogeneity of speed modulation in time, we then moved to study whether faster or slower 

speeds systematically associated to specific neural configurations being visited, notably at 

ERP component fly-bys. 

Speed profiles around ERP flybys are structured and modulated by age: To 

understand how within-trial speed is specifically modulated during the approach to known 

evoked ERP components, we first performed flyby-triggered averages of within trial speed of 

topography transitions from one moment to the next,  by pulling together all individual events 

of closest flyby to ERP templates (possibly multiple events per trial) and averaging within-

trial speed in an 800-ms window around these events (peri-flyby speed profiles, Fig 5A, also 

see Methods). Fig 5B shows average within-trial speed in the vicinity of respectively P1 and 

P400-flybys for lateral faces (Fig S7 C for central faces).  In these profiles, peaks and troughs 

of within-trial speed are clearly visible, distributed symmetrically around the flyby time, and 

tend to get more prominent with age. Irrespective of their absolute within-trial speed, on an 

average, trials transiently slowed down around both P1 and P400-flybys, for all conditions 

and age-groups (always significantly, except for P1 flyby in adults). Slowing down was 

larger around P400-flyby than for P1 (condition wise signed rank test: H=30, p<0.001, H=55, 

p<10^-5 and H =1.0, p<0.0005 for infant central, lateral, and adult lateral faces respectively). 

As shown by Fig. S7 D-F (left panels), speed of exploration nearby P1 flybys increased with 
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age, significantly for lateral faces; but not for central faces (age correlation: r=0.47, p<0.001 

for left, r=0.35, p<0.02 for right and r=0.1, p>0.7 for central faces). This increase was due to 

the emergence of more marked positive acceleration, preceding and following the time of 

closest flyby. On the contrary, speed of exploration decreased with age nearby P400 flybys, 

due to a progressively marked deceleration, for both lateral and central faces (respectively, 

Fig S7 D-E right panels, age correlation: r= -0.45,p<0.001 for left, r=-0.45,p<0.004 for right 

and r = -0.33, p<0.07 for central faces).  

These characteristic speed profiles are reminiscent of the accelerations and decelerations 

that a physical ball would experience when rolling on a non-flat surface, accelerating while 

descending into a valley and decelerating while ascending out of the valley due to gravity 

(see illustration in Fig. 5C). It is thus tempting to interpret these speed profiles as if reflecting 

the sampling of a structured landscape of effective free energy (Landau, Lifshitz and 

Pitaevskii, 1984). In this statistical physics-like view, neural trajectories would unroll under 

the influence of force fields generated by an effective energy landscape (Gu et al., 2018). 

These forces act as biases on the system's trajectory in the proximity of critical points 

associated to ERP components. Through development, this energy landscape gets 

progressively more sculpted and the neural trajectories can be thought of as being more 

actively controlled.  (see Discussion). 

ERP flybys are associated with transient phase reset but not amplitude modulation 

events:  

As in the case of between-trial variability, modulations of single-trial oscillatory dynamics 

may be an important contribution to the observed variations of the within-trial speed. We thus 

computed flyby triggered averages of the instantaneous phase of ongoing alpha oscillations at 

all channels (Fig 5D). In the surrounding of the closest flyby time, oscillatory patterns can be 

clearly distinguished, suggesting that flyby events tend to occur at similar instantaneous alpha 

phase. These analyses thus provide a strong evidence for phase reset in the surrounding of the 

flybys: (i) for all age groups; and, (ii) with a distinct global topography for each ERP 

component. This phase alignment between the oscillations at different ERP flybys begins ~ 

200 ms before the flyby event and ends around the same time after the flyby. These times 

correspond to the alpha oscillatory period with a variable decorrelation time (hence the 

oscillatory pattern fades away farther away from the closest flyby time in Fig. 5D,). Due to 

this transient phase alignment of alpha oscillations to ERP component flybys, flyby triggered 
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Circular Variance (CV) across single-flyby events dropped significantly (Figure 5 E). 

However, the profile of circular variance drop was simpler than the profiles of within-trial 

speed variation and showed just a single minimum at flyby time, without peri-stimulus 

increases (unlike the speed profiles). 

 Importantly, within-trial speed modulations were paralleled by phase modulations but not 

as clearly by amplitude modulations. Considering the amplitude of the signal alpha 

component, alpha power surrounding ERP flybys did not significantly deviate from baseline 

values for any of the groups (Fig.S8A). Beyond analyses of band-restricted oscillatory 

dynamics, we also considered more general modulations of broadband signal-to-noise ratio, 

by quantifying the L2-norm of the topography of activation to track average activity levels at 

all channels. Averages of L2-norm of activation over stimulus-aligned trials did not show any 

significant upward or downward modulation in any time range following the stimulus (Fig 

S8B, neither for lateral faces (top panel) , nor for central faces (bottom panel)). This 

corresponds to the fact that strong voltage activity can be found at any time within individual 

trials, due to ongoing fluctuations (cf. Figure 2A-C) and are not restricted to the classic ERP 

time-ranges. As shown by Fig. S8 C, we again found flat profiles of L2-norm change around 

flyby events for most combinations of age and stimulus type (the only exception being a 

significant increase at P400-flyby, limited to the adult group).  

