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Abstract 
Cardiac arrhythmias are a major cause of death and disability. A large number of experimental 
cell and animal models have been developed to study arrhythmogenic diseases. These models 
have provided important insights into the underlying arrhythmia mechanisms and translational 
options for their therapeutic management. This position paper from the ESC Working Group on 
Cardiac Cellular Electrophysiology provides an overview of (1) currently available in vitro, ex 
vivo and in vivo electrophysiological research methodologies, (2) the most commonly used 
experimental (cellular and animal) models for cardiac arrhythmias including relevant species 
differences, (3) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived 
and in silico models to study cardiac arrhythmias, and (4) the availability, relevance, limitations, 
and opportunities of these cellular and animal models to recapitulate specific acquired and 
inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, 
myocarditis, sinus node and conduction disorders and channelopathies. By promoting a better 
understanding of these models and their limitations, this position paper aims to improve the 
quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the 
clinical translation and application of basic electrophysiological research findings on arrhythmia 
mechanisms and therapies. 

Keywords: animal models, arrhythmias, cardiac, electrophysiology, ion channels 
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Introduction 
Cardiac arrhythmias are a major cause of death and disability. Despite important advances in 
arrhythmia management, numerous knowledge gaps remain.1 During the last few decades, a 
large number of experimental cell and animal models have been developed to study different 
arrhythmogenic diseases. These models have provided important insights into the underlying 
arrhythmia mechanisms and translational options for their therapeutic management. Each 
experimental model has specific advantages and limitations, making it more or less suitable to 
study specific arrhythmogenic diseases, but a comprehensive overview of the different 
experimental models, electrophysiological techniques, and their optimal use is currently lacking. 
 
This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology 
addresses this knowledge gap and provides an overview of currently available 
electrophysiological research methodologies, the most common experimental (cellular and 
animal) models for cardiac arrhythmias, and their relevance and suitability for certain research 
questions. Additionally, intrinsic model limitations as well as opportunities to advance the current 
state of the art are discussed. By promoting a better understanding of these opportunities and 
their limitations, this position paper aims to improve the quality of basic research in cardiac 
electrophysiology, with the ultimate goal to facilitate the clinical translation and application of 
basic electrophysiological research findings on arrhythmia mechanisms and therapies, thereby 
contributing to the overall goal of the ESC to disseminate evidence-based scientific knowledge 
to cardiovascular professionals so they can provide better care to patients. 
 
Cellular and whole heart electrophysiology techniques 
A variety of different techniques allow for a multi-scale investigation of electrophysiological 
features from in vivo, ex vivo whole heart, to the cellular level (Figure 1), providing insights into 
physiological and pathophysiological electrical activity and arrhythmogenesis on different levels.  

Whole heart electrophysiology (in vivo) 
Electrocardiography (ECG) has been successfully employed for monitoring and analysing 
cardiac electrical activity and arrhythmia in different species ranging from mice to horses.2 In 
ECGs of anaesthetized animals complex effects of anaesthesia on the electro-mechanical 
function of the heart and on the autonomic nervous system must be taken into account. 
Advances in ECG telemetry have enabled reliable recordings in awake conscious animals.3 
Moreover, these ECG techniques allow investigation of both spontaneous and induced 
arrhythmia formation, e.g., after AV-block induction or during transvenous or transoesophageal 
arrhythmia induction.4, 5 Although ECG morphology is similar in different species, a number of 
inter-species differences exist that may hinder clinical translation (see section "species 
differences" and Figure 2). Higher resolution non-invasive ECG imaging is possible in large 
animal models.6, 7 Monophasic APs (MAP) can be recorded in vivo invasively from endocardial 
and epicardial surfaces of the heart in anaesthetized animals using a contact electrode catheter 
technique. MAPs reproduce the repolarization time course of transmembrane APs, providing 
information on AP duration (APD) and configuration (including proarrhythmic early 
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afterdepolarizations, EADs) but not on AP amplitude or upstroke velocity.8 Advances in optical 
mapping in combination with a novel ratiometric voltage-sensor and a high-speed camera above 
the epicardial surface have more recently allowed high-resolution cardiac electrophysiology in 
large animals in vivo.9  
 
Whole-heart and cardiac tissue electrophysiology (ex vivo) 
In 1895, Oscar Langendorff showed that an isolated mammalian heart can be kept alive for 
hours by blood perfusion through a cannula attached to the ascending aorta.10 Nowadays, 
retrograde Langendorff perfusion11, 12 and its variants like the working heart setup13 are 
considered invaluable analytic tools to assess many important aspects of cardiac physiology. In 
the Langendorff-perfused heart electrophysiological properties (such as monophasic action 
potentials (MAP), conduction velocities), arrhythmia inducibility, contractility and metabolics can 
be quantified at the whole-heart level at baseline and at pro-arrhythmic conditions such as 
ischemia-reperfusion injury, and cell-based regeneration. The Langendorff-perfused heart also 
allows to manipulate electrical activation and propagation at the whole heart level without 
systemic circulatory effects or hemodynamic instability that may be encountered in vivo. In 
addition to MAP measurements (see above), the conventional sharp microelectrode technique 
has been used in numerous studies to investigate cardiac action potential characteristics, 
applied for the first time by Coraboeuf and Weidman in isolated heart tissue.21 This approach is 
however limited by the fact that only localized information is obtained. More recently, optical 
mapping has been emerged as a powerful tool to study electrical activity of the whole heart or 
intact parts of the cardiac conduction system: sinoatrial node (SAN),14 atrioventricular node or 
the Purkinje-fibres network.15 The principle of optical mapping is to irradiate the sample and 
detect the fluorescence emitted from fluorescent indicators (e.g. voltage and/or Ca2+ sensors). It 
is based on wide-field illumination of the whole heart or cardiac tissue, while an objective lens is 
used to collect the fluorescence signal. A high-speed imaging system (at kHz frame rate) is 
used to capture and visualize small variations in fluorescence intensity associated with voltage 
or Ca2+ transients. Multimodal (simultaneous) acquisition of voltage and Ca2+ signals is also 
possible by using spectrally distinct fluorescence dyes.16 Many electrophysiological properties 
can be assessed by mapping the heart on a single view, including detailed assessment of 
epicardial conduction velocities. In addition, multi-view panoramic mapping is particularly useful 
to study self-propagating rotors on the heart surface during arrhythmias. Excitation-contraction 
uncoupling agents such as blebbistatin have traditionally been used to avoid artefacts due to 
tissue movement. This is particularly useful in optical mapping of the pacemaker impulse in 
isolated atrio/sinus preparations. On the other hand, uncoupling molecules may affect 
arrhythmia inducibility due to mechano-electric feedback mechanisms17 and recent work has 
investigated mechanical phase singularities during arrhythmia.18 With novel optogenetics tools19 
it is possible to achieve full optical control of cardiac electrical activity or sinus node 
pacemaking.14 To assess transmural cardiac electrophysiological heterogeneity and its 
consequences for arrhythmogenesis, canine isolated coronary-perfused ventricular wedge 
preparation and floating microelectrodes have been employed.20 
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Cellular electrophysiological techniques (in vitro) 
In isolated cardiomyocytes, impaling with a sharp micro-electrode can accurately measure 
membrane voltage while minimally disturbing the intracellular environment, but the resistance 
associated with the small size of the electrode tip poses technical challenges for the injection of 
current and accurate voltage-clamp recordings of some currents. The patch-clamp methodology 
consecutively developed by Neher and Sakmann uses larger glass electrodes and allows 
single-channel recordings from the patch underneath the electrode (cell-attached patch), as well 
as  whole-cell recordings after opening the membrane within the patch. In general, two different 
patch-clamp modes are used: current clamp in which currents are applied and resulting 
changes in membrane potentials are assessed (e.g., to measure APs), and voltage clamp which 
applies predefined membrane voltage protocols together with pipette/bath solutions and 
blockers to measure specific ion currents. With the conventional whole-cell approach, the 
opening of the membrane allows the pipette solution to dialyze the intracellular environment, 
thus providing experimental control over, e.g., intracellular ion concentrations. Alternatively, the 
whole-cell configuration can be established using pharmacological agents in the patch pipette 
that form pores in the cell membrane. This perforated patch-clamp methodology aims to 
maintain a more physiological intracellular milieu. Recent developments have also led to the 
dynamic-clamp technique, in which the current injected into a cell via a low-resistance electrode 
is a mathematical function of the instantaneous Em of the cell.26 This can be used to mimic the 
coupling of other cells (myocytes/non-myocytes) to an isolated heart cell27 or modulation of the 
biophysical properties of one or more currents.28 There are several limitations to this technique 
including the fact that dynamic clamp can simulate the electrical but not the ionic aspects of ion-
channel activity, e.g., Ca2+ current without the Ca2+ ions. In addition to the more traditional 
patch-clamp approach, fluorescence-based techniques are increasingly used to measure 
membrane potential, as well as cellular Ca2+ transients and pro-arrhythmic Ca2+-release 
events.14, 24, 25 While such approaches allow for more high-throughput, non-invasive analyses, 
they have certain limitations: in particular, voltage-sensitive dyes do not provide information on 
actual membrane voltage (only relative values), which may potentially impact on AP results. 
Overall, single-cell cardiac electrophysiology continues to provide electrophysiologists with key 
information and technical challenges now and for decades to come. For a detailed overview of 
cardiac ion channels and APs, the interested reader is referred to the comprehensive recent 
review by Varro et al.29  
 

