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Abstract

The sterile insect technique (SIT) is a technique to control some vectors of diseases
by releasing sterile males. However, during these releases, sterilized females can be (acci-
dentally) released and since only females are vectors of diseases, it is important to study
their impact when arthropod viruses are circulating. To that aim, we develop and study
an entomological-epidemiological model, considering either permanent or periodic releases.
Qualitative analysis of the continuous and periodic models is conducted. We highlight a
critical sterile males release rate, Λcrit

M , above which the control of wild population is always
effective, using massive releases. Estimating the basic reproduction number of the epidemio-
logical model, R2

0, we show that if it is above a certain threshold, R2
0,∗, that depends on the

basic offspring number, N , and the release rate of sterile females, the epidemiological risk
can only be controlled using (very) massive releases. Otherwise, we can estimate the basic
reproduction number of the SIT epidemiological model, R2

0,SIT , that shapes the stability
property of the (periodic) disease-free equilibrium. We show that it might be possible to
take R2

0,SIT below 1 using non-massive, but large enough, releases. However, practically, it
seems more efficient to consider massive releases, followed by small releases once the vector
population is small enough.

In addition to SIT, we also recommend mechanical control, i.e. the reduction of breeding
sites, that greatly improves the efficacy of SIT, in terms of duration or size of the releases.

Our results reveal that outside an epidemic period, the release of sterile females is not
an issue, as long as the sterile males release rate is greater than Λcrit

M . Within an epidemic
period, we show that sterile females releases do not really impact the SIT efficiency, as long
as the release rate, ΛF , is lower than a critical value, Λcrit

F , that depends on the mosquito and
epidemiological threshold parameters, N , and R2

0. To illustrate numerically our theoretical
results, we consider Dengue parameters. We estimate all thresholds and also the effective
reproduction number, R2

eff , and highlight the importance of early permanent or periodic
SIT control to prevent or mitigate the risk of a Dengue epidemic, with and without sterile
females releases.
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1. Introduction

Vector-borne diseases (VBD), including mosquito-borne diseases, are still considered as
serious threats to the health of societies around the world. The major global VBD of humans
include malaria, dengue, lymphatic filariasis, schistosomiasis, chikungunya, onchocerciasis,
Chagas disease, leishmaniasis, Zika, yellow fever and Japanese encephalitis. According to
WHO [22], the major VBD together account for around 17% of the estimated global burden
of communicable diseases and claim more than 700 000 lives every year. The burden is
highest in tropical and subtropical areas. More than 80% of the global population live in
areas at risk from at least one major VBD. Many of these VBD are co-endemic, and it is
estimated that more than half of the world’s population live in areas where two or more
VBD are present [22].

Despite the progress in knowledge on VBD, for most of them, the major problem is
the absence of effective drugs and vaccines. In addition, climate changes and travels have
increased the area where these diseases can occur, even in Europe, locally [23, 25]. That
is why, in the last decades, the development of (sustainable) vector control methods, which
can be broadly classified into chemical- and non–chemical-based tools, has become one of
the most challenging issues to reduce the impact of human vector borne diseases.

Chemical control consists on the use of massive spraying of larvicide and/or adulticide,
like Deltamethrin for mosquitoes. Even being efficient to reduce adult populations, it can
be very detrimental to the environment, and also, vectors can develop resistance. This is
actually the case in French West Indies [2]. Therefore, it is desirable to have alternative
eco-friendly controls. Several non-chemical and eco-friendly control techniques, including
the sterile insect technique (SIT), have been developed or are under development. However,
the process to reach field applications is long and complex.

Modeling, and in particular mathematical modeling, has become a useful tool in human
epidemiology since the pioneering works of Sir R. Ross and his malaria model [24]. Numerous
models have been developed to understand the dynamics of diseases and pests, to test “in
silico” the usefulness or not of control strategies (and their combination).

In this paper, we focus on the sterile insect technique within an epidemiological context.
SIT is an old control technique that has been used more or less successfully on the field
against various kind of pests or vectors (see [16] for various examples). The classical SIT
consists of mass releases of males sterilized by ionizing radiation. The released sterile males
transfer their sterile sperms to wild females, which results in a progressive decay of the
targeted population. For mosquitoes, other sterilization techniques have been developed
using either genetics (the release of insects carrying a dominant lethal technique, in short
RIDL technique) or bacteria (wolbachia) [26]. While conceptually very simple, SIT is, in
practice, difficult to conduct as it requires mass rearing and sterilization facilities, and an
efficient sexing method for production of males only, at an industrial scale.

Various models have been developed for SIT, using discrete or continuous approaches.
Our work is a companion paper of [5, 2], where SIT against pests and vectors were considered.
In [5], we showed that SIT induces a strong Allee effect, that can be useful to derive appro-
priate control strategies, based on massive releases followed by small releases. In [2], where
diffusion operators to model the spreading of the pest/vector were considered, we showed
existence of bi-stable traveling wave solutions that can be used to derive several spatial and
also locally-spatial strategies. However, these works stand within an inter-epidemic period
where the objective is to reduce the wild population under a certain threshold that can be
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fixed based on several factors, like sterile insects production capacity, size of the targeted
area, etc.

Here we consider that a virus is circulating, and that SIT is used to reduce the epidemi-
ological risk, i.e. to drive or to maintain the basic reproduction number below 1. As it is
well-known for mosquito-borne diseases, only female mosquitoes are the vector of transmis-
sion, because they are blood feeding, and preferably on humans. Thus, their control is the
goal of any vector control policy. That is why the (accidental) release of sterile females is
questionable (at least for the health authorities). Indeed, during the sterilization process,
in order to produce sterile males only, it is necessary to eliminate/separate the females. Up
to now, the sex-separation system is mechanical as male nymphs are (in general) smaller
than female nymphs. However, a certain number of female nymphs can accidentally fall in
the male nymphs bucket and, then, be irradiated to become fully sterilized. Releasing a
small amount of (sterile) females is not really problematic during an inter-epidemic period
because they are fully sterile, but can be problematic when viruses are circulating, since
sterile females can transmit viruses, because they will feed blood on humans. That is why,
we consider the releases of sterile females in our model, in order to define if and how they can
impact the SIT strategy, and what should be the upper bound limit for the release of sterile
females. In the literature [19], releasing 4% of Aedes females is considered as acceptable.
Like in [14], we will also consider mechanical control (reduction of breeding sites) and show
its efficacy when it is combined with SIT control.

The outline of the paper is as follows. In the next section, we present the full epidemiological-
entomological SIT model. Then, in section 3, page 6, we briefly recall the results on the
entomological models developed in [5]. In section 4, page 10, following [14], we study the
epidemiological model without SIT. In section 5, page 12, the full epidemiological SIT model
is studied and the theoretical results discussed in terms of control strategy. The SIT epi-
demiological model with impulsive periodic releases is studied in section 6, page 19. Finally,
numerical simulations, related to Aedes albopictus and dengue, are provided in section 7,
page 28, to discuss the timing of SIT control strategies, with and without mechanical con-
trol, with and without release of sterile females, in order to reduce the epidemiological risk.
The paper ends with a conclusion in section 8, page 37.

2. An epidemiological model with SIT releases

Our model is based on the entomological model studied in [5], and initially developed
in [3]. We also follow [14], except for the aquatic stage, and add the epidemiological stages
related to the wild and sterile (mature) females, FS, FE, FI , SS, SE, and SI , respectively.
We assume that the total population of humans, Nh = Sh+Ih+Rh, is positive and constant.
When (wild and sterile) female mosquitoes are infected, we assume that their mortality rate
can be impacted (see [12, 14] for the Chikungunya case). We also take into account the
extrinsic incubation period of the virus within the vector population, νm, which implies to
consider three epidemiological states, i.e. the susceptible, exposed and infected states. The
previous assumptions complexify the analysis but then the model is more realistic. We don’t
consider vertical transmission (from infected female mosquitoes) of the virus because it was
showed in [1] that the observed percentages (1− 4% ) of vertical transmission do not play a
role in the long term persistence of the virus. A novelty in our model lies in the fact that,
accidentally, sterile female mosquitoes are released with sterile males. This is modeled by
the parameters ΛF in equation (3)1, related to the SS compartment. We point out that the
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SS compartment gathers both sterile females that are released and young wild females that
mated with sterile males and, hence, have become fully sterile. Since all sterile females are
mixed with sterile males before the release, they are considered as mated and thus do not
participate in mating after their release. The model is summarized in the flow diagram 1,
page 4, and the full epidemiological SIT model is defined as follows:

A

M FS

FE

FI

SS

SE

SI

MTSh

Ih

Rh

µA,1 + µA,2A

µS

µS

µI

µM

µTΛM

µS

ΛF

µS

µI

(1− r)γ
rγ M

M+MT

rγ MT

M+MT

φ

φ

φ

BβhmIh
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νm
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µh µhNh

Figure 1: Flow diagram of model (1)-(4).



dSh
dt

= µhNh −Bβmh
FI + SI
Nh

Sh − µhSh,
dIh
dt

= Bβmh
FI + SI
Nh

Sh − (ηh + µh) Ih,

dRh

dt
= ηhIh − µhRh,

(1)



dA

dt
= φ(FS + FE + FI)− (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFS
dt

= rγA
M

M +MT

−Bβhm
Ih
Nh

FS − µSFS,
dFE
dt

= Bβhm
Ih
Nh

FS − (νm + µS)FE,

dFI
dt

= νmFE − µIFI ,

(2)
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

dSS
dt

= ΛF + rγA
MT

M +MT

−Bβhm
Ih
Nh

SS − µSSS,
dSE
dt

= Bβhm
Ih
Nh

SS − (νm + µS)SE,

dSI
dt

= νmSE − µISI ,

(3)

and

dMT

dt
= ΛM − µTMT (4)

where the parameters and state variables are described in Table 1, page 5.

Symbol Description Unit

Sh Susceptible human Individuals
Ih Infected human Individuals
Rh Recovered human Individuals

A Aquatic stage (gathering eggs, larvae, nymph stages) Individuals
FS Susceptible fertilized and eggs-laying females Individuals
FE Exposed fertilized and eggs-laying females Individuals
FI Infected fertilized and eggs-laying females Individuals
SS Susceptible sterilized females Individuals
SE Exposed sterilized females Individuals
SI Infected sterilized females Individuals
M Wild males Individuals
MT Sterile males Individuals

1/µh Average lifespan of human Day
1/ηh Average viremic period Day

B Average mosquito bites days−1

βmh Transmission probability from infected mosquito -
βhm Transmission probability from infected human -

φ Number of eggs at each deposit per capita Day−1

γ Maturation rate from larvae to adult Day−1

µA,1 Density independent mortality rate of the aquatic stage Day−1

µA,2 Density dependent mortality rate of the aquatic stage Day−1 Individuals −1

r Sex ratio -
1/νm Average extrinsic incubation period (EIP) Day
1/µS Average lifespan of susceptible fertilized and eggs-laying female

and, susceptible sterilized female Day
1/µI Average lifespan of infected fertilized and eggs-laying female

and, infected sterilized female Day
1/µM Average lifespan of male Day
1/µT Average lifespan of sterile male Days

ΛM Sterile male release rate Individuals × Day−1

ΛF Sterile female release rate Individuals × Day−1

Table 1: Description of parameters and state variables of model (1)-(4)
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Contrary to [29], we assume a density-dependent mortality rate in the aquatic stage.
This may correspond to an intra-specific competition between the larvae stages, for instance.
However, the forthcoming methodology could be applied for a system where the non-linearity
stands for the birth-rate, like in [14, 15, 29].

Remark 1. In systems (2) and (3), we don’t consider explicitly the (mean) mating compet-
itiveness parameter, cT , of the sterile males. This parameter can be less or greater than one.
To take it into account, like in [14, 29], it suffices to replace MT by cTMT and to change the
following results accordingly.

Remark 2. Model (1)-(4) is not really appropriate for the RIDL approach. Indeed, with the
RIDL control technique, sterile females can lay eggs that will hatch and enter the aquatic
stage, resulting in an increase in the density-dependent mortality. However, all RIDL pupae
are supposed not to survive into the adulthood. Note also that, so far, the RIDL approach
has only been tested on Aedes aegypti.

3. The wild insect sub-models

The wild insect population model has been studied in [5]. Here, we just recall results
obtained in [5].

3.1. The wild insect sub-model without SIT

It is straightforward to deduce from system (2) that dynamics of wild insect without SIT
is modelled by system (5):

dA

dt
= φFS − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFS
dt

= rγA− µSFS.