To summarize, we observed characteristic accelerations and decelerations of speed along 

single-trial neural trajectories in the vicinity of closest flybys to ERP components. These 

speed profiles were suggestive of the transiently attracting and repelling forces. They were 

associated with brief phase-coherent events phase-locked to ERP flybys and could be clearly 

detected since early infancy, despite the absence of systematic modulations of alpha or 

broadband power. Average speed increased with age, but transient decelerations at flyby also 

became more marked. Together, these findings hint at neural trajectories sampling an internal 

landscape of attracting configurations, with an improved sampling capacity (as the within-

trial variability increases) and a more marked structuring of this landscape, as development 

progresses. 
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DISCUSSION 

In this study, we demonstrate the existence of a rich temporal organization of the neural 

responses to stimulus in adults and infants that goes beyond the mean response captured by 

ERPs. We propose the concept of Event-Related Variability (ERV) to refer to the temporally 

structured dynamics of the response fluctuations. To characterize ERV, we focused on the 

complementary aspects of: single-trial (dis-)similarity to known ERP components (ERP flyby 

analyses, Fig. 2); reproducibility of response trajectories across different trials (between-trials 

variability analyses, Fig. 3); and speed of reconfiguration of the induced activity topographies 

along individual trials (within-trial speed analyses, Fig. 4). We furthermore put these three 

aspects in relation with the dynamics of ongoing alpha oscillations to study the contribution 

of phase reset to ERP flybys and variability quenching. Our results confirm that, for both 

infants and adults, the trial variability remains very large (absolute correlation distances of 

order ~0.95, hence Pearson correlation coefficient ~ 0.05) and that stimulus presentation does 

not suppress ongoing fluctuations (probabilities of transition between microstates were not 

significantly affected). Yet this variability is significantly modulated by face presentation in a 

non-trivial way, as exposed by the ERP flybys and variability quenching. 

 

In all conditions, a period of decreased variability across trial trajectories (variability 

quenching) is detected after stimulus presentation, confirming many previous reports in 

adults (Schurger et al., 2010, 2015; Arazi, Censor and Dinstein, 2017; Ito et al., 2020). 

Beyond these previous studies, we observe that the time-range of between-trial variability 

quenching evolves through age and that, at a given age, is strongly and qualitatively modified 

by the task at hand. Furthermore, we observe that variability quenching always occurs in time 

ranges in which trials approach ERP landmark topographies (ERPs flybys). The converse 

however is not true. This establishes ERP flybys and between-trial variability quenching as 

partly independent phenomena. The fact that some flybys co-occur with a between-trial 

variability quenching and some others not, suggest that there are different ways to approach 

an ERP component. Trials can approach a specific activity configuration similar to the target 

ERP components in a rather unconstrained fashion and hence with no change of variability 

between trials. On the contrary, trials can follow a specific path of approach more faithfully, 

producing a quenching of the between-trial variability. 
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Variability quenching (VQ) is also partially independent of the phase reset of ongoing 

alpha oscillations. The alpha phases were generally poorly synchronized across trials (circular 

variance between phases: ~0.8 even at the strongest quenching). Nonetheless a slight 

decrease in circular variance was observed preceding VQ in infants. Importantly, variability 

quenching affected more extended sets of channels than the ones at which a significant phase 

reset was detected, especially in older infants. Furthermore, variability quenching lasted 

longer than the periods of phase alignment between trials following the phase reset. At the 

level of within-trial variability, the rich structure of within-trial speed modulations was not 

explained by simple variations in alpha oscillatory phase and amplitude (or by signal-to-noise 

ratio). Thus, reset of oscillatory dynamics may be only one facet of the complex variability 

modulations that system’s response trajectories experience in response to a stimulus. 

 

Might variability quenching denote top-down processes?  

Various elements suggest that quenching events are not a mere automatic consequence of 

stimulus presentation, but might signal a more controlled system’s trajectory, possibly 

implementing a form of top-down regulation: First, quenching could occur late after the 

stimulus onset, for example ~400-600 ms, i.e. in P400 time-window in older infants. Second, 

age did not simply extend the time-window of quenching but shifted its target, from P1 to 

P400, and third, even at a given age, the quenching dynamics was qualitatively modified by 

changes in the stimulus configuration. First-trimester infants showed P1-component flybys 

for both central and lateral faces, but variability quenching at P1 flyby occurred only for 

lateralized faces, i.e. for the most challenging task. Indeed, lateralized faces were much more 

difficult to perceive because they were presented briefly at a random interval and in a 

competition with the central attractor that helped avoid infants’ saccades. Moreover, the slow 

maturation of parafovea compared to fovea (Allen, Tyler and Norcia, 1996) made this brief 

lateral stimulus even less discernible for the younger infants. We hypothesize that variability 

quenching events through top-down control processes helped the infants’ guide their attention 

in the absence of a strong bottom-up signal. For e.g. younger infants might try to shift their 

attention towards the lateralized stimuli in order to “detect” it, without recognizing a specific 

face, or even extracting facial features, while the older infants and adults might shift their 

attention to the periphery only after detecting the stimulus, which then allows them to guess / 

recognize the face. This could explain the shift of variability quenching from the P1 

component (related merely to the detection of the visual input) to the P400 ERP component 

that is related to the face processing. Similarly, when the face was centrally presented, 
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younger infants could focus on the face identity, the detection part being plainly evident. 