Species differences in cardiac electrophysiology  
Depolarizing cardiac ion channels/currents are highly conserved among species, with INa 
currents conducted by voltage-gated SCN5A/Nav1.5 channels as main depolarizing ion currents 
in atrial and ventricular cardiomyocytes and an important role for ICa,L currents (Cav1.2) as 
depolarizing ion current in the conduction system. Despite these similarities in depolarizing ion 
currents, pronounced species differences exist in heart rate, ranging from 600 beats-per-minute 
(bpm) resting heart rate in small animals such as mice, 300 bpm in rats, and 150-200 bpm in 
rabbits, to similar heart rates as in humans in bigger animals such as pigs and dogs (~60-80 
bpm). Accordingly, AP duration is also different between species, largely due to important 
species-specific differences in repolarizing ion currents/channels (Figure 2).30  
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Mouse/Rat 
In rodents, the AP shape is markedly different than in human and other bigger species: the 
plateau phase of the action potential is missing, resulting in a more triangular AP shape with a 
very short APD. In contrast to humans, repolarization in mice and rats is mainly driven by the 
rapidly activating, slowly inactivating delayed rectifier potassium currents IK,slow1 and IK,slow2 and 
the fast and slow components of the transient outward potassium current Ito,f and Ito,s;30 while the 
rapid and slow delayed rectifier K+ currents (IKr and IKs) - the main repolarizing ion currents in 
human cardiomyocytes - are functionally irrelevant. In addition, other repolarizing ion currents 
such as the atrial IKur are differentially expressed in rodents.31  
 

Rabbit 
Pronounced similarities exist in AP shape, as well as function and gating kinetics of various 
cardiac potassium channels between rabbits and humans. In both species, the rapid and slow 
delayed rectifier K+ currents (IKr and IKs) conducted by KCNQ1/KCNE1 and KCNH2 are the main 
repolarizing ion currents.30-33 In other potassium currents, however, some inter-species 
differences exist: In humans Ito is formed of two distinct subtypes named as Ito,fast and Ito,slow - 
with fast and slow recovery from inactivation, determined by Kv3.4 and Kv1.4, respectively.34 In 
contrast, in rabbits Ito,slow is the primary transient Kv current in the left ventricle (LV),35 while in 
the right ventricle (RV) Ito,fast and its role in LQT1-related arrhythmogenesis has recently been 
confirmed.36  
 

Zebrafish 
Zebrafish also share pronounced similarities with human cardiac electrophysiology in terms of 
ventricular AP shape, AP/QT duration, and repolarizing ion currents, with an important role for 
IKr as main repolarizing current.37 While zebrafish have provided ground-breaking insights into 
(early) principles of heart development, the adult cardiac structure differs significantly between 
mammals and fish, with fish having only one atrium and one ventricle. Moreover, the body 
temperature is much lower in zebrafish, which affects biophysical ion channel properties, 
potentially decreasing its translational relevance regarding cardiac conduction and arrhythmia 
mechanisms.38  
 

Pig 
Porcine ventricular APs resemble those of humans in many aspects: configuration with 
dominant plateau phase, duration, rate dependence and transmural heterogeneity with 
populations of M-like cells.39 Major contributing ionic currents (fast Na+ current, INa; L-type Ca2+ 
current, ICaL; IKr, IKs and inward-rectifier K+ current, IK1) similar to those of human have been 
reported,40, 41 but atrial and ventricular ion currents and calcium handling are less well-
characterized than for other species. One major difference is the lack of voltage-dependent, 4-
aminopyridine-sensitive Ito in porcine myocytes.42 A similar ventricular AP pattern was also 
shown in minipigs.43, 44 
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Dog 
From all experimental species, canine ventricular action potential probably shows the highest 
level of similarity to human.45-48 Various aspects of cardiac electrophysiology and 
arrhythmogenesis have been addressed in canine preparations with potential translational 
relevance.49-51 However, although contributions of major ionic currents in canine cardiac cells 
seem very similar to human, also significant quantitative differences exist - for example in the 
sensitivity to IKr-block - which have to be considered when translating to human conditions.32, 52 
 
Animal models used in cardiac electrophysiology research  
Historically, large animals have been preferentially used for cardiac electrophysiological studies, 
given their relative similarity to human hearts and their heart size allowing for the use of multiple 
electrodes and (transmural) needles. Dogs are arguably the most often used large animal 
model, followed by pigs, rabbit, guinea pigs, sheep, cats and goats. Dogs are easily 
accustomed to experimental conditions (e.g. to chronic and conscious instrumentation). Pigs 
have a heart anatomy closely resembling human, and are therefore increasingly used to refine 
novel (catheter-based) arrhythmia mapping, ablation, and device-based pacing techniques. 
Porcine preparations are generally more susceptible to (ventricular) arrhythmias and SCD than 
human hearts,53 whereas sheep and goats are more resilient (stable). In a proof-of-concept 
study in chronically instrumented conscious goats, transition from paroxysmal atrial fibrillation 
(AF) to sustained AF due to chronic atrial pacing was documented (“AF begets AF”54) allowing 
to elucidate underlying electrophysiological, contractile and structural remodelling in detail.55, 56 
Mechanisms of ventricular “torsades-de-pointes” arrhythmias, both spontaneous and drug-
induced, have been addressed in hypertrophied hearts following chronic atrio-ventricular block 
in dogs57, 58 and in genetically modified rabbit models of inherited arrhythmia syndromes.59 In a 
multi-scaled effort, contributions of remodelled ionic currents60, calcium handling61, spatial and 
temporal electrophysiological heterogeneity62, 63 and autonomic modulation64 to triggering and 
maintenance of ventricular arrhythmia and sudden cardiac death have been established. 
 
