
HAL Id: hal-03437194
https://hal.science/hal-03437194v1

Submitted on 3 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiscale mechanical model based on patient-specific
geometry: application to early keratoconus development

Chloé Giraudet, Jérôme Diaz, Patrick Le Tallec, Jean-Marc Allain

To cite this version:
Chloé Giraudet, Jérôme Diaz, Patrick Le Tallec, Jean-Marc Allain. Multiscale mechanical model
based on patient-specific geometry: application to early keratoconus development. Journal of the
mechanical behavior of biomedical materials, 2022, 129, pp.105121. �10.1016/j.jmbbm.2022.105121�.
�hal-03437194�

https://hal.science/hal-03437194v1
https://hal.archives-ouvertes.fr


1

Multiscale mechanical model based on patient-specific
geometry: application to early keratoconus development

C.Giraudet1,2, J. Diaz2,1, P. Le Tallec1,2, J.-M. Allain1,2

1 Laboratoire de Mécanique des Solides, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris
2 Inria

2

3

Abstract — Keratoconus is a pathology of the cornea associated with a tissue thinning and a4

weakening of its mechanical properties. However, it remains elusive which aspect is the leading cause5

of the disease. To investigate this question, we combined a multiscale model with a patient-geometry6

in order to simulate the mechanical response of healthy and pathological corneas under intraocular7

pressure. The constitutive behavior of the cornea is described through an energy function which takes8

into account the isotropic matrix of the cornea, the geometric structure of collagen lamellae and the9

quasi-incompressibility of the tissue. A micro-sphere description is implemented to take into account10

the typical features of the collagen lamellae as obtained experimentally, namely their orientation, their11

stiffness and their dispersion, as well as the their unfolding stretch, at which they start to provide a12

significant force. A set of reference parameters is obtained to fit experimental inflation data of the13

literature. We show that the most sensitive parameter is the unfolding stretch, as a small variation14

of this parameter induces a major change in the corneal apex displacement. The keratoconus case is15

then studied by separating the impact of the geometry and the one of the mechanics. We computed16

the evolution of the SimK (a clinical indicator of cornea curvature) and elevation maps: we were able17

to reproduce the reported changes of SimK with pressure only by a mechanical weakening, and not by18

a change in geomtry. More specifically, the weakening has to target the lamellae and not the matrix.19

The mechanical weakening leads to elevations close to early stage keratoconus, but our model lacks20

the remodeling component to couple the change in mechanics with changes in geometry.21
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1 Introduction22

Cornea is a critical part of the eye providing two thirds of its optical power through its specific lens23

shape. In keratoconus disease, the shape of the cornea is progressively altered to become conical,24

leading to optical aberration and thus to a loss of vision [54]. A late detection of the keratoconus25

imposes a laser surgery with possible complications [28, 40, 58]. Conversely, if the keratoconus is26

detected at an early stage, appropriated contact lenses can be used to stop its progression [5, 15].27

This explains the interest for early diagnosis methods in the literature [11].28

Keratoconus origin is not determined as of today: it has been shown to be favored by genetic, but29

also by mechanical rubbing of the eye [43]. Early keratoconus are associated with both a thinning of30

the cornea [49] and a decrease of the mechanical properties [3], combined with a loss of the highly31

organized structure of the cornea [50]. However, it is not clear if the thinning is due to the weakening32

of the cornea or comes first. To tackle this question, we propose a modeling approach in which we can33

change independently the cornea geometry and its mechanical properties from healthy to keratoconic34

ones.35

Patient-specific images of the cornea are obtained by clinicians using topographers. They give36

morpho-geometric indicators for an early stage of the keratoconus [11, 12, 49], such as corneal thick-37

ness, anterior and posterior surfaces geometries, and pachymetry. On the other hand, cornea me-38

chanical properties are difficult to estimate specifically in-vivo [17, 30]. They have been investigated39

ex-vivo with inflation tests [8, 18] or strip stretching [19, 62]. They show a response similar to other40

collagen-rich tissues (as aorta [13], tendon [26] or skin [33]), with a first heel region associated with a41

low, non-linear, increase of the stress for large stretch, followed by a linear region in which the force42

increases proportionally to the stretch. Indeed, it has long been known [34] that optical and mechan-43

ical properties of the cornea are linked to the micro-structural organization of the stroma [37, 52],44

