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 The ability of the method to approximate the experimentally observed crack-tip trajectory is particularly noteworthy.

INTRODUCTION

The three-dimensional tracking of dynamic cracks in solids undergoing large-scale plasticity has received scant attention in the nite element literature (see Reference 2 for a notable exception). Marusich and Ortiz [START_REF] Marusich | Modelling and simulation of high-speed machining[END_REF] have developed a method of crack tracking based on continuous and adaptive remeshing, and have applied the method to the simulation of orthogonal high-speed machining. Two conventional crack-growth criteria were employed: the attainment of a critical stress at a critical distance; and the attainment of a critical plastic strain at a critical distance. In this manner, the approach is capable of accounting for large-scale plasticity, crack kinking and branching and permits the competition between ductile and brittle fracture mechanisms. However, its generalization to three dimensions is not straightforward, specially as regards the need for automatic remeshing. Perhaps a more fundamental diculty concerns the applicability of the traditional K-and J -based crack-growth initiation and propagation criteria to situations involving large-scale yielding. Even in cases which conform to the assumptions of small-scale fracture mechanics, considerable uncertainties remain as regards the proper choice of crack-growth initiation and propagation criteria that account for loading rate, material interfaces, small crack sizes and other complicating circumstances.

An alternative viewpoint-pioneered by Dugdale, [START_REF] Dugdale | Yielding of steel sheets containing clits[END_REF] Barrenblatt, [START_REF] Barrenblatt | The mathematical theory of equilibrium of cracks in brittle fracture[END_REF] Rice [START_REF] Rice | Mathematical analysis in the mechanics of fracture[END_REF] and others-regards fracture as a gradual phenomenon in which separation takes place across an extended crack 'tip', or cohesive zone, and is resisted by cohesive tractions. This theory of fracture permits the incorporation into the analysis of bona de fracture parameters such as the spall strength-the peak cohesive traction-and the fracture energy-the area under the cohesive law-of the material. An appealing feature of this approach is that it does not presuppose a particular type of constitutive response in the bulk of the material, the extent of crack growth, or the size of the plastic zone. In addition, the shape and location of successive crack fronts is itself an outcome of the calculations. Yet another noteworthy property of cohesive formulations pointed out by Camacho and Ortiz [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF] is that, under dynamic loading conditions, they automatically account for the observed rate-dependency of fracture. 8; 9 Thus, in addition to endowing the solid with an intrinsic length scale, cohesive models also introduce an intrinsic time scale and the corresponding distinction between fast and slow loading rates.

Most cohesive fracture laws proposed to date are reversible and history-independent. [START_REF] Rose | Universal binding energy curves for metals and bimetallic interfaces[END_REF][START_REF] Needleman | A continuum model for void nucleation by inclusion debonding[END_REF][START_REF] Ortiz | Microcrack coalescence and macroscopic crack growth initiation in brittle solids[END_REF][START_REF] Beltz | Book chapter: dislocation nucleation versus cleavage decohesion at crack tips[END_REF][START_REF] Rice | Dislocation nucleation from a crack tip: an analysis based on the peierls concept[END_REF][START_REF] Ortiz | Statistical properties of residual stresses and intergranular fracture in ceramic materials[END_REF] These laws presume that the cohesive tractions exactly retrace the loading traction-opening displacement curve upon unloading. While this is rigorously correct when fracture occurs at the atomistic level, where cohesion directly arises from the atomic bonds, most macroscopic decohesion processes may be expected to entail some degree of irreversibility. This requires the formulation of irreversible cohesive laws such as proposed by Needleman [START_REF] Needleman | Micromechanical modeling of interfacial decohesion[END_REF] and Camacho and Ortiz. [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF] Our present work extends the formulation of Camacho and Ortiz 7 to three dimensions. Thus, cohesive surfaces are assumed to unload to the origin and mode coupling is accounted for by the simple device of introducing an eective scalar opening displacement.

Cohesive laws have been built into nite element analyses as mixed boundary conditions; 11; 16-24 or have been embedded into cohesive nite elements. 7; 15; 25-28 These elements are surface-like and are compatible with general bulk nite element discretizations of the solid, including those which account for plasticity and large deformations. Cohesive elements bridge nascent surfaces and govern their separation in accordance with a cohesive law. Camacho and Ortiz [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF] have shown that meshsize independent results are obtained when the mesh adequately resolves the cohesive zone. Here we develop a class of three-dimensional cohesive elements consisting of two six-noded triangular facets. The opening displacements are described by quadratic interpolation within the element. The element is fully compatible with-and may be used to bridge-pairs of tetrahedral elements. Our present work extends the cohesive elements of de Andr es et al. [START_REF] De-Andr Es | Elastoplastic nite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading[END_REF] to nite deformations. Thus, the elements are endowed with full nite-deformation kinematics and, in particular, are exactly invariant with respect to superposed rigid-body translations and rotations.