Due to increasing costs and ethical restrictions for large-animal research, and promoted by the 
miniaturization of in vivo equipment, rats and mice are increasingly used. Mice carry certain 
limitations due to intrinsic differences compared to humans, including ion current characteristics 
(see section on “species differences”), heart rate, and (basic) sympathetic tone. To their 
advantage, mice are easy to breed, relatively cheap to house, and can be genetically modified, 
e.g., by overexpression of genes of interest using a (cardiac-specific) promotor, by deletion 
through knock-out strategies or CRISPR-Cas technology, by tamoxifen-induced conditional 
targeting, or AAV-based gene transfer to specific cardiac regions of interest.65 Mice are typically 
bred by inbreeding, resulting in identical genetic backgrounds. However, mice can also be 
outbred to enable identification of potential genetic modifiers.66 Similar approaches include the 
use of outbred mice, recombinant inbred rodents, or randomly mutagenized mice to identify 
novel genes modulating cardiac traits including electrical function.67, 68  
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Wild-type or genetically modified mice are easily subjected to well-established interventions 
simulating clinical triggers of arrhythmogenic cardiac remodelling, e.g. LV hypertrophy (by aortic 
banding, nephrectomy/volume overload or chronic administration of isoproterenol or 
angiotensin-II) or ischemia/infarction (coronary artery ligation), ultimately resulting in heart 
failure (HF). These models have been very useful in elucidating pro-arrhythmic mechanisms 
through detailed in vivo, ex vivo, whole heart, and cellular electrophysiological studies (as 
described in detail in the section "Cellular and whole heart electrophysiology techniques"), and 
molecular investigations, often performed in the same hearts or in distinct cardiac regions, 
including conduction system, atria, LV vs. RV, transmural, etc. Aging studies are more feasible 
given the short murine life-span of around 18-24 months. Interestingly, despite their small heart 
size, mice are able to develop sustained complex arrhythmias such as AF and ventricular 
fibrillation (VF).69, 70 
 
Thanks to novel developments in animal transgenesis, rabbits – that more closely resemble 
humans in terms of cardiac electrophysiology30 – have also entered the range of species in 
whom genetic manipulation can successfully replicate certain (genetic) human cardiac diseases 
such as hypertrophic cardiomyopathy or channelopathies.59, 71-73 In addition, pigs, which also 
closely resemble humans, have recently been successfully modified genetically to mimic 
Brugada syndrome.74 
 
In summary, despite their intrinsic limitations indicated above, animal models allow to examine, 
modulate and dissect different components of arrhythmogenicity, i.e., increased triggered 
activity, alterations in the myocardial substrate (conduction, repolarization) and 
neurohumoral/systemic modulation. Of note, ECG and cardiac phenotype of the chosen animal 
model should mimic clinical features to facilitate translation of experimental results into clinical 
concepts. 
 
Cellular models used in electrophysiology research  
 
Various cellular models can be used for electrophysiological studies. To study characteristics 
and pharmacology of specific ion channels, these can be transiently expressed in heterologous 
expression systems such as Chinese Hamster Ovary (CHO) cells, Human Embryonic Kidney 
(HEK293) cells and Xenopus oocytes. These cells are inexpensive, can be kept in culture for a 
long period of time, and are relatively easy to transfect and patch. By co-transfecting cDNA of 
the ion channel in question with accessory subunits, interacting proteins, and/or other genes of 
interest, their modulatory effect can be investigated. Furthermore, expression systems allow for 
functional investigation of the consequences and putative pathogenicity of mutations identified 
in patients with inherited cardiac arrhythmias. However, these heterologous cell systems do not 
fully recapitulate the cardiomyocyte environment and may have distinct differences in 
intracellular pathways and ion channel trafficking systems and/or lack certain interacting 
proteins. This can be (partly) overcome by using for instance HL-1 cells, which originate from 
the AT-1 mouse atrial cardiomyocyte tumour lineage, and partly retain cardiac morphological 
and functional properties of atrial cardiomyocytes. HL-1 cells can be cultured, transfected and 
transduced, and studied by (electro)physiological analyses. Similarly, neonatal cells from rat, 
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mouse or rabbit cardiomyocytes can be kept in culture for days and are relatively easy to 
transfect or transduce, allowing overexpression or knock-down of genes followed by 
electrophysiological assessment. However, the immature nature of these cells results in certain 
differences in e.g., cardiac ion channel isoform expression, t-tubule structure, and post-
translational modification compared to adult cardiomyocytes.  
 
For electrophysiological assessments under more physiological conditions, adult 
cardiomyocytes isolated from animal models or human heart samples are generally considered 
most appropriate for investigating ion channel (dys)function and AP characteristics by patch-
clamp analysis, as well as fluorescence-based quantification of intracellular calcium 
homeostasis. Freshly isolated cardiomyocytes of the working myocardium, the SAN or of the 
atrioventricular conduction system retain most of their anatomical and functional features, 
including (stable) resting membrane potentials, contractile properties, and subcellular 
distribution of ion channels, although dissociation-induced changes have been described. They 
furthermore allow for isolation and investigation of cardiomyocytes from various regions of the 
heart, including right and left atria,75 LV versus RV, (sub)epicardium versus (sub)endocardium 
versus (mid)myocardium, and Purkinje fibres from large mammals76 or mice expressing EGFP-
labelled connexin-40.77 Nevertheless, the disruption of cardiomyocytes from adjacent cells and 
the extracellular matrix likely does have functional consequences: for instance, Na+-current 
density is higher at the intercalated disc region of coupled cells than in isolated cells.78 Primary 
adult cardiomyocytes isolated from some animal models79 and human samples80 can also be 
kept in culture during a few days for gene modification studies. However, in both neonatal and 
adult cardiomyocytes, the culturing process may itself induce structural and functional 
remodelling. On the other hand, studies in human cardiomyocytes critically depend on 
availability of patient tissues and there is often a limited availability of appropriate controls. 
Electrophysiological properties of the intact SAN region can be characterized using the sharp 
intracellular electrode technique on SAN tissue strips81 82, using surface electrograms in 
combination with optical mapping of membrane potential in isolated SAN to record impulse 
conduction83, 84 or confocal live imaging of intracellular Ca2+ release.85  
 

hiPSC-CMs in electrophysiology research  
 
The use of human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) has 
recently gained prominence to screen novel drugs for potential pro-arrhythmic effects as a 
consequence of drug-induced block of IKr

86 in the comprehensive in vitro pro-arrhythmia 
assessment (CiPA) initiative, as well as to generate experimental models for basic research into 
human genetic diseases that predispose to lethal cardiac arrhythmias. In addition to 
conventional patch-clamp and microelectrodes approaches, a variety of invasive and non-
invasive methods exist for the electrophysiological analysis of hiPSC-CMs, which have both 
advantages and limitations depending on the research question to be investigated. While a 
promising tool for (compound) screening purposes, automated patch clamp requires high 
density, homogeneous single-cell suspensions which can be challenging when working with 
hiPSC-CMs. Multi-electrode arrays (MEAs) allow long-term measurements from clusters and 
monolayers of hiPSC-CMs, with field-potential duration used as measure of QT and AP 



Page 10 of 45 
 

duration, and activation maps for conduction velocity measurements. Similarly, fluorescence-
based measurements using voltage- and calcium-sensitive dyes allow for more high-throughput, 
non-invasive analyses.. 

