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, to cite a few). However, in the present context, both simplifications and complexities appear. On one hand, full Riemann problem solution is not needed, only flux computation is required resulting in significant simplifications. On the other hand, the flow is 3D, meaning that related complexities must be considered, in the frame of unstructured grids. A fast, efficient, and accurate method is developed for such flows. It consists of two steps. The first step deals with a simple and fast mesh generation where no geometric detail, such as a door for example, is needed. Only "footprints" of the 3D geometry are required. The second step deals with a simple, fast and specific Riemann solver that addresses the previously omitted geometric restrictions directly in the solution states and through the flux distribution as well. The proposed method then appears very convenient when hazardous and pressing situations are involved and require knowledge of the pressure fields. It is validated against resolved computations. Examples are shown with 3D computations of a realistic building.

I. Introduction

In many situations, determination of the mean (or quasistatic) pressure field is of importance. Relevant examples are pressure fields resulting from explosions in buildings or in complex geometries such as aircrafts, plane wings, industrial plants to cite a few. In these situations, it is obviously possible to build a 3D mesh and compute an appropriate flow model, single-phase or two-phase, depending on the configuration. However, it is time consuming for two main reasons:

▪ Mesh definition, especially as geometric details are needed, such as for example windows, doors, and various openings. Many thin zones may have first-order effects on the overall flow field. ▪ Numerical computation of partial differential equations on such domains may be very demanding in computational time and resources. This is typically the case when small openings are present. Small numerical elements are consequently locally needed and affect the global time evolution of the computation. When both wave propagation and flow discharge effects are strongly coupled it seems to be the only relevant method. However, in most situations, wave propagation rapidly decouples from flow discharge effects. More precisely, computation of blast effects can be accurately achieved with reduced models, based for example on geometrical shock dynamics [START_REF] Henshaw | Numerical shock propagation using geometrical shock dynamics[END_REF][START_REF] Schwendeman | A new numerical method for shock wave propagation based on geometrical shock dynamics[END_REF][START_REF] Whitham | Linear and nonlinear waves[END_REF][START_REF] Ridoux | Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation[END_REF]. Simplified methods based on Kingery-Bulmash data are popular engineering alternatives [START_REF] Kingery | Air blast parameters versus distance for hemispherical TNT surface bursts[END_REF][START_REF] Coulter | Simulation techniques for the prediction of blast from underground munitions storage facilities[END_REF][START_REF] Karlos | Analysis of the blast wave decay coefficient using the Kingery-Bulmash data[END_REF]. Fast and efficient blast-effect computations have been shown in [START_REF] Frank | Fast running model for arbitrary room airblast[END_REF], [START_REF] Lapebie | FLASH: Fast Lethality Assessment for Structures and Humans[END_REF] and [START_REF] Ruscade | Etude de la propagation des ondes de choc dans une double chambre[END_REF]. These methods couple Kingery-Bulmash data to an algorithm computing shortest distance [START_REF] Dijkstra | A note on two problems in connexion with graphs[END_REF] between two points, such as for example the explosive source and a given wall.

The present contribution considers that wave propagation effects are already taken into account through an appropriate method and focuses on flow discharge effects only, having in mind that a fast method is desired, both for the geometry generation step and the flow computation step. Indeed, the present effort attempts to create a simple, accurate and fast method to address hazardous and pressing situations that require knowledge of the mean pressure fields.

To do so, the method uses coarse meshes and few computational cells. This does not seem restrictive for most geometric domains, such as rooms, as only the mean pressure is expected. Moreover, in order to design a simple and fast method generating a geometry and its corresponding mesh, geometric details such as doors for example, are neither drawn nor meshed. Only the 2D "footprints" of the geometry are needed. A conforming 3D mesh with as few elements and limited human time and efforts as possible is then constructed by extruding along the third dimension.

However, using coarse meshes without geometric details requires a specific Riemann solver where geometric restrictions are supposed to be located, such as for example windows and doors. Such Riemann solver is addressed in the present contribution. It is used on elements' surfaces involving an opening that are only marked during the mesh-generation step.

The proposed Riemann solver addresses the previously omitted geometric restrictions directly in the solution states and through the flux distribution as well. Nevertheless, care is needed as choking conditions may be present at these surfaces and corresponding fluxes must be computed accurately, as pressure distribution is a direct consequence of fluxes' balance.

II.1 Introduction

The present section addresses a simple and fast method generating a computational geometry and its corresponding mesh. As a fast method, both on the preprocessing stage and on the solver side, is desired, coarse meshes are addressed and the size of a computational cell is typically of the order of the size of a room of a building.

For the sake of simplicity, geometric details, such as doors or windows for example, are neither drawn nor meshed. As will be seen in the following, only the 2D "footprints" of the geometry are needed. A simple linear extraction then provides a conforming 3D mesh.

During the present mesh-generation step, surfaces involving specific geometric details are only marked with a flag recognized in a later stage by the fluid flow solver. The geometric restrictions are then considered in a specific Riemann solver, through both its solution states and its flux distribution as well. Section III is devoted to this specific Riemann solver.

It is however necessary to introduce at this stage an important simplification arising from the analysis of the Riemann problem. Such simplification appears when the cross-sections on both sides of a face separating two numerical elements are the same: LR A A . = In this particular situation the geometric restriction, such as a door or a window, becomes transparent in the Riemann problem, at least in the computation of the solution states when an unchoked flow is addressed. Details are provided in Section III.

The present section consequently addresses the construction of a conformal mesh satisfying LR AA = for the marked faces involving a geometric restriction. The other surfaces do not need any particular attention. In such cases, fluxes are provided by a conventional Riemann solver. The HLLC solver of [START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF] is used in the present paper.

The limit case

R L

A 1 A = is then obtained at all rooms' separations in the present preprocessing stage at the mesh construction level. Figure 1 depicts two possible strategies to construct a mesh from given input nodes.

Figure 1: Schematic representation of two strategies to construct a planar mesh for two rooms. On the left side a non-conformal mesh composed of two quadrilaterals is used implying LR AA 

. On the right side a conformal constrained Delaunay mesh is used yielding LR AA =

. In these figures, black filled points represent input nodes. Thick hatched lines represent a door between the two rooms. Black empty circles are additional mesh nodes in the case of a conformal constrained Delaunay mesh.

The first strategy represented in the left side of Figure 1 consists of considering each room as a single discrete element, two quadrilaterals in this simple example. This approach is appealing in the aim of fast computations, due to the minimal element count, but has two strong limitations: ▪ As the mesh is not conformal, left and right cross-sections are different: R L A 1 A  . As a consequence, the above-mentioned simplification of the Riemann solver cannot be used. As will be seen in Section III, this simplification is important and yields a simple, robust, and efficient Riemann solver. R L A 1 A  leads consequently to a more complex Riemann solver, affecting potentially both robustness and computational efficiency of the numerical integration; ▪ Extension to complex 3D configurations is not straightforward, requiring the use of a non-conformal mixed-type element mesh whenever rooms' "footprints" cannot be accurately described by a single quadrilateral element.

The strategy adopted in this work is depicted on the right side of Figure 1. A conformal constrained Delaunay-type mesh is built from given input nodes which ensures R L A 1 A = at all rooms' separations by construction. As detailed in Section III, this condition drastically simplifies the computation of fluxes across doors or windows due to the fact that the geometric restriction becomes transparent in the Riemann problem, when an unchoked flow is addressed.

It may appear at first glance that the simplicity gained on the solver side by considering the limit case R L A 1 A = yields an intricate preprocessing stage with the need of an unstructured meshing strategy. Indeed, the aim is to build a fast numerical framework, both on the preprocessing stage and on the solver side. However, as detailed hereafter, some simplifications can be made on the mesh construction and the flexibility to handle complex 3D configurations obtained by following this strategy is huge.