a collagen-rich tissue made of a plywood of collagen lamellae anchored in a matrix of proteoglycans45

and keratocytes. It is classically accepted that the mechanical properties arise from a progressive46

straightening of the lamellae in the heel region, followed by their stretching in the linear part [4], as47

reported for tendon [20] for example. Only a few papers have questioned this interpretation, with con-48

tradictory observations [7, 8] either due to the probed scales or to the differences in the experimental49

conditions.50

The techniques used today to image the corneal lamellae are either destructive (as X-rays scatter-51

ing [1, 36, 44]) or with very limited field of view (as transmission electron microscopy [9] and scanning52

electron microscopy [21, 51], which are also destructive, or Second Harmonic Generation microscopy53

[31, 39, 60, 63], which is not destructive). The experimental complexity means that the available data54

are not patient-specific and thus do not represent the variability of the human eyes.55

The organization of the lamellae has been shown to be different in the keratoconic corneas com-56

pared to healthy ones [2, 38], and so one can expect different mechanical properties. Brillouin mi-57

croscopy showed that a mechanical loss occurs in the region of the cone in keratoconus [53, 55]. Still,58

there is no consensus on the difference of rigidity in-vivo between healthy and keratoconic corneas [3].59

Mechanically, a global difference between healthy and keratoconic cornea has been observed in-vivo60

in the change of the diopter under pressure [35].61

Usually, cornea is modeled as an hyperelastic quasi-incompressible material reinforced by fibers62

[24, 41, 45, 48, 57, 59] representing the two families of lamellae. The validation of these models is only63
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1. INTRODUCTION

done on a few experiments measuring the displacement of the apex ([18, 32] for human cornea) or64

the 3D displacement of the anterior surface ([10] in bovine cornea) and exclusively in healthy cases.65

Note that most models do not include a variation of the mechanical properties through the cornea66

thickness, while nanoindentation has shown that the anterior part is stiffer than the posterior part67

[14].68

We propose here a multi-scale and heterogeneous model of the cornea, based on the experimental69

lamellae orientations. This model is calibrated on the available experimental data, showing the70

high sensitivity of the response to the pre-strain of lamellae. This model is then implemented in a71

finite element code to simulate variations of intra-ocular pressure (or bulge test) on patient-specific72

geometries, thanks to clinical keratometer elevation maps. We show that a mechanical weakening73

of the cornea is needed to reproduce the reported variation of diopter with pressure [35], for both74

healthy and keratoconic geometries. On the other hand, the change in geometry without mechanical75

variation does not reproduce the keratoconus response. We also show that the mechanical weakening76

tends to induce a keratoconus shape if we start from a stress-free healthy geometry, but the quasi-77

incompressibility of the cornea does not allow the thinning observed in keratoconus. All of this78

point towards the importance in a weakening of the mechanical properties in the development of the79

keratoconus. Particularly, our analysis shows that a weakening of the collagen lamellae is the most80

likely to induce the pathology. Our observations support the importance of an early measure of the81

cornea mechanical response, as well as the importance of treatments strengthening the collagen fibers.82
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2 Methods83

The mechanical problem we solve is an inflation test where the cornea is fixed on a pressure chamber84

at its border and put under pressure. A patient-specific mesh is created using clinical elevations and85

thicknesses maps. The fixation is located at the sclera, the white and very stiff tissue surrounding the86

cornea. The material response of the cornea is brought by the stroma, modeled as an hyperelastic87

matrix reinforced by collagen lamellae. The lamellae orientations are extracted from X-rays [1] and88

SHG images [48, 61].89

2.1 Patient - specific geometry90

To construct a patient-specific mesh, we proceed in two steps. First, we construct an idealized91

geometry of the cornea using an analytical description: the geometry of the healthy cornea is almost92

regular and well described by a parametric quadratic equation [23]. Considering the apex of the93

cornea at the origin of a coordinate system with the z-axis oriented vertically and downwards, the94

anterior and posterior surfaces of the cornea are described by the biconic function [29]:95

z(x, y,Rx, Ry, Qx, Qy) = z0 +

x2

Rx
+ y2

Ry

1 +
√

1 − (1 +Qx) x
2

R2
x

− (1 +Qy) y
2

R2
y

, (1)

where Rx and Ry are the curvature radii of the flattest (x axis) and the steepest (y axis) meridians96

of the cornea, Qx and Qy are the associated asphericities. Note that the x and y directions can be97

rotated of an angle ψ from the classical nasal-temporal (N-T) and inferior-superior (I-S) axes (see98