A frequent criticism of iPSC-CMs is their embryonic electrophysiological phenotype (Figure 3). 
hiPSC-CMs lack T-tubules (where the Ca2+ released by ryanodine receptors [RyR2] locally 
affects sarcolemmal ion channels and transporters), hampering analyses on the mechanisms 
linking intracellular Ca2+ handling abnormalities and triggered activity.25 This problem can be 
partly solved by obtaining more mature hiPSC-CMs with hormonal treatment87 or using 
nanostructured/biomimetic substrates.88, 89 APs in hiPSC-CMs are generated by a sequential 
activation of INa, ICa,L, and repolarizing K+ currents similar to adult ventricular cardiomyocytes, 
and accordingly have demonstrated similar mutation-induced electrophysiological 
consequences as adult mutant mouse cardiomyocytes,90 as well as clear similarities between in 
vitro effects of pharmacological interventions in hiPSC-CMs and their reported clinical 
efficacy.91, 92 However, hiPSC-CMs display an unstable diastolic potential caused by insufficient 
expression of IK1 and significant expression of the funny current (If).24 To overcome this, IK1 
density can be artificially enhanced by cells transduction with Kir2.193 or injection of an in silico 
IK1, inducing a more physiological and stable resting membrane potential, in addition to a 
ventricular-like, more “mature” action potential morphology.94, 95, 96 IKs density and APD-
prolongation in response to IKs blockade are generally small and highly variable among hiPSC-
CMs. Although IKs with proper kinetics can be recorded in hiPSC-CMs,96, 97 in some reports the 
current pharmacologically identified as IKs has kinetics sharply diverging from that observed in 
mature myocytes. IKr can be more consistently recorded in hiPSC-CMs, whose APD has been 
proposed as a reporter of drugs’ arrhythmogenic risk.98 It also remains unclear whether stem-
cell derived cardiomyocytes possess one general phenotype or whether the process results in a 
mixture of nodal, atrial and ventricular cells.99 Certainly, it appears that the differentiation 
conditions can be manipulated to generate cells with a predominately atrial or ventricular 
phenotype.100, 101   
 
hiPSC-CMs can be cultured as a monoculture or mixed with other cell types, typically cardiac 
fibroblasts. While isolated hiPSC-CMs have a variable electrophysiological phenotype, 
monolayers of electrically coupled cells generally have a more stable spontaneous rate and 
electrophysiology. Three-dimensional tissue preparations, referred to as engineered heart 
tissue, can be created from hiPSC-CMs held within a matrix (e.g. fibrinogen) to create 
microspheres, trabeculae or sheets of tissue.102 These 3D preparations are commonly stable in 
beating rate and electrophysiology over many weeks.103 
 
Integration of experimental electrophysiology data into 
computational models 
 
Since the first computational models of the cardiac AP were developed in the 1960s, in silico 
modelling of cardiac electrophysiology has advanced significantly.104 Ion channel and AP 
models are available for most cell types and many species.105, 106 Tissue and organ-level models 
have been developed and can be used to simulate atrial and ventricular arrhythmias in the 
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presence of different structural and functional substrates.107 Computer models provide perfect 
control over individual parameters, overcoming limited selectivity of most pharmacological tools 
or compensatory effects in genetic animal models (Figure 4). Computer models also offer 
perfect observability, enabling detailed analyses of multiple components (e.g., ion currents, 
membrane potential, intracellular concentrations) at the same moment in time, which is not 
possible during experiments. Accordingly, computer models have been used extensively to 
study the mechanisms of heart automaticity108, 109 and arrhythmia.105, 106 In addition, computer 
models have been used to improve our knowledge of the contribution of individual ionic currents 
in combination with dynamic clamp recording systems.26, 110 Recently, the first applications of in 
silico models with important clinical implications have emerged. Initial proof-of-concept studies 
with prospective, simulation-guided ablation of atrial and ventricular arrhythmias have been 
conducted.111-113 Cardiac cellular electrophysiology models play a central role in predicting the 
proarrhythmic risk of new drugs as part of the CiPA initiative.114, 115  
 
The role of computational models in clinical arrhythmia management and drug development is 
expected to increase, raising important questions regarding model complexity, validation and 
uncertainty quantification.115, 116 Traditionally, the distinction between model calibration 
(parameter estimation) and validation using independent data has been largely ignored for 
cardiomyocyte models, due to the paucity of experimental data. Moreover, only a single 
‘representative’ model was generated and analysed. However, it has become increasingly 
common to study populations of models that reflect cell-to-cell variability.117 In addition, several 
studies have employed true validation data sets in the development of new cardiomyocyte 
models,118 as well as in their application (e.g., predicting the proarrhythmic risk of drugs that 
were not used to calibrate the model in the CiPA initiative114). As our understanding of cardiac 
cellular electrophysiology expands, models are becoming increasingly complex, e.g., integrating 
molecular ion-channel dynamics, localized changes in calcium handling and post-translational 
regulation through signaling cascades,119, 120 making extensive validation and establishing the 
context of use116 increasingly challenging. At the same time, this level of complexity can 
currently not be simulated at the organ level, so that new approaches are needed to span the 
different spatial and temporal scales involved in cardiac electrophysiology. For example, recent 
approaches have made it possible to investigate the interaction between re-entry-induced Ca2+ 
loading, subsequent triggered activity and re-induction of re-entry in tissue-level models with 
spontaneous Ca2+-release events based on detailed subcellular models.121 Above all, close 
collaboration between experimental cardiac electrophysiologists, computational modellers, and 
clinicians is needed for the development of well-validated models and their clinical applications. 

Suitability of individual models for specific research 
questions 
 
Simplification vs Integration 
Although pro-arrhythmic mechanisms may occur on the single cell-level, arrhythmogenesis in 
vivo is strongly affected by factors at the tissue/organ level and by neurohumoral activity. The 
challenging task is integration from molecular function (artificial membranes → heterologous 



Page 12 of 45 
 

expression systems) through the subsequent levels of complexity (myocyte → tissue → organ). 
A crucial question in this process is whether the detected molecular abnormality is „biologically 
relevant“. This depends on its magnitude, but also on system responsiveness. The latter may 
vary, for example, according to the AP phase on which the abnormality impacts,122 the presence 
of buffering mechanisms,123 connectivity to neighbouring cells,124 etc. In silico modelling may 
provide a powerful tool to this end, but there is room for improvement also at the experimental 
level. One aspect that may deserve attention is system behaviour under realistic ('dynamic’) 
conditions, not considered in classical biophysical evaluation. At cardiomyocyte level, „action-
potential clamp“ and „dynamic-clamp“ are simple and powerful tools; they can provide stringent 
optimization of numerical models125 and experimentally test AP response to channel 
dysfunction/modulation.122 At the tissue level, integrated information on dynamic response can 
be obtained from „electrical restitution“ of propagation and repolarization, which have been 
directly linked to arrhythmogenesis.126  
 

Disease-modelling of common (acquired) arrhythmogenic disorders 
Beside the biological relevance of an abnormal finding in the whole body context, the relevance 
of the animal model is critical for clinical translation. Key features of the clinical phenotype that 
are relevant for diagnosis, therapy and/or prognosis must be reproduced by the animal model. 
Fortunately, this seems to be the case in many instances, surprisingly even when species 
differences in electrical activity are substantial (e.g., for murine models).127, 128 
 
Atrial fibrillation 
As the most prevalent clinically relevant arrhythmia with significant impact on morbidity and 
mortality, numerous studies have attempted to model AF.129, 130 However, all models used to 
study AF have limitations in terms of predictability, reliability or transferability. Due to the 
multifactorial nature of AF, to date even the most sophisticated model is unable to fully 
recapitulate the diversity of aetiologies and pathological mechanisms of human AF. Thus, it is 
important to keep in mind the question being addressed and the limitations of each model.  
 
Rodents are widely used models due to their easy handling, low costs and easy genetic 
manipulation, despite the aforementioned electrophysiological differences to humans limiting 
transferability. Nonetheless, a large number of transgenic mouse models with either 
spontaneous AF or increased vulnerability to burst-pacing induced AF have been developed.131 
In addition, rodents have been used to study AF promotion due to a large number of risk factors, 
including endurance exercise and sleep-disordered breathing.132 Rodent models are suitable to 
perform in vivo and ex vivo experiments in isolated hearts and to study new therapeutic 
interventions early in the development pipeline,131.  
 