II.2 3D Mesh construction

As mentioned in Section II.1 the objective is to construct a conforming mesh with few elements and minimum human effort. The meshing tool used in this work is GMSH [START_REF] Geuzaine | Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities[END_REF]. The strategy adopted here is to construct only the footprint's geometry (nodes, lines and surfaces), generate a 2D mesh and then extrude along the third dimension. In this way, each room is discretized with prismatic elements as can be seen in Figure 2. DalphaDt is a multi-purpose code handling unstructured meshes composed of arbitrary elements using a cell-centered finite volume method.

One consequence of 2D mesh extrusion is the need of a special treatment to model a geometric restriction between two floors. Indeed, doors and windows belong to a unique quadrilateral face describing a wall. The situation is different with floors for which constrained Delaunay algorithm usually generates several triangles to mesh them. This configuration is depicted in Figure 3. In the rest of the paper, such dimensional reduction will be denoted as the "throat", in reference to flows occurring in nozzles. In the same spirit, if several doors or windows belong to the same wall, throat areas are merged into a single throat area. These approximations allow a fast geometry and mesh construction without sacrificing geometric details as can be seen for illustration purpose in Figure 4. = at all rooms' separations by construction. This property will be used in the following section where a specific Riemann solver is developed to address geometric details (doors, windows, etc.) that have been omitted in the present geometry-definition and mesh-generation preprocessing step.

Ath

It is worth mentioning that, as very coarse meshes are used, loss of accuracy appears where curved geometries are considered. This is for example illustrated in Figure 4, where the large numerical cells do not fit the curved portion of the building. One way to remedy to this drawback is to use high-order meshes, see for instance [START_REF] Dobrzynski | High order mesh untangling for complex curved geometries[END_REF]. Such extension will be examined in the future.

III. 1D Riemann problem with discontinuous area change and related flux computation

The present section addresses the specific Riemann solver, needed on the marked surfaces of the mesh. Those marked surfaces indicate the presence of a geometric restriction that was not drawn nor meshed during the previous geometry-definition and mesh-generation preprocessing stage. The geometrical effects then need to be considered in the solution states and through the flux distribution of the Riemann solver, as pressure distribution is a direct consequence of the fluxes' balance.

The unmarked faces, where no geometric restriction is present, are treated with the conventional HLLC solver of [START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF].

In many situations, determination of the mean (or quasistatic) pressure field is of primary importance. Relevant examples have been mentioned in the Introduction. The pressure field is determined on the basis of the resolution of the Euler equations on coarse 3D unstructured meshes (see Section II).

For the sake of simplicity let us consider a given cell boundary separating two volumes, as shown in Figure 5. The opening is here only present for illustration purpose. This geometric detail is not meshed. The separating face is only marked with a flag recognized by the fluid flow code (see Section II). A specific Riemann solver is used on such marked faces and addresses the geometric restriction directly in the state solutions and through the flux distribution as well.

As seen in Section II, a conforming mesh with as few elements as possible is used. The opening seen in Figure 5 is neither meshed nor drawn. It only appears for illustration purpose. The rooms on the left and on the right of the geometric discontinuity represent two computational cells. The separating face is only marked with a flag recognized by the fluid flow code, in the same way boundary conditions are handled in unstructured finite volume codes. As seen in the previous section, mesh definition ensures the property LR A A . =

As will be seen further, an essential simplification consequently arises. In Figure 5, the rooms on the left and on the right of the geometric discontinuity represent two computational cells. Consequently, multidimensional effects occurring through the marked face (opening) are not resolved spatially. The main difficulty of the approach dwells at this level, where the dimensional reduction is considered through appropriate quasi-steady relations and assumptions. We recall that a dimensional reduction will be denoted as the "throat", in reference to flows occurring in nozzles.

The flow evolving between the two rooms is considered through the following Riemann problem, schematized in Figure 6 in the subsonic case. The analysis is carried out at this level with the 1D Euler equations for ducts of variable cross-sections:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) A 0, t A uA 0, tx u² p A uA A p, t x x E p uA EA 0. tx   =         +=       +    +=        +   +=    (III.1)
The notations are conventional. x is the position and t is the time. A denotes the cross- section. ,  u and E represent respectively the density, the velocity and the total energy defined as:

1 E e u² 2 =+
where e is the internal energy. The pressure p is computed with the ideal-gas equation of state, ( )

p 1 e =  - ,
where  represents the isentropic exponent, or ratio of the specific heats.

In Figure 6, W represents the vector of primitive variables )

sA suA 0. tx     +=  (III.2)
This equation is particularly important in the present context. The analysis begins with the determination of the flow direction. Then, unchoked and choked conditions at the throat are analyzed separately and two specific procedures are developed. A method allowing to determine the appropriate flow regime, in accordance with the flow conditions, is afterwards presented. The section ends by summarizing the global method determining the solution state of the Riemann problem, and by introducing the specific flux computation.

III.1 Flow direction determination

The Riemann problem for the Euler equations, without cross-section variation, is solved in the fluid cross-section, at the throat, between two fluid states. This is the same type of computation done locally with a multidimensional code. More precisely the 1D Euler equations read, 0, tx

 +=  UF (III.1.1) with ( ) T , u, E =    U and ( ) T u, u² p,( E p)u . =   +  + F
The Riemann problem is solved under the HLL approximation [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] with:

* R L L L R R LR SS , SS -+ - = - F F U U U (III.1.2)
where states L and R are the same as those of Figure 6. The two extreme wave speeds L S and R S are provided with the help of [START_REF] Davis | Simplified second-order Godunov-type methods[END_REF] estimates.

The second component of vector provides the flow direction. This flow direction is important for the determination of the critical state, associated to sonic conditions at the throat as will be seen later. First let us consider unchoked flow conditions at the throat.

III.2 Unchoked flow

In the present section, the flow at the throat is unchoked. In such situation, the flow does not change regime. That is to say that if the flow upstream is subsonic, it remains subsonic at the throat. The same can be said for a supersonic flow. For the sake of simplicity, let us begin the analysis in the subsonic case.

Subsonic flow with

** u0  This situation corresponds precisely to the one depicted in Figure 6. It is a specific flow configuration allowing gradual consideration of the various effects. To simplify the calculations two main assumptions are done:

▪ The left-and right-facing waves are considered under acoustic approximations. It means that Rankine-Hugoniot relations as well as Riemann invariants are replaced by characteristic equations with constant acoustic impedance. ▪ The isentropes, or more precisely Laplace's law, is approximated by the sound speed definition. It corresponds to a linear approximation of the isentropes. These two approximations are conventional and given for example in [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: A practical introduction[END_REF] in the frame of the approximate acoustic Riemann solver. They are valid for waves of weak amplitude, which is appropriate to the present context of subsonic evolutions. The set of relations to consider is summarized hereafter.

For a left-facing wave, the approximations are:

** L L L L L L p Z u p Z u , + = + (III.2.1) * * LL LL 2 L pp . c -  =  + (III.2.2)
For a right-facing wave, the approximations are:

** R R R R R R p Z u p Z u , - = - (III.2.3) * * RR RR 2 R pp . c -  =  + (III.2.4)
In these relations Zc = represents the acoustic impedance, where

1/2 p c
 =    represents the sound speed, according to the ideal-gas equation of state.