Fig. 2b for illustration of the anterior surface). Finally, z0 is the arbitrary translation with respect to99

the z axis origin.100

To adapt the mesh to real cornea, we use anonymized clinical data obtained by an anterior segment101

OCT combined with a MS-39 placido type topographer (Dr. J. Knoeri’s personal communication).102

Figures 1a, c, g and i present the maps of clinical anterior and posterior elevations for a healthy103

(Fig. 1a and c) and a keratoconic cornea (Fig. 1g and i). For each surface, a best fit sphere (BFS)104

is determined during the acquisition. The distance between the BFS and the real surfaces are called105

the anterior and posterior elevations (for the exterior and interior surface of the cornea respectively).106

Figures 1e and k show clinical maps of the thicknesses of the same cornea. We first do a least square107

minimization of Eq. (1) with respect to the clinical data. Then, the cornea’s thickness at the apex108

is used to place the anterior surface with respect to the posterior surface. This is used to create an109

idealized mesh (see Fig. 2a - grey mesh) thanks to the code provided by Pr. A. Pandolfi [46].110

This mesh is then corrected to match the real one. First, we adjust the anterior and posterior111

surfaces to match exactly the clinical observations (see Fig. 2a - pink mesh). This step requires the112

interpolation of the elevation maps at the node positions, which is done with a bi-dimensional B-spline113

approximation. Second, the points in the volume of the mesh (so between the interior and exterior114

surfaces) are corrected to be linearly distributed between the two surfaces. This procedure ensures115

that the mesh is both realistic and regular.116

At the end of the process, elevations (Fig. 1b and d for healthy cornea and Fig. 1h and j for117
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2. METHODS

keratoconic cornea) and thicknesses (Fig. 1f for healthy cornea and Fig. 1l for keratoconic cornea)118

are reproduced on the mesh to be compared to the clinical ones. Although they are determined at119

different positions and thus cannot be compared directly, we can say that the B-splines approximation120

captures the clinical data (elevations and thicknesses) pretty well, despite the expected tendency to121

smooth the shape.122

An important point is that this mesh is built in the loaded configuration where the cornea is123

subjected to the physiological intra-ocular pressure (IOP). We call this configuration Ωphysio.124

Figure 1: Elevation and thickness maps of healthy and keratoconic cornea. (a-f) Clinical and computed
maps for a healthy cornea. (g-l) Clinical and computed maps for an advanced stage of keratoconic
cornea. (a, c, e, g, i, k) Clinical data obtained by an OCT combined with a MS-39 placido type
topographer. (b, d, f, h, j, l) Computed maps at physiological pressure for the same corneas and
adapted meshes. (a, b, g, h) Clinical and computed anterior elevations with respect to the best fit
sphere (BFS). Scale bar in µm. (c, d, i, j) Clinical and computed posterior elevations with respect to
the BFS. Scale bar in µm. (e, f, k,l) Clinical and computed thickness. Scale bar in µm.
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Figure 2: Example of a mesh construction for a keratoconic cornea. Mesh parameters: 12250 nodes
and 10404 hexahedral elements. (a) Vertical cross-section along the long axis of the cornea of the
idealized mesh (grey) and the patient-specific mesh at physiological pressure Ωphysio (pink). (b) 3D
picture of the patient-specific mesh at physiological pressure Ωphysio. (c) Cross-section through the
apex of the patient-specific mesh at physiological pressure Ωphysio (pink) and in stress-free configura-
tion Ω0,stress−free (blue) to be defined later.

2.2 Mechanical equilibrium of the cornea: variational formulation125

We use a weak formulation written in the unknown unloaded configuration Ω0 to represent the126

energetic equilibrium, the different terms being summarized in Fig. 3. This writes:127