Large animal models are commonly used in preclinical AF studies.129, 130 AF is easily induced 
and relatively stable in goats, making this model suitable to study the progressive nature of 
AF.54 Goat, dog, pig and rabbit models have also been used to study atrial tachycardia-related 
electrical and structural remodelling using rapid atrial pacing.129, 133 The atrial burst-pacing 
model can be used for simulating paroxysmal AF but is also commonly used to study AF 
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inducibility in the presence of disease-related background remodelling. For example, AV block 
in goats leads to progressive atrial dilatation and prolonged AF.129 Dogs and sheep are typically 
used for vagal or ischemic AF promotion and in sterile pericarditis as a model of post-operative 
AF.129, 134 Furthermore, the dog ventricular tachypacing model of congestive HF has provided 
important insight in the relation between AF and HF.129, 130 Although this model does not present 
big changes in refractoriness, it has pronounced structural remodelling and impaired 
conduction. Models investigating AF promotion after myocardial infarction are available in 
several species and have revealed complex changes in atrial electrophysiology, which depend 
on the presence of atrial ischemia and timing of the experiments (acute versus chronic 
setting).135-137 Recently, horses have emerged as an interesting model for AF because, like 
humans, they spontaneously develop AF.130  
 
Many cell lines are available for AF research, including fibroblasts, stem cells, HEK-293T and 
HL-1 cells.138 Human iPSC-derived cardiomyocytes can model familial AF, but atrial-like cells 
are required and their similarity to adult human atrial cardiomyocytes is limited. Importantly, 
none of these cellular models can capture the decades of atrial remodelling present in most AF 
patients. Isolated human atrial cardiomyocytes may therefore represent the most clinically 
relevant cellular AF model for pharmacological testing or adenovirus-based gene-therapy 
studies. Nevertheless, tissue is generally only available from patients undergoing open heart 
surgery and is restricted to parts of the atria (e.g. appendages). In addition, these models lack 
organ-dependent environmental factors.138 
 
In silico models are powerful tools for testing hypotheses, predicting effects of new therapeutic 
targets or capturing dynamic systems at different scales (cells-tissue-organ-person),106 and are 
increasingly used in AF research, e.g., to study antiarrhythmic drug139, 140 and ablation 
therapy.111, 113 Combined, these experimental and computational models can increase our 
understanding of AF mechanisms and facilitate the development of novel therapeutic 
approaches. 
 
Arrhythmias in heart failure (HF) with reduced ejection fraction (HFrEF) 
HF often develops secondary to other pathologies such as myocardial infarction, hypertension, 
diabetes, anticancer therapy, kidney failure, infection, or genetic cardiomyopathies. About half of 
the patients diagnosed with HF die within 5 years, around 50% due to by pump failure and 50% 
by sudden cardiac death due to fatal arrhythmias.141  

Several animal experimental models mimicking the various etiologies have been developed to 
explore the mechanisms involved both in cardiac failure and arrhythmogenesis. Cardiac 
remodeling in HF is often characterized by ventricular hypertrophy of the remaining viable 
tissue. It has to be kept in mind, however, that only a minority of patients with LV hypertrophy 
develop HF.142 Most HF animal models employ rodents and concern HFrEF.143 To reproduce 
hypertension-related HF, genetically selected rats, e.g., spontaneous hypertensive rats or salt-
sensitive rats (Dahl), are used. However, in most animal models, enhanced afterload is obtained 
by surgery via aortic constriction. Other surgical techniques include coronary artery ligation, 
which can be permanent to induce a myocardial infarction, or temporary to induce ischemia 
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reperfusion and mimic reperfusion in the hospital in patients suffering an infarction. Chemical 
treatment with anticancer therapies, including monocrotalin to induce RV HF and pancreatic 
toxic compounds to induce type-1 diabetes are also commonly used, together with dietary 
interventions and genetic models to induce glucose intolerance and type 2 diabetes. Rodent 
models of HF are reviewed in Gomes et al.143  

Besides small rodents, other experimental animal models of HF are used in an attempt to get 
closer to human heart function, including rabbits with combined pressure and volume overload 
or coronary artery ligation,144 cats with pressure overload, ventricular tachypacing in dogs145 and 
pigs, pigs with myocardial infarction,146 and sheep.147 More details, as well as advantages and 
disadvantages of these bigger animal experimental models have recently been reviewed.148 

Finally, human LV samples or complete explanted hearts are used by some groups to 
investigate HF-related electrophysiological remodelling,146, 149, 150 but these studies are often 
limited by the limited availability of appropriate healthy heart tissue as control. 

HFpEF 
Incidence of arrhythmias (in particular AF) and sudden cardiac death is also increased in 
HFpEF patients,151, although the true prevalence of arrhythmogenic sudden death requires 
further study.152 Developing appropriate animal models for HFpEF has been complicated by the 
heterogeneity of clinical phenotypes. However, in the last decade models of hypertensive heart 
disease, metabolic syndrome, chronic kidney failure and ageing have been developed that 
mimic relevant clinical features of HFpEF.153 Yet, to date only few studies, mainly in rodents, 
have investigated pathomechanisms of arrhythmias in these models. In rats with HFpEF due to 
chronic volume overload (high salt diet), spontaneous VTs were documented and related to 
delayed repolarization.154, 155 Increased intracellular Ca2+ load and altered activity of the 
Na+/Ca2+ exchanger have been implicated in cellular arrhythmogenesis in a cardiorenal HFpEF 
model.156, 157 In rats predisposed to HFpEF, age-related atrial remodelling (fibrosis, enlargement, 
conduction abnormalities) facilitate AF.158 Clearly, the complex interaction between cardiac 
remodelling and arrhythmogenesis in HFpEF warrants further research in clinically relevant 
animal models. 

Myocarditis  
Arrhythmias are a common manifestation of myocarditis (incidence up to 45%159). Most common 
arrhythmias are VT, VF, and AV block.160 Arrhythmogenic mechanisms are mainly triggered 
activity (due to inflammatory modulation of ion-channel properties in acute myocarditis) and re-
entry (scar-related in chronic myocarditis).161 Transition to dilated cardiomyopathy occurs in up 
to 50% of cases.162 In mice, infection with a Coxsackie Virus B strain (Nancy strain) is the most 
commonly used model of acute infectious myocarditis, but a variety of other rodent models 
exist.163 Non-infectious autoimmune myocarditis is often induced by immunization of cardiac 
myosin.164, 165 Of note, time course and extent of remodelling in myocarditis in mice are strongly 
strain dependent.163, 165 Dogs are the most common large animal model for investigating 
arrhythmias in myocarditis, facilitating ambulatory monitoring.166 Canine parvovirus is the best 
studied natural pathogen associated with myocarditis, whereas experimental canine models 
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have focused on non-viral pathogens (e.g. Chagas disease). Future studies may profit from 
more standardized experimental protocols as a basis for pooled data analyses.163 

Sinus and AV node disease 
SAN dysfunction (SND) and AV block together account for over half of the permanent electronic 
pacemaker implantations worldwide. SND can be distinguished into primary familial or 
secondary forms, which are associated with cardiovascular or systemic disease,167 and age-
related SND.168 During the last two decades, models of primary and secondary SND forms have 
been developed. Genetically modified mouse models of inherited SND due to mutations in ion 
channels involved in SAN pacemaking have been created by global or conditional gene 
knockout,169-172 or by heart specific and time controlled expression of mutant ion channel 
proteins.173 These include If (HCN4),173, 174 L-type Cav1.3,169 Nav1.5 channels170 and RyR2.85 All 
these models except RyR2 also present with variable degrees of AV block, thus providing 
mechanistic insights about the origin of primary heart block. In addition, mouse models of 
primary SND due to lack of the scaffolding protein Ankyrin-B have been developed.175 These 
mouse models have provided insights about the mechanisms of primary familial SND forms, 
such as SND associated with ventricular non-compaction,176 the sinus node dysfunction and 
deafness syndrome,171 autoimmune congenital heart block177 and SND associated with Lev-
Lenègre syndrome.178  
 
Numerous models of secondary SND exist. Models of SND secondary to HF have been 
developed using dogs,179 rabbits180 and mice.181 A canine AF model induced by rapid atrial 
pacing also presents with SND182 and has provided insights into the relationship between AF 
and SND. Animal models of diabetes also often present with SND,183 enabling studies into the 
mechanistic link between these pathologies. Recently, models of bradycardia184 and AF132 
secondary to long-term intensive exercise have been developed. Finally, age-related SND has 
been studied using old mice and rats.185 
 
Disease-modelling of inherited arrhythmogenic disorders 
Ion channel diseases with altered Na+-channel function  
Mutations in SCN5A encoding NaV1.5 lead to disease entities associated with reduced peak INa 
(cardiac conduction/Lev-Lenègre disease; Brugada syndrome, BrS), increased late INa (LQTS 
type 3, LQT3), or a combination of these (overlap syndrome).  
 