The contact wave is governed by interface conditions:

* ** R u u , = (III.2.5) * ** R p p . = (III.2.6)
The flow is assumed subsonic everywhere and in particular between states * L W and ** . W Moreover, the flow is assumed stationary between these two states. Under this latter condition, the integration of the equations of System (III.1) and Equation (III.2) between states * L W and ** W results in the conservation of the mass flow rate, the conservation of the specific total enthalpy and the conservation of the specific entropy. The first two relations read:

* * ** ** L L L R u A u A ,  =  (III.2.7) * ** **2 *2 L L ** * L p p 1 1 u u , ( 1) 2 ( 1) 2   + = +  -  - (III.2.8)
where the ideal-gas equation of state has been introduced. As mentioned earlier, the conservation of the specific entropy is here approximated by the sound speed definition, corresponding to a linear approximation of the isentropes:

** * ** * L L *2 L pp . c -  =  + (III.2.9) Each state, * L , W **
W and * R , W contains 3 unknowns, corresponding to a total number of 9 unknowns. The algebraic system (III.2.1 -III.2.9) involves 9 algebraic equations. Consequently, the system is closed. Its resolution is done as follows:

o Arbitrary guess of

** p is set, implying * ** R p p . =
o With the help of (III.2.3) and (III.2.4) the following variables are deduced: W . Combining these relations, the following one is obtained, ( )

** ** R R R pp uu Z - =+ (III.2.10) ** * R RR 2 R pp c -  =  + (III.2.
2 ** 2 **2 *2 ** 2 ** * **2 **2 R L L L L ** L A p 1 ( 1) c ( 1)u p c u 0 2 2 A       -  - - -  +  -  +  =          .(III.2.13)
The positive root of this quadratic equation is retained, giving 

( ) * ** 2 ** * L L L p p c = -  - .
Then, using (III.2.7) the velocity is determined,

** ** * R L * LL uA u A  =  .
State * L W is now fully determined.

However, the * L W solution state is not necessarily compatible with Relation (III.2.1). If the function,

** * * L L L L L L f (p ) p Z u (p Z u ) = + - + ,
has not reached a certain tolerance, the initial pressure ** p must be changed until this condition is reached. Such task can be done with Newton's method. It is certainly possible to optimize and generalize this algorithm both for ** u0  and ** u 0.  However, it does not seem important in the present context, because of the limit case situation that follows.

Limit case

R L A 1 A =
This limit case corresponds for instance to the situation depicted in Figure 5 where the two rooms have the same cross-section. It is particularly important as, during mesh generation (see Section II), these two surfaces merge when the cell boundary includes an opening (door or window). In other words, cells' faces merge on surface boundaries containing an opening during 3D meshing. Relation (III.2.13) becomes:

( ) ** 2 **2 *2 ** 2 ** * **2 **2 L L L L ** p 1 ( 1) c ( 1)u p c u 0, 22    -  - - -  +  -  +  =    i.e., ( ) ( ) ** * 2 * ** **2 **2 *2 L L L L ** p ( 1) c u 0. 2  -  -  - +  - =    After simplifications it implies, * ** L .  = 
Then, considering mass conservation (III.2.7)

** ** R m u A = , it results: * ** L u u . = It then follows that * ** L p p , =
from enthalpy invariance (III.2.8). This result is not surprising but is very important. As the flow is isentropic and preserves mass and energy fluxes, the varying cross-section has no effect, at least in the computation of the states of the Riemann problem. This is true in the present case of a subsonic flow everywhere, even at the throat.

A relevant simplification appears. As the geometric discontinuity is transparent

( ) * ** L =
WW there is no need to consider 4 waves and 3 states in the Riemann problem. In this particular case it reduces to 3 waves and 2 states, as done usually with the Euler equations, without cross-section variation. In this frame, the acoustic solver is no longer used and replaced by the more general and more robust HLLC solver of [START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF]. This simplification is valid whatever the sign of ** u is, provided that the flow is not choked at the throat. It is also valid for supersonic flows, provided that the flow is unchoked at the throat.

Consequently, as seen in Section II, only situations involving

R L A 1 A
= on a marked cell's face presenting a geometric restriction (door, window, etc.) are considered in the frame of the present method.

The HLLC solver is then used and provides the * L W state of Figure 6. From the * L W state, the state at the throat th W is then computed. Its determination is based on the same algebraic system as (III.2.7 -III.2.9), except that the conservation of the specific entropy is now expressed through Laplace's law. Knowledge of the state at the throat th W is important for two reasons:

▪ To check the validity of the solution. Indeed, the solution from HLLC solver is valid only when the opening between the two rooms is transparent. This is correct only if the state at the throat is unchoked. It is then necessary to check whether this state is chocked or not. This point is addressed in Section III.4. ▪ To determine the effective fluxes that cross the cell boundary through the opening.

Theses fluxes are significantly different from those associated to state * L . W Determination of the solution state at the throat th W is addressed in the following, as in the present paragraph, the flow is assumed subsonic everywhere, even at the throat. The method is presented according to the flow situation depicted in Figure 6. The solution speed is positive ( )

* mom U0 
and the HLLC solver is assumed to provide the solution state * L .

W Naturally the method presented hereafter treats the opposite situation ( ) 

*
  + = +  -  - (III.2.16)
With the help of the ideal-gas sound speed definition, the specific total enthalpy relation (III.2.16) yields, after some algebraic manipulations: 6) disappears.

2 *2 2 th L th *2 L c 11 1 M 1 M , 2 c 2  -  -  + = + 
The following section is devoted to a choked flow, a specific situation where sonic conditions are met at the throat. Such sonic situation only applies when an opening is present in the Riemann problem. The following section does not apply in the limit situation where no dimensional reduction occurs, i.e., L th A A .

= In such case, the HLLC solver shall be used directly.

III.3 Sonic flow

The present section deals with sonic conditions at the throat. The flow is consequently choked and a specific resolution is needed. Indeed, as the flow Mach number reaches unity at the throat, pressure disturbances can no longer be communicated upstream. Consequently, the upstream side is isolated from the downstream side at the throat. A specific Riemann problem must then be solved. This specific Riemann problem only accounts for one side of the throat. More precisely, full Riemann problem resolution is not addressed, only flux computation at cell's boundary is needed, including an opening (door or window) as shown in Figure 5, where the flow is now choked.

A part of the surface acts as a reflective wall (Figure 5). Consequently, a reflected wave affects the solution. To illustrate the situation, let us imagine a subsonic flow in a state W and a wall with a small hole. In the hole cross-section, the flow is sonic. Critical conditions are then reached. But as the main part of the cross-section is closed by the wall, a reflected wave propagates into state W . The amplitude of the reflected wave is such that the modified state ( * W ) is associated to a new critical state such that the area at the throat becomes strictly equal to the new critical area: new cr th A A .

=

We will come back to the critical state determination later, when determining the flow regime, i.e. choked or unchoked.

When sonic conditions are met, the upstream side is isolated from the downstream side at the throat. The situation depicted in Figure 6 then transforms to the situation depicted in Figure 7, representing the present sonic half Riemann problem. W is required at this location. In the present situation, the flow is sonic at the throat. Choked conditions then appear and isolate the upstream side from the downstream side at the throat. As the surface on which the Riemann problem is solved is a wall containing an opening, a reflected wave appears and affects the solution.