From this interpretation, a quenching event (that indicates a transient constraining of the 

system’s dynamics to a specific trajectory) might reflect more intensive information 

processing than the “hit and run” visit to the P1-component observed in older participants and 

in the case of an easily perceived visual event (central faces) for younger participants. The 

existence of top-down regulatory mechanisms in infants has been confirmed experimentally 

(Emberson et al., 2015; Kabdebon& Dehaene-Lambertz, 2019; Kouider et al., 2015). 

Notably, the shift of focus for variability quenching, from P1 to P400 at ~12 weeks (for 

lateral faces) corresponds to the first milestone in visual development when several peripheral 

structures reach maturity (e.g. lens, fovea) and myelination of the optical fibers and 

maturation of V1 reach a plateau after a period of rapid change. It translates in the 

convergence to adult values of the P1 latency for centrally presented stimuli around 12 weeks 

(Dubois et al., 2008), while peripheral vision matures more slowly(Allen, Tyler and Norcia, 

1996). Feed-back connectivity is also progressively restructured after term-birth, passing 

from disperse growth to selective pruning (Kennedy et al., 2007) which may allow for more 

effective attention control or predictive influences.  

 

We note, finally, that, in adults, modulations of alpha oscillatory activity have been 

interpreted too as signatures of top-down control and attention mechanisms (Jensen, 

Bonnefond and VanRullen, 2012; Klimesch, 2012), although with some controversy on the 

relative contribution of power and phase changes (Van Diepen et al., 2015). Here we found 

the evidence for phase reset preceding ERP component flybys but not for consistent power 

changes (Fig. S6 B and S8 A). Modulations of alpha oscillatory dynamics and more general 

reductions of trajectory variability (robustly detected at all ages) co-occurred in adults 

suggesting a potential equivalence (Daniel et al., 2019). As we have seen, however, in 

infants, the two phenomena are partly decoupled (cf. again Figs. 4 C and S6 C). Thus, the 

study of an early infancy developmental window provides a unique opportunity to 

disentangle two possible mechanisms that could underlie attention modulations: on one side, 

timed and selective inhibition, provided by alpha oscillations reconfiguration (Foxe and 

Snyder, 2011); and, on the other, reduced noise (Arazi, Yeshurun and Dinstein, 2019) and 

controlled selection of state-specific trajectories (Baria, Maniscalco and He, 2017; He, 2018). 

In future, task difficulty and information processing load should be parametrically adjusted to 

investigate their respective influence on ERV dynamics and its coupling to modulations of 

alpha oscillatory activity, from early infancy to adulthood. 
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Within-Trial Variability Modulation: Beyond the common focus on modulations of 

variability between trials, we emphasized variability modulation events taking place within 

individual trials. We confirmed previous results obtained for adults (Schurger et al., 2015) 

and extended them to infants. If a between-trial variability quenching event denotes that the 

flow of system’s trajectories is restrained to a specific manifold when reaching and leaving an 

ERP component, the phenomenon of within-trial slowing-down suggests that the flow of 

each of the individual trajectories on this manifold characteristically decelerates when the 

system approaches certain landmarks (ERP component flyby). This is important, because 

perception and cognition happen in real time (without waiting for multiple stimulus 

presentations before perceiving a face). Therefore, instantaneous modulations of response 

variability can be instrumental only if they occur within individual trials. The slight slowing-

down of individual trials near P1- and, in a particularly marked way, P400-flybys, correspond 

to the system trajectories lingering in an orbit around the corresponding ERP template for a 

short time. Such transient restriction in the system’s fluctuations –or even the boosted speed 

when entering or leaving the orbit, as for P1 flybys might be detected, e.g., by an integrator 

neuron –serving as a tempotron readout (Gütig&Sompolinsky, 2006)– to signal that a given 

stage in cognitive processing has been reached and thus initiate the next processing step in a 

sequence (Zylberberg et al., 2011). These speed modulation profiles can remain well 

identifiable by the system, despite the large variability of spatial topographies at ERP flybys. 

Combined together, our results suggest that more than the current position of the system 

in its configuration space, ERPs are marked by “how” the system is flowing through and 

away from its current position. The evolution of the system seems far from being at a stable 

attractor. The fact that dynamics is dominated by structured fluctuations make such a system 

compliant with reservoir computing systems (Maass, Natschläger and Markram, 2002), in 

which intrinsic chaotic fluctuations are only transiently reduced by the applied inputs and are 

actually needed to boost learning capabilities.  

 

Mechanisms underlying variability modulations and their possible functional relevance:  

The question remains as to what mechanisms could be responsible for the emergence of such 

a structured ERV components. This question has been explored in some depth for the 

quenching of firing rate variability in neuronal population responses to a stimulus 

(Churchland, Yu, et al., 2010; Fairhall, 2019), where mechanisms such as attractor 

stabilization (Litwin-Kumar and Doiron, 2012), chaos suppression (Rajan, Abbott and 
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Sompolinsky, 2010) or “supra-linear stabilization” (Hennequin et al., 2018) have been 

proposed. Large-scale computational efforts have demonstrated that such microscopic 

properties could indeed be an ingredient for the macroscopic variability quenching(Ponce-

Alvarez et al., 2015) which are sampling a more global activity than the neural firing 

recordings reviewed by Churchland et al.  Contrarily, some studies have suggested that 

macroscopic quenching could be due to the variations in the baseline and/or the phase of 

ongoing alpha oscillations  (Dinstein, Heeger and Behrmann, 2015; Daniel et al., 2019). 