In Section 4 we present a detailed simulation of the drop-weight dynamic fracture tests of Zehnder and Rosakis 1 which demonstrates the predictive ability of the formulation. The ability of the method to reproduce the salient trends in the experimentally observed crack tip trajectory is particularly noteworthy.

FINITE-DEFORMATION IRREVERSIBLE COHESIVE LAWS

By way of general framework, consider a body occupying an initial conguration B 0 ⊂ R 3 . The body undergoes a motion described by a deformation mapping D : B 0 × [0;T] → R 3 , where [0;T] is the elapsed time interval. Let F be the attendant deformation gradients and P the rst Piola-Kirchho stress tensor (cf. e.g. Reference 30). Suppose now that the body is traversed by a cohesive surface S 0 , Figure 1. Furthermore, orient S 0 by choosing a unit normal N. For simplicity, assume that the cohesive surface then partitions the body into two subbodies B ± 0 , lying on the plus and minus sides of S 0 , denoted S ± 0 , respectively. The power expended by the body forces 0 b and the boundary tractions t is

Ẇ = ± B ± 0 0 b • Ḋ dV 0 + ± @B ± 0 t • Ḋ dS 0 (1) 
where the sum extends over the two subbodies dened by the cohesive surface. Likewise, the kinetic energy of the body is

K = ± B ± 0 1 2 0 | Ḋ| 2 dV 0 (2) 
The deformation power, namely, the part of the power expended on the solid which is not expended in raising its kinetic energy, is, therefore,

P D = Ẇ -K = ± B ± 0 0 (b - D) • Ḋ dV 0 + ± @B ± 0 t • Ḋ dS 0 (3) 
Additionally, we assume balance of linear momentum, which requires

∇ 0 • P = 0 ( D -b)i n B ± 0 ( 4 
) P • N = t on @B ± 0 (5) [[ P • N]] = [[ t]] = 0 on S ± 0 (6)
Here, ∇ 0 • signies the material divergence over B 0 and N is the unit normal. Inserting (4) into (3) and making use of ( 5) and ( 6) leads to the deformation power identity

P D = ± B ± 0 P • Ḟ dV 0 + S0 t • [[ Ḋ]] d S 0 (7) 
This expression generalizes the conventional deformation power identity (cf. e.g. Reference 30) to a body containing a cohesive surface.

As is evident from (7), the presence of a cohesive surface results in the addition of a new term to the deformation power identity. The duality or work-conjugacy relations between stress and deformation measures may also be discerned from (7): as in conventional solids, the rst Piola-Kirchho stress tensor P does work on the deformation gradients F over the bulk of the body. In addition, it follows that the tractions t do work on the displacement jumps

T =[ [D]] (8) 
or 'opening displacements' over the cohesive surface.

The preceding work-conjugacy relations set the stage for the development of a general theory of cohesive in solids. In this theory, the opening displacements T play the role of a deformation measure, with the tractions t furnishing the conjugate stress measure. It is worth noting in this regard that T vanishes identically when the body undergoes a rigid translation, as required of a proper deformation measure. For simplicity, we shall assume that the behavior of cohesive surfaces is local. Consequently, for the purpose of formulating cohesive laws we can conne our attention to one point on the cohesive surface.

We expect the cohesive behaviour to be dierent for opening and sliding. In order to account for this dierence, it becomes necessary to keep track of the deformed geometry of the cohesive surface. However, this task is compounded by the discontinuous behaviour of the deformation mapping. One scheme for identifying a unique deformed conguration S of the cohesive surface is to introduce the mean deformation mapping

D = 1 2 (D + + D -) (9) 
over S 0 , and to set S ≡ D(S 0 ). Evidently, the full deformation mapping may be recovered from ( 8) and ( 9) through the identities

