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Abstract 18 

 19 
The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. 20 
Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more 21 
generally occurs in the elderly population and is associated with impaired pacemaker function causing 22 
abnormal heart rhythm.  Individuals with SND have a variety of symptoms including sinus bradycardia, 23 
sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals 24 
with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic 25 
or secondary to systemic or cardiovascular conditions. Current management of patients with SND is 26 
limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective 27 
therapeutic measures that target the underlying causes of SND renders management of these patients 28 
challenging due to its progressive nature, and has highlighted a critical need to improve our 29 
understanding of its underlying mechanistic basis of SND. This review focuses on current information 30 
on the genetics underlying SND, followed by future implications of this knowledge in the management 31 
of individuals with sinus node disorders.   32 

1 Introduction 33 

Automaticity is the primary function of the sinoatrial node (SAN). SAN pacemaker cells have the 34 
shortest depolarization phase of the action potential, and the fastest firing rate, making the SAN the 35 
dominant pacemaker of the heart (Kennedy et al., 2016). The SAN initiates an electrical impulse that 36 
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propagates throughout the heart, establishing a normal heart rhythm. The sinus node is surrounded by 37 
a collagen frame (James, 1977) near the epicardium between the superior vena cava and the right atrium 38 
in the posterior right atrial wall (Keith and Flack, 1907). The SAN primarily contains three specialized 39 
cell types: pale cells (P cells), transitional cells (T cells), and recently described “fibroblast-like” cells, 40 
intertwined in collagen, fibroblasts, fatty tissue, nerves, and capillaries (James, 1977; Balbi et al., 2011; 41 
Csepe et al., 2015). P cells are localized to the central region of the SAN, and have a single membrane 42 
with very little membrane specialization resulting in poorly defined intercalated discs, few 43 
desmosomes, and few gap junctions (Ho and Sánchez-Quintana, 2016). Gap junctions are rare in P 44 
cells, and junctions are only formed between P cells or T cells. P cells do not form junctions with other 45 
atrial myocytes (James, 1977). Automaticity arises from P cells (James et al., 1966; Woods et al., 46 
1976). Interestingly, transitional cells, located in the periphery of the SA node, act as the distributors 47 
of action potentials to atrial myocardium and internodal conduction pathways (Boyett et al., 2000). T 48 
cells are a loosely defined, varied group of cells. Many T cells look like P cells with reduced myofibrils, 49 
while others closely resemble atrial myocytes (James et al., 1966). Finally, the function of “fibroblast-50 
like” cells has yet to be defined, but presumably, these cells play a role in maintaining the structure of 51 
the SAN (Balbi et al., 2011). The SAN connects to the atrioventricular (AV) node via three tracts: the 52 
anterior (which splits into two bundles), the middle, and the posterior internodal tracts (James, 1963; 53 
Kennedy et al., 2016).  54 

The SAN receives blood flow through the sinus node artery, the largest atrial coronary branch, which 55 
originates from the left or right coronary artery (Verhaeghe and Van Der Hauwaert, 1967). Of note, 56 
parasympathetic modulation of the heart is primarily through the vagal postganglionic pathways along 57 
the Sulcus Terminalis in the subepicardial region adjacent to the SAN artery (Bluemel et al., 1990). 58 
Innervation is both parasympathetic, and sympathetic to the SAN, yet neither innervation pathway has 59 
any contact with P or T cells (Balbi et al., 2011).   60 

Interestingly, it has been suggested that the total amount of SAN cells is inversely proportional to the 61 
age of an individual, suggesting that the number of SAN cells, and the volume of SAN cells, decrease 62 
over time (Thery et al., 1977; Shiraishi et al., 1992). However, Alings et al. found that the sinus node 63 
does not change in dimensions during an entire adult life span, and that although relative collagen 64 
increases from childhood to adulthood, collagen levels do not change once adulthood is reached, but 65 
rather the structure of the collagen changes (Alings et al., 1995). 66 

Sinoatrial node dysfunction (SND) occurs in one of every 600 cardiac patients above the age of 65 67 
(Rodriguez and Schocken, 1990). SND accounts for about half of the permanent implanted pacemakers 68 
in the US (Lamas et al., 2000). In general, “sick sinus syndrome” (SSS), sinus node dysfunction (SND), 69 
and sinoatrial node dysfunction (also SND) are used interchangeably in the literature. SND is usually 70 
accompanied by structural abnormalities. Symptoms of SND include sinus bradycardia (heart rate less 71 
than 60 beats per minute), sinus arrest (total absence of atrial or ventricular activity), SA block, and 72 
bradycardia/tachycardia syndrome (cycling between supraventricular tachyarrhythmias and sinus 73 
bradycardia) (Alpert and Flaker, 1983). Syncope has also been reported by about half of patients with 74 
SND (Menozzi et al., 1998; Brignole et al., 2013). Although structural defects accompany most forms 75 
of SND, syncope and bradycardia associated with SND have also been observed in patients with normal 76 
cardiac anatomy (Yabek et al., 1982). SND is generally associated with impaired pacemaker function 77 
causing abnormal heart rhythm, but SND can also be associated with impulse transmission issues from 78 
apoptosis in the AV node, sinus node, and internodal pathways, that may cause death from complete 79 
heart block (James et al., 1996). Further, blockage of the sinus node artery preventing blood flow to 80 
the SAN cells can result in SND and sudden death (Jing and Hu, 1997).  81 
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This review focuses on current information on the genetics underlying SND, followed by a brief 82 
overview of the recent update in clinical management of patients with sinus node disorders. A better 83 
understanding of the genetics and the molecular mechanisms of the SAN and SND will improve current 84 
diagnostic measures and identify alternative therapeutic approaches. The genes currently implicated in 85 
human SND are summarized in table 1. Although not the focus of this review, SND is also commonly 86 
a secondary symptom to other systemic and cardiovascular conditions. Atrial fibrillation (AF) and atrial 87 
tachycardia, cardiac transplantation, drug toxicity, hyperinsulinemia and insulin resistance (diabetes 88 
type II), sinus node artery obstruction, hyperparathyroidism, intracranial conditions, epilepsy,  89 
myxedema coma, cardiac lymphoma, infections, and myocardial infarction are all potential procedures, 90 
diseases, or conditions that can result in secondary SND (Lown, 1967; Bexton et al., 1984; Bigger and 91 
Sahar, 1987; Wasada et al., 1995; Hasdemir et al., 2003; Shah et al., 2004; Dadlani et al., 2010; 92 
Ravindran et al., 2016; Kondo et al., 2020; Kousa et al., 2020; Mesirca et al., 2020). 93 

One would be remiss to not specifically mention the recently uncovered link between the novel 94 
coronavirus-19 (COVID-19) disease and SND. COVID-19, caused by severe acute respiratory 95 
syndrome coronavirus-2 (SARS-CoV-2), may cause various cardiovascular problems even without 96 
pre-existing cardiac conditions (Clerkin et al., 2020; Organization, 2020). In May 2020, COVID-19 97 
was first reported to cause SND in two patients. Both patients were older than 70 years-of-age, and 98 
both experienced sinus bradycardia following intubation for acute hypoxic respiratory failure. Each 99 
patient still experienced SND two weeks after onset (Peigh et al., 2020). Two COVID-19 positive 100 
patients were further reported to suffer from AV dysfunction and SND without a history of arrhythmias 101 
(Babapoor-Farrokhran et al., 2020). The reported cases suggest an interesting association between 102 
COVID-19 and SND as a secondary symptom.    103 