Pi = Pe + Psclera, (2)

where Pi is the inner power, Pe is the power of external forces and Psclera is the power associated128

to the elastic boundary conditions. We look for a quasi-static solution of the problem, where the129

inertia terms are neglected. We also neglect volumic forces. The external forces are associated to the130

pressure P applied on the posterior surface of the cornea, producing a virtual power in Lagrangian131

formalism:132

∀w ∈ V(Ω0), Pe = −P
∫

Γpost
0

Jn0.F
−1.wdΓ, (3)

with w an admissible test function (satisfying the boundary conditions), J = det(F ) the change in133

volume, F the gradient of the transformation sending Ω0 to Ω(t) and n0 the external normal on the134

posterior surface in the stress-free configuration. The anterior surface is free of loading. The stiff135

sclera fixed to the pressure chamber is treated as an elastic support boundary condition, producing136

the virtual power:137

∀w ∈ V(Ω0), Psclera = −
∫

Γsclera
0

au.wdΓ, (4)

with u the displacement vector, and a the boundary elastic modulus, assumed to be large with respect138

to the cornea stiffness.139
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2. METHODS

Figure 3: Schematic view of the mechanical problem of an inflation test. A pressure P is applied
on the posterior surface of the cornea, while the anterior surface of the cornea is stress-free, and the
sclera is fixed to a pressure chamber treated as an elastic boundary condition of stiffness a.

Finally, the internal power:140

∀w ∈ V(Ω0), Pi =
∫

Ω0
Σ : due.wdΩ, (5)

introduces the 2nd Piola-Kirchhoff stress tensor Σ, which is related to the energy function ψ through141

its derivative with respect to the Green-Lagrange tensor e = 1
2

(F TF − 1):142

Σ := dψ

de
, (6)

and due.w = 1
2((∇

ξ
w)T .F + F T .∇

ξ
w), the symmetric part of the gradient tensor of the test function143

in the current configuration brought back in the reference configuration.144

145

The weak formulation of our mechanical problem leads to the following equilibrium equation in146

Lagrangian form:147

∀w ∈ V(Ω0),
∫

Ω0
Σ : due.wdΩ = −P

∫
Γpost

0

Jn0.F
−1.wdΓ −

∫
Γsclera

0

au.wdΓ. (7)

2.3 Constitutive behavior148

We consider that the mechanical resistance of the cornea arises from the stroma, its main layer [47, 56].149

The stroma is a collagen-rich tissue that we describe as a hyperelastic material made of fibers in an150

isotropic matrix viewed as weakly compressible. So, our associated energy function ψ is splitted into151

three contributions:152

ψ = ψiso + ψvol + ψlam, (8)
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with an isotropic part ψiso corresponding to the matrix, the keratocytes and the randomly distributed153

lamellae, a volumetric part ψvol penalizing any change of volume and an anisotropic part ψlam, taking154

into account the mechanical role of the oriented lamellae.155

The isotropic part of the function ψiso is chosen here as a Mooney-Rivlin function of the reduced156

invariants Ī1 = I1I
−1/3
3 and Ī2 = I2I

−2/3
3 [46, 56] of the Cauchy-green tensor C = F TF :157

ψiso:= κ1(Ī1 − 3) + κ2(Ī2 − 3), (9)

while the volumetric part ψvol penalizes any volumic change by a very large bulk modulus K [56]158

ψvol:= K(J2 − 1 − 2log(J)), with J2 = I3. (10)

The anisotropic contribution is due to the anisotropic distribution of the lamellae. X-ray and159

SHG observations have shown a two-peak distribution of lamellae (see Fig. 4) [1, 31] that we describe160

by two families of lamellae (lam1, lam2). We model their contribution by an angular integration161

(AI) approach [48, 57]. At each material point of the cornea, the two families of lamellae have a162

given directional density distribution (ρ1(θ, ϕ), ρ2(θ, ϕ)). The contribution ψlam of the two families of163

lamellae at each point adds local contributions of all possible directions, through the integration on164

a sphere of radius 1 (called "micro-sphere"):165

ψlam:=
∫ π

θ=0

∫ 2π

ϕ=0
(ρ1(θ, ϕ)δψlam

1 (θ, ϕ) + ρ2(θ, ϕ)δψlam
2 (θ, ϕ)) sin θdθdϕ (11)

performed in the local system of coordinates at the given spatial quadrature point (elam
r , elam

θ , elam
ϕ )166

(see Fig. 4). At each mesh node, a local Cartesian basis (elam
x , elam

y , elam
z ) (see Fig. 4d) is created167

using the main directions of the lamellae extracted from [1]: elam
x is in the direction of one lamellae168