D ± = D ± 1 2 T (10) 
It should be noted that for most materials systems of practical interest the opening displacements T across cohesive zones, e.g., at the tip of a crack, are exceedingly small, which eectively eliminates any ambiguities in the denition of the deformed cohesive surface. Equipped with these conventions, it is now possible to introduce a unit normal n to S, which we take to point from D -(S 0 )t oD + (S 0 ). We shall assume throughout that S remains smooth and, therefore, n is well-dened everywhere. Given a vector eld u over S, its normal and tangential components are

u n = u • n; u S = u -u n n =(I -n ⊗ n)u; (11) 
respectively. In addition, we shall denote by ∇ S u the surface gradient of u. Given a parametrization of S by curvilinear co-ordinates (s 1 ;s 2 ), the components of ∇ S u are simply the covariant derivatives of the components of u (cf. e.g. Reference 30). We postulate the existence of a free energy density per unit undeformed area over S 0 of the general form = (T;;q; ∇ S0 D)

where is the local temperature and q is some suitable collection of internal variables which describe the inelastic processes attendant to decohesion. The additional dependence on ∇ S0 D is geometrical in nature since a variation of D at constant T does not entail any surface decohesion. Given a parametrization (S 1 ;S 2 )o fS 0 , the vectors D ;1 and D ;2 are tangent to S. Consequently, the unit normal n is the unit vector orthogonal to both D ;1 and D ;2 . The surface deformation is measured by the surface Cauchy-Green deformation tensor

C S0 =(∇ S0 D) T ∇ S0 D (13) 
Evidently, the geometrical information conveyed by ∇ S0 D is required in order to keep track of the normal direction and possibly of special material directions within the cohesive surface, such as easy glide directions in crystalline surfaces.

By recourse to Coleman and Noll's method (e.g. References 31 and 32) it is possible to show that the cohesive law takes the form

t = @ @T (14) 
The potential structure of the cohesive law is a consequence of the rst and second laws of thermodynamics. The evolution of the internal variables q is governed by a set of kinetic relations of the general form q = f(T;;q)

In the sequel, we shall restrict our attention to isothermal processes and dependencies on will be omitted for simplicity. A key benet of the potential structure of the cohesive law ( 14) is that it reduces the identication of the cohesive law from the three independent functions t to the single function scalar .

The cohesive free energy is subject to the restrictions imposed by material frame indierence, namely,

(T * ; q * ; ∇ S0 D * )=(T; q; ∇ S0 D) (16) 
where

T * = RT; ∇ S0 D * = R∇ S0 D (17) 
and R ∈ SO(3) is an arbitrary rotation. The precise expression for q * depends on the tensorial nature of q. For simplicity, we shall assume that the internal variables q are scalar or otherwise invariant under superposed rigid rotations. The most general dependence of on T and ∇ S0 D consistent with these restrictions is

= ( n ; T •∇ S0 D; q; C S0 ) (18) 
This form of the free energy allows for coupling between the cohesive surface deformation, as measured by C S0 , and decohesion. For simplicity, in the sequel we shall assume that no such coupling exists, i.e., that the cohesive response is independent of the stretching and shearing of the cohesive surface, leading to a class of free energies of the simpler form

= ( n ; T •∇ S0 D; q) (19) 
Further simplications arise from material symmetry. Assume, for instance, that the cohesive surface is isotropic, i.e., that the resistance to sliding is independent of the direction of sliding. This requires that = ( n ; S ; q)

where we write

S = |T S | (21) 
Interestingly, the free energy (20) depends only on the geometry of S through its unit normal n.

In this simple case, the cohesive law ( 14) reduces to t = @ @ n ( n ; S ; q) n + @ @ S ( n ; S ; q)

T S S (22) 
To further simplify the formulation of mixed-mode cohesive laws, we follow Camacho and Ortiz [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF] and introduce an eective opening displacement

= 2 2 S + 2 n ( 23 
)
Evidently, the parameter assigns dierent weights to the sliding and normal opening displacements. As simple model of cohesion is then obtained by assuming that free energy potential depends on T only through the eective opening displacement , i.e., = (; q)

Under these conditions, the cohesive law ( 22) reduces to

t = t ( 2 T S + n n) (25) 
where

t = @ @ (; q) (26) 
is a scalar eective traction. It follows from ( 23) and ( 25) that the eective traction is

t = -2 |t S | 2 + t 2 n ( 27 
)
This relation shows that denes the ratio between the shear and the normal critical tractions.