Pharmacological interventions that interfere with the inactivation of Na+ channel (sea anemone 
toxin II, veratridine, anthopleurin) have been exploited for understanding the contribution of late 
INa to AP repolarization and arrhythmogenesis on cellular, multicellular and organ levels. Such 
experiments in canine arterially perfused LV wedges186 and rabbit Langendorff-perfused 
hearts187 have revealed mechanistic insights into LQT3 arrhythmogenesis. Pharmacological 
modulation of canine arterially perfused RV wedges with a combination of Na+ and Ca2+-channel 
blockers and K+-channel openers has also been employed to model BrS.188, 189  
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Expressing SCN5A mutant channels in expression systems (e.g. HEK293/CHO) allows detailed 
assessment of the biophysical consequences,189, 190 but may not fully recapitulate the 
cardiomyocyte environment.191, 192 Scn5a transgenic mice may overcome such shortcomings, 
with Na+-channel contribution to APs being relatively comparable between mouse and human. 
Indeed, cardiomyocytes from Scn5a-1798insD mice showed biophysical properties in line with a 
clinical overlap syndrome, whereas previous studies in expression systems did not.191 Scn5a 
mouse models also allow assessment of the functional impact in distinct regions of the 
myocardium and conduction system.170, 191, 193, 194 Furthermore, their use has provided insight 
into pro-arrhythmic intracellular Na+ and Ca2+ dysregulation and (age-dependent) electrical and 
structural remodelling.178, 194, 195 Indeed, Na+-channel gain of function (late INa enhancement as 
in LQT3) is arrhythmogenic mainly because it perturbs intracellular Na+ homeostasis, leading to 
Ca2+-store instability and energy imbalance.196 Finally, they allow exploration of the modulatory 
role of the autonomic nervous system, co-morbidities and genetic modifiers, and enable chronic 
pharmacological studies.197-199 More recently, a pig model carrying a BrS-associated SCN5A 
mutation was successfully generated, displaying conduction slowing and increased 
susceptibility to ventricular arrhythmias.74 While such large animal models may have some 
benefits over mice in terms of clinical transferability, their generation is time-consuming and 
costly, thus limiting their availability for research.  
 
In recent years, a number of SCN5A mutant hiPSC-CM lines have been generated, which 
recapitulate nicely the LQT3, BrS and/or overlap syndrome phenotypes.90, 91 These hiPSC-CMs 
have so far been predominantly used for pharmacological studies,92, 200 but may also be useful 
for prediction of mutation pathogenicity and patient-specific arrhythmia risk.91 Sophisticated 
computational modelling could theoretically also predict pathogenicity,201 or at least INa 
abnormalities,202 directly from genetic variants. Unfortunately, the accuracy of such predictions 
is still inadequate for SCN5A; thus, variant’s biophysical descriptors must still be obtained 
experimentally. Whereas interpreting loss of Na+-channel function in terms of conduction 
disturbance (Lenegre’s syndrome) is straightforward, modelling Brugada Syndrome (BrS) is far 
more challenging. The BrS phenotype can be reproduced as a “repolarization“203 or 
“propagation”204 disorder, further underscoring the increasingly recognized complexity of the 
disorder. 
 
Ion channel diseases with altered K+-channel function 
Mutations in genes encoding for cardiac repolarizing K+ currents lead to disease entities 
associated with altered cardiac repolarization (LQTS and SQTS).  
 
Mice were the first species utilized to generate genetic models of K+ channelopathies. They, 
however, do not represent an optimal model organism for modelling cardiac K+ channel-related 
diseases (LQTS, SQTS) due to the aforementioned differences in cardiac repolarization 
patterns and responsible K+ currents between mice and humans (section "Species differences” 
and Figure 2).205, 206 Consequently, mouse models with genetic manipulation of human channel 
subunits usually do not show a proarrhythmic phenotype,206, 207 unless significant remodelling of 
other channels relevant for murine cardiac repolarization occurs.208 Genetic manipulations of K+ 



Page 17 of 45 
 

channels contributing to murine cardiac repolarization (Kv 4.2, Kv.1.4), in contrast, may result in 
arrhythmias when associated with increased dispersion of repolarization.209  
 
Another animal model frequently used in LQTS and SQTS-related research is the zebrafish. 
Spontaneous LQTS and SQTS zebrafish mutants exist and can be found by screening-
approaches. The zebrafish breakdance, which carries the trafficking-deficient KCNH2-I59S 
mutation, recapitulates severe forms of human LQT2 with 2:1 atrioventricular block due to 
prolonged ventricular APD.210, 211 The zebrafish reggae expresses the missense mutation 
KCNH2-L499P, producing similar IKr dysfunction and shortened QT as observed in human 
SQT1.212 But these models do have limitations due to their differences in cardiac morphology 
and structure as highlighted in the section "Species differences". 
 
Several transgenic rabbit models for K+ channel-related LQTS have been generated by over-
expression of human loss-of-function mutated K+ channels: LQT1 (KCNQ1/KvLQT1-Y315S), 
LQT2 (KCNH2/HERG-G628S),59 and LQT5 (KCNE1/minK-G52R).72 Similarly, a short-QT 
syndrome (SQTS) rabbit model has been engineered based on over-expression of gain-of-
function mutated KCNH2/HERG-N588K (SQT1).73 In LQT1 and LQT2 rabbits, IKs (LQT1) or IKr 
(LQT2) were completely eliminated due to a dominant-negative effect, resulting in APD/QT 
prolongation in both, and the development of spontaneous ventricular tachycardia (VT), sudden 
cardiac death, and sex differences in arrhythmogenic risk with pro-arrhythmic effects of 
oestradiol in LQT2.59, 213 In transgenic LQT5 rabbits, in contrast, IKs was altered with accelerated 
deactivation kinetics72 but not reduced, leading to a partial phenotype with only slightly 
prolonged QT-intervals and no spontaneous arrhythmias. In SQT1 rabbits, steady-state IKr was 
increased due to impaired channel inactivation,73 leading to shortened atrial and ventricular APD 
and QT, and increased VT/VF and AF inducibility; thus mimicking the human disease phenotype 
on atrial and ventricular levels. These transgenic rabbit models have been used to investigate 
mechanisms of arrhythmogenesis and pro- and anti-arrhythmic effects of various drugs, 
hormones, and metabolites.214, 215  
 
hiPS-CMs from LQT1 and LQT2 patients have been shown to recapitulate clinical 
phenotypes,216 disclose “modifier genes”,95, 96 and allowed to devise and test therapeutic 
approaches.97, 217, 218 Nonetheless, because of hiPS-CMs immaturity and variability, some 
caveats should be considered, as discussed in the section on “hiPSC-CMs in electrophysiology 
research”.  
 