2 Genetics of Sinus Node Disease 104 

SND mainly affects the older population, although it can affect people at any age. Most cases of SND 105 
are not inherited. However, several genes coding for ion channels such as HCN4 and SCN5A, 106 
cytoskeletal proteins, and proteins intricate to cardiac development have been linked to SND (De Ponti 107 
et al., 2018). Gene products associated with SND in the SAN are shown in figure 1. Major genes linked 108 
to SND etiology, as well as human studies and animal models used to characterize the SND phenotype 109 
will be discussed below. Genetic complexity and pleiotropy remain a big challenge to proper SND/SSS 110 
diagnosis with likely multiple complexities involved including genetic variation, underlying 111 
conditions, and environmental factors. With numerous sinoatrial-expressed gene variants associated 112 
with SND, and only moderate penetrance, SND can continue within families for generations before 113 
diagnosis (Abe et al., 2014). Further, compound variants for prominent SND-implicated genes seem to 114 
increase penetrance, emphasizing SND as an oligogenic disease (Baskar et al., 2014; De Filippo et al., 115 
2015; Sacilotto et al., 2017).     116 

2.1 Calsequestrin-2 (CASQ2) and ryanodine receptor 2 (RYR2) 117 

Background: 118 

Cardiac calsequestrin, calsequestrin-2 (Casq2), localized to the sarcoplasmic reticulum (SR), is a low-119 
affinity high-capacity Ca2+-binding protein involved in the ability of the sarcoplasmic reticulum to 120 
preserve and release Ca2+ in cardiac myocytes (Murphy et al., 2011). Voltage-gated Ca2+ channels (L-121 
type calcium channels) create an initial Ca2+ influx into the cell, which causes RyR2 receptors to release 122 
more calcium from the SR in a process called calcium induced-calcium release. Calsequestrin, the 123 
major Ca2+ binding protein in the SR, is anchored to the membrane of the SR by RyR2 (either directly, 124 
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or indirectly via triadin and junctin), and regulates the release of Ca2+ through the RyR2 channel (Beard 125 
et al., 2004). Importantly, calsequestrin, the ryanodine receptor, junctin, and triadin are all necessary 126 
for proper calcium cycling (Zhang et al., 1997).  127 

Human studies: 128 

Loss of function variants in CASQ2 can result in catecholaminergic polymorphic tachycardia (CPTV), 129 
bradycardia, and atrial arrhythmias (Glukhov et al., 2015). CPVT was first identified in 1975 as a case 130 
report of “bidirectional tachycardia” induced by physical effort and stress in a 6 year old female with 131 
no structural abnormalities (Reid et al., 1975). A later follow-up of 21 children over 7 years properly 132 
emphasized CPVT as a separate entity of ventricular tachycardia in children, emphasizing the dangers 133 
of misdiagnosis with the lurking potential for spontaneous sudden cardiac death (SCD) without 134 
immediate therapy. Leenhardt et al. showed the adrenergic-induced ventricular arrhythmias to be 135 
preventable with proper β-blocker treatment (Leenhardt et al., 1995).  136 

The CPVT phenotype from CASQ2 variants is attributed to an increase in expression of calreticulin 137 
and RyR2 (Song et al., 2007). CPVT is also commonly induced by RYR2 variants, and has been highly 138 
associated with bradycardia (Miyata et al., 2018). An exon 3 deletion of RYR2 (c.169-353_273+657del) 139 
was found in a family with a history of SND and CPVT (Dharmawan et al., 2019). Exon 3 deletions 140 
were identified in two additional families that showed symptoms of SND (Bhuiyan et al., 2007). 141 
Further, a RyR2 (R420Q) missense mutation was associated with sinus bradycardia and atrial 142 
arrhythmias (Domingo et al., 2015). Although CPVT is well documented across CASQ2 and RYR2 143 
variants, SAN dysfunction and atrial arrhythmias have been identified in CPVT patients, signifying the 144 
importance of calsequestrin-2 and ryanodine receptor 2 in proper SAN functioning (Sumitomo et al., 145 
2007). Additionally, a study across 303 patients with lone AF found rare CASQ2 variants, implicating 146 
CASQ2 in atrial fibrillation as well (Weeke et al., 2014).  147 

Mouse models: 148 

Glukhov et al. described the first Casq2-null (Casq2-/-) mouse model with SAN defects. Phenotype 149 
included bradycardia, RR interval variability, SAN conduction abnormalities, and abnormally high 150 
atrial ectopic activity resulting in AF, implicating calsequestrin-2 in SAN functioning. Increased 151 
fibrosis in the pacemaking complex was observed in Casq2-deficient mice. At the cellular level, lack 152 
of functioning Casq2 caused abnormal calcium release from the sarcoplasmic reticulum and increased 153 
diastolic calcium concentration, resulting in a delay between action potential and transient calcium 154 
upstrokes (Glukhov et al., 2015). This disruption in intracellular calcium cycling explains the SAN, 155 
atrial myocyte, and ventricular myocyte dysfunction seen in individuals with CASQ2 loss of function 156 
variants. 157 

Atrial burst pacing induced atrial flutter and AF in Casq2-/- mice versus wild-type (WT) mice, and 158 
isolated Casq2 deficient hearts showed ectopic foci from the pulmonary vein region when visualized 159 
with atrial optical voltage maps. Isolated hearts from Casq2-null mice also experienced diastolic 160 
subthreshold spontaneous Ca elevations (SCaEs) and delayed afterdepolarizations (DADs) when AF 161 
was not reached, but R-propafenone (RyR2 and Na+ channel blocker) was shown to prevent AF, DADs, 162 
and SCaEs in these mice. Authors attributed this success mostly to the inhibition of RyR2, as an 163 
equipotent NaV channel inhibitor did not reach the same result (Faggioni et al., 2014). Notably, atrial 164 
overdrive pacing suppressed ventricular arrhythmias in a Casq2-null mouse model, and therefore could 165 
provide a new therapeutic option for CPVT (Faggioni et al., 2013). Interestingly, a RyR2 R4496C 166 
homozygous mouse showed sinus pausing, atrial arrhythmias, and reduced SAN automaticity. This 167 
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variant is associated with enhanced RyR2 activity, and supports a link between RYR2 variants in 168 
humans with SND (Zhang et al., 2013).  169 

2.2 G protein-activated inward rectifier potassium channel 4 (KCNJ5) 170 

Background: 171 

Activation of G protein via a transmitter is a common type of cell-cell communication. In general, a 172 
neurotransmitter binds to a seven transmembrane receptor on the outside of the cell, that results in the 173 
exchange of GDP for GTP on the inward side of the receptor, allowing the dissociation of the 174 
heterotrimeric G-protein subunits, that then further act as effectors (Gilman, 1987; Neer, 1995; Mark 175 
and Herlitze, 2000). For heart rate modulation, the Gβγ (as opposed to the Gα) subunit specifically 176 
activates the KAch channel by binding to the N- and C-termini of GIRK1 (G protein-regulated inwardly 177 
rectifying K+) and GIRK4 subunits directly (Logothetis et al., 1987; Huang et al., 1995). The 178 
muscarinic acetylcholine K+ channel (KAch) is composed of GIRK1 and GIRK4 (Kir3.4, KCNJ5 gene) 179 
subunits in the atria, and contributes to heart rate regulation in mammals (Wickman et al., 1998; Mark 180 
and Herlitze, 2000). During parasympathetic stimulation, KAch channels are activated, slowing the heart 181 
rate and the contractile force of the heart (Wickman et al., 1997). Girk4 knockout mice not only lacked 182 
IKAch, but also Girk1 expression, reinforcing that Girk4 plays a leading role in the expression and 183 
localization of Girk1 to the cell membrane (Wickman et al., 1998; Kennedy et al., 1999). The KAch 184 
channel is rapidly and reversibly inhibited upon membrane stretch that allows mechano-electrical 185 
regulation of the atria (Ji et al., 1998). Although Girk4 is necessary for proper Girk1 membrane 186 
expression, Girk4 homotetramers have also been identified in the atria (Corey and Clapham, 1998; 187 
Bender et al., 2001). Regulation of the Girk1/Girk4 heterotetrameric channel occurs via 188 
phosphorylation by cyclic AMP dependent protein kinase (PKA) (upregulation) and via 189 
dephosphorylation by protein phosphatase 2A (PP2A) (downregulation) (Müllner et al., 2003). 190 