These views are akin in spirit to earlier and more recent proposals that oscillatory phase and 

amplitude modulations are responsible for the generation of ERP components and their trial-

to-trial fluctuations (Hanslmayr et al., 2007). Here we have found indeed that phase reset 

events tend to precede the detected between-trial variability quenching events (Fig. 4C, Fig 

S6). However, variability quenching can persist longer even after phase reset and the return to 

baseline levels of circular variance of alpha phases across trials. This means that neural 

response trajectories keep being restrained to a common manifold even when ongoing 

oscillations are not anymore aligned in phase, due to spontaneous decorrelation. A more 

general form of trajectory control may thus be acting, and alpha phase reset could be an early 

component of the implied control mechanisms, if not their causal trigger (as phase reset 

seems to precede quenching), or, alternatively, just an epiphenomenal manifestation of them. 

 

Moreover, the characteristic kinematics of system’s evolution was observed here as neural 

trajectories approach ERP components. Such type of kinematics and effective landscapes 

may naturally emerge because of the non-linear dynamics of multi-scale neural circuits, self-

organizing into structured flows on low-dimensional manifolds (Pillai and Jirsa, 2017). The 

occurrence of coherent oscillations and phase reset dynamics at ERP flyby (Fig 5D) would 

not be incompatible with a structured internal landscape of the attracting states being 

sampled. Indeed, nonlinear oscillators can respond with endogenously-generated phase shifts 

to external forces (Acebrón et al., 2005; Kirst, Timme and Battaglia, 2016), and the effects of 

approaching a dynamical critical point at ERP flyby can be conceptualized as forces acting on 

the (oscillating) system’s trajectory. Thus, phase reset events could be precisely caused by the 

curvature of the internal effective energy landscape being sampled. Note that, if the observed 

speed profiles had to be explained as due to motion in a force field, the free energy minimum 

of this landscape would then be located at the first maximum of speed, which precedes the 

time of closest passage near ERP templates by ~50-100ms. Thus, ERP-like configurations, 
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associated to the lowest speed, would not be the “attractors” but rather signal the moment of 

crossing from one critical point to the next.  

 

In this framework, changes of ERV dynamics through development and learning would be 

accounted for by the growth of more marked barriers and sinks in the effective energy 

landscape or, equivalently, bifurcations causing the birth, fusion or death of different 

attractors or saddle points in the system’s high dimensional phase space. Such conjectures 

may be potentially validated by estimating the morphology of an effective free energy 

landscape surrounding the ERP templates (Ezaki et al., 2017). Similar to previous studies, we 

find here also the increase of overall within-trial variability along early development (Fig. S7 

A-B ) (McIntosh et al., 2010; Garrett et al., 2011). This increased structuring of the 

landscapes that shaped the brain activity may mediate the capability to learn internal 

statistical models of environment, for better inferences in perception (Berkes et al., 2011). 

 

Additional theoretical and computational investigation will be needed to disambiguate 

which of the possible scenarios is leading to the observed quenching. Indeed, different 

models may predict different statistical distributions of secondary features –such as e.g. the 

jitter in latencies from stimulus presentation (or phase reset events) to ERP component 

flybys– to compare with the empirically measured ones. Furthermore, parameters such as the 

local excitation/inhibition balance within cortical populations evolve with age 

(Hensch&Fagiolini, 2005) and the maturation of these parameters may predict different ERV 

developmental trajectories depending on the actual dynamic mechanism. To probe the 

functional relevance of ERV, a focus on an early developmental period (and, particularly, as 

early as the first trimester of life), may be once again crucial. Indeed, learning within 

functional architectures not yet fully scaffold is exceptionally fast (Dehaene-Lambertz and 

Spelke, 2015). At the same time, ERV dynamics is already rich and still evaluative and 

separable from phenomena such as alpha modulations that are dominating in adults and may 

be concealing subtler functional aspects of response variability. 

  

Methodological considerations: Our approach has methodological limitations that could be 

overcome by future developments. For instance, the extraction of ERP templates in our case 

depended on a manual inspection based on the developmental literature, but more 

sophisticated algorithms for the temporal clustering of single-trial ERP topographies (Vahid 

et al., 2020) could be used and combined with our variability analyses schemes. The 
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occurrence of large within-trial variations and, particularly, of extreme within-trial speed 

values at certain times (Fig. S7 B)– also need to be put in correspondence with the scale-free 

dynamics of microstate transitions (Van de Ville, Britz and Michel, 2010) or other 

approaches to describe spontaneous dynamics as random walks in high-dimensional state 

spaces, which also correlate speed variations with development and cognitive performance  

and are shaped by intrinsic dynamical landscapes (Hansen et al., 2015; Battaglia et al., 2020; 

Lombardo et al., 2020). Finally, linking activity to network state dynamics –what is the 

functional connectivity triggered by an ERP flyby?– may allow assessing whether exchange 

of information is dominated by bottom-up or top-down flows at different ages or ERP stages 

(Bastos et al., 2015). Note that our measures were very sensitive to age, allowing capturing 

even subtle differences between the left and right hemisphere maturational calendar. The 

ERV approach might thus be a more sensitive tool than classical ERPs to capture differences 

between experimental conditions in infant cognitive studies, but above all to explore 

neurodevelopmental disorders.  