Apart from these genetic models for K+ channelopathies, several species such as dogs and 
guinea pigs are often employed as "drug-induced" long-QT models, particularly for safety 
pharmacology research. Due to space limitations, we cannot comprehensively cover all these 
models in this position paper.219 
 
Ion channel diseases with altered susceptibility to sympathetic stimulation (CPVT) 
CPVT is caused by mutations in RyR2 or other genes that code for proteins within the RyR2 
macromolecular complex.  
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Different experimental models have been used to determine the mechanisms involved in CPVT 
by different mutations. Plasmids for RyR2 carrying mutations identified in CPVT patients have 
been transfected into heterologous expression systems. Given that the RyR2 is an intracellular 
channel, its biophysical properties have also been analysed by incorporating single channels 
into lipid bilayers of cell lines. However, as these cells lack all the components that make up the 
RyR2 complex in cardiomyocytes, the link to arrhythmia generation is difficult to assess.  
 
Heterozygous knock-in mouse models have been shown to be a valuable tool for exploring the 
underlying cause of ventricular tachycardia and replicate many features associated with CPVT, 
including disease progression, and drug response.220-223 However, there are significant 
differences in Ca2+ handling between mice and larger mammals, with a much smaller 
contribution of the electrogenic Na+/Ca2+ exchanger in mice. Rabbits have more similar ion-
channel and Ca2+-handling patterns to humans, but no heterozygous knock-in CPVT rabbit 
model has been reported so far. hiPSC-CM cells from CPVT patients can generate cells with 
typical nodal/pacemaker, atrial, and ventricular electrical properties, expressing channels and 
transporters involved in Ca2+ handling (see section "hiPSC-CM"). Although they have an 
immature phenotype compared to adult cardiomyocytes, they retain channels and transporters 
from human cardiomyocytes, making them a valuable tool to study mechanisms underlying 
CPVT.25  
 
Genetic arrhythmogenic cardiomyopathies 
 
Mutations in genes encoding sarcomeric proteins such as cardiac β-myosin heavy-chain, alpha-
tropomyosin, cardiac troponin and others can cause familial hypertrophic cardiomyopathy 
(HCM) characterized by myocyte disarray, interstitial fibrosis, ventricular dysfunction, and 
increased risk of VT and SCD.  
The first genetic cardiomyopathy animal models were transgenic mice expressing mutations in 
various sarcomeric proteins. These showed a broad spectrum of disease phenotypes, however, 
several did not develop LV hypertrophy, the key element of HCM in humans,224, 225 likely due to 
pronounced differences in the composition of cardiac sarcomeric proteins between humans and 
mice with β-MHC as predominant form in human ventricles and α-MHC in mice.226 
Nevertheless, recent studies in HCM mouse models have implicated intracellular Ca2+ 
dysregulation and enhanced late Na+ current in the generation of pro-arrhythmic early and 
delayed after-depolarizations.227 Moreover, these preclinical models have been instrumental in 
developing novel therapeutic strategies,228 including the cardiac myosin inhibitor 
mavacamten.229, 230 In 1999, the first transgenic rabbit model for HCM was generated by 
targeted cardiac-specific expression of the mutant β-MHC-Q403. These HCM rabbits showed 
cardiac hypertrophy, interstitial fibrosis, myocyte disarray, and premature arrhythmic death,231 
but thus far no electrophysiological studies have been performed in these models to better 
understand arrhythmogenic mechanisms in HCM. 
 
Arrhythmogenic cardiomyopathy (ACM), caused by mutations in predominantly desmosomal 
genes is an inherited, familial disorder characterized by progressive replacement of 
cardiomyocytes by fibrofatty tissue, ultimately resulting in ventricular dilation, cardiac 
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dysfunction, life-threatening arrhythmias and sudden cardiac death.232 Disturbed desmosomal 
organization in the setting of ACM leads to myocardial fibrosis formation, fibro-fatty replacement 
and cardiac dilation, setting the stage for arrhythmias. While most mouse models of ACM do not 
fully recapitulate the human disease phenotype (such as for instance fibro-fatty replacement),233 
they have been vital for identifying Ca2+ dysregulation as a contributing factor and for 
establishing reduced Na+ current as a pro-arrhythmic feature during early disease stages prior 
to the development of overt cardiomyopathy.234, 235 
 

Outlook 
Current in silico, in vitro and in vivo models offer a wide variety of electrophysiological research 
techniques. Strategies that combine different methodological approaches are expected to offer 
the most comprehensive assessment of cardiac electrophysiology, at the same time reducing 
animal experiments as much as possible. Personalized disease understanding and 
individualized, mechanism-based therapy planning is one major goal of next-generation 
electrophysiological research. While conventional cellular electrophysiological techniques will 
remain essential tools for detailed analyses, future scientific efforts in cardiac electrophysiology 
will certainly require additional novel methods and technologies that allow for (1) the 
identification of mechanisms underlying physiology and disease at system scale (e.g., “-omics” 
approaches combined with computational simulations, with particular focus on epigenetic 
effects); (2) in vitro validation employing advanced cellular models; (3) pre-clinical translation of 
interventions derived from (1) and (2) in animals that model the disease of interest as closely as 
possible; and (4) optimization of (1)-(3) using artificial intelligence and machine learning where 
appropriate. The present and future armamentarium of techniques and models will allow basic, 
translational, and clinical electrophysiological researchers to employ optimized approaches 
tailored to individual, “personalized” scientific needs.  
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Figure 1. Hierarchy of preparations and techniques in cardiac electrophysiology. Preparations 
range from organism (mouse-to-human), isolated heart, multicellular preparations (e.g., 
slice/wedge or papillary/trabeculae preparations), isolated cardiac cells (e.g., atrial, ventricular, 
nodal or Purkinje cells) to ion-channel expression systems (e.g., HEK). The associated 
techniques for measuring cardiac function are shown on the right. Comparable preparations 
(syncytium and single cell) for stem-cell derived cardiomyocytes are indicated in a separate 
panel. 
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Figure 2. Species differences in cellular electrophysiology. Schematic representation of action 
potentials (A) and major ionic currents (B) in commonly used species for cardiac 
electrophysiology research. 
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Figure 3. Comparison of morphological and electrophysiological features of adult ventricular 
cardiomyocytes and human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. A. 
Microscopic image of an adult cardiomyocyte from mouse stained with anti-alpha-actinin (red) 
and a hiPSC-derived cardiomyocyte stained with anti-alpha-actinin (red), DAPI (blue), and 
Nav1.5 (green). Scale bars are 20 µm. B. Schematic of ventricular action potentials (APs) during 
rapid upstroke (Phase 0), early repolarization (1), plateau (2), late repolarization (3), and 
diastole (4). The ionic currents involved are shown below the AP traces. 
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Figure 4. Summary of the role of computational modelling in cardiac electrophysiology. 
Experimental and clinical data are combined with biophysical laws and concepts for the 
development and validation of multi-scale (channel, cardioymyocyte, 2-dimensional and 3-
dimensional tissue) computational models. These models provide perfect control over 
parameters and perfect observability. Applications of these models are indicated with dashed 
arrows and include dynamic clamp (direct application of ion-channel models in patch-clamp 
experiments), as well as mechanistic, regulatory and clinical applications. 
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Table 1: Disease-specific Experimental Models for Cardiac Electrophysiology Research 

Species Experimental Model Important Facts  References 
Common (Acquired) Arrhythmogenic Disorders 
Atrial Fibrillation 
Mouse Genetic models with mutations 

in ion channels or fibrosis-
related genes 

- Spontaneous AF or increased 
susceptibility for AF-inducibility 

129-132 

Goat, dog, 
pig, rabbit 

Atrial tachy-pacing induced AF - Electrical and structural remodelling 54, 129-130 

Rat, rabbit, 
dog, sheep 

Myocardial-infarction/ ischemia 
induced AF 

- Disease-specific AF mechanisms 
- Electrical and structural remodelling 

135-137 

Dog, sheep Vagal-induced AF - Disease-specific AF mechanisms 
- Role of autonomous nervous 
system 

129 

Dog, sheep Sterile pericarditis  - Model of post-operative AF 134 

Dog Ventricular tachypacing-induced 
heart failure 

- Heart failure-induced AF 
- Interactions between heart failure 
and AF 
- Structural remodelling 