Remarkably, the guanine nucleotide-binding protein subunits 2 and 5 (GNB2 and GNB5), that create 191 
the beta subunits of the G protein that interacts with GIRK1 and GIRK4, also play a role in SND. GNB5 192 
variants have been reported in a patient with sinus bradycardia and cognitive disability (Lodder et al., 193 
2016). A GNB2 variant was more strictly associated with cardiac conduction abnormalities resulting 194 
in SND and AV block (Stallmeyer et al., 2017).  195 

Human studies: 196 

Dobrev et al. compared 24 patients with chronic AF and aberrant atrial pacemaking function to 39 197 
patients with normal sinus rhythm. The density of IKAch in patients with chronic AF was only 50% of 198 
the density of IKAch in the sinus rhythm group. GIRK4 mRNA expression was also decreased, 199 
potentially implicating reduced GIRK4 expression in increased atrial excitability (Dobrev et al., 2001). 200 
C171T and G810T variants in GIRK4 have now been identified as risk factors for lone paroxysmal AF 201 
in Chinese populations (Zhang et al., 2009).  Further, A G387R heterozygous dominant variant in 202 
GIRK4 was found in a large Chinese kindred with clinical long QT syndrome (LQTS), a hereditary 203 
disorder that leads to sudden cardiac death. In 2019, A GIRK4 variant (W1010C) was first identified 204 
in a 3-generation family with SND. The W1010C variant in GIRK4 interestingly resulted in increased 205 
IKAch. This gain-of-function variant caused an enhanced parasympathetic tone, causing familial SND 206 
and hyperpolarization of the pacemaker cells (Kuß et al., 2019). Overall, loss-of-function Girk4 207 
variants seem to induce atrial arrhythmias, while gain-of-function variants may be implicated in SND. 208 

Mouse Models 209 
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SAN pacemaker cells from Kcnj5-/- mice completely lacked IKAch and showed about 50% reduction in  210 
cholinergic regulation of heart rate (cite Wickman et al. Neuron 1998 and Mesirca et al. J Gen Physiol, 211 
2013), further supporting the importance of the GIRK4 in parasympathetic modulation. In addition, 212 
Kcnj5 knockout mice had a 10% increase in resting heart rate with this decreased parasympathetic tone. 213 
The ability of these mice to recover to resting heart rate after stress (exercise or pharmacological 214 
stimulation) was significantly prolonged (Mesirca et al., 2013).  215 

2.3 Voltage-gated sodium channel alpha subunit 5 (SCN5A) 216 

Background: 217 

Atrial, ventricular, and Purkinje myocyte depolarization, which causes a complete contraction of the 218 
heart, is initially regulated by the cardiac sodium channel. Nav1.5 (the pore-forming, ion-conducting 219 
α-subunit of the cardiac sodium channel) is encoded by SCN5A, and variants in this gene have been 220 
implicated in a wide range of cardiac diseases such as Brugada syndrome, long QT syndrome, atrial 221 
fibrillation, sick sinus syndrome, dilated cardiomyopathy, and others (Wilde and Amin, 2018). Butters 222 
et al. analyzed electrophysiological mathematical models of SAN cells, 2D models of the intact SAN-223 
atrium tissue, and actual recordings of activation patterns from isolated intact rabbit SAN-atrium tissue 224 
to elucidate the mechanism of SCN5A+/- variants on SA node function. Isolated SAN cells from adult 225 
rabbits harboring a heterozygous SCN5A variant display slower pacemaking rates in the peripheral 226 
cells, but not in the SAN central cells, yet 2D models show intact atrium-SAN tissue to have a 227 
decreased pacemaking rate overall with AP conduction issues, that may potentially cause SA node exit 228 
block and sinus arrest, as seen in SND (Butters et al., 2010).  229 

Human studies: 230 

A SCN5A variant associated with long QT syndrome type 3 (LQTS3) and Brugada syndrome was first 231 
identified in a large family in 2001. Individuals carriers within the family that harbored the variant 232 
displayed a lower heart rate, and experienced marked QT prolongation during episodes of bradycardia, 233 
that resulted in sudden death within the family (van den Berg et al., 2001). Further, SCN5A human 234 
variants (usually autosomal recessive inheritance patterns) were linked to SND (Benson et al., 2003), 235 
dilated cardiomyopathy, conduction disorders (McNair et al., 2004; Freyermuth et al., 2016; Yang et 236 
al., 2017), and infant death syndrome (Denti et al., 2018).  237 

A loss-of-function E161K Nav1.5 variant was identified in two unrelated individuals with family 238 
history of bradycardia, SND, conduction disease, and Brugada syndrome. The reduced functional 239 
Nav1.5 protein expression caused atrial, ventricular, and SAN conduction slowing. Diastolic 240 
depolarization rate and upstroke velocity were both reduced in E161K computational models (Smits et 241 
al., 2005). An L1821fs/10 SCN5A variant causing a c-terminus truncation was identified in a 12-year-242 
old male diagnosed with SSS, and when expressed in HEK-293 cells, Nav1.5 current density was 243 
decreased by 90% (Tan et al., 2007). The SND phenotype identified in SCN5A variants seems to 244 
generally come secondary to Brugada syndrome and LQTS3. For example, a loss-of-function E1784K 245 
variant was identified in 41 individuals, and 39% of individuals had SND, while nearly all of them 246 
(93%) had LQT3 (Makita et al., 2008). However, some SCN5A variants have shown a SND phenotype 247 
without the Brugada-type ST elevation (Nakajima et al., 2013; Wilders, 2018; Alkorashy et al., 2020). 248 
An I230T homozygous Nav1.5 variant was found in four children with SND, yet heterozygous carriers 249 
of the variant showed normal conduction (Neu et al., 2010). Additionally, a case report found a R121W 250 
Nav1.5 novel variant in an individual diagnosed with SND (Holst et al., 2010). Finally, D349N and 251 
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D1790N autosomal recessive  variants in Nav1.5 were associated with pediatric sinus arrest and SND 252 
(Kodama et al., 2013). 253 

Mouse models: 254 

Mice heterozygous for functional Nav1.5 (Scn5a+/-) demonstrated bradycardia and sinoatrial block due 255 
to slowed pacemaker rates and slower SA conduction, particularly in larger peripheral SAN cells (Lei 256 
et al., 2005). Interestingly,  Scn5a+/- mice showed sex-dependent effects on SAN functioning in older 257 
mice, particularly shown as PR interval prolongation (in old males), RR interval prolongation (longer 258 
in old males), QTc prolongation (similar across both genders), and T-wave prolongation (longer in old 259 
males) (Jeevaratnam et al., 2010). Scn5a+/- mice also had decreased heart rate variability, reduced SA 260 
node automaticity, slowed SA conduction, increased fibrosis, and increased fibroblasts as 261 
consequences of the decreased Nav1.5 expression, particularly in older age mice (Hao et al., 2011).  262 

2.4 Hyperpolarization activated cyclic nucleotide gated potassium channel 4 (HCN4) 263 

The ability of the SAN cells to spontaneously initiate electrical impulse comes from the funny current 264 
(If) activation, a Na+/K+ depolarization current.  Funny current channels have inward current at diastolic 265 
voltages that are then activated by membrane hyperpolarization (“membrane clock” hypothesis for 266 
pacemaker automaticity) via binding to the intracellular cAMP that can be modified by sympathetic 267 
and parasympathetic transmitters, therefore modulating the heart rate (DiFrancesco, 1993; Accili et al., 268 
2002; Altomare et al., 2003). If may also be regulated by cAMP-activated protein kinase (PKA) in the 269 
SAN (Liao et al., 2010). While there are four members of the HCN channel family, many studies 270 
proposed that only HCN2 and HCN4-based channels are expressed in the murine SAN, with HCN4-271 
based channels having a higher level of expression, confirming the role of HCN4-based channels in 272 
driving cardiac pacemaker activity (Moosmang et al., 2001; Xiao et al., 2010). However, Fenske et al. 273 
found HCN1-based channels highly expressed in the SAN, and reported HCN1-based channels as 274 
critical for the stabilization of the lead pacemaker region in mice (Fenske et al., 2013). HCN4 channels 275 
and beta-2 adrenergic receptors (β2-AR) form a complex that is essential for HCN4 channel regulation 276 
(Greene et al., 2012). Interestingly, the expression of HCN2 and HCN4 channels  were shown to 277 
decrease at the SAN, and increase in the atria and pulmonary vein in older age in dogs, which could 278 
account for the disproportionately older population afflicted by SND (Li et al., 2014; Du et al., 2017). 279 