(5)

Remark 3. System (5) is very simple: it implies that all emerging immature individuals
will become either males, either females (after mating), assuming implicitly that 0 < r < 1.
Since we consider a mosquito population, we have r ≈ 0.5, such that there are always adults
of both sex, considering at least either A(0) > 0 or FS(0) > 0.

The basic offspring number related to model (5) is

N =
rγφ

µS(γ + µA,1)
. (6)

Setting the right-hand side of (5) to zero we obtain the extinction equilibrium 0R3 =
(0, 0, 0)T and the equilibrium E∗ = (A∗,M∗, F ∗S)T given by

A∗ =
(γ + µA,1)

µA,2
(N − 1),

M∗ =
(1− r)γA∗

µM
=

(1− r)γ
µM

(γ + µA,1)

µA,2
(N − 1),

F ∗S =
rγA∗

µS
=
rγ

µS

(γ + µA,1)

µA,2
(N − 1).

(7)
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The inequalities between vectors are considered here in their usual coordinate-wise sense.
Clearly, E∗ > 0R3 if and only if N > 1. We summarize these results with some more details
related to basins of attraction of equilibria in the following theorem.

Theorem 1 ([5]). Model (5) defines a forward dynamical system on D = {x ∈ R3 : x ≥ 0R3}.
Furthermore,

1) If N ≤ 1 then 0R3 is globally asymptotically stable on D.

2) If N > 1 then E∗ is stable with basin of attraction

D \ {x = (A,M,FS)T ∈ R3
+ : A = FS = 0},

and 0R3 is unstable with the non negative M−axis being a stable manifold.

Proof. See [5, Theorem 1] where F = FS and µ = µS.

3.2. The wild insect sub-model with SIT

We now assume that N > 1. We take into account the constant release of sterile males
MT by adding to model (5) an equation for MT , and also the accidental release of sterile
females by considering the release rate, ΛF , in the compartment SS. Altogether, the SIT
model becomes 

dA

dt
= φFS − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFS
dt

=
M

M +MT

rγA− µSFS,
dSS
dt

= ΛF +
MT

M +MT

rγA− µSSS,
dMT

dt
= ΛM − µTMT .

(8)

Remark 4. In system (8), the term
M

M +MT

does not appear in the deposit rate component,

in the aquatic/immature component, contrary to some models (see [8, 34], for instance) where
we have

dA

dt
= φ

M

M +MT

FS − (γ + µA,1 + µA,2A)A. (9)

Implicitly, in (9), it is assumed that daily deposit rate always depends on the proportion
of fertile males over the total male population: this is not true. Mosquito females, like
Aedes spp, have 3 spermathecae that allow to stock sperms such that in general one mating
is sufficient to deposit eggs along their lifespan. Biologically, after emergence, immature
or virgin females will enter the mature/fertile females compartment, FS, only when they
mate with fertile/wild males, and, then, are able to deposit viable (hatching) eggs along their
lifespan. This is exactly what is modeled in system (8): the income rate in the mature
(sterile) female compartment, FS (SS), takes into account the fact that immature females

have a probability
M

M +MT

(
MT

M +MT

)
to mate with wild (sterile) males.

Using (9) is very convenient from a mathematical point of view because all nonlinear
terms appear in the same equation, but, biologically, it is false. At some point, it could
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be, mathematically, equivalent to consider (9), but we believe that it is better to stick to
the biological reality in order to make the model understandable for entomologists, even if,
mathematically, it is a bit more challenging.

Assuming t large enough, we may assume that MT (t) has reached its equilibrium value,

M∗
T :=

ΛM

µT
. In fact, from a practical point of view, the value ΛM/µT can be reached with

massive constant and continuous releases of 2ΛM during t =
ln(2)

µT
, see also [5, 6]. Hence,

model (8) reduces to 

dA

dt
= φFS − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFS
dt

=
M

M +M∗
T

rγA− µSFS,
dSS
dt

= ΛF +
M∗

T

M +M∗
T

rγA− µSSS,

(10)

where parameters and state variables are described in Table 1, page 5. Since the state
variable SS does not appear in the first three equations of system (10), it suffices to study
the following sub-system

dA

dt
= φFS − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFS
dt

=
M

M +M∗
T

rγA− µSFS.

(11)

In fact we recover the system studied in [5]. Knowing the dynamics of A and M , the dynamics
of SS is deduced by using the fourth equation of system (10).

Let us set

Q =
µA,2µM

(γ + µA,1)(1− r)γ
, Λcrit

M =
µT (
√
N − 1)2

Q
. (12)

Following [5, Theorem 3], we derive existence of equilibria for 0 < ΛM ≤ Λcrit
M , and also

stability results for system (11), such that we can deduce the following results for system
(8):

Theorem 2. System (8) defines a forward dynamical system on D′ := {x ∈ R5 : x ≥ 0R5}.
Moreover,

(1) If ΛM > Λcrit
M , then equilibrium TE =

(
0R3 ,

ΛF

µS
,
ΛM

µT

)T
is unique and globally asymp-

totically stable on D′.
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(2) If ΛM = Λcrit
M then system (8) has two equilibria, TE and E† =

(
A†,M†, FS† , SS† ,

ΛM

µT

)T
where 

M∗
T =

Λcrit
M

µT
,

α† =
1

2
((N − 1−QM∗

T )) =
√
N − 1,

M† =
MT1

α†
=

√
N − 1

Q
> 0,

A† =
µM

(1− r)γM† = (γ + µA,1)

√
N − 1

µA,2
> 0,

FS† =
(γ + µA,1 + µA,2A†)A†

φ
> 0,

SS† =
1

µS

(
ΛF + rγA†

M∗
T

M† +M∗
T

)
>

ΛF

µS
.

(13)

The set

{(A,M,FS, SS,MT )T ∈ R5 : 0R3 ≤ (A,M,FS)T < (A†,M†, FS†)
T}

is in the basin of attraction of TE, while the set

{(A,M,FS, SS,MT )T ∈ R5 : (A,M,FS)T ≥ (A†,M†, FS†)
T}

is in the basin of attraction of E†.

(3) If 0 < ΛM < Λcrit
M , then system (8) has three equilibria TE, E1 =

(
A1,M1, FS1 , SS1 ,

ΛM

µT

)T
and E2 =

(
A2,M2, FS2 , SS2 ,

ΛM

µT

)T
where



M∗
T =

ΛM

µT
,

α± =
1

2

(
(N − 1−QM∗

T )±
√

((N − 1−QM∗
T )2 − 4M∗

TQ))
)
,

M1 =
M∗

T

α+

> 0,

M2 =
M∗

T

α−
> 0,

A1,2 =
µM

(1− r)γM1,2 > 0,

FS1,2 =
(γ + µA,1 + µA,2A1,2)A1,2

φ
> 0,

SS1,2 =
1

µS

(
ΛF + rγA1,2

M∗
T

M1,2 +M∗
T

)
>

ΛF

µS

(14)

and (A1,M1, FS1)
T < (A2,M2, FS2)

T . The set

{(A,M,FS, SS,MT )T ∈ R5 : 0R3 ≤ (A,M,FS)T < (A1,M1, FS1)
T}

9



is in the basin of attraction of TE while the set

{(A,M,FS, SS,MT )T ∈ R5 : (A,M,FS)T > (A1,M1, FS1)
T}

is in the basin of attraction of E2.

Remark 5. If mechanical control is included within the SIT control strategy, this will in-
crease the density-dependent mortality rate, µA,2, in the aquatic compartments, such that,
according to (12), Λcrit

M will decay. In other words, mechanical control is helpful to decrease
the amount of sterile males to release.

The bifurcation diagram in Fig. 2, page 10, summarizes Theorem 1 and Theorem 2 when
N > 1: the blue (red) solid line represents (globally) stable equilibrium, while the blue
dotted line represents unstable equilibrium.

TE
b

Λcrit
M

b

b
ΛM

E

E†

LAS
E2

E1

LAS GAS
0

E∗

Figure 2: Bifurcation diagram at equilibrium with respect to the values of ΛM for system (8) and system
(10)

4. The vector-borne epidemiological model without SIT

Most of the analysis follows [14], where a vector-borne epidemiological model was studied.
Of course only the case N > 1 is worth of investigations and we will consider this assumption
for the rest of the paper. The model is given as a system of ordinary differential equations
as follows: 

dSh
dt

= µhNh −Bβmh
FI
Nh

Sh − µhSh,
dIh
dt

= Bβmh
FI
Nh

Sh − (ηh + µh) Ih,

dRh

dt
= ηhIh − µhRh,

(15)
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where Nh = Sh + Ih +Rh = Nh(0)> 0, and

dA

dt
= φ(FS + FE + FI)− (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFS
dt

= rγA−Bβhm
Ih
Nh

FS − µSFS,
dFE
dt

= Bβhm
Ih
Nh

FS − (µS + νm)FE,

dFI
dt

= νmFE − µIFI .

(16)

Let x(t) = (Sh(t), Ih(t), Rh(t), A(t),M(t), FS(t), FE(t), FI(t))
T . Let us consider the set

D′′ = R8
+ = {x ∈ R8 : x ≥ 0R8}.

The following result holds true.

Lemma 1. 1. The set

ΓN>1 =
{
x ∈ R8

+ : Sh + Ih +Rh = Nh;A ≤ A∗;M ≤M∗;FS + FE + FI ≤ F ∗S
}

is positively invariant for system (15)-(16) where (A∗,M∗, F ∗S)T is given by (7). That
is, any solution that starts in ΓN>1 will remain there.

2. System (15)-(16) defines a dynamical system on D′′.

Proof. See Appendix A.

4.1. Equilibria of system (15)-(16)
In this section, we deal with the computation of trivial and non-trivial equilibria of system

(15)-(16). It is straightforward to obtain the following results, so its proof is omitted.

Proposition 1. 1. System (15)-(16) admits a trivial disease-free equilibrium, TDFE =
(Nh,0R7)T , that always exists.

2. System (15)-(16) admits a disease-free equilibrium, DFE = (Nh, 0, 0, A
∗,M∗, F ∗S , 0, 0)T ,

whenever N > 1 and where A∗, M∗, F ∗S are defined in (7).

4.2. Stability analysis of the DFE
Using the next generation matrix (NGM) approach, see e.g. [30], we derive the basic

reproduction number related to system (15)-(16), that is

R2
0 =

νm
νm + µS

Bβmh
µI

Bβhm
ηh + µh

F ∗S
Nh

. (17)

We further summarize stability results of the non trivial disease-free equilibrium in the
following

Theorem 3. 1. If R2
0 ≤ 1, then the DFE is globally asymptotically stable.

2. If R2
0 = 1, then system (15)-(16) has a forward bifurcation.

3. If R2
0 > 1, then the DFE is unstable.

Proof. See Appendix B, page 44.
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4.3. Endemic Equilibrium of system (15)-(16)

Long but straightforward computations lead to

Proposition 2. When R2
0 > 1, there exists a unique endemic equilibrium

EE = (S]h, I
]
h, R

]
h, A

],M ], F ]
S, F

]
E, F

]
I )
T

which is locally asymptotically stable.

Proof. See Appendix C, page 47.

Remark 6. Again, if mechanical control is considered, then the size of the female population,
F ∗S , will decrease, such that R2

0 will also decrease.

5. The vector-borne epidemiological model with SIT

In this section, we consider that constant and permanent SIT releases are done as a
control tool. Hence, following (10), the dynamics of human and mosquito populations are
described by system (18)-(19):

dSh
dt

= µhNh −Bβmh
FI + SI
Nh

Sh − µhSh,
dIh
dt

= Bβmh
FI + SI
Nh

Sh − ηhIh − µhIh,
dRh

dt
= ηhIh − µhRh,

(18)



dA

dt
= φ(FS + FE + FI)− (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFS
dt

=
M

M +M∗
T

rγA−Bβhm
Ih
Nh

FS − µSFS,
dFE
dt

= Bβhm
Ih
Nh

FS − (νm + µS)FE,

dFI
dt

= νmFE − µIFI ,
dSS
dt

= ΛF +
M∗

T

M +M∗
T

rγA−Bβhm
Ih
Nh

SS − µSSS,
dSE
dt

= Bβhm
Ih
Nh

SS − (νm + µS)SE,

dSI
dt

= νmSE − µISI .