As previously, let us present the method according to the flow situation depicted in Figure 7. The solution speed is then positive, according to the HLL solution as discussed in W However, we will now include the subscript "sonic" to specify that the following method applies only in the specific situation where sonic conditions are met at the throat. We will then denote the corresponding solution states by For the sake of simplicity, the reflected wave from the permeable wall is considered through acoustic approximation:

** L,sonic L L L L,sonic p p Z (u u ), = + - (III.3.1) * L,sonic L * L,sonic L 2 L pp . c -  =  + (III.3.2)
The characteristic relation (III.3.1) assumes constant acoustic impedance L L L

Zc = across the reflected wave. Such assumption is valid for waves of weak amplitude and is considered for the present analysis. The sign "+" applies for a left-facing reflected wave. When the flow is reversed ( ) As seen in the previous section, the combination of the mass equation (III.3.3), Laplace's law (III.3.4) and enthalpy equation (III.3.5) yields Relation (III.2.21), linking the Mach numbers to the geometric areas. The present section deals with sonic conditions at the throat where th,sonic M1 = appears. In such conditions, Relation (III.2.21) reduces to, ( ) u. Note that when the flow is reversed ( )

* mom U0  , sign "-" applies, ** R ,sonic R R R R ,sonic p p Z (u u ). = - - Relation (III.
1 21 *2 L L,sonic * th L,sonic A 1 2 1 1 M . A M 1 2 + -  -  =+
* mom U0  , sign "-" applies, * R R R R,sonic ** R,sonic R,sonic * R R,sonic R R p Z (u u ) u M . uu 1 c -- =  - - 
Once the velocity 

 - =  +    +    (III.3.12)
The fluxes for the mass, momentum and energy equations are computed with this set of variables, as detailed later. First let us come back to the critical state allowing to select the regime, subsonic or sonic, appropriate to the flow conditions.

III.4 Flow regime

Two specific procedures have been developed previously. The first deals with an unchoked flow at the throat and the second deals with choked conditions. The present section addresses selection of the appropriate flow regime according to the flow conditions.

The method begins by assuming subsonic (unchoked) flow everywhere, even at the throat. This assumption is then assessed by comparing the subsonic solution to critical conditions.

The subsonic Riemann problem depicted in Figure 6 is then considered and used one more time to present the proposed method. The flow direction is assumed "positive", i.e., is not direct and requires iterative resolutions (Section III.2 and III.3).

The subsonic

* L
W solution state, resulting from the HLLC solver, will then be used to determine the flow regime at the throat, i.e., subsonic or sonic, and consequently use the Riemann solver appropriate to the situation.

III.4.1 Critical state

The analysis of the 1D equations of compressible fluid mechanics, in stationary and isentropic situations, reveals two conditions for the throat to be choked:

th cr p pcr A A , sonic. R R ,    →     (III.4.1)
The first condition involves the geometric throat cross-section th A that becomes equal or less than the critical area cr A when sonic conditions are met at the throat. The second condition involves the ratio between the static and stagnation pressures at the throat p R that must also be equal or less than the critical ratio pcr R. In the present context, the two properties: stationary and isentropic, appear across the stationary wave, that is to say between states * L W and ** W of Figure 6. The proposed method begins by assuming subsonic flow. The assessment of the subsonic assumption must then be carried out between the subsonic solution state * L W and the th W solution state at the throat. Relevance of the subsonic assumption is examined through inequalities:

th cr p pcr A A , subsonic. R R ,    →     (III.4.2)
Assuming subsonic flow yields direct computation of the * L W solution state via the HLLC solver. If such solution satisfies both inequalities of (III.4.2) then the subsonic assumption is relevant and the th W solution state is computed with the unchoked Riemann solver presented in Section III.2. However, if inequalities of (III.4.2) are not fulfilled, the subsonic solution * L W must be left out as choked conditions appear at the throat. The specific Riemann solver presented in Section III.3 is then used and provides the actual * L,sonic W solution state as well as the th,sonic W solution state involving sonic conditions at the throat.

The method then requires knowledge of 

Critical area

The critical area cr A represents the fictitious minimum throat cross-section that would be necessary to isentropically accelerate or decelerate the flow to a Mach number of 1. Its expression results from the conservation of mass, specific entropy, and specific total enthalpy between states * L W and th W in addition to the sonic condition th th uc = at the throat. The combination of those last points yields Eq. (III.3.7), developed during the analysis of the choked situation in Section III.3, and reformulated hereafter as:

( ) ( ) ( ) L 1 21 2* L * cr L 1 1M 2 A A M . 1 1 2 + - - -  +  =  -  +   (III.4.3)
The critical area cr A is then known from Eq. (III.4.3) and the subsonic solution state * L W obtained from the HLLC solver. It provides the fictitious throat area cr A, related to the current * L W state, for choked flow conditions to appear. As long as th cr A A ,  the flow does not change regime. However, the previous inequality is not the only condition to be satisfied for the subsonic assumption to be relevant. The ratio p R between the static and stagnation pressures must also be compared to the critical one pcr R.

Critical pressure ratio

The critical pressure ratio pcr R represents the fictitious minimum ratio between the static and stagnation pressures at the throat required for the flow to become choked. It reads: where the subscript "sonic" has been one more time added to specify that th,sonic p and 0,sonic p represent respectively the static pressure at the throat and the stagnation pressure when sonic conditions are met at the throat. In the following the specification "sonic" will be used every time sonic conditions are involved. The stagnation pressure describes the fictitious pressure of a fluid adiabatically brought to rest. Its expression results from the invariance of specific entropy and specific total enthalpy between states * L,sonic

W

and th,sonic W . The analysis shows that the stagnation pressure does not vary throughout an isentropic flow. With the help of the ideal-gas equation of state, the stagnation pressure reads: M is then different from 1. As sonic conditions are considered th,sonic M 1, = and Relation (II.4.4) transforms to:

1 pcr 1 R 1 . 2  - - -  =+   (III.4.6)
Note that for air with 1.4

=

, the well-known result pcr R 0.52828 appears.

The critical pressure ratio pcr R is then expressed at the throat through Relation (III.4.6).

The pressure ratio p R is then to be expressed at the throat as well and compared to pcr R. Similarly the pressure ratio reads:

1 2 th th p th 0 1 2 th th pp 1 R 1 M . p2 1 p 1 M 2  - -  - -  = = = +   -  +   (III.4.7)
Under form (III.4.7), the pressure ratio requires knowledge of the solution state at the throat th , W under the assumption of subsonic flow. However, at this level, only the subsonic solution state * L W resulting from the HLLC solver is directly known. From this state, the th W state can be determined at the throat, but an iterative resolution is required, see Section III.2. Nevertheless, solution existence may fail for th . W This typically happens when the flow regime is sonic at the throat. When such situation appears, th W as well as p R are unavailable. The absence of mathematical solution suggests a sonic regime. However, as will be seen in the following, it is possible to reach this conclusion by reformulating the inequality p pcr RR  in the * L W state. Indeed, after some algebraic manipulations, the combination of Relations (III.4.2), (III.4.6) and (III.4.7) results in:

p pcr th R R M 1 subsonic.    → (III.4.8)
This result appears obvious but will be useful in the following. It shows that comparing the pressure ratio p R to the critical one pcr R is equivalent to comparing the Mach number at the throat, obtained under the subsonic assumption, to unity. The th W state is still unknown at this point. However, Relation (III.4.8) can be reformulated in the A / A and the isentropic exponent  , those being necessarily positive. Between those two states, the Mach number varies due to the isentropic acceleration or deceleration induced by the throat area. The transition from th M to * L M (or the opposite) requires an iterative method. However, the flow direction is unchanged so the transition from 

Concluding remarks

The previous analysis shows that comparing the pressure ratio p R to the critical one pcr R is equivalent to comparing the Mach number at the throat, obtained under the subsonic assumption, to unity. Moreover, it is also identical to comparing the Mach numbers in the * L W state:

** p pcr th L L,sonic max R R M 1 M M M subsonic.      = → (III.4.11)
The last form is more convenient in the present context as it does not involve the th W solution state at the throat, that may be unavailable. 

III.4 Summary of the method

Solution states determination for flux computation

The overall method is summarized hereafter, for the computation of the solution state at the throat area.

a) Flow direction

The HLL solver is used between the two fluid states associated to the two rooms to estimate the flow velocity direction at the throat. Relation (III.4) is used and the second component * mom Uu = of the state vector * U provides the sign of the velocity.

b) Subsonic assumption and critical state

An unchoked regime is supposed at the throat. The situation is depicted in Figure 6 representing a subsonic Riemann problem. However, as only situations involving 

W

is determined with Relations (III.3.10 -III.3.12).