In brittle materials, this ratio may be estimated by imposing lateral connement on specimens subjected to high-strain-rate axial compression. 33; 34 It bears emphasis that, upon closure, the cohesive surfaces are subject to the contact unilateral constraint, including friction. We regard contact and friction as independent phenomena to be modelled outside the cohesive law. Friction may signicantly increase the sliding resistance in closed cohesive surfaces. In particular, the presence of friction may result in a steady-or even increasing-frictional resistance while the normal cohesive strength simultaneously weakens.

Figure 2 depicts the class of irreversible cohesive laws envisioned here. Irreversibility manifests itself upon unloading. Therefore, an appropriate choice of internal variable is the maximum attained eective opening displacement max . Loading is then characterized by the conditions: = max and ¿0. Conversely, we shall say that the cohesive surface undergoes unloading when it does not undergo loading. We assume the existence of a loading envelop dening a relation between t and under conditions of loading. A simple and convenient relation is furnished by Smith and Ferrante's universal binding law, Figure 2 

Following Camacho and Ortiz [START_REF] Camacho | Computational modelling of impact damage in brittle materials[END_REF] we shall assume unloading to the origin, Figure 2, giving

t = t max max if ¡ max or ¡0 (30) 
For the present model, the kinetic relations (15) reduce to max = if = max and ¿0 0 otherwise (31) Evidently, the cohesive behaviour just described is rate-independent. Two types of loading envelops and the corresponding loading-unloading paths are shown in Figure 2.

In non-linear elastic materials, a standard application of the J -integral 6 establishes a link between the critical energy release rate G c for crack propagation and the cohesive law. For simplicity, let the cohesive surface S 0 be at and choose a local orthonormal reference frame such that the basis vector e 1 points in the direction of propagation of the crack front, e 1 is aligned with the crack front direction and e 3 coincides with the unit normal N, Plate 1. Choosing a contour for the evaluation of the J -integral which surrounds the cohesive zone gives

G c = R 0 t • T ;1 dx 1 = R 0 t ;1 dx 1 ( 32 
)
where R is the cohesive zone length and we have made use of ( 23) and (25). A change of variables enables the second of (32) to be written in the form

G c = ∞ 0 t d ≡ ∞ (33) 
For the particular case of ( 28), (33) gives

G c = e c c ( 34 
)
which relates c and c to the fracture energy G c . For purposes of display of results, we shall nd it convenient to dene a damage parameter

D = ( max ) G c ( 35 
)
Evidently, D ranges from 0 to 1, with these limits corresponding to an intact and a fully decohered cohesive surface, respectively. Furthermore, it follows from (31) that Ḋ¿0 (36) as bets the irreversibility of damage.

FINITE ELEMENT IMPLEMENTATION

A particularly appealing aspect of cohesive laws is that they t naturally within the conventional framework of nite element analysis. One possible approach is to implement the cohesive law as a mixed boundary condition, relating tractions to displacements at boundaries or interfaces. 11; 16-19; 21-24 Here, by contradistinction, we follow Willam, [START_REF] Willam | Simulation issues of distributed and localized failure computations[END_REF] Ortiz and Suresh [START_REF] Ortiz | Statistical properties of residual stresses and intergranular fracture in ceramic materials[END_REF] and Xu and Needleman, [START_REF] Xu | Numerical simulations of fast crack growth in brittle solids[END_REF] and directly embed the cohesive law into surface-like nite elements, leading to the formulation of so-called 'cohesive' elements. The class of elements considered consists of two surface elements which coincide in space in the reference conguration of the solid, Figure 3. Each of the surface elements has n nodes. The total number of nodes of the cohesive element is, therefore, 2n. The particular triangular geometry depicted in Figure 3 is compatible with three-dimensional tetrahedral elements, Figure 4. The compatibility of cohesive elements with general classes of bulk elements and constitutive behaviours is particularly noteworthy.

We shall denote by N a (s 1 ;s 2 ), a =1;:::;n the standard shape functions of each of the constituent surface elements. The co-ordinates (s 1 ;s 2 ) are the natural co-ordinates of each of the surface elements in some convenient standard conguration Ŝ, e.g., that shown in Figure 5(a). We shall designate one of the surface elements as S -and the remaining one as S + . As noted in Section 2, the behaviour of a cohesive surface may be expected to dier markedly depending on whether the surface undergoes sliding or normal separation. This requires the continuous tracking of the normal and tangential directions to the surface. In particular, since S - and S + may diverge by a nite distance the denition of a unique normal direction n is to some extent a matter of convention. In keeping with the framework developed in the preceding section, all geometrical operations such as the computation of the normal are carried out on the middle surface S of the element, Figure 5(b), dened parametrically as

x(s)= n a=1
x a N a (s)

where x a N a; (s)

x a = 1 2 (x + a + x - a ) (38) 
Here and subsequently, Greek indices are assigned the range (1; 2) and a comma signies partial dierentiation. The unit normal to S is

n = a 1 × a 2 |a 1 × a 2 | (40) 
which, conventionally, points from S -to S + . The opening displacement vector in the deformed conguration is, Figure 6,

T(s)= n a=1 [[ x a ]] N a (s) (41) 
where

[[ x a ]] = x + a -x - a (42) 
Evidently, T remains invariant upon superposed rigid translations of the element.