(19)

We provide qualitative results of system (18)-(19). Let us set

u∗ =
ΛF + rγA∗

µS
.
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5.1. Boundedness of solutions and existence of disease-free equilibria

Based on Lemma 1, page 11, it is straightforward to obtain the following result:

Lemma 2 (Boundedness of solutions). The set

ΓN>1,SIT =
{
x ∈ R11

+ : Sh + Ih +Rh = Nh; (A,M)T ≤ (A∗,M∗)T ;FS + FE + FI ≤ F ∗S ;

SS + SE + SI ≤ u∗}
is positively invariant for system (18)-(19) where (A∗,M∗, F ∗S)T is given by (7).

Proof. Taking into account Lemma 1, page 11, it remains to prove that SS + SE + SI ≤ u∗.
By adding the last three equations of system (19) and using the fact that A ≤ A∗, one
obtains:

d(SS + SE + SI)

dt
≤ ΛF + rγA∗ − µS(SS + SE + SI) = µS(u∗ − (SS + SE + SI)). (20)

Using G = (SS + SE + SI)− u∗ and f the right-hand side of (20), we have

∇G · f |SS+SE+SI=u∗
= 0. Hence SS + SE + SI ≤ u∗.

This ends the proof.

Using Theorem 2, page 8, we deduce:

Proposition 3 (Trivial and non-trivial disease-free equilibria). Let Λcrit
M defined by (12),

page 8.

1. If ΛM ∈ (0,Λcrit
M ), then system (18)-(19) has two non-trivial disease-free equilibria

DFE1,2 = (Nh, 0, 0, A1,2,M1,2, FS1,2 , 0, 0, SS1,2 , 0, 0)T with (A1,M1, FS1)
T < (A2,M2, FS2)

T

and A1,2, M1,2, FS1,2, SS1,2 are given in Theorem 2.
2. If ΛM = Λcrit

M , then system (18)-(19) has a non-trivial disease-free equilibrium DFE† =
(Nh, 0, 0, A†,M†, FS† , 0, 0, SS† , 0, 0)T where A†, M†, FS†, SS† are given in Theorem 2.

3. If ΛM > Λcrit
M , system (18)-(19) has a unique equilibrium, TDFE =

(
Nh,0R7 ,

ΛF

µS
, 0, 0

)T
.

Following Theorem 2, in the disease-free case, equilibrium DFE1 is unreachable because
it is always unstable. Therefore, the meaningful disease-free equilibrium of system (18)-(19)
is

DFESITc =


DFE2, when ΛM ∈ (0,Λcrit

M ),

DFE†, when ΛM = Λcrit
M ,

TDFE, when ΛM > Λcrit
M .

(21)

Using again the NGM-approach, the basic reproduction number of system (18)-(19) is

R2
0,SITc =



νm
νm + µS

Bβmh
µI

Bβhm
ηh + µh

(FS2 + SS2)

Nh

, when ΛM ∈ (0,Λcrit
M ),

νm
νm + µS

Bβmh
µI

Bβhm
ηh + µh

(FS† + SS†)

Nh

, when ΛM = Λcrit
M ,

νm
νm + µS

Bβmh
µI

Bβhm
ηh + µh

ΛF

µSNh

, when ΛM > Λcrit
M .

(22)
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Remark 7. In the case of non-massive release, that is ΛM ∈ (0,Λcrit
M ), R2

0,SITc
has two parts:

the first part

R2
0,SITc,W =

νm
νm + µS

Bβmh
µI

Bβhm
ηh + µh

FS2,†

Nh

,

related to the wild susceptible females and the second part,

R2
0,SITc,S =

νm
νm + µS

Bβmh
µI

Bβhm
ηh + µh

SS2,†

Nh

,

related to the sterile susceptible females. The main question is: when R2
0,SITc,W

< 1, is it
possible that releases of sterile females imply R2

0,SITc
> 1?

Remark 8. Since FS2,† + SS2,† =
rγA2,† + ΛF

µS
and F ∗S =

rγA∗

µS
, it is interesting to observe

that

R2
0,SITc = R2

0



rγA2 + ΛF

rγA∗
, when ΛM ∈ (0,Λcrit

M ),

rγA† + ΛF

rγA∗
, when ΛM = Λcrit

M ,

ΛF

rγA∗
, when ΛM > Λcrit

M ,

(23)

where F ∗S is defined in (7)3, page 6. Thus clearly, if ΛF is too large, i.e. ΛF > rγA∗, we
always have R2

0,SITc
> R2

0, such that the epidemiological risk increases, R2
0,SITc

might become
larger than 1. Note also that, since A2,† < A∗, it follows that

R2
0,SITc ≤ R2

0

if and only if ΛF is sufficiently small, i.e.

ΛF <


rγ (A∗ − A2) , when ΛM ∈ (0,Λcrit

M ),

rγ (A∗ − A†) , when ΛM = Λcrit
M ,

rγA∗, when ΛM > Λcrit
M .

(24)

This result shows that for small releases, the constraint on the sterile females release rate is
strong.

Remark 9. • Since SS2 or SS† is an increasing function of ΛF , it is straightforward to
deduce that R2

0,SITc
increases with respect to ΛF .

• Using (14), it is straightforward to show that M2 is decreasing with respect to ΛM ,
such that A2, FS2 are decreasing functions of ΛM too. Thus, using (22), we deduce
that R2

0,SITc
decreases with respect to ΛM .
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5.2. Stability analysis of the disease-free equilibria

Using [30, Theorem 2] and a comparison argument, the stability properties of the biolog-
ical disease-free equilibrium DFESITc ∈ {DFE2, DFE†, TDFE} is summarized as follows.

Theorem 4. The following results hold true for system (18)-(19).

1. Assume ΛM ∈ (0,Λcrit
M ).

(a) If R2
0,SITc

< 1, then DFE2, defined in Proposition 3, is locally asymptotically
stable.

(b) If R2
0,SITc

> 1, then DFE2 is unstable.

2. Assume ΛM = Λcrit
M ).

(a) If R2
0,SITc

< 1, then DFE†, defined in Proposition 3, is locally asymptotically
stable.

(b) If R2
0,SITc

> 1, then DFE† is unstable.

3. Assume ΛM > Λcrit
M .

(a) If R2
0,SITc

< 1, then TDFE, defined in Proposition 3, is globally asymptotically
stable.

(b) If R2
0,SITc

> 1, then TDFE is unstable.

Thanks to Remark 8, page 14, when ΛM > Λcrit
M , R2

0,SITc
< 1⇐⇒ ΛF ∈ [0,Λcrit

F ) where

Λcrit
F =

rγ(γ + µA,1)(N − 1)

µA,2R2
0

. (25)

In fact, in the disease-free context, with ΛF ∈ [0,Λcrit
F ), system (18)-(19) may exhibit a

bistable dynamics. Indeed, using a similar approach as in the proof of Theorem 3 together
with Theorem 2, it is straightforward to establish:

Theorem 5. Consider system (18)-(19) with ΛF ∈ [0,Λcrit
F ).

1. Assume that ΛM ∈ (0,Λcrit
M ). If R2

0,SITc
< 1, then equilibria DFE2 and TDFE are

locally asymptotically stable (LAS). Moreover, the set

{(Sh, Ih, Rh, A,M, FS, FE, FI , SS, SE, SI)
T ∈ R11

+ : (A,M,FS)T < (A1,M1, FS1)
T}

belongs to the basin of attraction of TDFE while the set

{(Sh, Ih, Rh, A,M, FS, FE, FI , SS, SE, SI)
T ∈ R11

+ : (A,M,FS)T > (A1,M1, FS1)
T}

belongs to the basin of attraction of DFE2.

2. Assume that ΛM = Λcrit
M . If R2

0,SITc
< 1, then equilibria DFE† and TDFE are locally

asymptotically stable (LAS). Moreover, the set

{(Sh, Ih, Rh, A,M, FS, FE, FI , SS, SE, SI)
T ∈ R11

+ : (A,M,FS)T < (A†,M†, FS†)
T}

belongs to the basin of attraction of TDFE while the set

{(Sh, Ih, Rh, A,M, FS, FE, FI , SS, SE, SI)
T ∈ R11

+ : (A,M,FS)T ≥ (A†,M†, FS†)
T}

belongs to the basin of attraction of DFE†.

However, the previous result does not give information on if and how SIT can impact
R2

0,SITc
.
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5.3. Impact of insect releases on the SIT basic reproduction number

As stated in Remark 8, page 14, R2
0,SITc

≤ R2
0 iff ΛF is sufficiently small. However, this

does not necessarily imply that there exists ΛM > 0 such that R2
0,SITc

< 1. Assume that
ΛM ∈ (0,Λcrit

M ). Using formula (14), we derive

A2 =
1

2
A∗
(

1− QΛM

µT (N − 1)

)(
1 +

√
1− 4QΛMµT

(µT (N − 1)−QΛM)2

)
> 0. (26)

Assuming ΛF ≥ 0 and using (26) and (23)1,2, we deduce that

R2
0,SITc =



1

2
R2

0

(
1− QΛM

µT (N − 1)

)(
1 +

√
1− 4QΛMµT

(µT (N − 1)−QΛM)2

)
+

ΛF

Λcrit
F

, when ΛM ∈ (0,Λcrit
M ),

1

2
R2

0

(
1− QΛM

µT (N − 1)

)
+ C = R2

0

(√
N − 1

N − 1

)
+

ΛF

Λcrit
F

, when ΛM = Λcrit
M .

(27)
Clearly, if ΛF > Λcrit

F , this means that R2
0,SITc

> 1, such that whatever the size of the
releases of massive males, the epidemiological risk cannot be controlled.
We now assume ΛF < Λcrit

F , and we set

R2
0,∗ =

N − 1
√
N − 1 +

µA,2ΛF

rγ(γ + µA,1)

. (28)

We derive the following result

Theorem 6. Assume 0 ≤ ΛF < Λcrit
F . Consider system (18)-(19) and set

Λ∗M,R2
0,C

=
µT (N − 1)

Q

1−
R4

0 +

(
1− ΛF

Λcrit
F

)2

(N − 1)

R4
0 +R2

0

(
1− ΛF

Λcrit
F

)
(N − 1)

 . (29)

1. If R2
0 ≥ R2

0,∗, then for ΛM > Λcrit
M , the equilibrium TDFE is globally asymptotically

stable.

2. If 1 < R2
0 < R2

0,∗, then the following results hold true:

• When ΛM > Λcrit
M , the equilibrium TDFE is globally asymptotically stable.

• When ΛM = Λcrit
M , then R2

0,SITc
< 1, DFE† and TDFE are locally asymptotically

stable. The set

{(S, I, R,A,M, FS, FE, FI , SS, SE, SI)
T ∈ R11

+ : (A,M,FS)T < (A†,M†, FS†)
T}

belongs to the basin of attraction of TDFE while the set

{(S, I, R,A,M, FS, FE, FI , SS, SE, SI)
T ∈ R11

+ : (A,M,FS)T ≥ (A†,M†, FS†)
T}

belongs to the basin of attraction of DFE†.
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• when ΛM > Λ∗
M,R2

0,C
, then R2

0,SITc
< 1, and the equilibria DFE2 and TDFE are

locally asymptotically stable. Moreover, the set

{(S, I, R,A,M, FS, FE, FI , SS, SE, SI)
T ∈ R11

+ : (A,M,FS)T < (A1,M1, FS1)
T}

belongs to the basin of attraction of TDFE while the set

{(S, I, R,A,M, FS, FE, FI , SS, SE, SI)
T ∈ R11

+ : (A,M,FS)T > (A1,M1, FS1)
T}

belongs to the basin of attraction of DFE2.

Proof. We deduce from Theorem 4 that when ΛM > Λcrit
M and 0 ≤ ΛF < Λcrit

F , then TDFE
is GAS. When ΛM ∈ (0,Λcrit

M ] and R2
0 > R2

0,∗, then R2
0,SITc

> 1, such that SIT control is
ineffective: only massive releases can be used, i.e. ΛM > Λcrit

M . Clearly, the larger ΛF , the

smaller
N − 1

√
N − 1 +

µA,2ΛF

rγ(γ + µA,1)

. In order to be able to use “small” releases strategy, we

have to define upper bounds for ΛF , for a given ΛM and vice-versa.