129-130 

Horse Spontaneous AF (no alterations 
necessary) 

- Spontaneous AF 130 

Cell lines Fibroblasts, HEK-cells, HL-1 
cells 

- Cellular mechanisms 
- No representation of remodelling 

138 

Human hiPSC-CM - Familial AF mechanisms 138 

Human Isolated human atrial CM - Best cellular model for human AF 
- Pharmacological testing 
- Limited availability 

138 

In silico Cellular, tissue, and organ 
models 

- Investigation of novel drug- or 
ablation therapies 

106, 111, 
113, 139-40 

Heart Failure with Reduced Ejection Fraction  
Rat Spontaneous hypertensive rats 

or salt-sensitive rats 
- Hypertension-related LV-
hypertrophy and heart failure 

143 

Mouse, rat, 
rabbit, pig, 
sheep 

Coronary-artery ligation - Ischemia-related heart failure 143- 144, 
146, 148 

Mouse, rat Aortic constriction - Increased-afterload induced heart 
failure 

143 

Rabbit, dog, 
pig 

Ventricular tachypacing - Tachyarrhythmia-related heart 
failure 

145, 148 

Mouse Chemical anticancer therapy - Anticancer-therapy related / toxic 
heart failure 

143 
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Human LV samples, explanted hearts - limited availability of appropriate 
healthy heart tissue as control 

149-150 

Heart Failure with Preserved Ejection Fraction 
Mouse, rat Disease models for hypertensive 

heart disease + metabolic 
syndrome, chronic kidney failure 

- Disease-specific HFpEF models 153, 156-157 

Rat Chronic volume-overload (high-
salt diet) model for HFpEF 

- Disease-specific HFpEF models  
- Identification of arrhythmogenic 
mechanisms 
- Age-related atrial remodelling 

154-155, 158 

Myocarditis 

Mouse Coxsackie B-virus  - Acute infectious myocarditis 163 

Mouse Immunization with cardiac 
myosin 

- Automimmune myocarditis 164-165 

Dog Canine parvovirus or non-viral 
pathogens (Chagas) 

- Acute infectious myocarditis 166 

Sinus and AV Node Diseases 

Mouse Genetic mouse models with 
mutations in ion channels (and 
ankyrin B) involved in SAN 
pacemaking  

- Primary familial SND 
- Mechanistic insights 

169-175 

Mouse, rat, 
rabbit, dog 

Heart failure, tachypacing-
induced AF, diabetes-models 

- Secondary SND associated with 
heart failure, AF, age 

179-185 

Inherited Arrhythmogenic Disorders 
Ion channel diseases with altered Na+-channel function 
HEK /CHO 
cells 

Transfected HEK / CHO-cells 
expressing various SCN5A 
mutations 

- Biophysical properties of human 
SCN5A mutations 

189-192 

Dog Arterially-perfused RV wedges 
with Na+/Ca2+ blockade or 
activation of INa,late 

- Mechanistic insights into Brugada 
syndrome or LQT3 
- Pharmacological interventions 

186, 188-189 

Mouse Genetic mouse models with 
various scn5a mutations 

- Models for LQT3 or LQT3/BrS 
overlap syndrome 
- Complete recapitulation of human 
phenotype 
- Effect of genetic background and 
ageing 
- Pharmacological studies 

170, 178, 
191, 193-199 

Pig Genetic pig model with 
SCN5A(E558X/+) mutation 

- Model for Brugada syndrome 
- Recapitulation of conduction 
disturbances, no arrhythmias 

74 

Human SCN5A mutant hiPSC-CM lines - Patient-specific exploration of 
disease mechanisms and therapies 

90-92, 200 
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- Limitations of hiPSC-CM 

In silico Incorporation of various SCN5A 
mutations in computational 
models 

- Prediction of biophysical properties 
of human SCN5A mutations (with 
limitations) 

201-202 

Ion channel diseases with altered K+-channel function 

HEK /CHO 
cells 

Transfected HEK / CHO-cells 
expressing various K+ channel 
mutations 

- Biophysical properties of human 
KCNQ1, KCNH2, KCNE1, KCNE2, 
KCJN2 mutations 

 

Mouse Transgenic mouse models 
expressing human K+ channel 
mutations (KCNQ1, KCNH2) 

- Incomplete recapitulation of human 
LQTS phenotype: prolongation of 
APD but lack of VT/VF / SCD  

206-208 

Mouse Mouse models with altered 
murine K+ channels (Kv1.4, 
Kv4.2) 

- LQTS phenotype with prolongation 
of APD 
- Arrhythmias only in models with 
increased APD dispersion 
- Different K+ channels than in human 
LQTS 

209 

Zebrafish Zebrafish models with loss-of-
function in KCNH2 

- LQT2 phenotype with APD 
prolongation and AV 2:1 block 
- Lack of VT/VF 

210-211 

Zebrafish Zebrafish models with gain-of-
function in KCNH2 

- SQT1 phenotype with APD 
shortening 
- Lack of VT/VF 

212 

Rabbit Transgenic rabbit models 
expressing  loss-of-function 
mutations  in K+  channels 
(KCNQ1-Y315S;  KCNH2-
G628S; KCNE1-G52R) 

- LQTS phenotype with long APD/QT 
- In LQT5 only slightly prolonged QT 
- VT/VF and SCD only in LQT2  
- Similar hormonal influences as in 
human patients 
- Electro-mechanical dysfunction 
- Pharmacological studies 

59, 72, 213-
215 

Rabbit Transgenic rabbit models 
expressing  gain-of-function 
mutations  in K+  channels 
(KCNH2-N588K) 

- SQT1 phenotype with APD/QT 
shortening, inducible AF / VT 
- Pharmacological studies 

73 

Human LQT1 / LQT2 / SQT1 / SQT2 
hiPSC-CM lines with mutant 
KCNQ1 / KCNH2 

- Patient-specific exploration of 
disease mechanisms and therapies 
- Limitations of hiPSC-CM 

95-97, 216-
218 

In silico Incorporation of various K+ 
channel mutations in 
computational models 

- Prediction of biophysical properties 
of human K+ channel mutations 
mutations  

 

Catecholaminergic Polymorphic Ventricular Tachycardia 

HEK /CHO 
cells 

Transfected HEK / CHO-cells 
expressing various RyR2 or 
Casq1 mutations 

- Biophysical properties of human 
RyR2 or Casq1 mutations 
- Mechanistic link to arrhythmias 
cannot be assessed 
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Mouse Heterozygous knock-in mouse 
models with various RyR2 or 
Casq1 mutations 

- Recapitulation of CPVT phenotype 
with VT/VF induced by sympathetic 
activation 
- Identification of novel therapies  

220-223 

Human hiPSC-CM lines with mutant 
RyR2 or Casq1 

- Patient-specific exploration of 
disease mechanisms and therapies 
- Limitations of hiPSC-CM 

25 

In silico Incorporation of various RyR2 or 
Casq1 mutations in 
computational models 

- Prediction of biophysical properties 
of human RyR2 mutations (with 
limitations) 

 

Genetic Cardiomyopathies 

Mouse Mouse models with sarcomeric 
mutations  

- Recapitulation of HCM features  
- Cardiac hypertrophy only in some 
mouse models 
- Pharmacological studies 

224-225, 
227-230 

Mouse Mouse models with  
desmosomal mutations  

- Recapitulation of some ARVC 
features  
- But: no fibro-fatty replacement 
- Identification of arrhythmogenic 
mechanisms 

233-235 

Rabbit Rabbit models with sarcomeric 
mutations 
(β-MHC-Q403 , ELC1v or cTnI) 

- Recapitulation of HCM phenotype 
- Clear cardiac hypertrophy only in β-
MHC-Q403 model 
- Pharmacological studies 

231 
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