(chosen as the one which direction is closer to the long axis of the cornea in the central part and the169

one closer to the tangential direction in the periphery) interpolated at the node from the data at the170

experimental points; elam
z is normal to the surface at the node and elam

y completes the trihedron. Then,171

(elam
r , elam

θ , elam
ϕ ) define the local spherical system characterizing the direction (θ, ϕ) of a particular172

quadrature point of the micro-sphere (see Fig. 4e).173
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2. METHODS

Figure 4: Distribution of lamellae orientation in a cornea. (a) Experimental polar plot of the direction
of the lamellae obtained from X-ray observation (Figure from [1], kindly provided by S. Hayes and
K. M. Meek). (b) Zoom on a sub-region of the cornea. (c) Experimental (pink) and associated
optimized angular intensity (green) at one point of measurement. (d-e) Local Cartesian coordinates
system (elam

x , elam
y , elam

z ) at the same particular point of measurement, and the associated spherical
coordinates.

2.3.a Elementary response of a lamella δψlam174

In many tissue, collagen fibrils are crimped [22], explaining the non-linear response of the tissue, with175

a heel-region in which the crimps disappear, generating a low force, and a linear region where the176

fibrils are stretched (and aligned) with a spring-like behavior. In cornea, the collagen fibrils appear177

very aligned in lamellae [60]. Still, they can buckle, but we expect that this buckling occurs at a178

stretch smaller than the one at physiological pressure. Note that experiments on cornea strips have179

shown that the fibrils are tilted and that this tilt decreases in the heel region to create the non-linear180

response, as the crimps in other tissues [7].181
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Figure 5: Schematic representation of the different configurations of the lamella: the ’unfolding’
configuration corresponds to the limit of the lamella in compression, the reference and deformed
configuration are those considered in our problem.

We model a collagen lamella as a bi-domain material (see Fig. 5). For stretches below an "unfold-182

ing" stretch λu, the lamella creates a constant prestress tu, while for higher stretches, the lamella has183

a spring-like behavior of apparent "stiffness" k. The elementary energy function is therefore given by:184

δψlam
i (θ, ϕ) := 1

2
kiλu,il0,i(

λi

λu,i
− 1)2

+ + tu,il0,iλi, ∀i ∈ [1 : 2], (12)

where ()+ is the positive absolute value function.185

The elongation λ(θ, ϕ) of a lamella of reference direction r0(θ, ϕ) is directly obtained under an186

affine assumption as a function of the Cauchy Green tensor:187

λ(θ, ϕ) :=
√
r0(θ, ϕ).C.r0(θ, ϕ)
r0(θ, ϕ).r0(θ, ϕ)

=
√
r0(θ, ϕ).C.r0(θ, ϕ) (||r0||2 = 1), (13)

with r0(θ, ϕ) := sin θ cosϕelam
x + sin θ sinϕelam

y + cos θelam
z .188

2.3.b Density functions (ρ1(θ, ϕ), ρ2(θ, ϕ))189

The distribution of each lamellae family is described by a Von Mises distribution (Eq. (14)):190

VM(θ, ϕ|κip, κt, µ, ν) := eκip cos(2(ϕ−µ))eκt cos(2(θ−ν))

Clam
, (14)

where Clam is a normalization factor ensuring that the distribution has a total density over the191

sphere equal to 1. The in-plane κip and out-of-plane κt concentrations are a measure of the dispersion192

(the larger the κ the thinner the peak) when µ and ν describe the mean orientations (in-plane and193

out-of-plane respectively).194

To reproduce the X-ray experimental data from [1] at each point of measure (see Fig. 4c), we195

consider that the diffracted signal is the sum of the two in-plane distributions of the lamellae families,196
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2. METHODS

supplemented by an isotropic contribution:197

Im(ϕ|κip,1, κip,2, µ1, µ2) = Iiso + C1VMip(ϕ|κip,1, µ1) + C2VMip(ϕ|κip,2, µ2), (15)

where Iiso is a constant component representing the isotropic part of the measure, µ1 + π/2 and198

µ2 + π/2 the mean directions of the lamellae (the intensity pic is shifted of π/2 with respect to the199

main direction of the lamellae [1]), κip,1 and κip,2 the concentrations of the lamellae distributions,200

and C1 and C2 the measures of the number of oriented lamellae in each direction at the point of201

measurement. The seven fields C1, C2, κip,1, κip,2, µ1, µ2 and Iiso, identified at those experimental202

points by a least square minimization technique, are then bi-linearly interpolated at each node of the203

mesh.204

The X-rays experiments do not give any indication on the out-of-plane distribution. Using Second205