For the cohesive model developed in Section 2, the cohesive tractions per unit undeformed area follow as

t = t [ 2 T +(1-2 )(T • n)n]=t(T; n) (43) 
where the last identity has been inserted in order to highlight the dependence of t on the normal n. This dependence needs to be carefully accounted for in a nite deformation setting as it leads to geometrical terms in the tangent stiness matrix. The nodal forces now follow from the tractions as It should be noted that the integral extends over the undeformed surface of the element in its reference conguration. As is costomary in isoparametric nite elements, the integral may conveniently be approximated by recourse to numerical quadrature. The tangent stiness matrix follows by consistent linearization of (44), with the result

f ± ia = ∓ S0 t i N a dS 0 (44) 
K ±± iakb = S0 @f ± ia @x ± kb dS 0 = ∓∓ S0 @t i @ k N a N b dS 0 ∓ 1 2 S0
@t i @n p @n p @ x kb N a dS 0 (45)

A trite calculation gives

@n p @ x kb = e krs 2|a 1 × a 2 | (a 2r N b;1 -a 1r N b;2 )( ps -n p n s ) (46) 
Evidently, the geometrical terms in (45) render the stiness matrix unsymmetric.

SIMULATION OF THE DROP-WEIGHT DYNAMIC FRACTURE TEST

Finally, we present a three-dimensional simulation of the drop-weight dynamic fracture tests which demonstrates the scope and versatility of the cohesive elements and cohesive laws described above. This example eectively tests the ability of the method to track dynamically growing three-dimensional cracks in a solid undergoing nite deformations. The calculations presented here are primarily intended as a numerical test of the formulation and not as a comprehensive investigation of three-dimensional aspects of dynamic crack growth in steel. A more systematic numerical study of such aspects may be found elsewhere. [START_REF] Mathur | Three dimensional analysis of dynamic ductile crack growth in a thin plate[END_REF] The assumed test conguration is shown in Figure 7. A rectangular three-point bend specimen is subjected to dynamic loading as imparted by a falling weight which strikes at the midsection of the specimen. The specimen has an initial precrack 3 cm deep within its mid-section sharpened by fatigue, Figure 7. The eect of the weight is approximated by prescribing a constant velocity of 5 m/s at the point of contact. Because of the impulsive nature of the motion, the problem is ideally suited to explicit dynamics. In calculations we employ the explicit member of Newmark's algorithm (e.g. References 35 and 36). We have found that in explicit calculations a cohesive law of the form shown in Figure 2(d) is preferable to one of the type Figure 2(b), as the initial elastic slope in the latter may place stringent restrictions on the stable time step for explicit integration. The material is a brittle C-300 steel, which we assume to obey J 2 -plasticity with power-law hardening and rate dependency (e.g. References 3, 37 and 38). The material constants used in calculations are collected in Figure 8.

The computational mesh is shown in Plate 2. In view of the brittleness of the C-300 steel under consideration, the extent of shear lip formation may be expected to be small. Consequently, the crack surface may be approximated as remaining essentially planar and conned to the midsection of the specimen. In order to allow for dynamic crack growth, we tile the mid-section of the specimen with cohesive elements such as described in Section 3. All surfaces and the interior of the specimen are meshed automatically by the advancing front method. The mesh is designed so as to be ne and nearly uniform on and in the vicinity of the crack plane, and to gradually coarsen away from the crack plane up to a large uniform mesh size, Plate 2. The volume elements are 10-node quadratic tetrahedra and the state variables are updated by recourse to the method of extension of Cuitiño and Ortiz. [START_REF] Cuitiño | A material-independent method for extending stress update algorithms from small-strain plasticity to nite plasticity with multiplicative kinematics[END_REF] Overall, the computational mesh comprises 8084 nodes, 4410 tetrahedra and 768 cohesive elements. The minimum mesh size is 2 mm. Based on this dimension and the elastic moduli, a stable time step for explicit integration may be conservatively estimated at t =0•012 s. The deformed mesh after the passage of 2•4 ms is shown to scale in Figure 9. At this time, the specimen is clearly split into two identical fragments. The ability of the cohesive elements to simulate the emergence of the crack through the upper surface of the specimen is noteworthy. The nite rotations undergone by the specimen should also be carefully noted.