We set C =
ΛF

Λcrit
F

and M∗
T =

ΛM

µT
. Since C < 1 holds true, then, for a given ΛF , using

(27)1, we have to find x = QM∗
T such that

1− 4x

(N − 1− x)2
<

(
2(1− C)(N − 1)

R2
0 (N − 1− x)

− 1

)2

. (30)

Setting y = N − 1− x, this leads, after some manipulation, to

1− 4(N − 1− y)

y2
<

(
2(1− C)(N − 1)

R2
0y

− 1

)2

,

y2 − 4(N − 1− y)

y2
<

1

R4
0y

2

(
2(1− C)(N − 1)−R2

0y
)2
,

R4
0y

2 − 4R4
0(N − 1− y) < 4(1− C)2(N − 1)2 +R4

0y
2 − 4R2

0y(1− C)(N − 1),(
R4

0 +R2
0(1− C)(N − 1)

)
y < (1− C)2(N − 1)2 +R4

0(N − 1),

y <
(1− C)2(N − 1)2 +R4

0(N − 1)

R4
0 +R2

0(1− C)(N − 1)
,

N − 1− x < (1− C)2(N − 1)2 +R4
0(N − 1)

R4
0 +R2

0(1− C)(N − 1)
,

N − 1− (1− C)2(N − 1)2 +R4
0(N − 1)

R4
0 +R2

0(1− C)(N − 1)
< x,

that is,
µT (N − 1)

Q

(
1− (1− C)2(N − 1) +R4

0

R4
0 +R2

0(1− C)(N − 1)

)
< ΛM ,

and we deduce (29). Then, the results follow from Theorem 5, page 15.
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Clearly the constraint on the releases size given by (29) can be strong, i.e. close to Λcrit
M ,

such that it seems to be preferable to use massive releases, i.e. ΛM > Λcrit
M .

In that case, the strategy developed in [2, 5], using massive and then small releases can
be adequate to reduce the epidemiological risk and maintain this risk at a lower level.

Thus, in terms of vector control: when R2
0 ≤ 1, vector control is not necessary; when

R2
0 > 1 and 0 ≤ ΛF < Λcrit

F , then two cases should be considered:

• when R2
0 ≥ R2

0,∗, then massive releases of sterile insect, i.e. ΛM > Λcrit
M , should be

advocated.

• When R2
0 < R2

0,∗, then small, but large enough (Λ∗
M,R2

0,C
< ΛM ≤ Λcrit

M ), releases of

sterile insects could be useful to control the disease. However, since Λ∗
M,R2

0,C
is close

to Λcrit
M , from a practical point of view, it is preferable to consider massive releases of

sterile insects too.

We summarize all qualitative results of system (18)-(19) related to the disease free equilibria
in Table 2, page18.

N R2
0 ΛF R2

0 ΛM Observations
≤ 1 TDFE is GAS

≤ 1 Releases of sterile insects are useless
because the DFE is already GAS

> 1 ≥ Λcrit
F > Λcrit

M Only massive releases could be efficient
such that TDFE is GAS

> 1 ≥ R2
0,∗ > Λcrit

M TDFE is GAS

> Λcrit
M TDFE is GAS

< Λcrit
F < R2

0,∗ = Λcrit
M R2

0,SITc
< 1, TDFE and DFE† are both stable

> Λ∗
M,R2

0,C
R2

0,SITc
< 1, TDFE and DFE2 are both stable

Table 2: Summary table of the qualitative analysis of system (18)-(19)

Remark 10. According to Table 2, when R2
0 < R2

0,∗, we recover bifurcation diagram 2, page
10: it suffices to replace TE by TDFE and E2,† by DFE2,†.

5.4. About the effective reproduction number

SIT control is a long term strategy: it means that to lower the epidemiological risk before
entering the risky season (when DENV starts circulating), SIT has to be started far before.
However, if the basic reproduction number is estimated (even roughly), several options can
be used. Indeed, before the rainy season starts, and following (17), page 11, to get R2

0 < 1,
it suffices to reduce the size of the female population under the following threshold

F ∗epi =
(νm + µS)

νm

µI (ηh + µh)

B2βmhβhm
Nh. (31)

If SIT is used before the risky season, then the strategy of massive releases followed by small
releases can be used: first, massive releases to reduce the initial size below F ∗epi, for instance,
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followed by small releases to maintain it small [5], that is FS(t) + SS(t) < F ∗epi, for all
t > tDENV , where tDENV is the time where infected individuals (by Dengue) are introduced,
i.e. when the outbreak starts. However, we will highlight the fact that the starting time,
tS, of the SIT control is important relative to tDENV , even if R2

0,SITc
< 1. That is why, it is

important to consider the effective reproduction number, Reff (t),that is defined as follow

Reff (t) =
νm

νm + µS

B2βmhβhm
µI (ηh + µh)

FS(t) + SS(t)

Nh

. (32)

In particular, we will estimate Reff at time tDENV . Clearly, if Reff (tDENV ) < 1 and
R2

0,SITc
< 1, then no epidemics will occur. In contrary, even ifR2

0,SITc
< 1 butReff (tDENV ) >

1 then an outbreak will occur.
Last, combining SIT with Mechanical control will also improve the previous results in

terms of size of the releases or duration of the releases in order to have Reff (tDENV ) < 0.5,
to avoid any outbreak. This will be illustrated later.

6. The SIT periodic releases case

Assuming that the releases are periodic, for example with weekly period. Then epidemi-
ological model is defined by the system (18)-(33)-(34):

dA

dt
= φ(FS + FE + FI)− (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFS
dt

=
M

M +MT

rγA−Bβhm
Ih
Nh

FS − µSFS,
dFE
dt

= Bβhm
Ih
Nh

FS − (νm + µS)FE,

dFI
dt

= νmFE − µIFI ,
dSS
dt

=
MT

M +MT

rγA−Bβhm
Ih
Nh

SS − µSSS,
dSE
dt

= Bβhm
Ih
Nh

SS − (νm + µS)SE,

dSI
dt

= νmSE − µISI ,
dMT

dt
= −µTMT ,

(33)
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

Sh(nτ+) = Sh(nτ),
Ih(nτ+) = Ih(nτ),
Rh(nτ+) = Rh(nτ),
A(nτ+) = A(nτ),
M(nτ+) = M(nτ),
FS(nτ+) = FS(nτ),
FE(nτ+) = FE(nτ),
FI(nτ+) = FI(nτ),
SS(nτ+) = SS(nτ) + τΛF ,
SE(nτ+) = SE(nτ),
SI(nτ+) = SI(nτ),
MT (nτ+) = MT (nτ) + τΛM

(34)

where τ is the period of the releases.

Remark 11. Practically, we will consider a total amount of sterile insects released at time
nτ , Mtotal. Among these releases, a fraction ε of sterile females will be released, such that
εMtotal = τΛF , and (1− ε)Mtotal = τΛM .

When ε = 0, we can use the approach already used in [14] to study the sterile male
impulsive model. When ε > 0, then we have to study the previous systems.

6.1. Existence and stability of the trivial periodic disease-free solution (TDFSper)

Let us consider the following system (35)-(36) that models the periodic release of sterile
insects (both males and females):

dSS
dt

= −µSSS, for t 6= nτ,

dMT

dt
= −µTMT ,

(35)

{
SS(nτ+) = SS(nτ) + τΛF ,
MT (nτ+) = MT (nτ) + τΛM .

(36)

Hence, as t→ +∞, MT and SS converges toward the periodic solution
Mper

T (t) =
τΛM

1− e−µT τ e
−µT (t−bt/τcτ),

SperS (t) =
τΛF

1− e−µSτ e
−µS(t−bt/τcτ).

(37)

Moreover, we have that ∫ τ

0

SperS (x)dx =
τΛF

µS
. (38)

Taking into account (37), we deduce that solutions of system (18)-(33)-(34) converge in
the sense of L∞(0,+∞) norm, to solutions of system (18)-(39)-(40). Precisely, only MT (t)
is substituted by Mper

T (t) in (33) to obtain (39):
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

dA

dt
= φ(FS + FE + FI)− (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFS
dt

=
M

M +Mper
T

rγA−Bβhm
Ih
Nh

FS − µSFS,
dFE
dt

= Bβhm
Ih
Nh

FS − (νm + µS)FE,

dFI
dt

= νmFE − µIFI ,
dSS
dt

=
Mper

T

M +Mper
T

rγA−Bβhm
Ih
Nh

SS − µSSS,
dSE
dt

= Bβhm
Ih
Nh

SS − (νm + µS)SE,

dSI
dt

= νmSE − µISI ,

(39)



Sh(nτ+) = Sh(nτ),
Ih(nτ+) = Ih(nτ),
Rh(nτ+) = Rh(nτ),
A(nτ+) = A(nτ),
M(nτ+) = M(nτ),
FS(nτ+) = FS(nτ),
FE(nτ+) = FE(nτ),
FI(nτ+) = FI(nτ),
SS(nτ+) = SS(nτ) + τΛF ,
SE(nτ+) = SE(nτ),
SI(nτ+) = SI(nτ).

(40)

It is straightforward to obtain that system (18)-(39)-(40) admits as trivial periodic disease-
free solution (TDFSper):

TDFSper = (Nh,0R7 , SperS (t), 0, 0)T

where SperS is defined in (37). Finally, we set

T0,pulse =
νm

νm + µS

B2βhmβmh
(ηh + µh)µINh

1

τ

∫ τ

0

SperS (x)dx =
νm

νm + µS

B2βhmβmh
(ηh + µh)µINh

ΛF

µS
, (41)


ΛM = µT min

t∈[0,τ ]
Mper

T (t) =
µT τΛM

1− e−µT τ e
−µT τ ,

ΛM = µT max
t∈[0,τ ]

Mper
T (t) =

µT τΛM

1− e−µT τ ,
(42)

and, using Λcrit
M defined in (12), page 8, we also set

M crit
T,per =

Λcrit
M (eµT τ − 1)

µT
. (43)
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Note that following (22), when ΛM > Λcrit
M , then R2

0,SITc
= T0,pulse and both thresholds shape

the stability of the trivial disease-free state. Moreover,

T0,pulse < 1 if and only if ΛF < Λcrit
F , (44)

where Λcrit
F is defined in (25). Indeed, from (41), we deduce that

T0,pulse =
R2

0µA,2
rγ(γ + µA,1)(N − 1)

ΛF . (45)

Hence, (44) is straightforwardly deduced. We can prove the following global attractivity
result.

Theorem 7. Let ε ≥ 0 and Mtotal > 0 be given. Assume that ΛF < Λcrit
F .

(i) If
τΛM > M crit

T,per, (46)

then solutions of system (18)-(39)-(40) are such that

lim
t→+∞

(S(t), I(t), R(t), A(t),M(t), FS(t), FE(t), FI(t), SS(t), SE(t), SI(t))
T = TDFSper.

(ii) If
τΛM = M crit

T,per, (47)

solutions of system (18)-(39)-(40) are such that

lim
t→+∞

(S(t), I(t), R(t), A(t),M(t), FS(t), FE(t), FI(t), SS(t), SE(t), SI(t))
T = TDFSper

whenever
(A,M,FS + FE + FI)

T (0) ∈ [0R3 ,E†(ΛM)).

(iii) If
0 < τΛM < M crit

T,per, (48)

then solutions of system (18)-(39)-(40) are such that

lim
t→+∞

(S(t), I(t), R(t), A(t),M(t), FS(t), FE(t), FI(t), SS(t), SE(t), SI(t))
T = TDFSper

whenever
(A,M,FS + FE + FI)

T (0) ∈ [0R3 ,E1(ΛM)).

Proof. See Appendix D, page 50.

Like in Theorem 6, we can deduce from Theorem 7 that, in the case of periodic releases,
the strategy using large and small releases is useful to decay an established mosquito pop-
ulation and thus to lower the epidemiological risk. If the mosquito population is small or
not established, then (appropriate) small releases of sterile insects are sufficient to reach
elimination too.
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6.2. Existence of a periodic disease-free solution (DFSper)

Taking into account (37), the disease-free sub-system derived from system (18)-(33)-(34)
is given by system (49)-(50):

dSh
dt

= µh(Nh − Sh),
dA

dt
= φFS − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFS
dt

=
M

M +Mper
T

rγA− µSFS,
dSS
dt

=
Mper

T

M +Mper
T

rγA− µSSS,

(49)


Sh(nτ+) = Sh(nτ),
A(nτ+) = A(nτ),
M(nτ+) = M(nτ),
FS(nτ+) = FS(nτ),
SS(nτ+) = SS(nτ) + τΛF .

(50)

The dynamics of state variables Sh and SS, i.e. equations (49)1−(50)1 and (49)5−(50)5, are
uncoupled. Hence, we will consider in the sequel the sub-system (51):

dA

dt
= φFS − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFS
dt

=
M

M +Mper
T (t)

rγA− µSFS.