 

Conclusion: ERPs have been an attractive description of the post-stimulus brain activity, 

described as successive steps defined by their reproducible latency and brain sources, 

allowing obtaining neural algorithms underlying cognition. However, this description was 

somewhat misleading, ignoring the ongoing activity. The framework proposed here 

encompasses both aspects. We recovered that ERP components serve as a “compass” to 

identify special dynamical points for the on-going activity sampling erratically vast volumes 

of the neural configurations space, confirming that ERPs are indeed capturing neural 

consequences of a stimulus presentation. At the same time, we also showed that they are far 

from capturing the entire activity patterns following a stimulus. We proposed the term ERV, 

as a better concept to describe the neural consequences of a stimulus. This proposal is not 

purely semantic, since it allows describing the ERP maturation in integrated manner on one 

hand and emphasizes the structured variability of the background EEG on the other. It allows 

thus speculating that the gradual change of ongoing activity might reflect the increasing 

knowledge of the environment throughout development of a structured internal landscape 

biasing neural trajectories (that, on their turn, through their volatility, can efficiently sample 

this landscape).This approach might be particularly fruitful to investigate 

neurodevelopmental disorders and their cognitive consequences. 
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MATERIALS AND METHODS 

Subjects 

Reported results included data from two cohorts. The first group of healthy full-term infants 

(N = 39, Mean age: 14.15 ± 4.79 weeks, age range: 5.6 to 23.6 weeks,  11 girls) was studied 

elsewhere to investigate the functional maturation of visual Event Related Potentials (ERP) to 

lateralized faces (Adibpour, Dubois and Dehaene-Lambertz, 2018). A subset of these infants 

(N = 22, Mean age: 14 ± 4.96 weeks, age range: 5.6-22 weeks, 7 girls) was also tested to 

study ERP responses to central faces. To compare the results obtained for infants with 

adults, we additionally included a second group of young adults (N= 13, Mean age: 23.39 ± 

2.32 years, age range: 21 to 27.1 years, 6 females) who were presented with the lateralized 

faces following the same paradigm as infants. The study was approved by the ethical 

committee for biomedical research. All adult subjects and parents of infants gave written 

informed consents before participating in the study. 

 

Task Paradigm and Protocol 

 

Lateralized Faces.  Each trial started by a rotating colored bull’s-eye that remained at the 

center of the screen during the whole experiment to attract infants’ attention to the center of 

the screen. Streams of face images (male or female face out of 6 neutral, unfamiliar front 

faces) appeared consecutively on the left and right side of the bull’s eye for 250 ms followed 

by a variable delay between images (550 to 950 ms post-offset of the image with a 50-ms 

step). The asynchronous presentation ensured minimal anticipatory gaze to the left or right 

side. To investigate the inter-hemispheric transfer of information in infants, each stream 

included three types of images: a side-assigned face image (standard), a novel face (new-

deviant), or the face commonly assigned to the other side (known-deviant), with the 

expectations that an efficient inter-hemispheric transfer ensures ERP response to known-

deviant faces to be similar to standard faces.  Each block included ~80 % standard, ~10 % 

new-deviant and ~10 % known-deviant faces. For the current analyses however, we 

considered all faces presented on either left or right side; irrespective of this distinction.  
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Central Faces. One female and one male face, not used during the lateralized paradigm, 

were presented at the center of the screen for 250 ms, spaced by a random interval of 550-950 

ms during which the colored bull’s eye was presented. 

 

EEG Protocol and Pre-Processing.  EEG recordings were acquired with EGI net 

comprising 128 electrodes for infants and 256 electrodes for adults, and digitized in real-time 

at a sampling rate of 250 Hz. EEG data was further pre-processed in EEGLAB software. 

Recordings were band-pass filtered between 0.5 and 20 Hz, the signal was segmented into 

epochs of 1.9 s (−0.4 to 1.5s relative to the onset of face presentation). Channels and trials 

contaminated by motion or eye-blink artifacts were rejected. For infants, additional trials 

were rejected when the eye-gaze moved away from the screen; by manual inspection of 

video-recordings.  Epochs were re-referenced by reference averaging but no baseline 

correction was applied to allow unbiased analyses of post-stimulus variability as compared to 

pre-stimulus variability.  Finally, EEG topographies were normalized by dividing the activity 

of each sensor by the global field power (GFP, i.e. standard deviation across sensors) at each 

time-point. For the current analysis, further temporal smoothing was applied by averaging the 

activity at each sensor in a 100-ms overlapping sliding window centered at a given time point 

in each trial (all results were validated without this temporal smoothing). Additional 

information about data acquisition, pre-processing and task paradigm not pertaining to the 

current study is detailed elsewhere (Adibpour, Dubois and Dehaene-Lambertz, 2018). For 

infants, final dataset considered for further analyses included ~110 ± 60 trials (min= 38 , max 

= 246 trials) each for left and right faces, and ~ 32 ± 17 trials (min= 3, max=74 trials) for 

central faces condition.  For adults, the final dataset included ~353  ± 33 (min= 255, 

max=363 trials)  trials each for the left and right faces.  