Flux computation and solution update

The solution, in terms of conservative variables

( ) T , u, E , =    U
is updated with the help of the [START_REF] Godunov | A finite difference scheme for numerical computation of the discontinuous wave solutions of equations of fluid dynamics[END_REF] first-order scheme,

Nfaces n 1 n * i i ij j1 i t , + =  =-   UU  (III.4.1)
where n1 + and n denote two consecutive time steps and superscript * denotes the Riemann problem solution. Index i represents the current numerical cell, and index j the direct neighbors of cell i. i  is the volume of cell i and ij denotes the faces separating cells i and j.

Obviously, extensions can be considered but add complexity. Recall that a simple, fast, robust and accurate method dealing with very coarse 3D meshes is desired. Note also that the Godunov scheme is stable under the conventional CFL condition. 

IV. Validations and illustrations

IV.1 Simplified building

Computed results with the new method using very coarse meshes are compared with conventional 3D computations. A simplified building made of only two rooms is first considered with various pressure conditions and variable throat areas. Figure 8 displays the first configuration and associated initial conditions. As two different initial pressures are set in the two rooms, the initial pressure profile in the whole building is discontinuous and of Heaviside type. Moreover, as an opening separates the two rooms, the cross-section profile in the whole building is also discontinuous. At the opening, the geometric non-conservative term A p x   in System (III.1) consists of the product of Heaviside and Dirac functions. We will see in the following that such severe conditions are well-handled by the present Riemann and flux distribution, addressing under-resolved 3D computations.

Results provided by the under-resolved 3D computations are compared to those provided by the conventional 3D computations. Such conventional computations involve fine meshes including every geometric detail such as doors and windows. As seen in Section II.2, the under-resolved computations involve few numerical elements and a special treatment to address the various openings. The two meshes dealing with the present test case (Figure 8) are provided in Figure 9. The results are provided in terms of mean pressure and mean density in the two rooms, for the two computations. The mean density is numerically approximated as,

N ii i1 V 11 dV , VV =  =     
where V represents the volume of the corresponding room and i  the volume of every element i (out of N) composing the room. The mean pressure is determined with the help of the mean density ,  the mean momentum components

x,y,z u,  and the mean total

energy E,  ( ) ( ) ( ) ( ) N x,y,z x,y,z x,y,z i i i1 V N i i i1 V 11 u u dV u , VV 11 E E dV E . VV = =  =     =       
The mean internal energy e is then computed as, ( )

2 2 2 x y z 1 e E u u u , 2 = - + +
and the equation of state ( )

p , e  finally provides the mean pressure in the corresponding room. Results for the test case depicted in Figure 8 are shown in Figure 10. =  

The opening is of area

2 th A 1 1 m . =
The conventional 3D computation (denoted "Conv. 3D") is performed on a mesh composed of 61.270 tetrahedral elements. The under-resolved computation (denoted "special R.P." for special Riemann problem) is performed on a mesh made of 8 prismatic elements. The Godunov first-order scheme (III.4.1) is used with CFL 0.5. =

The initial high pressure is The initial pressure in the donor chamber has been taken weak ( ). In such conditions, only the subsonic part of the present Riemann solver is called. The mean density and mean pressure fields, important for many applications, are well-determined with the under-resolved computation that required less than 1 second with a sequential implementation. The conventional computation naturally shows more details of the wave dynamic solution. However, it required 2 hours and 29 minutes with a sequential implementation as well.

The test is now repeated with a high pressure of 6 L p 10 Pa.

=

The pressure being higher, a sonic situation occurs in the early stages of the solution. The corresponding results are provided in Figure 11. Before the pressure reaches its equilibrium value (quasistatic pressure), sonic flow occurs through the opening. The results provided by the under-resolved computation are again in good agreement with those obtained by the conventional computation, both in terms of pressure relaxation time, and mean (quasistatic) pressure field. The density profile agrees with the solution of the conventional computation as well.

To test the method further, the previous configuration is now slightly modified. Figure 12 displays the configuration and initial conditions. 

V 1 1 1 m . =  
A high pressure is set in a portion of the high-pressure room. This zone is of dimensions 0.2 1 1.  An opening separates the two rooms, and a second opening separates the low-pressure room and the exterior. Air is initially at rest. The boundary surfaces are treated as reflective walls, except for the opening connected to the atmosphere. The Appendix provides details for the treatment of boundary conditions.

The high pressure is now initially set in only a portion of the high-pressure room. Besides a second opening is considered. This additional opening separates the building from the exterior. In the following test, the high pressure is increased up to 7 10 Pa, and the area of the opening separating the two rooms is lowered to

2 th A 1 0.01 m , =
creating arduous sonic and subsonic conditions as time evolves. Results are provided in Figure 13 in terms of mean pressure and mean density both in the high-and low-pressure rooms. First, the opening separating the building from the atmosphere is considered closed and reflective wall conditions are used. It will be considered open (connected to the atmosphere) for the next test configurations. The conventional 3D computation (denoted "Conv. 3D") is performed on a mesh composed of 66.565 tetrahedral elements. The under-resolved computation (denoted "special R.P." for special Riemann problem) is performed on a mesh made of 12 prismatic elements. The Godunov first-order scheme (III.4.1) is used with CFL 0.5. =

Good agreement between the two computations appears, both in terms of pressure relaxation time and mean pressure field. The density solution also agrees with the solution provided by the conventional computation.

The previous test is now repeated with the second opening separating the low-pressure room from the exterior, now connected to the atmosphere. Appropriate treatment of such boundary is reported in the Appendix. Its area is the same as the area of the opening separating the two rooms The conventional 3D computation (denoted "Conv. 3D") is performed on a mesh composed of 71.309 tetrahedral elements. The under-resolved computation (denoted "special R.P." for special Riemann problem) is performed on a mesh made of 12 prismatic elements.

Good agreement between the two computations appears one more time. Relaxation to the atmospheric conditions, induced by the window, is clearly seen and the solution agrees with the results of the conventional computation.

In the following test, areas of both openings are increased up to for the two openings. The conventional 3D computation (denoted "Conv. 3D") is performed on a mesh composed of 60.602 tetrahedral elements. The under-resolved computation (denoted "special R.P." for special Riemann problem) is performed on a mesh made of 12 prismatic elements.

The area of the two openings is 10 times greater than previously. Again, good agreement in terms of relaxation time and mean pressure and mean density fields, between the two computations, is observed. In the following test, the high-pressure in the donor room is lowered to Similarly to Figure 10, where the high pressure is quite low, the conventional computation shows more details of the wave dynamic solution than the under-resolved computation. However, the mean density and mean (quasistatic) pressure fields are one-more time welldetermined with the under-resolved computation.

Various levels of pressure and area have been considered to address a simple building made of two rooms. The present treatment of the Riemann problem involving cross-section variations yields results in good agreement with those provided by a conventional computation, both in terms of pressure relaxation time and quasistatic pressure field.

The gain in CPU time is tremendous due to the simplified mesh construction involving few numerical elements. The reported CPU times are provided in Table 1.

Conventional computation

Under-resolved computation CPU time (sequential) CPU time (sequential) Figure 10 2 hours and 29 minutes < 1 second Figure 11 2 hours and 42 minutes < 1 second Figure 13 20 hours and 23 minutes < 1 second Figure 14 134 hours and 25 minutes 5 seconds Figure 15 5 hours and 29 minutes < 1 second Figure 16 24 hours and 16 minutes 2 seconds Table 1: CPU time reported for the various tests addressing simple geometries. The computations are performed with a sequential implementation.