(51)

Substituting Mper
T (t) by

ΛM

µT
and by

ΛM

µT
in (51) leads to the lower system (52) and the

upper system (53), with 

dA

dt
= φFS − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFS
dt

=
M

M +
ΛM

µT

rγA− µSFS
(52)

and 

dA

dt
= φFS − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dFS
dt

=
M

M +
ΛM

µT

rγA− µSFS.
(53)
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Hence, one has, see e.g. [5]:

(i) When N > 1 and ΛM ∈ (0,Λcrit
M ], system (52) admits one or two positive equilibria

E1,3D ≤ E2,3D. In addition, if the initial data of (52) is greater or equal to E1,3D, then
the corresponding solution is also greater or equal to E1,3D. Recall that MT1 is given
by (12). Similarly, since 0 < MT < MT ≤ MT1 , we deduce that system (53) admits
one or two positive equilibria E1,3D ≤ E2,3D. Finally, the set

{(A,M,FS)T ∈ R3
+ : (A,M,FS)T < E1,3D}

belongs to the basin of attraction of 0R3 = (0, 0, 0)T for system (53), hence by compar-
ison, its belongs to the basin of attraction of 0R3 for system (51).

(ii) When N > 1 and ΛM > Λcrit
M , then the elimination equilibrium 0R3 is globally asymp-

totically stable for system (53).

(ii) When N ≤ 1, then the elimination equilibrium 0R3 is globally asymptotically stable
for system (53).

Taking into account Lemma 1 together with the previous discussion, leads to Proposition 4.

Proposition 4. If N > 1 and ΛM ∈ (0,Λcrit
M ], the set

Ω = {(A,M,FS)T ∈ R3
+ : E1,3D ≤ (A,M,FS)T ≤ E∗}

is positively invariant by system (51) where E∗ is the positive wild equilibrium given by (7).

To establish the existence of a least one positive and periodic solution for system (51),
we will use the Brouwer fixed point theorem together with comparison arguments. The
following result is valid.

Theorem 8. Assume that N > 1 and ΛM ∈ (0,Λcrit
M ]. Then, for

E1,3D ≤ (A(0),M(0), FS(0))T ≤ E∗,

system (18)-(39)-(40) has at least one positive τ -periodic disease-free solution DFSper =
(Sh(t), 0R2 , A(t),M(t), FS(t), 0R2 , SS(t), 0R2)T with

E1,3D ≤ (A(t),M(t), FS(t))T ≤ E∗,

Sh(t) = Nh and

SS(t) =


τΛF + e−µSτ

∫ (bt/τcτ+1)τ

bt/τcτ
v(x)eµSxdx

1− e−µSτ +

∫ t

bt/τcτ
v(x)eµSxdx

 e−µS(t−bt/τcτ) (54)

where

v(t) =
Mper

T (t)

M(t) +Mper
T (t)

rγA(t).

Proof. See Appendix E.
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6.3. Stability property of a periodic disease-free solution (DFSper)

Now, we are in position to define the basic reproduction number, Rper
0,SIT , of system (18)-

(39)-(40). Following the approach given in [32, 33], we setX = (Ih, FE, FI , SE, SI , A,M, FS, SS, Sh, Rh)
T

and the non-trivial and τ -periodic disease-free solution is

Xper = (0R5 , Aper(t),Mper(t), F per
S (t), SperS (t), Nh, 0)T .

For i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} and t 6= nτ , let Fi(t,X) be the input rate of newly
infected individuals in the ith compartment; V+

i (t,X) is the input rate of individuals by
others means, V−i (t,X) is the rate of transfer of individuals out of compartment i and
Vi(t,X) = V−i (t,X)− V+

i (t,X). That is,

F(t,X) =



Bβmh
FI + SI
Nh

Sh

Bβhm
Ih
Nh

FS

0

Bβhm
Ih
Nh

SS

0
0
0
0
0
0
0



, V(t,X) =



(ηh + µh)Ih
(νm + µS)FE
−νmFE + µIFI
(νm + µS)SE
−νmSE + µISI

−φ(FS + FE + FI) + (γ + µA,1 + µA,2A)A
−(1− r)γA+ µMM

− M

M +Mper
T (t)

rγA+Bβhm
Ih
Nh

FS + µSFS

− Mper(t)

M +Mper
T (t)

rγA+Bβhm
Ih
Nh

SS + µSSS

−µhNh +Bβmh
FI + SI
Nh

Sh + µhSh

−ηhIh + µhRh


such that system (18)-(39) can be written as follows

dX

dt
= F(t,X)− V(t,X). (55)

It is straightforward to prove that F(t,X), V(t,X) and system (40) satisfy assumptions
(H1)− (H6) of [33].

The derivatives of V and F , at Xper, can be parted as follows

DF(x, t) =

(
F (t) 0

0 0

)
, DV(x, t) =

(
V (t) 0
? −M(t)

)
,

where

F =


0 0 Bβmh

Bβhm
F per
S (t)

Nh

0 0

0 0 0

 , V =

 ηh + µh 0 0
0 νm + µS 0
0 −νm µI



25



and

M(t) =



−(µS + νm) 0 0 0 0 0 0 0
νm −µI 0 0 0 0 0 0
0 0 a66 0 φ 0 0 0
0 0 (1− r)γ −µM 0 0 0 0
0 0 a86 a87 −µS 0 0 0
0 0 a96 a97 0 −µS 0 0
0 −Bβmh 0 0 0 0 −µh 0
0 0 0 0 0 0 0 −µh


with

a66 = −(γ + µA,1 + 2µA,2A
per(t)), a87 =

rγAper(t)Mper
T (t)

(M(t) +Mper
T (t))2

,

a86 =
rγM(t)

M(t) +Mper
T (t)

, a97 = − rγAper(t)Mper
T (t)

(Mper(t) +Mper
T (t))2

,

a96 =
rγMper

T (t)

Mpert) +Mper
T (t)

.

Let ΦM(τ) be the monodromy matrix related to the linear τ -periodic system dZ(t)

dt
=M(t)Z(t), t 6= nτ,

Z(nτ+) = Z(nτ), t = nτ.

We assume that the periodic equilibriumXper = (0, 0, Aper(t),Mper(t), F per
S (t), SperS (t), Nh, 0)T

is locally asymptotically stable, that is

(H7) ρ(ΦM(τ)) < 1,

where ρ(·) is the spectral radius operator. Let us consider the sub-matrix E of matrix M
defined by

E =

 a66 0 φ
(1− r)γ −µM 0
a86 a87 −µS


and the monodromy matrix, ΦE(τ), related to the linear τ -periodic system dQ(t)

dt
= E(t)Q(t), t 6= nτ,

Q(nτ+) = Q(nτ), t = nτ.

It is straightforward to deduce that

ρ(ΦM(τ)) < 1 ⇐⇒ ρ(ΦE(τ)) < 1.

Hence, we set
(H7)′ ρ(ΦE(τ)) < 1.

Unfortunately, since we do not have an explicit expression of Xper, we will only be able to
verify assumption (H7) or (H7)′ numerically. Similarly, the monodromy matrix related to
the linear τ -periodic system

26



 dY (t)

dt
= −V Y (t), t 6= nτ,

Y (nτ+) = Y (nτ), t = nτ,

is

Φ−V (τ) =

 e−(ηh+µh)τ 0 0

0 e−(νm+µS)τ 0
0 ? e−µIτ


where ? is a real value. Therefore, it is straightforward to deduce that

(H8) ρ(Φ−V (τ)) < 1

holds true.
Following [33], one can define the next infection operator L which is positive, continuous

and compact. We also define the basic reproduction number (see for instance [33])

Rper
0,SIT = ρ(L),

the spectral radius of L. The next result (see Lemma 3) shows that ρ(ΦF−V (τ))− 1 has the
same sign as Rper

0,SIT − 1.

Lemma 3. Let Xper be a non-trivial periodic disease-free solution of system (18)-(39)-(40).
Assume that (H7)′ holds true. Then, one has:

1. Rper
0,SIT = 1 if and only if ρ(ΦF−V (τ)) = 1.

2. Rper
0,SIT > 1 if and only if ρ(ΦF−V (τ)) > 1.

3. Rper
0,SIT < 1 if and only if ρ(ΦF−V (τ)) < 1.

Hence, Xper is locally asymptotically stable if Rper
0,SIT < 1 and unstable if Rper

0,SIT > 1.

Proof. Assumptions (H1), (H2), (H3), (H4), (H5), (H6) and (H8) are verified. Assuming
that (H7)′ is verified implies that (H7) holds true. Hence, conclusions of the Lemma follow
from [33, Theorem 2.2].

As already pointed out in [14, 32], it is not possible to obtain explicitly an analytic
expression for ρ(ΦF−V (τ)) or Rper

0,SIT . Since F and V are not both upper or lower triangular,
according to Theorem 4.1 [21], we cannot use a time-average method to compute Rper

0,SIT . It
will be computed numerically; see for instance [21] for a procedure for the linear operator
method.

Also, when R0 > 1, since Rper
0,SIT can only be estimated numerically, we cannot derive an

analytical expression for the threshold Λ∗Rper
0,SIT

in order to ensure that Rper
0,SIT < 1, assuming,

of course, that ΛF < Λcrit
F . This will be evaluated numerically, using the linear operator

method coupled with the bisection method. See some estimates in Tables 9, 10, 11, with
and without mechanical control.
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7. Numerical simulations

All numerical simulations are done using a standard finite difference method, the ode23tb
solver of Matlab [20] which solves system of stiff ODEs using a trapezoidal rule and second
order backward differentiation scheme (TR-BDF2) [7, 18]. Results are obtained in a couple
of seconds.

We consider Aedes albopictus mosquito parameters used in previous publications [4, 5,
11, 12, 13]. They are summarized in Table 3.

Symbol φ µA,1 µA,2 r µS µM µT γ
Value 10 0.05 to be estimated 0.50 1/10 1/7 1/7 0.08

Table 3: Aedes spp entomological parameter values.

According to Table 3, the basic offspring number is N ≈ 30.76, and the critical daily
release rate for sterile males is Λcrit

M = 1613, without mechanical control. Above this value,
the wild mosquito population will decay to 0 more or less fast depending on the size of the
releases.

Following [14], we estimate µA,2 thanks to the carrying capacity (of breeding sites), K.

Assuming that K = 3 × Nh, the aquatic stage at equilibrium is A∗ =

(
1− 1

N

)
K, such

that to get the same equilibrium with our model leads to

µA,2 =
γ + µA,1

K
N .

Thus according to the value taken for Nh in Table 5, we derive µA,2 ≈ 6.667 × 10−5, from
which we deduce the following equilibrium values for the mosquito population on a domain
with Nh = 20000 inhabitants:

A∗ M∗ F ∗

58050 16254 23220

Table 4: Mosquito positive equilibrium

These will be the initial values in the following simulations. In Table 5, we consider
epidemiological parameters related to a Dengue epidemic, because Dengue is circulating in
La Réunion since 2019. We also assume that there is no impact of the virus on the infected
vector’s mean lifespan, i.e. µI = µS. Values for βhm, βmh, ηh and νm are taken from [1].

Symbol B βhm βmh µI νm µh ηh Nh

Value 1 0.375 0.375 1/10 1/8
1

365× 78
1/7 20000

Table 5: DENV epidemiological parameter values [1]

7.1. The constant and permanent SIT releases case

According to Table 5, the basic reproduction number is R2
0 ≈ 6.3476 such that F ∗epi =

3659, and we can also estimate Λcrit
F ≈ 366 individuals. Note also that, when ΛF = 0,

R2
0,∗ ≈ 6.547.
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Since R2
0 is close to R2

0,∗, we have Λ∗
M,R2

0,C
≈ 1611, very close to Λcrit

M = 1613, such that

it is far better to consider massive releases, i.e. ΛM > Λcrit
M , like, for instance, a daily release

rate of ΛM = 1650 sterile male individuals. However, be careful, being just above the sterile
threshold, implies that it will take a long time to be close from TDFE: the larger the release,
the faster the system converges to TDFE.

In Table 6 we provide several computations of some threshold parameters, when 0 <
ΛF < Λcrit

F . When ε = 0.01, that is ΛF = 17, we have R2
0,SITc

= R2
0,SITc,S

< 1 because the
release rate for sterile males is larger than Λcrit

M . Once ε ≥ 0.025, sterile females are enough
to make R2

0,SITc
above 1, because R2

0,SITc,S
> 1.