 

 Trajectory in Principle Component (PC) Space 

For one example subject, 12s long segment of clean continuous EEG data containing 10 

consecutive (left and right faces) trials were low-pass filtered using 100 ms overlapping 

sliding window. This segment of EEG data was normalized by dividing the activity at each 

sensor by the instantaneous global field power. This standardized 128-dimensional time x 

channel matrix was transformed into three orthogonal components that explain a maximum 

amount of the variance (82% of total temporal variance was explained by first 3 components) 

using  PCA decomposition from scikit-learn toolbox in python and the resulting PC 

coefficients were used to visualize 3-dimensional trajectory shown  in Fig 2B 
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Microstates Analysis 

K-Means Clustering:  To derive combined microstates for infants, 128- dimensional 

continuous EEG signals were concatenated across time dimension for all infants after the 

preprocessing steps were performed. Bad segments were ignored from the analysis and bad 

channels were interpolated using linear spatial interpolation. Each individual topographic 

pattern at time t was normalized by GFP before passing it to the further analysis. Python 

library scikit-learn was used for clustering continuous data into discrete microstates, with 

number of clusters pre-defined (n=4).  The 4 cluster means thus identified were than 

considered as “microstates” (shown in Fig 2C top panel). Nearest neighbor algorithm was 

then used to assign microstate labels to each instantaneous topographic pattern.  That is, for 

each subject, the instantaneous topography at each time-point was compared to the 4 

microstates using correlation distance (1- Pearson correlation) and a microstate closest to the 

instantaneous topography at time t was assigned as a label at this time. For each subject, the 

symbolic sequences of microstate transitions (labeled from A-D) were further segmented into 

epochs to align them to stimulus onset times. 

Microstate Transition Trains and Transition Probabilities: Each epoch of labeled 

sequences was then binarized to encode a transition: i.e. if the microstate changed from the 

current one to the next at time t, it was encoded as a “spike” (or 1) at the time t. These 

transition trains (visible in Fig 2C) were further smoothened by convolving them with a 

100ms smooth Gaussian kernel. These smooth transition curves were averaged across trials to 

convert the transition trains into transition probabilities (Fig 2C Bottom panel).  

Microstate Observation Probability: To calculate probability of observing a specific 

Microstate at time t after stimulus presentation, the epochs of labeled microstate data was 

simply one-hot encoded and summed across trials for each microstate individually in time-

aligned manner. These observation probabilities were then averaged across subjects for 

comparison across age-groups (Fig S2). 

Extracting ERP Templates.  

For each condition (left, right and central) and for each cohort (infants and adults), we 

derived grand average ERP topography by averaging subject-specific ERP activity separately 

for each sensor across subjects (Fig 1B for infants, Fig S1A for adults).  For infants, we 
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identified ‘P1 template’ as grand-average topography in the range of ~225-275 ms post-

stimulus for lateralized faces and in the range of ~125-175 ms post-stimulus for central 

faces.  Similarly, ‘P400-template’ was derived as the average topography in the range of 

~525-575 ms post-stimulus for both lateral and central faces (Fig S3 A).  For adults, we 

identified ‘P1 template’ as the grand average topography in ~75-125 ms post-stimulus while 

‘P400 template’ was identified as ~375-425 ms post-stimulus (Fig S3 B). These time-ranges 

were chosen by selecting a 50ms long time-window around the peak ERP response 

topography as inspected manually.  

Measures of Trial-Variability 

Measures of trial-variability (i.e. flyby to known ERP templates, between-trial variability and 

within-trial speed) were calculated as topographic dissimilarity using spatial correlation 

distance (1- Pearson correlation coefficient) as dispersion metric. Hence, absolute distances 

varied from 0 (absolute correlation) to 2 (no correlation). Correlation distance decouples the 

topographic patterns from their magnitudes, allowing focusing on the relative spatial patterns 

rather than their absolute magnitudes. Note that for our study, correlation distance was 

mathematically equivalent to previously used cosine dissimilarity measure since our data was 

reference averaged at each time-point (hence, mean across sensors equals to zero). 

 

‘Flyby’ to ERP Templates. 

For each subject and for each condition, flyby distance from trial to a certain ERP template 

at time was calculated as correlation distance,   

∆(, ) = 1 −  ൫,(, )൯ 

Where,  is Pearson’s correlation coefficient and (, )represents topography at trial 

and time. These single-trial distance time-series were further averaged across trials for 

each ERP template to obtain a single time-series per subject for P1 and P400 templates and 

for each condition (Fig 3 A). 

 

Between-Trial Variability 

For each subject and for each condition, between-trial variability at time was calculated as 

the average of all pair-wise spatial correlation distances between all trial-pairs i and j; 

 =  
ଵ

൫೙
మ൯

∑  (1 − (𝑖, ),𝑗, ௜௝ 
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Where, 𝑛 = number of trials, ൫௡
ଶ

൯ suggests all pair-wise combinations of trials,    is Pearson 

correlation coefficient and 𝑗,  represents sensor topography at trial 𝑗 and timepoint. 