Human studies 280 

In 2003, an HCN4 variant (573X) causing truncation of HCN4 c-terminus was first identified in a 281 
patient with SND, presented as sinus bradycardia and chronotropic incompetence (Schulze-Bahr et al., 282 
2003). Importantly, familial sinus bradycardia linked to c-terminus truncation and loss of cAMP 283 
dependent regulation of HCN4 was documented in 2010 (Schweizer et al. PMID: 20693575). A D553N 284 
HCN4 missense variant was identified in an individual with recurring syncope, QT prolongation, 285 
polymorphic VT, and torsade de pointes. The individual variant, when transfected in COS7 cells, 286 
displayed a reduction in HCN4 expression at the cellular membrane, correlating the variant and the 287 
loss of functional HCN4 with SND (Ueda et al., 2004). Sixteen family members carrying a G480R 288 
missense variant in HCN4 (autosomal dominant) experienced sinus bradycardia. Molecular studies 289 
showed reduced synthesis and trafficking of G480R variant HCN4 to the membrane (Nof et al., 2007). 290 
A G482R HCN4 variant was reported in a family presenting with bradycardia and left ventricular non-291 
compaction cardiomyopathy. Interestingly, this was the first study to link HCN4-asociated SND with 292 
structural abnormalities of the myocardium (Milano et al., 2014). Further, HCN4- R393H loss-of-293 
function, c.1737+1 G>T splice site, I1479V loss-of-function, A485E loss-of-function, R375C loss-of-294 
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function, and V759I loss-of-function variants have all been identified in individuals with SND and 295 
other related cardiac conduction disorders (Hategan et al., 2017; Ishikawa et al., 2017; Servatius et al., 296 
2018; Alonso-Fernández-Gatta et al., 2020; Erlenhardt et al., 2020). 297 

Mouse models 298 

Hcn2-deficient mice presented spontaneous absence seizures and abnormal cardiac sinus rhythm, 299 
implicating the HCN family in SAN function (Ludwig et al., 2003). Mice expressing the dominant 300 
negative 573X HCN4 isoform lacking cAMP regulation present with SAN bradycardia, similar to that 301 
observed in the SND individual (Alig et al., PNAS 2009, PMID: 19570998). Conditional knockout of 302 
hcn4 have produced variable outcome phenotype, from sinus pauses (Hermann et al. EMBO 2007; 303 
PMID: 17914461), to severe heart block and death ((Baruscotti et al., 2011)). A murine tamoxifen-304 
inducible, cardiac-specific knockout model of exon 2 of Hcn4 channels showed remarkable 305 
bradycardia (50% reduction in heart rate), AV block, and death on day 5 on average.. Importantly, If 306 
was reduced by about 70% in these mice (Baruscotti et al., 2011). A similar pattern of strong 307 
bradycardia and AV block was observed in mice expressing a dominant negative HCN4 subunit lacking 308 
channel conductance and completely lacking If. However, no mortality was observed in these mice, 309 
despite the presence of recurrent ventricular arrhythmia (Mesirca P. et al. Nat commun 2014). Although 310 
HCN4 expression is essential for proper SA node functioning, extreme activation of If in cardiac cells 311 
can lead to initiation of ectopic foci, resulting in atrial and ventricular arrhythmias (Stieber et al., 2004). 312 
Morris et al. isolated atrial pacemaker cells from rats, and found that overexpression of Hcn2 via 313 
adenovirus-mediated gene transfer resulted in pacing acceleration. This potentially implicates gain-of-314 
function variants in HCN2 and HCN4 with increased pacemaker activity resulting in ectopic foci and 315 
cardiac arrhythmia (Morris et al., 2013). Interestingly, an Hcn1-deficient mouse model also showed 316 
bradycardia, slowed SAN conduction, sinus dysrhythmia, and sinus pauses. This study suggests a role 317 
of HCN1 in SAN function and human SND (Fenske et al., 2013). 318 

 319 

2.3 Sodium/calcium exchanger 1 precursor (SLC8A1) 320 

Background: 321 

Spontaneous action potentials in SAN cells provide the primary pacemaking activity for the entire 322 
heart, and are important for proper cardiac functioning. The cardiac Na+-Ca2+ exchanger (NCX1) plays 323 
an integral role in diastolic depolarizations that trigger these recurrent action potentials. Following 324 
diastolic SR Ca2+ release from ryanodine receptors, increased cytosolic Ca2+ causes an inward current 325 
via NCX, which accelerates late diastolic depolarization to the action potential threshold (“calcium 326 
clock” model for pacemaker automaticity) (Bogdanov et al., 2001) , (Lakatta et al. Circ Res 2010; 327 
PMID: 20203315). Further, NCX1 inactivation has the ability to completely halt SA node firing. 328 
(Groenke et al., 2013) by generating intermittent burst firing induced by intracellular Ca2+ overload 329 
(Torrente et al., 2015: PMID: 26195795).NCX1 has 10 transmembrane helices, and four ion-binding 330 
sites, one for Ca2+ and three for Na+ (Liao et al., 2012; Secondo et al., 2015). This NCX1 structural 331 
study agrees with current stoichiometric studies showing a mostly 3 Na+ to 1 Ca2+ exchange rate (Bers 332 
and Ginsburg, 2007). NCX1 can function to facilitate either inward or outward current depending on 333 
the membrane potential (Bers, 2002). NCX1 is the predominant pathway for calcium extrusion in 334 
cardiomyocytes during resting membrane potential; the high extracellular sodium concentration allows 335 
NCX1 to exchange calcium out of the cell. Overall, NCX promotes myocytes to relax, therefore 336 
implicating a role of NCX1 in contractility. Further, spontaneous pacemaker release of Ca2+ by RyR2 337 
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activates the NCX1 on the sarcoplasmic reticulum membrane, which then pushes the cell to the 338 
minimum threshold for triggering an action potential (Shattock et al., 2015). 339 

Human studies: 340 

Genetic variants in SLC8A1, the gene encoding NCX1, are associated with numerous 341 
electrocardiographic traits due to changes in calcium cycling. Polymorphisms in SLC8A1 across human 342 
populations were first associated with hypertension.  Seven NCX1 polymorphisms with a high minor 343 
allele frequency of more than 4% were identified in 1865 individuals, with 787 being hypertensive 344 
(Kokubo et al., 2004). Hong et al found a single-nucleotide poly-morphism on the SLC8A1 locus 345 
correlated with PR interval prolongation by a genome–wide association study using the Korea 346 
Association Resource database (Hong et al., 2014). Kim et al. also found a common SLC8A1 variant 347 
associated with prolongation in QT interval, suggesting the predisposition of these populations to 348 
ventricular arrhythmias and sudden cardiac death (Kim et al., 2012). Further, patients homozygous for 349 
allele rs13017968 in SLC8A1 had higher rates of coronary artery abnormalities, predisposing these 350 
populations to Kawasaki disease. At present, there are no human data correlating mutations on SLC8A1 351 
with sinus node dysfunction. However, animal models showed major phenotypes of sinus node 352 
dysfunction when experiencing loss of NCX1 (Gao et al., 2013; Groenke et al., 2013; Torrente et al., 353 
2017).  Comment on the high MAF? 354 