IV.2 Realistic building

To illustrate the capabilities of the method, the 3D building of Figure 4 is now addressed, in the direction of flow computations in realistic buildings. The conventional computation uses a 3D mesh made of about 1 million tetrahedral elements. The under-resolved computation uses a 3D mesh made of 116 prismatic elements. The building involves 35 openings composed of 18 doors of aera The building is meshed with about 1 million tetrahedral elements. Computation on the full geometry is to be compared to the under-resolved computation where the openings are not meshed, and few elements are used (see Figure 4).

Results in terms of mean pressure are provided in the following figures. Mean densities are not presented for the sake of space. Two sets of computation are carried out. The first one considers all windows as closed. The corresponding surfaces are then treated as reflective walls. The second considers all windows as open and connected to the atmosphere. Note that the purpose of the present tests is to compare results from under-resolved computations to results provided by conventional computations. More realistic situations, where inner walls get gradually destroyed under the effects of pressure are part of future investigations.

Rooms on the ground floor are first addressed. Figure 18 shows the results for the rooms on the south side of the building shown in Figure 17. The conventional 3D computation (denoted "Conv. 3D") is performed on a mesh composed of about 1 million tetrahedral elements. The under-resolved computation (denoted "special R.P." for special Riemann problem) is performed on a mesh made of 116 prismatic elements. The Godunov first-order scheme (III.4.1) is used with CFL 0.5. =

The mean pressure is plotted both for the closed-window situation (denoted as "walls") and the open-window situation (denoted as "windows"). The present figure shows the results for the four rooms located on the ground floor, on the south side of the building (see Figure 17).

Results provided by the under-resolved computation show a very reasonable agreement with those provided by the conventional computation, both for the situation where all windows are closed (reflective walls) and for the situation where all windows are open. In this latter situation, atmospheric conditions significantly affect the solution.

Figure 19 shows the results for the rooms on the north side of the building (see Figure 17). Results provided by the under-resolved computations appear quite reasonable. The simplicity and rapidity of the method yield sometimes less accurate pressure spikes as seen in the plots for rooms 5 and 8. However, the overall pressure spikes remain reasonably estimated.

Rooms on the first floor are now addressed. Figure 20 shows the results for the rooms on the south side of the building (see Figure 17). Again, a very reasonable agreement is observed between the conventional and underresolved computations, for both situations where the windows are closed (reflective walls) or open (connected to the atmosphere).

Figure 21 shows the results for the rooms on the north side of the building (see Figure 17). One more time, a quite reasonable agreement is observed. As in Figure 19, less accurate pressure spikes appear in the plots for rooms 13 and 16. Nevertheless, the overall pressure spikes remain reasonably estimated.

Finally, stair spaces and corridors are addressed. Results are provided in Figure 22. The high pressure is initially set in the stair space (hall), on the ground floor. Pressure fields in the stair spaces are in good agreement with the pressure profiles provided by the conventional computations. Results in the corridors are quite reasonable as well.

The simplicity and rapidity of the method yield sometimes less accurate pressure spikes. However, the overall results provided by the under-resolved computations show a very reasonable agreement with those provided by the conventional computations, both in terms of pressure relaxation time and mean pressure, such mean (or quasistatic) pressure field being of importance for many situations.

Compared to conventional computation, construction of the geometry is very simple and fast as only the 2D "footprints" of the building are necessary. A conforming mesh with as few elements and human labor as possible is then constructed by extruding along the third dimension (see Section II). Geometric openings such as doors, windows, stairs are not meshed. The present Riemann problem takes into account the geometric details and a specific flux distribution is used (see Section III).

The overall method makes a fast numerical framework, both on the preprocessing stage and on the solver side. The agreement with results provided by the conventional computations is quite reasonable and the CPU time savings is tremendous as seen in Table 2. 2: CPU time reported for the computations of the realistic building. The conventional computations are performed with a parallel implementation using MPI architecture and 63 CPUs. The under-resolved computations are performed with a sequential implementation due to the few numbers of numerical elements.

The previous conventional computations were rerun with coarse meshes. Because of the presence of doors and windows in the geometry, 4625 tetrahedral elements were necessary. More elements than the under-resolved computation (116 prismatic elements) were then used and the computation time is quite larger than the under-resolved computation's. The conventional computations required about 12 minutes with a sequential implementation. Results appear somewhat closer to the reference results provided by the conventional computations using a fine mesh (about 1 million elements). The corresponding results are not presented for the sake of space.

The CPU time is reduced to about 34 seconds when a parallel architecture is used with 35 CPUs. Much more computational resources are then required in comparison to underresolved computations, such IT-resource dependence being undesirable under pressing circumstances.

Furthermore, because every geometric detail, corresponding to stairs, doors and windows in the present example, must be drawn and meshed, the geometry-construction-and-meshgeneration step requires much more time and human efforts than the proposed approach that is based on the 2D "footprints" of the geometry.

The proposed method, composed of simple and fast geometry-construction-and-meshgeneration and specific-Riemann-problem steps, then appears very helpful when hazardous and pressing situations are involved and require knowledge of the pressure fields.

Another important asset also rises. Indeed, because geometric restrictions are neither drawn nor meshed but are only marked for the specific Riemann solver, it appears straightforward to introduce a time-dependent throat area. Such situations may describe for instance the gradual destruction of a wall under the effect of pressure and will be investigated in future works. The treatment of such situation is not straightforward with the conventional approach where the openings are initially drawn and meshed, yielding consequently a mesh only adapted for the initial time.

V. Conclusion

A fast numerical framework, both on the preprocessing stage and on the solver side, has been developed to address flow computations in complex geometries, such as buildings. Geometry and mesh constructions are very simple, fast, and flexible. The meshing tool used in this work is GMSH. The strategy consists of constructing only the "footprints" of the building geometry (nodes, lines, and surfaces), generate a coarse but conformal 2D mesh and then extrude along the third dimension. In this way, each room is discretized with few elements and human efforts.

The geometric details, such as doors, windows, staircases, are not required during the geometry-and-mesh-construction step. The preprocessing stage is consequently very fast, compared to conventional meshes' needing geometric details. same as the one presented in Section III.3. The corresponding sonic Riemann solver is then directly used and provides the solution state at the throat th,sonic , W as well as the * L,sonic W solution state (or alternatively the * R ,sonic

W

if the flow is reversed). The solutions fluxes are computed according to the method presented in Section (III.4).

A.2 Unchoked flow

However, when the flow is unchoked, the Riemann solver of Section III.2 must be adapted. Across the extreme wave, the acoustic approximation is For a subsonic flow occurring through the throat, it is fairly conceivable to consider that the multidimensional waves, propagating into the exterior, quicky impose the exterior pressure ext p. Such observation closes the mathematical system as the pressure at the throat is supposed to be equal to the exterior pressure: Solution of the boundary Riemann problem, in the subsonic case, is then obtained by solving Relation (A.9) with the help of an iterative method. The remaining solution variables are determined with the previous relations and the solution fluxes are computed according to the method presented in Section (II.4).

A.3 Flow regime

We then have in hands two Riemann solvers, subsonic and sonic, for a boundary cell's face. As in Section III.3, selecting the solver appropriate to the flow conditions is done with the help of the critical state.

The proposed method consists of assuming a subsonic (unchoked) flow and assessing the relevance of this assumption by comparing the subsonic solution to critical conditions. The first step is then to solve Relation (A.9). Sometimes, there may be no mathematical solution, indicating that the flow is choked at the throat. In Section II.3, this situation could be circumvented by reformulating the critical pressure ratio pcr R at the throat in the * L W state and with the help of the HLLC solver providing necessarily a mathematical solution state * L , W even fictitious. The situation is different for a boundary cell's face. Indeed, no HLLC- type solver is available. The flow is then considered as choked if Relation (A.9) presents no solution.