One such absolute single-subject between-trial variability time-courses were derived per 

condition and further z-scored across time, to obtain relative between-trial variability. These 

z-scored time-series were further averaged in the previously defined time-range for P1 and 

P400-flybys to obtain relative between-trial variability around flybys (Fig 4, Fig S5). 

Topography of Between-trial Variability Quenching.  

If sensor  has  neighboring channels, Between-trial variability is calculated for this 

sensor at timeas follows: 

,  =  
1

൫௡
ଶ

൯
෍  (1 − (𝑖, ),𝑗, 

௜௝

 

Where,   is Pearson correlation coefficient;  (𝑖, ) is  + 1 dimensional activity vector 

at time  and trial 𝑖, where each dimension represents neighbors of sensor   (including 

itself). Neighbors of each channel were inferred from the channel-connectivity matrix 

estimated using find_ch_connectivity function of MNE-python. For each subject, instead of 

single global between-trial variability time-series, now we obtained one time-series each for 

each sensor. This absolute sensor-level between-trial variability was further Z-scored across 

time to obtain relative variability for each sensor. These channel x time matrices for each 

subject were further averaged to obtain group-level between-trial variability topography (Fig 

S6). 

 

Quantifying Features of Ongoing Alpha Oscillations 

 

For each subject and conditions, pre-processed epochs of EEG signals were first 

band-pass filtered in a narrow frequency band of 9-12 Hz using MNE Python’s default FIR 

filter. Analytic signal (𝑦௡) were than derived for each channel as follows:  

𝑦௡(𝑡) = 𝑥௡(𝑡) +  𝑗Η൫𝑥௡(𝑡)൯ =  R ∗ e௜೙(௧) 

Where Η൫𝑥௡(𝑡)൯ represents Hilbert transform of the original signal𝑥௡(𝑡). This analytical 

signal discards negative frequency components without loss of information and makes 

instantaneous phase ௡(𝑡) of the signal accessible.  Moreover, Circular Variance (CV) i.e. 
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the variability in instantaneous phases (or phase asynchrony) can be calculated simply as 

follows: 

𝑣𝑎𝑟൫𝑦(𝑡)൯ =  1 − 𝑅 

Where, 𝑅 is the Kuramoto Order Parameter that determines the average phase synchrony 

across trials. 

The CV varies between 0 to 1 with 0 suggesting complete s and 1 suggesting that all trials 

have completely misaligned phases at time 𝑡. 

 

Moreover, to assess instantaneous amplitude envelope or alpha power at each time-point, we 

simply consider the absolute value of analytical signal, i.e.|𝑦௡(𝑡)|. These quantities were 

derived for each channel𝑛, at each timepoints 𝑡and  averaged  across channels to evaluate 

group-level differences in Fig S6 for between-trial CV and amplitude as well as  between 

flyby snippets in  Fig 5 and S8 for evaluating phase synchrony and alpha power around flyby. 

 

Within-Trial Speed 

For each trial k, within-trial speed at time t was calculated as spatial correlation distance 

between topography at that time-point and the same at the consecutive time-point. 

∆(, ) = 1 −  ((, ),(,  + 1)) 

Where,  is Pearson correlation coefficient and (, )represents sensor topography at 

trial  and time-point .  Overall absolute within-trial speed for each subject was obtained by 

first averaging speed time-courses across trials and then averaging the mean speed time-

courses across time (Fig S7A).  

Fly-by Triggered Speed Profiles.  For each subject, moments of ‘fly-by’ to known ERP 

templates were identified as described above (i.e., trial-to-template distance falling in the 

lowest 5thpercentile). Trial-speed segments at each occurrence of ‘fly-by’ were extracted as 

speed time-course from 400-ms before to 400-ms after ‘fly-by’.  Each of these 800-ms long 

speed time-courses were averaged to obtain a single speed profile per template (Fig 5A).  

These subject-specific absolute speed profiles were z-scored along the time dimension to 

obtain relative speed profiles around fly-by and further averaged to obtain group-average 

speed-profiles (Fig 5B; Fig S7C).  To compare flyby triggered instantaneous speed across 
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infants, peak speed (for P1 template) and lowest speed (for P400 template) were identified in 

the 100 ms time-window centered at ‘flyby’ moment (Fig S7D-F). 

Trial Speed Distribution. To obtain trial-speed distribution for each age-group per 

condition, all single-trial speed time-courses were concatenated along time and along subjects 

in that age-group to obtain one single speed distribution. Probability density was obtained by 

normalizing area under each bin to 1. Normalized bin-counts (density) were plotted on a log-

log scale (Fig S7B). 

Fitting power-law to the Trial Speed Distributions.  We first temporally concatenated 

all the trials for each subject per each condition and age-group cohorts. This allowed us to 

reliably estimate the parameters for heavy-tailed distributions. We transformed the 

distribution of trial-speed into the standard normal distribution and finally fitted a least square 

regression line to the section of log-log plot achieved from the standard normal-distribution. 

We further repeated the procedure for each subject and obtained slopes and biases of the best-

fit lines per subject and compared across the age-groups. 

Statistics. 