Harmonic Generation (SHG), it has been shown that the lamellae have a maximum out-of-plane angle206

of around 30◦ for healthy cornea in the anterior region, well represented by a Gaussian distribution207

[61] and that the maximum out-of-plane angle decreases with the depth [48, 61]. So, we assumed that208

the out-of-plane Von Mises distribution has a in-plane mean orientation (ν = 0) so that it reduces to209

VMt(θ|κt) = eκt cos(2θ)

C(κt)
, and that the out-of-plane concentration varies exponentially with depth [48]:210

κt(s) = (κt,min − κt,max) ∗ e
γ(1−s) − 1
eγ − 1

+ κt,max, with


γ = 3.19,

κt,min = 7,

κt,max = 700,

(16)

where s is the normalized depth (0 at the anterior surface, 1 at the posterior), and C(κt) normalizes211

the distribution. κt,min and κt,max have been chosen such that the maximum cut-off-angle is around212

30◦ on the anterior surface (κt = κt,min and so the peak of the distribution is large) and around 0◦ (in-213

plane lamellae) on the posterior surface of the cornea (κt = κt,max and so the peak of the distribution214

is tight). No lateral heterogeneity in the lamellae out-of-plane distribution has been reported.215

2.4 Parameters of the mechanical model216

Once the lamellae orientations are known, our model has still 11 parameters to be determined: 2 for217

the isotropic energy ψiso (κ1 and κ2), 1 for the volumic energy ψvol (K) and 8 for the anisotropic218

energy ψlam (ki, λu,i, l0,i and tu,i). Furthermore, all of them except K have to be distributed locally219

to represent the variation of the micro-structure of the cornea.220

The isotropic energy function ψiso (Eq. (9)) involves two parameters: κ1 and κ2. For simplicity, as221

we have no specific information, we are going to assume that they are proportional with each other:222

κ2 = ακ1. (17)

with α a constant to be identified. We will also make the assumption that they are proportional to223

the fraction of the isotropic part of the signal Iiso (Eq. (15)), so they are distributed in space:224

κ1(x, y, s) = κapparent
1 ∗ Iiso(x, y, s). (18)
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We consider that this term varies in the cornea’s thickness, since the elastic modulus of the posterior225

stroma is reported to be 39.3% of the modulus of the anterior stroma [14]. We thus apply the same226

exponential variation as for the out-of-plane angular distribution (Eq. (19)), namely:227

Iiso(x, y, s) = (Iant
iso (x, y) − Ipost

iso (x, y)) ∗ e
γ(1−s) − 1
eγ − 1

+ Ipost
iso (x, y),228

with


γ = 3.19,

Iant
iso (x, y) depending of the in-plane position(x, y)

Ipost
iso (x, y) = 39.3% ∗ Intant

iso (x, y).

(19)

Here Iant
iso is being obtained by equaling the mean of Iiso(x, y, s) in s with the experimental value Iiso229

obtained from the X-ray data. In the end, only κapparent
1 , a global parameter, needs to be determined230

to reproduce the experimental data.231

The volumetric energy function ψvol (Eq. (10)) involves an independent penalty parameter K to232

impose volume conservation, which we consider as a global constant parameter, and which needs to233

be determined through experimental data.234

The anisotropic energy functions δψlam
1 and δψlam

2 of the two lamellae families (Eq. (12)) involve
eight local parameters: k1, λu,1, l0,1, tu,1, k2, λu,2, l0,2 and tu,2 (four per lamellae family).
tu,1 and tu,2 are the forces generated by "undulated" lamellae, which are much smaller than the ones
of the stretched ones. So, we are going to neglect them for simplicity, taking tu,1 = tu,2 = 0. Thus,
the energy functions (Eq. (12)) reduce to:

δψlam
i (θ, ϕ) := 1

2
kiλu,il0,i(

λi

λu,i
− 1)2

+, ∀i ∈ [1 : 2].

The product λu,il0,i of the unfolding elongation and reference length is the unfolding length of a
lamellae lu,i. We are assuming that all the lamellae are the same and thus have the same unfolding
length: lu,1 = lu,2 = lu = Cte. So the energy function becomes

δψlam
i (θ, ϕ) := 1

2
kilu( λi

λu,i
− 1)2

+, ∀i ∈ [1 : 2].