Details of the crack growth process are shown in Plate 3 and Figure 10. Plate 3 depicts contours of the damage variable D, equation (35), at four dierence stages of growth. As may be recalled, a value of D = 0 denotes the absence of cracking, whereas the limiting value of D = 1 denotes a fully formed crack. The narrow transition zone between these two limiting values may be regarded as a smeared crack tip, or cohesive zone. It is observed in Plate 2 that the crack front develops a small curvature as it propagates and it lags behind somewhat near the free surface as a consequence of enhanced plastic activity in that region. However, these eects are not strong as expected from the brittleness of C-300 steel. The trajectory and speed of the central point of the crack front are plotted in Figure 10. The trajectory of the crack, Figure 10(a), is seen to be smooth initially and becomes jerky during later stages of growth. The velocity history of the crack front as computed by a three-point numerical dierentiation formula is shown in Figure 10(b). For purposes of comparison, Figure 10(c) shows the experimentally determined velocity history for a similar drop-weight test. [START_REF] Zehnder | Dynamic fracture initiation and propagation in 4340 steel under impact loading[END_REF] Remarkably, the numerical simulation captures some of the salient features of the experimental record such as the initial acceleration of the crack tip; the subsequent oscillations about a plateau; and the nal drop in velocity as the crack joins up with the top surface of the specimen.

SUMMARY AND CONCLUSIONS

We have developed a three-dimensional nite-deformation cohesive element and a class of irreversible cohesive laws which enable the accurate and ecient tracking of dynamically growing cracks. The cohesive element governs the separation of the crack anks in accordance with an irreversible cohesive law, eventually leading to the formation of free surfaces, and is compatible with a conventional nite element discretization of the bulk material. Our present work extends the cohesive model of Camacho and Ortiz 7 to three dimensions. Thus, cohesive surfaces are assumed to unload to the origin and mode coupling is accounted for by the simple device of introducing an eective scalar opening displacement. The cohesive elements developed here are endowed with full nite kinematics, and in this important respect they generalize the cohesive elements of de Andr es et al. [START_REF] De-Andr Es | Elastoplastic nite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading[END_REF] The versatility and predictive ability of the method has been demonstrated through the simulation of a drop-weight dynamic fracture test similar to that reported by Zehnder and Rosakis. [START_REF] Zehnder | Dynamic fracture initiation and propagation in 4340 steel under impact loading[END_REF] The ability of the method to approximate the experimentally observed crack-tip trajectory is particularly noteworthy.
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 1 Figure 1. Cohesive surface traversing a 3D body
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 2 Figure 2. Two simple choices of cohesive law expressed in terms of an eective opening displacement and traction t: (a) loading envelope of the Smith-Ferrante type; (b) loading-unloading rule from Smith-Ferrante envelop; (c) linearly decreasing loading envelop; (c) loading-unloading rule from linearly decreasing loading envelop
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 34 Figure 3. Geometry of cohesive element. The surfaces S -and S + coincide in the reference conguration of the solid
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 5 Figure 5. (a) Standard element conguration and natural co-ordinate system; (b) deformed middle surface S and corresponding curvilinear co-ordinate system and x ± a , a =1;:::;n are the co-ordinates of the nodes in the deformed conguration of the element. The natural co-ordinates (s 1 ;s 2 ) thus dene a convenient system of curvilinear co-ordinates for the middle surface of the element. The corresponding tangent basis vectors are a (s)=x ; (s)=
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 6 Figure 6. Opening displacement
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 78 Figure 7. Geometry of three-point bend test specimen

Plate 1 .

 1 Computation of the J-integral along a surface Γ which surrounds the cohesive zone R Plate 2. Computational mesh comprising 8084 nodes, 4410 tetrahedra and 768 cohesive elements
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 39 Figure 9. Deformed geometry of the specimen after 2400 s
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 10 Figure 10. (a) Computed crack-tip trajectory; (b) crack-tip speed computed by smoothing and numerical dierentiation of the crack tip trajectory; (c) experimental crack-tip velocity
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