Potential linear age-trends were tested using one-tailed permutation test on Pearson 

Correlation Coefficient (number of permutation=1000).  Significant reductions in variability 

time-courses were tested using one-sample t-test and correction for multiple comparison and 

temporal non-independence was applied using cluster based permutation test as implemented 

in MNE-python(Gramfortet al., 2013). Group-level differences between paired groups of 

variables (variability in lateral vs central faces) were tested using nonparametric two-tailed 

Wilcoxon signed-rank tests (from Sci-py package). Group differences between 5-12 week-old 

(first trimester) infants, 16-24 week-old (second trimester) infants and adults were tested 

using non-parametric Kruskal-wallis test (Sci-pyimplementation), followed by post-hoc pair-

wise comparisons using Mann-Whitney U test with Bonferroni correction (using scikit-

posthocs package).  
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MAIN TABLES AND LEGENDS 

 

Table 1 

Comparison of P1 and P400 Flyby Mean Amplitude Across Age-

Groups  

Left Faces Right Faces 

P1 H = 11.48,   p=0.003 H = 9.76,  p=0.007 

    5-12wo vs 16-24 wo:  n.s.     5-12 wo vs 16-24 wo: n.s. 

    5-12 wo vs adults: p= 0.009     5-12 wo vs adults: p=0.014 

16-24 wo vs adults: p= 0.015     16-24 wo vs adults: 0.072 n.s. 

P400 H = 13.29  p = 0.0013 H=13.47,p=0.001 

    5-12wo vs 16-24 wo:  p = 0.18 

n.s.     5-12 wo vs 16-24 wo:  p=  0.4n.s. 

    5-12 wo vs adults: p = 0.001     5-12 wo vs adults: p= 0.003 

16-24 wo vs adults: p = 0.25 n.s.     16-24 wo vs adults: p =0.028 

 

Table 1 Average closest flyby distances across age-groups (5-12 week old: first trimester 

infants, 16-24 weeks old trimester infants and adults) were compared using separate Kruskal-

Wallis tests for different ERP templates (P1, P400 responses) and for faces presented in the 

left and right hemi-field. The main effects are reported before post-hoc Mann-Whitney U-test 

for pair-wise comparisons. P values are corrected for multiple comparisons using Bonferroni 

correction. 
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Table 

2 Age Difference in Between-trial Variability around Flybys (z-scores) 

Left Faces Right Faces 

P1 H = 11.72,p<0.003 H = 12.95,  p=0.001 

    5-12 wo vs 16-24 wo: p=0.25 n.s.     5-12 wo vs 16-24 wo: p=0.5 n.s. 

    5-12 wo vs adults: p =0.003     5-12 wo vs adults: p =0.002 

    16-24 wo vs adults: p = 0.229 n.s.     16-24 wo vs adults: p = 0.05 

P400 H = 16.68 p=0.0002 H=14.10 ,p= 0.0009 

    5-12wo vs 16-24 wo:  p =0.001 

    5-12 wo vs 16-24 wo:  p=  

0.08n.s. 

    5-12 wo vs adults: p = 0.001     5-12 wo vs adults: p=0.002 

    16-24 wo vs adults: p>0.8 n.s.     16-24 wo vs adults: p = 0.1  n.s. 

 

 

 

Table 2 Between-trial variability (z-scores) were compared the three age-groups (5-12 week 

old: first trimester infants, 16-24 weeks old trimester infants and adults) in their respective 

moments of P1 and P400 closest flybys using separate Kruskal-Wallis tests for different ERP 

templates (P1, P400 ) and for faces presented in the left and right hemi-field. The main 

effects are reported before post-hoc Mann-Whitney U-test for pair-wise comparisons. P-

values are corrected for multiple comparisons using Bonferroni correction. 
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Table 3: Age-differences in Within-Trial Variability  Around Flybys 

 Left Faces Right Faces 

P1 S.C.:  None 

  

  

  

S.C.: [8 80] ms,  H=6.07, p=0.048 

 5-12 wo vs 16-24 wo: p = 0.08  

 5-12 wo vs adults: p =0.17  

 16-24 wo vs adults: p = n.s. 

P400 S.C.:  [-384 -308] ms: H = 14.87, p= 0.0006 

S.C.[-400 -268]ms,  H=14.42, 

p=0.0007, 

 5-12wo vs 16-24 wo:  p = n.s 5-12wo vs 16-24 wo:  p =  n.s 

 5-12 wo vs adults: p= 0.008 5-12 wo vs adults: p= 0.015 

 16-24 wo vs adults: p= 0.0008 16-24 wo vs adults: p= 0.0005  

 

S.C = Significant Clusters (p<0.05, cluster 

based permutation tests) 

S.C.[-72 -12]ms,  H= 16.266, 

p=0.0003 

 5-12wo vs 16-24 wo:  p = n.s. 

 5-12 wo vs adults: p= 0.0003 

 16-24 wo vs adults: p= 0.03 

 

Table 3 Flyby triggered within-trial speed profile time-series (z-scores) across the three age-

groups were compared using cluster-based permutation F-tests separately for each ERP 

template and for each hemi-field to find the significant time clusters (p<0.05). During post-

hoc analyses, average within-trial speed in these significant time-windows was compared 

using Kruskal-Wallis test. Pair-wise comparisons were tested using Mann-Whitney U-test. P-

values are corrected for Bonferroni correction. 
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