ε 0 0.01 0.025 0.05 0.1

ΛF 0 17 41 82 165
ΛM 1650 1633 1609 1567 1485

Λ∗
M,R2

0,C
1611 1613 1611 1599 1528

R2
0,∗ 6.547 6.074 5.512 4.744 3.729

R2
0,SITc,W

- - 0.385 0.637 1.004

R2
0,SITc,S

- 0.0836 1.766 2.329 3.065

R2
0,SITc

- 0.0836 2.152 2.967 4.070

Table 6: Threshold values to lower the epidemiological risk for DENV

However, for a given ε > 0, as long as we consider large releases, such that τΛM >>
Λcrit
M

µT
,

that is (1− ε)×Mtotal >>
Λcrit
M

µT
, the wild population will decay to 0, whatever the amount

of sterile females that are released.
However, for practical application, we have to be cautious because these results are only

true for “long time” control. That is why, in the forthcoming simulations, we estimate
Reff at time t = tI , for different starting time. It is important to understand that massive
continuous or impulsive periodic SIT control, i.e. ΛM > Λcrit

M , with or without sterile females
releases, cannot prevent from an outbreak, when the SIT starting time is too close from the
outbreak starting time. The red stars in all figures indicate the minimal amount of sterile
insects to release considering an infinite time to get R0,SITc < 1 (Rper

0,SIT < 1)
Whatever the type of control, mechanical control is always recommended. Indeed, as

showed in Table 7, page 29, the use of mechanical control allows to lower the threshold Λcrit
M .

In fact, when ε = 0, as expected, since Λcrit
M depends linearly on K, the decay on Λcrit

M is
proportional to the level of mechanical control.

% of Mechanical control (days) 0 20% 40% 60%

Λcrit
M 1613 1291 968 646

Improvement 0 20% 40% 60%

Table 7: Threshold values for the release rate to eliminate the wild population, thanks to different level of
mechanical control - ε = 0

Figs. 3, 4, and 5 show the impact of mechanical control (MC) to improve the efficiency of
the SIT and also to reduce faster the population in order to get Reff smaller than 0.5, once
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the epidemic starts. With MC, SIT control time reduction can be substantial. For instance,
assuming ΛM = 2000, without MC, almost 400 days are necessary to get Reff < 0.5, while
it takes only 180 days with 20% of MC, and 120 days with 40% of MC. Also, once ΛM is
chosen such that ΛM > Λcrit

M , for a sufficient long time, then R0,SIT < 1. Again, the positive
impact of MC is obvious.
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Figure 3: Reff (tI) vs the starting time and the level of the control - Without release of sterile females and
without mechanical control
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Figure 4: Impact of 20% of mechanical control on the effective reproduction number thanks to the starting
time of the control - Without release of sterile females
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Figure 5: Impact of 40% of mechanical control on the effective reproduction number thanks to the starting
time of the control - Without release of sterile females

Let us now consider the effect of releasing sterile females. In general, there is at most a
small percentage of sterile females releases, but to illustrate our findings we will assume that
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5% of sterile females are released: see Figs. 6-7-8. As observed in these Figs. (see the level
set 0.5), the sterile male release rate has an impact on Reff , such that if the release is too
large then Reff > 0.5. This makes sense because when the release rate is large, a significant
amount of sterile females are released, such that they maintain R0,SIT above 0.5. According
to Fig. 6, the best release rate would be ΛM = 3000 to get Reff (tDENV ) < 0.5 in the shortest
time, here 250 days, approximately. The addition of MC (see Figs. 7-8) can reduce this time
to 200 days for 20% of MC, and 175 days, and also, to reduce the release rate to 2500 or
even 2000, for instance. This result make sense as MC lower the threshold release rate as
showed in Table 8, page 32. The gain in time and in the release rate is very substantial and
show again the great importance of MC, with or without sterile females releases.

% of Mechanical control (days) 0 20% 40% 60%

Λcrit
M 1692 1357 992 594

Improvement 0 19.8% 41.4% 64.89%

Table 8: Threshold values for the release rate to eliminate the wild population, thanks to different level of
mechanical control - ε = 0.05
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Figure 6: Reff (tI) vs the starting time and the level of the control including releases of sterile females
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Figure 7: Impact of mechanical control on the effective reproduction number thanks to the starting time of
the control - With release of sterile females.
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Figure 8: Impact of mechanical control on the effective reproduction number thanks to the starting time of
the control - With release of sterile females

Let us discuss briefly the particular case ΛF > Λcrit
F . For that case, we know that
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R2
0,SITc

> 1, whatever the size of the releases. In particular, assuming that the proportion
of sterile females is 5%, then releasing a total amount of 7320 sterile insects leads to release
exactly 366 sterile females, i.e. ΛF ≈ Λcrit

F , such that R2
0,SIT,c > 1. If very massive releases

are used, then the percentage of sterile females within the releases have to be sufficiently
small, in order to have ΛF < Λcrit

F . This shows that results like [19], where an admissible
percentage of 4% of released sterile females is given, are useless if we don’t know exactly the
real sizes of the releases.

7.2. The impulsive periodic releases case

We now consider periodic impulsive releases, that is more realistic. We will estimate
numerically the periodic basic reproduction number and also estimate the minimal release
amount needed to decay the wild mosquito population to 0 for a given releases period, τ .

When ε = 0 (no release of sterile females), in Table 9, page 34, we derive numerically the
threshold, Λ∗Rper

0,SIT
, and the mean number of sterile insects, for a given τ . It is interesting to

notice that for τ = 5, the release rate is close to the release rate obtained for the continuous
daily rate, Λ∗

M,R2
0,C

= 1611.

τ (days) 5 7 10 14

Λ∗Rper
0,SIT

1670 1723 1842 2080

Nb of insects per release 8350 12061 18420 29120
Mean number of sterile 11690 12061 12894 14560
males over one period

Table 9: Threshold values to lower the epidemiological risk for DENV, i.e. Rper
0,SIT < 1

We consider τ = 7, because, in the field, weekly releases are usually considered. With
different level of mechanical control, including also the release of sterile females (like previ-
ously, 5%), we estimate numerically the minimal amount of insect to ensure that Rper

0,SIT is
less than one. This is based on a numerical estimate of Rper

0,SIT , like in [14].

% of mechanical control (days) 0 20% 40%

Λ∗Rper
0,SIT

1723 1359 966

Mean number of sterile 12061 9513 6762
males

Table 10: Weakly releases (τ = 7) - Threshold values to lower the epidemiological risk for DENV, i.e.
Rper

0,SIT < 1, without release of sterile females, ΛF = 0

% of mechanical control (days) 0 20% 40%

Λ∗Rper
0,SIT

1817 1451 1053

Mean number of sterile 12719 10157 7371
insects over one period

Table 11: Weakly releases (τ = 7) - Threshold values to lower the epidemiological risk for DENV, i.e.
Rper

0,SIT < 1, with the release of 5% (from Λ∗Rper
0,SIT

) of sterile females
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In the following simulations, we derive an estimate of Reff (tDENGV ), when the Dengue
epidemic starts, for weekly periodic impulsive releases, with different level of Mechanical
Control, also including (or not) the release of sterile females.
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Figure 9: Weekly periodic releases. Estimate of the effective reproduction number thanks to the starting
time of the control - Without release of sterile females and without mechanical control
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Figure 10: Weekly periodic releases. Impact of mechanical control (20%) on the effective reproduction
number - No release of sterile females
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Figure 11: Weekly periodic releases. Impact of mechanical control (40%) on the effective reproduction
number - No release of sterile females

Comparing Figs. 9, 10, and 11, we can highlight the great impact of mechanical control
(see also Table 10) that allows to reduce the size and even the duration of the SIT control. For
instance, in the continuous case, choosing ΛM = 3000, it requires 210 days to get Reff < 0.5
without MC, 150 days when MC = 20%, and 110 days when MC = 40%. The red dotted
lines indicate the minimal threshold, Λ∗Rper

0,SIT
, for the release rate to get Rper

0,SIT < 1. The

readers have to be aware that it can take a long time (and thus a lot of releases) to have
Rper

0,SIT < 1, as showed in Fig. 9. Clearly, large periodic releases, like for continuous releases,
are more interesting. However, this might depend on the sterile insects production facilities
and also the area to treat. As usual, a balance has to be find.

Let’s turn now to the release of sterile females. Like for the continuous case, we consider
that, among the sterile insects that are released, 5% are females. As showed in Figs. 12, 13,
and 14, we derive the same simulations than before and recover somehow the same results:
very large release can induce a negative effect because the amount of sterile females can be so
large that it is impossible to decayRper

0,SIT below 0.5, for instance. Following Remark 11: since
(1 − ε)Mtotal = τΛM > M crit

T,per, it is important to notice that as long as ΛF < Λcrit
F ≈ 366,

we will have Rper
0,SIT < 1. Of course, it we want Rper

eff < 0.5, then we need to check that

ΛF < Λcrit
F /2 ≈ 183.

Again, the combination with mechanical control is clearly beneficial and can help lower
the time needed to reduce Reff below 1 or 0.5 and also the size of the releases. For instance,
according to Fig. 9, the best release rate would be ΛM = 3500 without MC, while for
MC = 40%, the release rate ΛM = 2500 would decay Reff below 0.5 in only 150 days.

Globally, if SIT, combined with mechanical control, started early compared to the ”start”
of an epidemic, the release of sterile females, in a reasonable amount (no more than 5%)
does not have an impact on the final efficiency of the SIT control. The only issue would
be to consider very massive releases such that a sufficient amount of sterile females would
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“artificially” maintainRper
0,SIT above 1. However, if the aim is to reduce the basic reproduction

number below 0.5, then our simulations show that the releases rate has to belong between
1500 and 4000 individuals, meaning that every week between 10500 and 28000 sterile males
have to be released.

In order to better illustrate our explanations, we provide additional simulations of the
time evolution of infected humans with and without SIT control, combined or not with
mechanical control (40%). In Figs. 15(a), 15(c), and Fig. 16(a), 16(c), page 40, we show
how the dynamic of infected humans can vary according to the size of the releases and
the use or not of mechanical control: while SIT control decays the maximum number of
infected individuals, it also leads to a spreading of the epidemic which can increase the
number of cumulative cases, as showed in Figs. 15(b), 15(d), Fig. 16(b), and 16(d), page
40. Clearly, also, the use of mechanical control allows to reduce significantly the size of the
periodic releases needed to avoid an epidemic. Last, the releases of sterile females impact
the maximum of the Infected compartment, but in a very limited way. This follows our
conclusion that even if irradiated females are released (at a reasonable rate), while a DENV
virus is circulating, this will not impact, i.e. favor, the dynamic of the epidemic.
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Figure 12: Weekly periodic releases. Estimate of the effective reproduction number thanks to the starting
time of the control - With the release of sterile females and without mechanical control

8. Conclusion

In this work we have considered SIT control, based on sterile males releases, coupled
with an epidemiological model, taking into account that sterile females can be (accidentally)
released too. We showed that a low SIT control is possible but only if the basic reproduction
number, R0, is lower than a certain threshold, R∗0, that depends on the basic offspring
number, N , related to the mosquito species. If not, then only massive releases (above the
threshold, Λcrit

M or M crit
T,per) are useful. This is an important result as it can change the SIT

control strategy, locally or along the year since all these threshold parameters can change.
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Figure 13: Weekly periodic releases. Estimate of the effective reproduction number thanks to the starting
time of the control - With the release of sterile females and 20% of mechanical control
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Figure 14: Weekly periodic releases. Estimate of the effective reproduction number thanks to the starting
time of the control - With the release of sterile females and 40% of mechanical control

For mosquitoes, sex-separation is already an issue even if new approaches, like Genetic
Sex Strain, are in development [17]. Until these new technologies are operational, it is worth,
at least for the health authorities and also to reassure local people, to study if the release of
sterile females during a SIT campaign can be problematic or not. We showed that as long as
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Figure 15: Weakly periodic releases: Time evolution of Ih, the infected humans, and the cumulative number
of infected humans when DENV starts circulating at day 300 while SIT starts at time t=200 - without and
with 40% of mechanical control - No release of sterile females, ε = 0
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Figure 16: Weakly periodic releases: Time evolution of Ih, the infected humans, and the cumulative number
of infected humans when DENV starts circulating at day 300 while SIT starts at time t=200 - 40% of
mechanical control - with release of sterile females (ε = 0.05)

40



the sterile females release rate, ΛF , is below the threshold Λcrit
F , then SIT control can already

be efficient, provided that it starts early enough. We emphasized the fact that if (very)
massive releases are considered, the amount of released females has to be small enough, such
that ΛF < Λcrit

F . This result is of primary importance because, when SIT is not efficient, the
tendency is to increase the size of the releases: outside an epidemic period, this is not an
issue, but it is when a virus is circulating. Thus, the recommendation about the maximal
percentage of sterile females to release, given by the IAEA, is not useful because we show
that it is the amount of sterile females released that matters.