Mouse models: 355 

The role of NCX1 in calcium cycling, and its importance to the SAN, have been studied through 356 
multiple Slc8a1-null mouse models. A global SLC8A1 knockout resulted in abnormal myofibrillar 357 
organization and severe electrical defects that caused embryonic lethality (Fu et al., 2010); therefore, 358 
cardiac specific knockouts are required to study the role of NCX specifically in the heart. Gao et al. 359 
used a global myocardial and SAN-targeted knockout of SLC8A1 to study the role of NCX1 in 360 
pacemaker activity. Although isolated SAN cells showed similar basal contractility rates in SLC8A1 361 
knockout versus WT mice, Slc8a1 knockout mice showed inability to respond to isoproterenol, 362 
implicating a role of NCX1 in the sympathetic response of the heart (Gao et al., 2013). Several studies 363 
have established the role of NCX1 in calcium efflux, however, the role of NCX1 in triggering an action 364 
potential is still not completely understood. Groenke et al. showed pacemaker activity to be completely 365 
ablated in an atrial-specific Slc8a1 knockout mouse model (Groenke et al., 2013). The Slc8a1 atrial 366 
specific knockout mouse also lacked P waves, and had arrhythmic depolarizations in the SAN. 367 
Although SAN automaticity still occurred without NCX1, the automaticity came in bursts similar to 368 
tachycardia-bradycardia syndrome and SND (Torrente et al., 2015). Torrente et al. further used their 369 
atrial-specific Slc8a1 knockout, and found severe cellular Ca2+ accumulation during SA nodal 370 
pacemaker activity, leading to intermittent hyperactivation of small conductance K+

 (SK) channels, 371 
subsequently resulting in arrhythmias. This data identified the potential influence of intracellular Ca2+ 372 
on SK channels and overall SAN repolarization, and signified SK channels as potential therapeutic 373 
targets for SAN dysfunction if presented alongside Ca2+ cycling issues (Torrente et al., 2017).  374 

 375 

2.6 Ankyrin-2 (ANK2) 376 

Ankyrin-B (AnkB, encoded by ANK2) is a membrane adapter protein critical in the recruitment, 377 
organization, and stabilization of the ion channels and transporters underlying the excitation-378 
contraciton coupling, particularly in the SAN. Loss-of-funciton variants in ANK2 are associated with 379 
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a complex cardiac phenotype including heart rate variability, CPVT, conduction defects, atrial 380 
fibrillation, sinus node bradycardia, sudden cardiac death, and recently, arrhythmogenic 381 
cardiomyopathy (Roberts et al., 2019). Two families characterized with severe sinus node disorder 382 
(SND) were found to have ANK2 allele variants, making AnkB the first non-ion channel protein 383 
associated with human sinus node disease. SAN cells from Ank2+/- mice showed reduction in 384 
membrane expression of NCX1, Na+-K+-ATPase (NKA), and voltage-dependent L-type calicum 385 
channel alpha1D subunit (CaV1.3), causing abnormal intracellular Na+ and Ca2+ cycling, which 386 
generated various cardiac arrhythmic events (Curran and Mohler, 2011).  387 

Opitcal mapping was further used to analyze the complete, intact, atrial pacemaker complex. Ank2+/- 388 
mice had greater RR variability due to multiple competeing pacemaker sites between the SAN and the 389 
atrioventricular junction (AVJ), further highlighting the role of AnkB in cardiac automaticity, yet 390 
suggesting some unknown mechanisms of compensation (Glukhov et al., 2010). Computational models 391 
have further analyzed the role of AnkB in the generation of lethal arrhytmias. The loss of functional 392 
NCX and NKA specifically allows Ca2+ overload in the sarcoplasmic reticulum, therefore initiating 393 
aftedepolarizations, and introducing variability and inconsistency in the SAN firing. Loss of Cav1.3 in 394 
the SA node slows the overall pace of firing, explaining the bradycardia seen in families with AnkB 395 
dysfucntion (Wolf et al., 2010; Wolf et al., 2013). Interestingly, indivudals with atrial fibrillation have 396 
reduced levels of AnkB expression and increased levels of miR-34a (a microRNA associated with 397 
cardiac fibrosis). Of note, the 3’ untranslated region of ANK2 also contains the binding site to miR-398 
34a, implicating a potential role of miR-34a in the electrical remodeling of the atria and in the 399 
regulation of AnkB expression (Zhu et al., 2018). Although the culmination of cardiac AnkB studies 400 
implicate loss-of-functon ANK2 variants in numerous cardiac diseases, the lack of family history in 401 
many of these cases, and overall incomplete penetrance of AnkB-associated disease, stronly implies 402 
that additional genetic and/or environmental factors must be involved in the development of the severe 403 
“AnkB syndrome” phenotype. Notably, intense endurance exercise or other  genetic variants likely 404 
play a role in the development of cardiac disease associated with loss-of-funciton ANK2 variants 405 
(Roberts et al., 2019).  406 

2.7 Myosin heavy chain 6 (MYH6) 407 

MYH6 encodes the alpha myosin heavy chain subunit of myosin (MHC-α), a major component of the 408 
sarcomere - a necessary component of muscle fiber for proper contraction in the heart (Epp et al., 1993; 409 
Squire, 1997). A MHC-α R721W missense variant has been identified in Icelandic populations (0.38% 410 
allelic frequency) and is associated with SND, with 50% of the carriers for this variant being diagnosed 411 
with SND. Carriers of the variant that were not diagnosed with SND still showed reduced heart rate 412 
and PR interval prolongation (Holm et al., 2011). Interestingly, another R654W heterozygous MYH-α 413 
variant was identified in an Australian family with severe yet diverse cardiac arrhythmias, including 414 
SND and cardiac arrest due to ventricular fibrillation, resulting in sudden cardiac death or sinus node 415 
dysfunction (Lam et al., 2015).  416 

2.8 Lamin A (LMNA) 417 

Nuclear lamins (Lamins A, B1 and B2)) are the major components of nuclear lamina, which plays a 418 
vital structural role in the nuclear envelope (Mounkes et al., 2001). LMNA variants are associated with 419 
numerous cardiac conditions, particularly dilated cardiomyopathy (MacLeod et al., 2003; Lin et al., 420 
2018; Yokokawa et al., 2019). A c.357-2A>G heterozygous splice site variant in LMNA was identified 421 
in a proband diagnosed with SND, who a family history of cardiac arrhythmia and dysfunction. This 422 
novel variant was predicted to cause haploinsufficiency, as aberrant mRNA from the mutant allele 423 
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would likely decay by nonsense-mediated mRNA decay (Zaragoza et al., 2016). Although no 424 
population-wide variant in LMNA has been identified in relation to SND, the numerous familial 425 
variants identified and connected with conduction disorders provide a rationale for further exploration 426 
of the role of lamin A in SND. 427 

2.9 L-type calcium channel subunit Cav1.3 (CACNA1D) 428 

Cav1.2 (alpha1C) and Cav1.3 (alpha1D) subunits make up the cardiac L-type voltage-activated calcium 429 
channel (Matthes et al., 2004). Cav1.3 is expressed mostly in the SAN, AV node, and atrial myocytes 430 
(Mangoni et al., 2003). In the SAN, Cav1.3 plays a major role in pacemaker activity by driving inward 431 
current during diastolic depolarization and regulating diastolic SR Ca2+ release (Mangoni et al., 2003),  432 
(Torrente et al: Cardiovasc Res 2016, PMID: 26786159 ). CACNA1D-/- mice have severe SND and 433 
atrioventricular 2nd degree block (Platzer et al., 2000) (Zhang et al., Circ Res 2002, PMID: 12016264) 434 
(Mesirca et al. PNAS 2016: PMID: 26831068). In addition, Cav1.3 also plays an important role in 435 
calcium homeostasis in the ear, as CACNA1D-/- mice experience deafness along with SND (Chu et al., 436 
2007). The phenotype of SND-associated deafness was later identified in two related families with a 437 
Cav1.3 variant (G403_V404insG). This rare combination of symptoms is termed sinoatrial node 438 
dysfunction and deafness (SANDD) (Baig et al., 2011). This CACNA1D variant was also identified in 439 
four additional families with SANDD, along with an A376V missense variant (Liaqat et al., 2019). 440 