However, when a solution, even fictitious, is available for Relation (A.9), both solution states * L W and th W are known. The subsonic assumption is relevant if the following criteria (Section III.4) are fulfilled, 

Figure 2 :

 2 Figure 2: Two-room prismatic mesh. Fluxes across the separating face (where a door is supposed to be present and represented in thick dashed lines) are computed with the algorithm detailed in Section III and fluxes associated to internal faces are computed with the HLLC Riemann solver. The separating face is then marked with a flag recognized in a later stage by the fluid flow solver, in the same way boundary conditions are handled in unstructured finite volume codes. The fluid flow software used in this work is the multiphysics DalphaDt® code.DalphaDt is a multi-purpose code handling unstructured meshes composed of arbitrary elements using a cell-centered finite volume method.One consequence of 2D mesh extrusion is the need of a special treatment to model a geometric restriction between two floors. Indeed, doors and windows belong to a unique quadrilateral face describing a wall. The situation is different with floors for which constrained Delaunay algorithm usually generates several triangles to mesh them. This configuration is depicted in Figure3. In the rest of the paper, such dimensional reduction will be denoted as the "throat", in reference to flows occurring in nozzles.

Figure 3 :

 3 Figure 3: Schematic representation of a separation between two floors. The initial throat area th A (represented with dots), which models for instance a stair, is distributed among all triangular faces pertaining to the floor. Each face then considers a portion i th A of the throat area th A.

AthiFigure 4 :

 4 Figure 4: Moderately complex building with various rooms, a ground floor and an upper floor. On top, partial view of the conventional 3D tetrahedral mesh where doors, windows and stairs are drawn. On bottom, the simplified prismatic mesh where faces with doors/stairs are treated with the special Riemann solver developed in Section III.

Figure 5 :

 5 Figure 5: Gas flowing from the room on the left of the opening to the room on the right. These two rooms represent computational cells. In the present example, the two rooms have the same crosssection LR A A . =

Figure 6 :

 6 Figure 6: Schematic representation of the wave diagram of 1D Riemann problem between the two rooms separated by a geometric discontinuity (full line). This geometric reduction is assimilated to a throat. Solution of the Riemann problem th W is required at this location. ** u represents the contact

  section A varies only between states * L W and ** W of this figure. The flow model (III.1) admits the following additional entropy (denoted s ) equation:

Figure 7 :

 7 Figure 7: Schematic representation of the wave diagram of 1D Riemann problem between the two rooms separated by a geometric discontinuity (full line). This geometric reduction is considered as a throat. Solution of the Riemann problemth

Section

  and the two solution states to be determined in the present specific Riemann problem are * L W and th . W Naturally the method presented hereafter treats the opposite situation ( ) * mom U0  similarly. In that case the two solution states to be determined in the present specific Riemann problem are * R W and th .

W

  to determine the flow regime. Let us start by analyzing the critical area.

  change the sign of inequality (III.4.8). Relation (III.4.8) can then be reformulated in the * L W state through Relation (III.4.9): meant to bring sonic conditions at the throat. * L,sonic M is then different from 1. Its value is obtained by solving Equation (III.3.7) with the help of an iterative method.

  the flow to be subsonic. Beyond max M the flow at the throat is necessarily sonic.An iterative method is nonetheless needed to find * L,sonicMthrough Relation (III.3.7). However, a simple analysis of function(III.3.7) shows that there always exists a solution in the interval

M

  II) are considered, the HLLC solver of[START_REF] Toro | Restoration of the contact surface in the HLL-Riemann solver[END_REF] is used directly and provides the solution states are consequently known. According to the flow direction, one of these two states is retained for the computation of the fictitious critical area cr A. More precisely, it is determined with the help of Relation (III.4.3). .3.7) with the help of an iterative method. It represents the maximum subsonic at the throat. Beyond max M the flow at the throat is necessarily sonic. Two situations may then occur.i. Case 1: The throat area is larger than the critical area and the Mach number is less than max M , i.e., from the assumption of an unchoked flow at the throat is in agreement with the criteria describing subsonic conditions. The solution state,

F

  the cell's face ij in the normal ( ) n direction and the appropriate area, as given by (III.4.2). Indeed, recall that in the present situation, cell's face represents a wall containing an opening (a throat) as depicted in Figure5. The area of the reflective wall also contributes to the flux distribution. Indeed, the integration of the conservation laws (III.1) on a control volume containing the perforated wall involves the following effective flux: contains the solution of the specific Riemann problem, either subsonic or sonic (summarized above) when a throat is present. When there is no opening on the cell's face, it reduces to the HLLC fluxes, th HLLC . = FF fluid A represents the cross-section through which the fluid flows. When an opening is present, it corresponds to the throat area fluid of the wall, i.e., the cross-section of the cell's face ij S without the fluid area:

Figure 8 :

 8 Figure 8: Schematic representation of a simple building made of two rooms only. The two rooms are of volume 3 V 4 4 4 m . =   An opening separates the two rooms. Its area is

Figure 9 :

 9 Figure 9: 3D meshes used for the test case depicted in Figure 8. On the left, the mesh for the conventional 3D computation is partly shown. It consists of 61.270 tetrahedral elements. The opening is fully drawn and meshed. It is represented by the dark lines that have been purposely thickened for the sake of clarity. On the right, the mesh used for the under-resolved 3D computation is shown. Only 4 prismatic elements per room are used. The mesh is made from a linear extrusion needing only the "footprints" of the building.

Figure 10 :

 10 Figure 10: Under-resolved 3D computation versus conventional 3D computation. The test configuration is depicted in Figure 8. It consists of a simple building made of two rooms separated by an opening. The rooms are of volume 3 V 4 4 4 m .=  

Figure 11 :

 11 Figure 11: Under-resolved 3D computation versus conventional 3D computation. The test configuration of Figure 10 is repeated with a high pressure of 6 L p 10 Pa = yielding choking conditions at early times.

Figure 12 :

 12 Figure 12: Schematic representation of a simple building made of only two rooms. The two rooms are of volume3

Figure 13 :V

 13 Figure 13: Under-resolved 3D computation versus conventional 3D computation. The test configuration is depicted in Figure 12. It consists of a simple building made of two rooms separated by an opening. The rooms are of volume3V 1 1 1 m . =  The opening is of area

Figure 14 :

 14 Figure 14: Under-resolved 3D computation versus conventional 3D computation. The test configuration of Figure 13 is repeated with a second opening of area 2 th A 1 0.01 m . = This opening separates the low-pressure room to the exterior where the atmospheric conditions dwell, 5 atm p 10 Pa, = and atm T 289.75 K. =

Figure 15 :

 15 Figure 15: Under-resolved 3D computation versus conventional 3D computation. The test configuration of Figure 14 is repeated with an area of 2 th A 1 0.1 m =

Figure 16 :

 16 Figure 16: Under-resolved 3D computation versus conventional 3D computation. The test configuration of Figure 15 is repeated with an initial high pressure of 5 HP p 1.01 10 Pa, = and an

  The full 3D geometry is depicted in Figure17.

Figure 17 :

 17 Figure 17: Full 3D geometry of a realistic building made of 16 rooms, 2 stair spaces and 2 corridors. The building involves 35 openings composed of 18 doors of aera 2 1.5 m , 16 windows of area

Figure 18 :

 18 Figure 18: Under-resolved 3D computation versus conventional 3D computation. The test configuration is depicted in Figures 4 and 17. It consists of a realistic building made of two floors. Each floor is made of 8 rooms with doors and windows, 1 stair space and 1 corridor. In the hall on the ground floor (stair space, see Figure 17), the pressure 7 HP p 10 Pa = is initially set. In the rest of

Figure 19 :

 19 Figure 19: Under-resolved 3D computation versus conventional 3D computation. The test configuration consists of the realistic building depicted in Figures 4 and 17. The present figure shows the results for the four rooms located on the ground floor, on the north side of the building (see Figure 17).