We illustrated our theoretical findings on Dengue parameters since several dengue viruses
are circulating in La Réunion where our SIT project takes place (see [6] for explanations).

Our recommendation, in the absence of virus circulation, is to start SIT control, combined
with mechanical control, even when sterile females are released, as early as possible before the
risky epidemic season in order to decrease the mosquito population, such that, for instance,
R0,SIT < 0.5, and then, continue the SIT control with (very) small releases, as described
and illustrated in [2, 5].

Our model can be improved by taking into account that sterile males cannot not nec-
essarily be fully sterilized, such that a certain proportion, ε, of residual fertility can occur.
This has been studied in [6], where we showed that ε needs to be less than 1/N in order to
keep the SIT efficient. Most certainly the combination of residual fertility and sterile females
releases could be problematic and that is why they have to be studied seriously in order to
avoid failures in SIT programs.
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Régional de la Réunion, the Conseil Départemental de la Réunion, the European Agricul-
tural Fund for Rural Development (EAFRD) and the Centre de Coopération Internationale
en Recherche Agronomique pour le Développement (CIRAD).
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Appendix A. Proof of Lemma 1

1. The right-hand side of system (15)-(16) is continuous and continuously differentiable
on R8. Thus, according to [31, Theorem III.10VI], for any initial condition in R8,
a unique solution exists, at least locally. The vector field defined by the right-hand
side of system (15)− (16) is either tangential or directed inwards on the boundary of
D′′. Hence, D′′ is positively invariant by system (15)-(16). Now, we use the notion
of invariant regions, see e.g. [28, Chapter 14, pages 198-212], to prove the positive
invariance of the set ΓN>1. By adding equations of system (15), it is straightforward
to deduce that, for all t ≥ 0, the set S(t) + I(t) + R(t) = N is positively invariant.
From system (16), we deduce that:

dA

dt
= φ(FS + FE + FI)− (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

d(FS + FE + FI)

dt
≤ rγA− µS(FS + FE + FI).

(A.1)

Let f be the right-hand side of system (A.1). Assume that N > 1. Hence the positive
wild equilibrium E∗ = (A∗,M∗, F ∗)′ is defined. Recall that

M∗ =
(1− r)γ
µM

A∗ and F ∗ =
rγ

µS
A∗ =

(γ + µA,1 + µA,2A
∗)A∗

φ

. Let us consider

G1 = M −M∗, G2 = FS + FE + FI − F ∗, G3 = A− A∗.

One has:

∇G1 · f |M=M∗ = (1− r)γ(A− A∗) ≤ 0 in ΓN>1, so M ≤M∗.
∇G2 · f |FS+FE+FI=F ∗

≤ rγ(A− A∗) ≤ 0 in ΓN>1, so FS + FE + FI ≤ F ∗.

∇G3 · f |A=A∗ = φ (FS + FE + FI)− (γ + µA,1 + µA,2A
∗)A∗

= φ (FS + FE + FI − F ∗)
≤ 0 in ΓN>1, so A ≤ A∗.

2. Based on he uniform boundedness, we deduce that the solutions of system (15)-(16)
exist globally, for all t ≥ 0. Therefore, system (15)-(16) defines a dynamical system on
D′′.

This ends the proof of the Lemma.

Appendix B. Proof of Theorem 3, page 11

1. Following [9], we rewrite system (15)-(16) by splitting the uninfected compartments
x = (S,R,A,M,FS)′ from the infected compartments y = (I, FE, FI)

T . That is
dx

dt
= f(x, y),

dy

dt
= g(x, y),
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such that g(x, 0) = 0. When N > 1, thanks to the results obtained in section 3, it
is straightforward to show that the equilibrium x∗ = (Nh, 0, A

∗,M∗, F ∗S)T is GAS for

system
dx

dt
= f(x, 0). Let us consider

dy

dt
= g(x, y), that is

dIh
dt

= Bβmh
FI
Nh

Sh − (ηh + µh) Ih,

dFE
dt

= Bβhm
Ih
Nh

FS − (µE + νm)FE,

dFI
dt

= νmFE − µIFI ,

(B.1)

that can be rewritten as

dy

dt
= F(x, y)− V(x, y) = (F − V )y − h(x, y),

where

F(x) =


Bβmh

FI
Nh

Sh

Bβhm
Ih
Nh

FS

0

 , V(x) =

 (ηh + µh)Ih
(νm + µS)FE
µIFI − νmFE

 , (B.2)

F and V the Jacobian matrices associated with F and V at (x∗, 0R3)′, that is

F =


0 0 Bβmh

Bβhm
F ∗S
N∗h

0 0

0 0 0

 , V =

 ηh + µh 0 0
0 µS + νm 0
0 −νm µI

 , (B.3)

where F ∗S is given by (7), and h(x, y) = (F − V )y − (F(x, y)− V(x, y)). In fact, we
have

h(x, y) =


BβmhFI(1− Sh/Nh)

Bβhm
Ih
Nh

(F ∗S − FS)

0

 ≥ 0.

In addition F − V is a Metzler matrix. When R2
0 ≤ 1, DFE is LAS and since

assumptions (H1) and (H2) in [9] are verified, DFE is GAS when R2
0 ≤ 1.

2. The Jacobian matrix of system (15)-(16) at the DFE is

JDFE =



−µh 0 0 0 0 0 0 −Bβmh

0 0 −ηh − µh 0 0 0 0 Bβmh

0 ηh −µh 0 0 0 0 0

0 0 0 −γ − µA,1 − 2µA,2A
∗ 0 φ φ φ

0 0 0 (1− r) γ −µM 0 0 0

0 −Bβhm
F ∗S
Nh

0 rγ 0 −µS 0 0

0 Bβhm
F ∗S
Nh

0 0 0 0 −(µS + νm) 0

0 0 0 0 0 0 νm −µI


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Eigenvalues of JDFE are: −µM , −µh, −µh, the solutions of the following equation in
λ:

λ2 + (µS + µA,1 + 2µA,2A
∗ + γ)λ+ µSµA,2A

∗ = 0 (B.4)

and the eigenvalues of the matrix Z defined by

Z =

 −(ηh + µh) 0 Bβmh
BβhmF

∗
S/Nh −(µS + νm) 0

0 νm −µI

 .

Eigenvalues of the matrix Z are solutions of the cubic equation in λ

λ3 + λ2(ηh + µh + µS + νm + µI) + λ((ηh + µh)(µS + νm) + µI(ηh + µh + µS + νm))
+µI(µS + νm)(ηh + µh)(1−R2

0) = 0.
(B.5)

It is not hard to see that roots of (B.4) have negative real part and that when R0 = 1,
(B.5) admits zero as a root and a negative root. Moreover,

R2
0 = 1 ⇐⇒ B = B∗ =

√
νm + µS
νm

µI
βmh

ηh + µh
βhm

Nh

F ∗S
.

A right eigenvector of JNTDFE corresponding to the zero eigenvalue is w = (wi)i=1,...,8

where

w1 = −B
∗βmh
µh

< 0,

w2 =
B∗βmh
ηh + µh

> 0,

w3 =
ηh
µh
w2 > 0,

w4 =

φ

(
µS

(
1 +

µI
νm

)
− µI

(
1 +

µS
νm

))
µSµA,2A∗

,

=
φ (µS − µI)
µSµA,2A∗

< 0 because µS < µI ,

w5 =
(1− r)γ
µM

w4 < 0,

w6 =

rγφ

(
1 +

µI
νm

)
− (γ + µA,1 + 2µA,2A

∗)µI

(
1 +

µS
νm

)
µSµA,2A∗

,

w7 =
µI
νm

> 0,

w8 = 1 > 0.

Since

µS < µI , µS(γ+µA,1+2µA,2A
∗)−rγφ = µSµA,2A

∗ > 0, rγφ−µI(γ+µA,1+2µA,2A
∗) < 0,

we have

w6 =
rγφ− (γ + µA,1 + 2µA,2A

∗)µI − µSµA,2A∗
µI
νm

µSµA,2A∗
< 0.

46



A left eigenvector of JNTDFE corresponding to the zero eigenvalue is v = (vi)i=1,...,8

where v1 = v3 = v4 = v5 = v6 = 0 and

v2 =
B∗βhm
ηh + µh

F ∗S
Nh

,

v7 = 1,

v8 =
νm + µS
νm

.

Following [10], the only non-zero term to be considered are the ones that correspond
to v2, v7 and v8. From system (15)-(16), one deduces that

a = 2v2
B∗βmh
Nh

w1w8 + 2v7
B∗βhm
Nh

w2w6 < 0

and

b = v2w8βmh + v7w2βhm
F ∗S
Nh

> 0.

Hence, it follows from [10, Theorem 4.1 & Remark 1], that system (15)-(16) undergoes
a forward bifurcation or transcritical bifurcation when R0 = 1.

3. Based on [30, Theorem 2], we deduce that when R2
0 > 1, then the DFE is unstable.

Appendix C. Proof of Proposition 2, page 12

To find the positive or endemic equilibrium, EE = (S]h, I
]
h, R

]
h, A

],M ], F ]
S, F

]
E, F

]
I )
T , we

have to solve the following system

µhNh −Bβmh
FI
Nh

Sh = µhSh

Bβmh
FI
Nh

S = (ηh + µh) Ih,

ηhIh = µhRh,
φ(FS + FE + FI) = (γ + µA,1 + µA,2A)A,
(1− r)γA = µMM,

rγA−Bβhm
Ih
Nh

FS = µSFS,

Bβhm
Ih
Nh

FS = (µS + νm)FE,

νmFE = µIFI .

(C.1)

Using (C.1)6, (C.1)7 and (C.1)8, we deduce

F ]
E =

Bβhm
µS + νm

I]h
Nh

F ]
S, (C.2)

F ]
I =

νm
νm + µS

Bβhm
µI

I]h
Nh

F ]
S. (C.3)

and (
1 +

Bβhm
µS

I]h
Nh

)
F ]
S =

rγ

µS
A]. (C.4)

47



Using (C.1)4, we obtain

F ]
S + F ]

E + F ]
I =

γ + µA,1 + µA,2A
]

φ
A].

Thus (
1 +

Bβhm
µS + νm

I]h
Nh

+
νm

νm + µS

Bβhm
µI

I]h
Nh

)
F ]
S =

γ + µA,1 + µA,2A
]

φ
A], (C.5)

that is, for A] 6= 0,

φ
rγ

µS

(
1 +

Bβhm
µS + νm

I]h
Nh

+
νm

νm + µS

Bβhm
µI

I]h
Nh

)
=

(
1 +

Bβhm
µS

I]h
Nh

)(
γ + µA,1 + µA,2A

]
)
,

or

N
(

1 +
Bβhm
µS + νm

I]h
Nh

+
νm

νm + µS

Bβhm
µI

I]h
Nh

)
=

(
1 +

Bβhm
µS

I]h
Nh

)(
1 +

µA,2
γ + µA,1

A]
)
, (C.6)

from which we deduce

A] =
γ + µA,1
µA,2

N
(

1 +
Bβhm
µS + νm

I]h
Nh

+
νm

νm + µS

Bβhm
µI

I]h
Nh

)
(

1 +
Bβhm
µS

I]h
Nh

) − 1

 . (C.7)

Note that, when µI = µS, the previous relationship reduces to

A] =
γ + µA,1
µA,2

(N − 1) .

Then, using (C.4), we deduce

(
1 +

Bβhm
µS

I]h
Nh

)
F ]
S =

rγ

µS

γ + µA,1
µA,2

N
(

1 +
Bβhm
µS + νm

I]h
Nh

+
νm

νm + µS

Bβhm
µI

I]h
Nh

)
(

1 +
Bβhm
µS

I]h
Nh

) − 1

 ,

such that, using (C.3), we derive

F ]
I =

νm
νm + µS

Bβhm
µI

I]h
Nh

rγ

µS

γ + µA,1
µA,2

1

1 +
Bβhm
µS

I]h
Nh

N
(

1 +
Bβhm
µS + νm

I]h
Nh

+
νm

νm + µS

Bβhm
µI

I]h
Nh

)
(

1 +
Bβhm
µS

I]h
Nh

) − 1

 .