2.10 Short-stature homeobox 2 (SHOX2) 441 

Short-stature homeobox 2 is a transcription factor encoded by SHOX2. Shox2 is essential for the proper 442 
development of the sinoatrial node (Puskaric et al., 2010). SHOX2-/- mice are embryonically lethal due 443 
to lack of SAN development, but SHOX2-/- zebrafish survive with bradycardia (Hoffmann et al., 2013). 444 
Loss-of-function variants in SHOX2 cause early-onset and familial atrial fibrillation (Hoffmann et al., 445 
2016; Li et al., 2018). A heterozygous missense P33R Shox2 variant was also identified recently in a 446 
patient with SND (Hoffmann et al., 2019). Screening should continue for SHOX2 variants in patients 447 
with SND, as this gene has only been recently implicated in sinoatrial node function in humans. 448 

2.11 Transient receptor potential cation channel subfamily C member 3 (TRPC3) 449 

TRPC channels (non-selective Ca2+-permeable cation channels) are thought to play an important role 450 
in store-operated Ca2+ entry (SOCE), described as Ca2+ influx to the sarcolemma after Ca2+ depletion, 451 
although the pathway is currently poorly understood (Wu et al., 2004; Ju et al., 2007). TRPC channels 452 
are activated when diacylglycerol (DAG) is released from the plasma membrane via agonist binding 453 
to G protein-coupled receptors (Wu et al., 2004). All TRPC subtypes (1-7) are expressed in the SAN 454 
except subtype 5, but TRPC3 is the only subtype expressed on the membrane surface of the pacemaker 455 
cells (Ju et al., 2007).  456 

Ca2+ entry through TRPC3 in the SAN seems to play a role in AF and sinus arrhythmia. TRPC3-/- mice 457 
treated with angiotensin II had reduced incidence of AF compared to WT control mice during AF 458 
pacing (Ju et al., 2015). Trpc3 specifically has been shown to increase local Ca2+ release (LCR) and 459 
NCX current (INCX) in mouse embryonic stem cell-derived cardiomyocytes, which resulted in increased 460 
spontaneous action potentials (Qi et al., 2016). Both of these studies support the hypothesis that Ca2+ 461 
entry via TRPC3 is a pro-arrhythmic pathway which potentially causes increased pacemaker activity. 462 
TRPC3 is upregulated in AF patients and AF animal models (Harada et al., 2012). Finally, TRPC-3 463 
channel upregulation also has been shown to cause an increased accumulation of collagen consistent 464 
with atrial fibrosis in mice (Han et al., 2020).  465 
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Stromal interaction molecule 1 (STIM1) 466 

Store-operated calcium entry (SOCE) is an important pathway for Ca2+ reentry after calcium depletion, 467 
particularly in cardiac pacemaker cells. STIM1 is an endoplasmic reticulum Ca2+ censor essential to 468 
the SOCE pathway, implicating STIM1 in the calcium clock of SAN cells. Following Ca2+ depletion 469 
in the SAN cells, STIM1 localizes to the cell periphery, along with calcium realease-activated calcium 470 
channel protein 1 (Orai1) (Liu et al., 2015). STIM1 and Orai1 channels are selectively expressed in 471 
SAN cells, and STIM1 is essential in SAN functioning. Stim1 cardiac knockout mice showed SR 472 
calcium store depletion in SAN cells, resulting in SAN dysfunction (Zhang et al., 2015). STIM1 473 
deficient mice experienced slowed heart rate after stimulation, sinus arrest, and extreme autonomic 474 
response to cholinergic signaling. Further, they also showed reduction in L-type Ca2+ current, and 475 
enhanced NCX activity, linking STIM1 to more regulatory pathways in Ca2+ cycling in SAN cells than 476 
previously anticipated (Zhang et al., 2015). Beyond the SA node, STIM1 has been found to play an 477 
essential role in interatrial conduction via its expression in sinus cardiomyocytes from the SAN to the 478 
coronary sinus. Deletion of Stim1 from coronary sinus cardiomycotyes slowed conduction across the 479 
atria and increased succeptibility to atrial arrhythmias in Stim1 cardiac specific knockout mice (Zhang 480 
et al., 2020). 481 

Potassium two pore domain channel subfamily K member 2 (KCNK2) 482 

TREK-1, or K2p2.1, (encoded by KCNK2 gene) is a K+ channel with four transmembrane segments 483 
and two pore domains that is activated via membrane stretch and arachidonic acid, among other 484 
mechanisms (Fink et al., 1996; Lesage and Lazdunski, 1998; Maingret et al., 1999). K+ channels in 485 
cardiac tissue open to cause hyperpolarization, and close during depolarization, therefore playing a 486 
crucial role in selecting the duration of an action potential (Snyders, 1999). Beyond membrane stretch 487 
and arachidonic acid, TREK-1 is regulated by polyunsaturated fatty acids, temperature, receptor-488 
coupled second messenger systems, volatile anesthetics, neuroprotectant agents, and selective 489 
serotonin reuptake inhibitors (Goonetilleke and Quayle, 2012). 490 

TREK-1 is expressed ubiquitously in porcine heart, with elevated expression in atrial tissue. Atrial 491 
burst pacing (a simulation for AF) has shown the ability to reduce TREK-1 expression by 70% after 492 
just 7 days in the atria. (Schmidt et al., 2014). Cardiac-specific TREK-1-deficient mice experienced 493 
bradycardia and sinus pauses following induced stress. Moreover, isolated SAN cells in TREK-1 494 
deficient mice showed decreased background K+ current that caused abnormal cell excitability, 495 
confirming the role of TREK-1 in the cardiac action potential. Our group has showed that βIV-496 
spectrin/TREK-1 complex expression was decreased in a canine model with pacing-induced heart 497 
failure and SAN dysfunction (Unudurthi et al., 2016).  498 

Transient receptor potential melastatin 4 (TRPM4) 499 

TRPM4 is a selective monovalent cation channel that allows flow of Na+, K+, Cs+, and Li+ (Guinamard 500 
et al., 2010), which is activated by intracellular Ca2+ (Launay et al., 2002). A study in 160 unrelated 501 
probands identified multiple TRPM4 variants associated with right-bundle branch block and isolated 502 
atrioventricular block, signifying the role of TRPM4 in cardiac conduction. Surprisingly, none of the 503 
patients with SND harbored TRPM4 variants (Stallmeyer et al., 2012). However, TRPM4 is expressed 504 
in mouse sinoatrial node cells, and is potentially implicated in heart rate rhythm regulation (Demion et 505 
al., 2007). Further, TRPM4 inhibition showed the ability to reduce the action potential rate by 506 
modulation of Ca2+-activated nonselective cation current in isolated mammalian right atrial cells (Hof 507 
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et al., 2013). Therefore, patients with SND should continue to be screened for TRPM4 variants in the 508 
future considering the involvement of TRPM4 involvement in cardiac conduction. 509 

3 Clinical Management of Sinoatrial Node Dysfunction 510 

Pharmacologic Approach 511 

Many genetic forms of SND are chronic, yet symptoms are mild. Acute SND, however, can appear 512 
secondary to another condition, procedure, or disease, as mentioned previously. Acute SND presented 513 
as bradycardia or bradycardia-tachycardia syndrome is dangerous, and can be managed with a small 514 
selection of pharmacological agents. Therapeutic control of SND is ideal because of the reduced cost 515 
and avoidance of surgical intervention. Current pharmacological options for acute management of 516 
bradycardia associated with SND include atropine, isoproterenol, aminophylline, or theophylline 517 
according to the ACC/AHA/HRS updated guidelines in 2019 (Kusumoto et al., 2019). 518 