Figure 20 :

 20 Figure 20: Under-resolved 3D computation versus conventional 3D computation. The test configuration consists of the realistic building depicted in Figures 4 and 17. The present figure shows the results for the four rooms located on the first floor, on the south side of the building (see Figure 17).

Figure 21 :

 21 Figure 21: Under-resolved 3D computation versus conventional 3D computation. The test configuration consists of the realistic building depicted in Figures 4 and 17. The present figure shows the results for the four rooms located on the first floor, on the north side of the building (see Figure 17).

Figure 22 :

 22 Figure 22: Under-resolved 3D computation versus conventional 3D computation. The test configuration consists of the realistic building depicted in Figures 4 and 17. The present figure shows the results for the stair spaces and the corridors (ground and first floors, see Figure 17). The initial high-pressure zone 7 HP p 10 Pa, = is in the stair space, on the ground floor.

W

  one more time used to simplify the calculations. A relation linking the speed * the present example (Figure A.1), the fluid flows from the left of the opening to the right. The extreme wave LS then propagates into the L W unperturbed state. In situations where the flow is reversed, Relation (A.1) transforms to, sign "-" shall be used in the acoustic approximation.Moreover, the linearized version of Laplace's law, based on the sound speed definition, is used once again. A relation linking the density * L and the state at the throat th , W the flow is isentropic and stationary resulting in the following relations:

  

  

, corresponding to the momentum equation,

  

	U	mom	u, =

* U

  3.2) is based on the sound speed definition and is a linearized version of III.2.14 -III.2.16) holds. However sonic conditions apply in addition. The corresponding system consequently reads, III.3.6) is consequently closed with the help of Relations (III.3.1-III.3.2).

	Laplace's law. Then, between state	* L,sonic W	and the sonic throat th,sonic , W	the same system
	as previously (* * * L,sonic L,sonic L u A 	= 	th,sonic th,sonic th u A ,	(III.3.3)
	* L,sonic * L,sonic pp  th,sonic th,sonic = 	,	(III.3.4)
	* L,sonic * L,sonic pp 11 th,sonic *2 L,sonic th,sonic u ( 1) 2 ( 1) 2  + = +  -  -	u	2 th,sonic	,	(III.3.5)
	u	22 th,sonic th,sonic c =	.		(III.3.6)
		System (III.3.3 -III.3.6) involves the unknowns * L,sonic p	, * L,sonic u	, * L,sonic 	, th,sonic 	, th,sonic u
	and th,sonic p	. The geometric areas * L AA =	L	and th A are perfectly known at this level.
	System (III.3.3 -

  The subsonic HLLC solution is left out as it is in disagreement with the above criteria. Those indicate that the flow is choked at the throat. The subsonic Riemann problem of Figure6is replaced by the specific sonic Riemann problem depicted in Figure7. III.3.7). The velocity in the same state is then obtained by solving Relation (III.3.9). Iterative procedures are necessary. The rest of the solution state is determined with Relations (III.3.1) and (III.3.2). Then the solution state at the throat

	The actual Mach number in the	* L,sonic W	or	* R ,sonic W	solution state is computed
	by solving Relation (th,sonic		
	* L W or * R , W resulting from the HLLC solver is consequently valid. From this
	solution state, the solution at the throat	th W is computed through the set of
	isentropic relations, i.e., (III.2.21) requiring an iterative method and (III.2.20),
	(III.2.18), (III.2.15). Solution state th W being known, the criteria p RR 	pcr	and
	M	th	1,  previously replaced by ** L L,sonic M M =	M	max	are examined or checked.
	ii. Case 2: At least one of the inequalities th AA 	cr	and ** L L,sonic M M =	M	max
	is not fulfilled			
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With the present approach, such geometric openings are treated through a specific Riemann solver that can handle both unchoked and choked situations occurring through the opening. Reflected waves are treated as well with the present Riemann solver.

Such Riemann solver is simple and robust. It is based on the following observation. In the limit case where the cross-sections on both sides of the geometric discontinuity are the same LR A A , = the geometric discontinuity becomes transparent (for an unchoked flow). Such geometrical property is easily satisfied from the previous geometry-and-mesh-construction step, where a conformal constrained Delaunay-type mesh is built from given input nodes which ensures RL AA = at all rooms' separations by construction.

An essential simplification appears as there is no need to consider 4 waves and 3 states in the unchoked Riemann problem. In this particular case it reduces to 3 waves and 2 states, as done usually with the Euler equations, without cross-section variation. The simple and robust HLLC solver can then be used and provides the solution state upstream from the geometric opening. Isentropic relations are used afterwards to select the flow regime appropriate to the flow conditions, i.e., subsonic or sonic, and provide the solution state at the opening (the throat). Finally, a specific but simple flux distribution is performed.

The proposed overall method has been tested on both simple 3D geometries, with various levels of pressure and opening area, and a realistic building. Results provided by the underresolved computations on simple 3D geometries show a very good agreement with results from the conventional computations. Such good agreement is obtained both in terms of pressure relaxation time, a direct consequence of flux computation, and in terms of mean (or quasistatic) pressure field.

When realistic complex buildings are addressed, quasistatic pressure and relaxation time appear reasonably accurate, making the present method a simple and very fast numerical tool to address flows in complex buildings.

It is worth mentioning that using very coarse meshes may yield a loss of accuracy where curved geometries are considered. One way to remedy to this drawback is to use high-order meshes, see for instance [START_REF] Dobrzynski | High order mesh untangling for complex curved geometries[END_REF]. This topic is part of future investigations.

Depending on the complexity of the building, and the available computational resources, a conventional computation using a coarse mesh may provide the desired results with low CPU time. However, because geometric details such as doors for example are needed, the geometry-construction preprocessing stage demands much more time and human labor than the proposed approach that is based on the 2D "footprints" of the geometry. Such tedious mesh generation is not desirable when hazardous and pressing situations are involved and require knowledge of the pressure fields.

The present method then appears very convenient in such circumstances. Because of the simple preprocessing stage, the gain in terms of human efforts is huge compared to conventional computations. The Riemann solver dealing with geometric reductions is quite simple as well. The present under-resolved 3D computations provide reasonably accurate mean (or quasistatic) pressure fields in such complex buildings, with minimum computational resources and CPU time.

Another major asset is in favor of the present method. Indeed, because geometric restrictions are neither drawn nor meshed but are only marked for the specific Riemann solver, it appears straightforward to introduce a time-dependent throat area, unlike conventional computations. Such situations may describe for instance the gradual destruction of a wall under the effect of pressure and is also part future investigations.
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Appendix. Boundary condition

The Riemann solver presented in Section III, taking into account the effects of a dimensional reduction, is adapted to a boundary cell's face. Such situation describes for example a flow occurring through a window, placed on a boundary wall of a building.

To illustrate the situation, let us once again use the flow situation depicted in Figure 6. However, as the cell's face separates the numerical domain from the exterior, the waves appearing on the right side of Figure 6 The Riemann problem for a boundary cell's face is then specific in the sense that only two waves appear whether or not the flow is choked at the throat (window area). The method is presented hereafter based on the flow situation depicted in 

A.1 Sonic flow

When the flow is choked, the upstream side (numerical domain) is isolated from the downstream side (exterior) at the throat. In such conditions, the Riemann problem is the