(C.8)
Then, using (C.1)2,

BβmhF
]
I

(
1−

(
ηh + µh
µh

)
I]h
Nh

)
= (ηh + µh) I

]
h,
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we replace F ]
I in (C.8) to obtain the following equation for I∗h 6= 0

1

Nh

νm
νm + µS

BβmhBβhm
(ηh + µh)µI

rγ

µS

γ + µA,1
µA,2

N
1+

Bβhm
µS + νm

I]h
Nh

+
νm

νm + µS

Bβhm
µI

I]h
Nh


1+

Bβhm
µS

I]h
Nh


− 1

×
(

1−
(
ηh + µh
µh

)
I]h
Nh

)
= 1 +

Bβhm
µS

I]h
Nh

,

or equivalently

R2
0

(
N
(

1 +
Bβhm
µS + νm

I]h
Nh

+
νm

νm + µS

Bβhm
µI

I]h
Nh

)
−
(

1 +
Bβhm
µS

I]h
Nh

))(
1−

(
ηh + µh
µh

)
I]h
Nh

)
=

(N − 1)

(
1 +

Bβhm
µS

I]h
Nh

)2

.

That is,

R2
0

(
N − 1 +Bβhm

( N
µS + νm

+
N
µI

νm
νm + µS

− 1

µS

)
I]h
Nh

)(
1−

(
ηh + µh
µh

)
I]h
Nh

)
=

(N − 1)

(
1 +

Bβhm
µS

I]h
Nh

)2

.

(C.9)

Setting x =
I]h
Nh

, we derive

ax2 + bx+ c = 0, (C.10)

with

a = R2
0Bβhm

(N
µI

νm
νm + µS

+
N

µS + νm
− 1

µS

)(
ηh + µh
µh

)
+ (N − 1)

(
Bβhm
µS

)2

,

b = R2
0 (N − 1)

(
1 +

ηh
µh

)
+ 2 (N − 1)

Bβhm
µS

−R2
0Bβhm

(N
µI

νm
νm + µS

+
N

µS + νm
− 1

µS

)
,

and
c = − (N − 1)

(
R2

0 − 1
)

such that, N being large (larger than µI/µS), we have

(N
µI

νm
νm + µS

+
N

µS + νm
− 1

µS

)
≥ 0,

A] > 0 (see (C.7)), a > 0, and c < 0 when R0 > 1, (C.10) has one positive root

x] =
1

2a

(
−b+

√
b2 − 4ac

)
> 0.

Thus, we deduce I]h, and, then, all other variables can be deduced. Moreover, the application
of [10, Theorem 4.1], to prove item 2 of Theorem 3, page 11, also establishes the local
asymptotic stability of the unique endemic or positive equilibrium for system (15)-(16) when
R2

0 > 1.
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Appendix D. Proof of Theorem 7

Eigenvalues of the monodromy matrix of system (18)-(39)-(40) at TDFSper are

λ1 = λ2 = e−µhτ ,
λ3 = λ4 = e−µSτ ,

λ5 = e−µM τ , λ6 = e−(µS+νm)τ ,

λ7 = e−µIτ , λ8 = e−(γ+µA,1)τ

and the eigenvalues of the 3× 3 sub-matrix Z defined as:

Z = (zij)1≤i,j≤3 =


−(ηh + µh)τ 0 Bβmhτ

Bβhm
Nh

∫ τ

0

SS(x)dx −(νm + µS)τ 0

0 νmτ −µIτ

 .

Moreover, let us set:
C1 = −z11 − z22 − z33 > 0,
C2 = −z11z22z33 − z21z32z13,
C3 = z11z33 + z11z22 + z22z33 −

C2

C1

.

Hence, according to the Routh-Hurwitz theorem, eigenvalues of the matrix Z have negative
real parts if and only if C1 > 0 and C2 > 0 and C3 > 0.

C2 = −z11z22z33 − z21z32z13,
= τ 3(ηh + µh)(νm + µS)µI

(
1− νm

νm + µS

B2βhmβmh
(ηh + µh)µINh

1

τ

∫ τ

0

SS(x)dx

)
= τ 3(ηh + µh)(νm + µS)µI (1− T0,pulse) .

Hence, C2 > 0 because T0,pulse < 1. Moreover,

C3 = z11z33 + z11z22 + z22z33 −
C2

C1

,

=
1

C1

(C1(z11z33 + z11z22)− z22z33(z22 + z33) + z21z32z13),

> 0.

Therefore, if T0,pulse < 1, then s(Z) < 0, where s(·) denotes the stability modulus (i.e., the
maximum of the real part of eigenvalues). Thus, eigenvalues of the matrix Z have negative
real part and the exponential of their real are therefore strictly less than one. Consequently,
the trivial periodic disease-free solution is locally asymptotically stable whenever T0,pulse < 1.
Similarly, if T0,pulse > 1, then s(Z) > 0 and the trivial periodic disease-free solution is
unstable. Moreover, solutions (A,M,FS, FE, FI)

T of system (39) satisfy:

dA

dt
= φ(FS + FE + FI)− (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

d(FS + FE + FI)

dt
=

M

M +Mper
T

rγA− µS(FS + FE)− µIFI ,

≤ M

M +Mper
T

rγA− µS(FS + FE + FI).

(D.1)
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The auxiliary system (D.2) is a non-autonomous monotone non-decreasing system:

dA

dt
= φ(FS + FE + FI)− (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

d(FS + FE + FI)

dt
=

M

M +Mper
T

rγA− µS(FS + FE + FI).

(D.2)

Moreover, substituting Mper
T by MT in system (D.2) leads to the following constant SIT

model 

dA

dt
= φ(FS + FE + FI)− (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

d(FS + FE + FI)

dt
=

M

M +MT

rγA− µS(FS + FE + FI)

(D.3)

whose solution XM is such that XM ≥ Xper for all time t > 0, using a comparison principle
with Xper being the solution of (D.2). Therefore, we deduce from Theorem 2, page 8 that:

• For MT > MT1 or equivalently, τΛM > M crit
T,per, 0R3 is globally asymptotically stable

for system (D.3). Hence, for system (D.1), one has lim
t→+∞

(A,M,FS, , FE, FI)
T (t) =

0R5 . Since T0,pulse < 1, the trivial periodic disease-free solution TDFSper is locally
asymptotically stable for system (18)-(39)-(40). The LAS property means that there
exists a neighborhood V of TDFSper in R11

+ such that if at a time t∗ ≥ 0,

X∗per = (S(t∗), I(t∗), R(t∗), A(t∗),M(t∗), FS(t∗), FE(t∗), FI(t
∗), SS(t∗), SE(t∗), SI(t

∗))T ∈ V ,

then for t ≥ t∗, one has

lim
t→+∞

(S(t), I(t), R(t), A(t),M(t), FS(t), FE(t), FI(t), SS(t), SE(t), SI(t))
T = TDFSper.

(D.4)
It therefore follows from (D.4) that

X∗per ∈ V =⇒ lim
t→+∞

(S(t), I(t), R(t))T = (Nh, 0, 0)T .

However, it is straightforward to obtain from system (18) that

∀t > 0, (S + I +R)(t) = Nh

which implies that
lim
t→+∞

(S + I +R)(t) = Nh. (D.5)

We deduce from (D.5) that for all neighborhood V0 of Nh in R+, there exists a time
t† ≥ 0 such that

(S + I +R)(t†) ∈ V0 =⇒ lim
t→+∞

(S + I +R)(t) = Nh. (D.6)

In particular for V0 = V , (D.6) holds true. By the unicity of the limit, we deduce that

for (S, I, R)T (0) ∈ R3
+, lim

t→+∞
(S(t), I(t), R(t))T = (Nh, 0, 0)T . (D.7)

51



Hence, the limit system of (SS, SE, SI)
T is

dSS
dt

= −µSSS,
dSE
dt

= −(νm + µS)SE,

dSI
dt

= νmSE − µISI ,

(D.8)


SS(nτ+) = SS(nτ) + τΛM

SE(nτ+) = SE(nτ),
SI(nτ+) = SI(nτ),

(D.9)

It is therefore straightforward to deduce that

lim
t→+∞

(SS(t), SE(t), SI(t))
T = (SperS (t), 0, 0)T . (D.10)

• Assume that τΛM = M crit
T,per, and (A,M,FS+FE+FI)

T (0) ∈ [0R3 , E†(MT )). Therefore,
we deduce from Theorem 2, page 8, that lim

t→+∞
(A,M,FS, FE, FI)

T (t) = 0R5 . Therefore,

we proceed in the same way as in (D.4)-(D.10).

• Finally, assume that 0 < τΛM < M crit
T,per, and (A,M,FS+FE+FI)

T (0) ∈ [0R3 , E1(MT )).
Therefore, we deduce from Theorem 2, page 8, that lim

t→+∞
(A,M,FS, FE, FI)

T (t) = 0R5 .

Hence, the rest of proof is done as in (D.4)-(D.10).

This ends the proof.

Appendix E. Proof of Theorem 8

For system (51), the following result is valid.

Lemma 4. Assume that N > 1 and ΛM ∈ (0,Λcrit
M ]. Then, system (51) has at least one

positive τ -periodic solution (A(t),M(t), FS(t))T with E1,3D ≤ (A(t),M(t), FS(t))T ≤ E∗

whenever E1,3D ≤ (A(0),M(0), FS(0))T ≤ E∗.

Proof. Assume that assumptions of Lemma 4 are valid. First, we define a shift operator,
which is also known as a Poincaré mapping σ : R3 → R3. For (t0, (A0,M0, FS0)

T )T ∈ R+×R3,

σ((A0,M0, FS0)
T ) = (A(τ, t0, (A0,M0, FS0)

T ),M(τ, t0, (A0,M0, FS0)
T ), FS(τ, t0, (A0,M0, FS0)

T ))T ,

where (A(τ, t0, (A0,M0, FS0)
T ),M(τ, t0, (A0,M0, FS0)

T ), FS(τ, t0, (A0,M0, FS0)
T ))T denotes the

solution of system (51) through the point (t0, (A0,M0, FS0)
T )T . Proposition 4, page 24, tells

us that the set
Ω = {(A,M,FS)T ∈ R3

+ : E1 ≤ (A,M,FS)T ≤ E∗}
is positively invariant by system (51). That is to say, the operator σ defined above maps
Ω into itself: σ(Ω) ⊂ Ω. Since the solution of (51) is continuous with respect to the initial
value, the operator σ is continuous. Moreover, Ω is a bounded, closed, convex set in R3.
Hence, by the Brouwer fixed point theorem, see for example [27, Theorem 2.1.11], σ has at
least one fixed point in Ω, i.e., there exists at least one positive τ -periodic solution of (51)
in Ω. This ends the proof.
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Let us now consider the auxiliary system (E.1): dSS
dt

= v(t)− µSSS,
SS(nτ+) = SS(nτ) + τΛF

(E.1)

where v is a continuous, τ -periodic, positive and bounded real valued function. The following
result is valid:

Lemma 5. System (E.1) admits a unique positive and periodic solution SS(t) defined by:

SS(t) =


τΛF + e−µSτ

∫ (bt/τcτ+1)τ

bt/τcτ
v(x)eµSxdx

1− e−µSτ +

∫ t

bt/τcτ
v(x)eµSxdx

 e−µS(t−bt/τcτ). (E.2)

Based on Lemma 4, it is straightforward to deduce Lemma 6 and Lemma 7:

Lemma 6. Assume that N > 1 and ΛM ∈ (0,Λcrit
M ]. Then, for

E1,3D ≤ (A(0),M(0), FS(0))T ≤ E∗,

system (49)-(50) has at least one positive τ -periodic solution (Sh(t), A(t),M(t), FS(t), SS(t))T

with
E1,3D ≤ (A(t),M(t), FS(t))T ≤ E∗,

Sh(t) = Nh and SS(t) is defined by (E.2) with

v(t) =
Mper

T (t)

M(t) +Mper
T (t)

rγA(t).

Lemma 7. Under conditions of Lemma 6, system (18)-(39)-(40) has at least one positive
τ -periodic solution DFSper = (Sh(t), 0R2 , A(t),M(t), FS(t), 0R2 , SS(t), 0R2)T with Sh(t), A(t),
M(t), FS(t), SS(t) given in Lemma 6.

Theorem 8 therefore follows from Lemma 7.
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