Atropine may successfully reverse an acute SND condition to a normal sinus rhythm (Schweitzer and 519 
Mark, 1980). Atropine shortens the sinus cycle length and the sinus recovery time of the SAN, therefore 520 
potentially treating bradycardia (Dhingra et al., 1976). The SAN response to atropine is bimodal, 521 
however, with slowing of the heart rate in small doses (< 0.4 mg), and acceleration of heart rate in 522 
higher doses (Das et al., 1975). Atropine is also a suitable therapeutic approach for myocardial 523 
infarction induced bradyarrhythmia at (< 0.8 mg). Overall, atropine intravenous treatment of 0.5 mg – 524 
2 mg total (only up to 1 mg at a time per 3 – 5 minutes) seems to be the best therapy for treatment of 525 
bradycardia attributable to acute SND (Kusumoto et al., 2019). Atropine, however, should not be used 526 
to treat bradycardia in patients who have undergone heart transplant, as atropine treatment resulted in 527 
sinus arrest or AV block in 20% of heart transplant patients from one study (Bernheim et al., 2004). 528 
Importantly, isoproterenol does not have any clinical trials as a pharmacological therapy for SND 529 
patients, and therefore should be used with caution, particularly when there is a concern for coronary 530 
ischemia (Kusumoto et al., 2019). There are some positive case studies exploring isoproterenol as a 531 
therapeutic measure for bradycardia (Sodeck et al., 2007; Herman and Zhou, 2011), but the outcomes 532 
have reported incidence of supraventricular tachycardia (Cossú et al., 1997). In summary, atropine is 533 
generally the best pharmacological treatment for acute bradycardia. 534 

Acute bradycardia following heart transplant is a common outcome. As mentioned earlier, atropine is 535 
a poor choice for bradycardia therapy after heart transplant due to the potential for complete AV block 536 
and sinus arrest (Bernheim et al., 2004). In this scenario, theophylline has displayed the ability to 537 
reverse bradycardia in the majority of post-transplant patients, averting the need for pacemaker 538 
implantation (Bertolet et al., 1996; Kertesz et al., 2003). After heart transplant, relative bradycardia is 539 
often considered as a heart rate of less than 80 beats per minute (bpm), as postoperative patients have 540 
higher hemodynamic demand. The lack of parasympathetic input in a donor heart often results in SND 541 
(Woo et al., 2008). Bertolet and colleagues showed the mean heart rate of 29 patients suffering from 542 
bradyarrhythmias post-heart transplant was improved from (62 +/- 7) to (89 +/- 10) bpm when treated 543 
with theophylline (300mg intravenous, 474 +/- 99 mg/day orally) after 24 hours of treatment (Bertolet 544 
et al., 1996). Aminophylline has also some supportive data, but theophylline is more supported across 545 
the literature (Kusumoto et al., 2019). Theophylline shows some promise in treating chronic SND as 546 
well (Alboni et al., 1991; Saito et al., 1993), but theophylline has numerous situational restrictions that 547 
prevent it from becoming the gold-standard for chronic SND therapy. Theophylline should specifically 548 
be avoided in cases of bradycardia-tachycardia syndrome or in patients experiencing any ventricular 549 
ectopy (Ling and Crouch, 1998).  550 
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Beyond therapeutic purposes, atropine and isoproterenol can be used to evaluate the severity of 551 
asymptomatic sinus bradycardia. Interestingly, the chronotropic response to atropine or isoproterenol 552 
can identify patients in need of preventative pacemaker implantations (Vavetsi et al., 2008).  553 

Finally, a study of 192 patients with SND showed that cilostazol was able to prevent permanent 554 
pacemaker implantation. Only 20.4% of patients receiving cilostazol needed a pacemaker implant, 555 
while 55.8% of patients not receiving cilostazol required a pacemaker. By increasing heart rate, 556 
cilostazol shows promise to be the first long-term pharmacological therapeutic for SND as many of the 557 
pharmacological options discussed earlier are only effective short-term, and have negative long-term 558 
side effects (Sonoura et al., 2019). With Sonoura et al. publishing this study in 2019, long-term studies 559 
showing longer-term survivability over 5 or 10 years in patients using cilostazol would further support 560 
the use of this drug to manage sinus node disorders. 561 

Temporary Pacemaking 562 

When pharmacological therapeutics fail, temporary pacemakers are an alternative approach and can be 563 
implemented via a multitude of methods for care of acute bradycardia. Transcutaneous cardiac pacing 564 
is an external pacing method (prevents the risk of infection and other surgical complications), and is 565 
commonly used in response to patients with life-threatening bradycardia (Dalsey et al., 1984). 566 
Transcutaneous pacing is often used for patients in cardiac arrest, and can be successful if used within 567 
the early phases of cardiac arrest (Noe et al., 1986). Transcutaneous pacing does, however, show 568 
success in reverting bradycardia in patients not in cardiac arrest too (Clinton et al., 1985). Transvenous 569 
pacemaker therapy is another temporary pacemaker option. Transvenous pacemakers can be implanted 570 
in the internal and external jugular, subclavian, brachial, and femoral vein, although the right internal 571 
jugular is the most preferred location for best access to the right ventricle (Gammage, 2000). The early 572 
studies of transvenous pacemaker therapy showed very high rates of pacemaker malfunction (as high 573 
as 43%) (Lumia and Rios, 1973).  Even today, approaches for temporary transvenous cardiac pacing 574 
vary widely, so outcomes are difficult to compare across studies (Diemberger et al., 2020). However, 575 
a study in 2018 across more than 360,000 patients found complications for modern-day temporary 576 
transvenous pacing to be only about 4%, but with 37.9% of patients still needing permanent pacemaker 577 
implantation (Metkus et al., 2019). Overall, the ACC/AHA/HRS guidelines recommend 578 
transcutaneous pacing over transvenous pacemaker therapy due to the complications of the transvenous 579 
method when a patient is hemodynamically unstable and critically ill due to bradycardia (Kusumoto et 580 
al., 2019). This suggestion may be changed in the future with large group studies showing the success 581 
of transvenous pacing. 582 

Permanent Pacemaker Implant 583 

In general, a permanent pacemaker implant should be avoided if possible to avert the potential 584 
procedural complications related to the implant and long-term management of the implant. 585 
Unfortunately, permanent pacemaker implantation may be necessary to prevent severe and life-586 
threatening arrhythmias, and should be considered with severe symptomatic sinus bradycardia and 587 
bradycardia-tachycardia syndrome (Kusumoto et al., 2019). For example, permanent pacemaking after 588 
Fontan operation, a surgery for children with only a single functional ventricle, often results in SND 589 
and requires permanent atrial pacing in 13-16% of patients (Cohen et al., 1998; Takahashi et al., 2009). 590 
Further, patients presenting with atrial fibrillation and significant atrial fibrosis may require a 591 
permanent pacemaker implant (Akoum et al., 2012). Atrial flutter, associated with SND, can also be 592 
used to predict the need for pacemaker implantation. In 211 patients following ablation, an atrial flutter 593 
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length of more than 273 milliseconds predicted the need for a pacemaker implantation (Sairaku et al., 594 
2012).  595 

Future Implications 596 

SND is a disorder caused by the inability of the heart to perform its pacemaking function (Semelka et 597 
al., 2013). It is manifested clinically as sinus bradycardia, sinus pause or alternating bradyarrhythmias 598 
and tachyarrhythmias. Importantly, patients report chronotropic incompetence in response to stress or 599 
exercise (Semelka et al., 2013).  Permanent pacemaker implantation is only recommended for 600 
symptomatic patients. However, there is no existing therapy to reverse the primary genetic cause in 601 
patients diagnosed with primary or chronic SND. Calcium-activated potassium channels (SK4) have 602 
been implicated in the automaticity of cardiomyocytes, yet Haron-Khun et al. showed that TRAM-34 603 
(a selective blocker of SK4 channels) successfully reduced delayed afterdepolarizations and calcium 604 
transients in hiPSC-CMs (human induced pluripotent stem cell-derived cardiomyocytes) from patients 605 
with CPVT2 from a CASQ2-D307H variant. When mice with the CASQ2-D307H knock in variant 606 
were injected with TRAM-34, electrocardiographic recordings showed reduced arrhythmias (and 607 
reduced severity of arrhythmias) at rest, and during exercise. This was also shown in CASQ2 KO mice. 608 
TRAM-34 and clortimazole (SK4 inhibitors) therefore hold great therapeutic promise for human 609 
populations with loss-of-function CASQ2 variants (Haron-Khun et al., 2017).  610 

Nonfunctional cardiac funny current (If) causes unusual Ca2+ handling as previously discussed, 611 
therefore disrupting the pacemaker activity by the sinus node. Remarkably, Mesirca et al. showed how 612 
cardiac funny current-deficient mice have impulse generation and conduction defects, which can be 613 
rescued with genetic deletion of cardiac muscarinic G-protein-activated channels (GIRK4). Although 614 
HCN4 and GIRK4 loss of function variants have each been implicated in SND, the combination of 615 
silencing both genes seems to repair severe cardiac arrhythmia phenotype of SND associated with 616 
atrioventricular block and ventricular arrhythmia (Mesirca et al., 2014). Interestingly, follow-up work 617 
has indicated that genetic deletion of GIRK4 also rescues and conduction defects in model mice of 618 
Cav1.3 mediated SND (Mesirca et al. PNAS 2016: PMID: 26831068). Furthermore, rescuing of SND 619 
in mice models carrying dysfunction in HCN4, Nav1.5 and Cav1.3 channels can be mimicked by acute 620 
administration of the IKACh blocker tertiapin-Q (Bidaud et al. Sci Rep 2020: PMID: 32555258). 621 
Importantly, the ability of pharmacologic inhibition of IKACh to improve SA node function has been 622 
demonstrated recently in human SA nodes with history of SND (Li et al. Sci Transl Med 2017: 623 
PMC5775890). Finally, silencing of GIRK4 expression in human atrial myocytes was shown to 624 
efficiently decrease IKACh densities and therefore is a great potential tool for treating arrhythmia. (Liu 625 
et al., 2009). In conclusion, available results in model mice and human SA node tissue indicate that 626 
gene therapy or pharmacologic strategy targeting GIRK4 channels can constitute and important future 627 
direction for clinical handling of SND.  628 

HCN4 lentiviral gene transfer has interestingly shown the bioengineering potential to allow for 629 
pacemaker cell therapy. Transducing HCN4 revived autonomous pacemaking and increased 630 
responsiveness to autonomic regulation in HCN4-transduced myocytes (Boink et al., 2008). Further, 631 
myocyte enhancer factor-2 (MEF2) and activator protein-1 (AP1), with binding sequences located on 632 
conserved non-coding sequence 13 (CNS13), are involved in HCN4 enhancement via the HCN4 633 
promoter (Kuratomi et al., 2009), and could be used to upregulate HCN4 to promote pacemaking 634 
activity. 635 

In summary, SND is a disorder that more commonly affects the elderly population and impacts the 636 
pacemaking function of the heart resulting in arrhythmia and chronotropic incompetence. The 637 
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complexity of SND is partially attributed to the complexity of genetic abnormalities, and partially 638 
attributed to gene pleiotropy. Many variants of SND-associated genes can exhibit multiple unrelated 639 
phenotypic traits. Currently, clinical management of SND patients is restricted to the treatment or relief 640 
of arrhythmia symptoms. However, there is no widely-available therapeutic option that targets or 641 
reverses the primary genetic cause in patients with chronic SND. Understanding the complexity of 642 
genetics that contribute to disease progression is critical to developing new therapeutic strategies for 643 
this complex, life threatening disorder. 644 
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7 Tables and Figures 655 

Table 1. Proteins implicated in human SND.  656 

Protein Gene Associated Cardiac 
Diseases 

References 

Calsequestrin-2 CASQ2 SND/bradycardia, 
CPVT, atrial 
arrhythmias 

(Reid et al., 1975; 
Leenhardt et al., 1995; 
Sumitomo et al., 2007; 

Weeke et al., 2014; 
Glukhov et al., 2015) 

Ryanodine receptor 2 RYR2 SND/bradycardia, 
CPVT, atrial 
arrhythmias 

(Sumitomo et al., 
2007; Domingo et al., 
2015; Miyata et al., 

2018; Dharmawan et 
al., 2019) 

G protein-activated 
inward rectifier 

potassium channel 4 

KCNJ5 

 

SND/bradycardia, 
atrial arrhythmias, 
long QT syndrome 

(Dobrev et al., 2001; 
Zhang et al., 2009; 
Yang et al., 2010; 
Wang et al., 2013; 
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 type 13, Anderson-
Tawil syndrome 

Kokunai et al., 2014; 
Kuß et al., 2019) 

Guanine nucleotide-
binding protein 
subunit beta-2/5 

GNB2/GNB5 SND/bradycardia, 
cognitive disability, 
cardiac conduction 

abnormalities 

(Lodder et al., 2016; 
Stallmeyer et al., 

2017; Fukuda et al., 
2020) 

Sodium/calcium 
exchanger 1 

SLC8A1 Conduction disorders 
(PR and QT 

prolongation), 
ventricular 

arrhythmias, Kawasaki 
disease 

(Kim et al., 2012; 
Hong et al., 2014) 

Sodium voltage-gated 
channel alpha subunit 

5 

SCN5A SND/bradycardia, 
long QT syndrome 

type 3, Brugada 
syndrome, dilated 
cardiomyopathy, 

conduction disorders, 
infant death syndrome 

(van den Berg et al., 
2001; Benson et al., 
2003; McNair et al., 
2004; Smits et al., 

2005; Nakajima et al., 
2013; Freyermuth et 
al., 2016; Yang et al., 

2017; Denti et al., 
2018) 

Hyperpolarization 
activated cyclic 
nucleotide gated 

potassium channel 4 

HCN4 SND/bradycardia, 
ventricular 

arrhythmias, left 
ventricular 

noncompaction 

(Schulze-Bahr et al., 
2003; Ueda et al., 

2004; Nof et al., 2007; 
Milano et al., 2014) 

Ankyrin-B ANK2 SND/bradycardia, 
CPVT, atrial 
arrhythmias, 

arrhythmogenic 
cardiomyopathy 

(Mohler et al., 2003; 
Le Scouarnec et al., 
2008; Roberts et al., 

2019) 

Myosin heavy chain 6 MYH6 SND/bradycardia, 
aorta coarctation, 

ventricular 
arrhythmias 

(Holm et al., 2011; 
Lam et al., 2015; 

Bjornsson et al., 2018) 

Lamin A LMNA SND/bradycardia, 
dilated 

(MacLeod et al., 2003; 
Zaragoza et al., 2016; 

Lin et al., 2018; 
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cardiomyopathy, 
conduction disorders 

Yokokawa et al., 
2019) 

L-type calcium 
channel subunit Cav1.3 

CACNA1D Sinoatrial node 
dysfunction and 

deafness (SANDD) 

(Baig et al., 2011; 
Liaqat et al., 2019) 

Short-stature 
homeobox 2 

SHOX2 SND/bradycardia, 
atrial arrhythmias 

(Hoffmann et al., 
2016; Li et al., 2016; 

Hoffmann et al., 2019) 

 657 

 658 

Figure 1. Schematic of proteins implicated in sinoatrial node dysfunction. Shown is a partial SA 659 
pacemaker cell. Proteins are labeled in black text, while various cellular locations are labeled in red 660 
text. Abbreviations include: calsequestrin-2 (Casq2), ryanodine receptor 2 (RyR2), G protein-activated 661 
inward rectifier potassium channel 1/4 (GIRK1/4), Guanine nucleotide-binding protein subunit beta-662 
2/5 (Gnb2/5), G-protein coupled receptor (GPCR), sodium/calcium exchanger 1(NCX1), sodium 663 
voltage-gated channel alpha subunit 5 (Nav 1.5), hyperpolarization activated cyclic nucleotide gated 664 
potassium channel 4 (HCN4), ankyrin-b (AnkB), short-stature homeobox 2 (Shox2), transient receptor 665 
potential cation channel subfamily C member 3 (TRPC3), stromal interaction molecule 1 (STIM1), 666 
calcium-release-activated calcium channel protein 1 (Orai1), potassium two pore domain channel 667 
subfamily K member 2 (TREK-1), and transient receptor potential melastatin 4 (TRPM4). 668 
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