The apparent "stiffnesses" k1 and k2 are a measure of the relative stiffness of each lamellae. Thus,235

they are proportional to the number of fibers in the lamellae direction and hence to the coefficients236

C1 and C2 (Eq. (15)). Thus, there is a proportionality factor klamellae,apparent such that:237

ki = klamellae,apparentCi (20)

Finally, we can define an effective "stiffness" klam = luklamellae,apparent, so that the energy function238

becomes:239

δψlam
i (θ, ϕ) := 1

2
Ciklam( λi

λu,i
− 1)2

+, ∀i ∈ [1 : 2]. (21)

and so it leaves only a global constant parameter klam.240

The last parameters are the unfolding stretches λu,1, λu,2. The "unfolding" elongations are supposed to241

depend on the dispersion of the lamellae. Indeed, the more the lamellae are stretched in the reference242

configuration (i.e. the closer the "unfolding" elongation is to 0), the more the lamellae are aligned,243
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2. METHODS

therefore the less they are dispersed (i.e. the greater the κip). On the contrary, the less the lamellae244

are stretched in the reference configuration (i.e. the closer the reference length is to the "unfolding"245

length), the less the lamellae are aligned, therefore the more they are dispersed (i.e. the smaller the246

κip). In a first approach, they are considered to be linearly inversely proportional λu = a/κip + b,247

with coefficients a and b to be determined thanks to the limits:248

λu,min = a

κip,max
+ b, and λu,max = a

κip,min
+ b (22)

which makes for two news independent parameters λu,max and λu,min the maximum and minimum249

unfolding elongation of the lamellae in the whole cornea, to be determined experimentally.250

Anisotropic contribution (Eq. (11)) finally reduces to251

ψlam=
∫ π

θ=0

∫ 2π

ϕ=0

2∑
i=1

1
2
Ciklam

(λi(θ, ϕ)
λu,i

− 1
)2

+
eκip,i cos(2(ϕ−µi))eκt,i cos(2θ)

C lam
i

sin θdθdϕ (23)

with only three unknown global parameters left λu,max, λu,min and klam.252

Table 1 summaries the independent global parameters used in the model, the constitutive equations253

where they appear and the values determined to reproduce the experimental data from [18] and [35].254

Parameter notation Energy function Parameter description Equation Value
κapparent

1 Matrix stiffness Eq. (9), (18) 60Pa
α ψiso Proportional factor between the

two matrix parameter
Eq. (17) 1/4

K ψvol Hyperelastic bulk Eq. (10) 80 kPa
klam Apparent stiffness of a collagen

lamellae for a given length
Eq. (21), (23) 65 Pa

λu,max ψlam Maximum "unfolding" elongation
λu in the reference configuration

Eq. 22, (23) 1.0245

λu,min Minimum "unfolding" elongation
λu in the reference configuration

Eq. (22), (23) 1.0195

Table 1: Summary of the global parameters of the model, their contribution, where they appear, and
their values determined by simulating an inflation test to reproduce the data from [18].

Once we have simplified the model by reducing the number of independent parameters, we use255

a finite element code - MoReFEM - developed at Inria by the MΞDISIM team [25] to solve Eq. (7).256

The Galerkin method is used to do the spatial discretization, using Q1 hexaedric finite elements. To257

compute the anisotropic part of the 2nd Piola-Kirchhoff tensor at Gauss points, a numerical quadrature258

is used for the integral (Eq. (11)) on the microsphere using a uniform rule with 20 equally distributed259

points for the in-plane angle ϕ and the Gauss-Hermite quadrature rule with 5th order polynomial and260

5 quadrature points for the out-of-plane angle θ. Two loading conditions are used:261

• Loading from 2 mmHg to 160 mmHg to mimic the ex-vivo experiment of Elsheik et al. [18] on262

human cornea under pressure: we use this to calibrate the model.263

• Loading from 15 mmHg to 30 mmHg to mimic the in-vivo experiment of McMonnies and264

Boneham [35]: we use this to investigate the origin of the keratoconus.265
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2.5 Stress-free configuration266

To numerically solve Eq. (7), we need to start from a stress-free configuration. However, the patient-267

specific geometry is obtained under physiological intra-ocular pressure (IOP). As IOP was not de-268

termined during this clinical acquisition, we assume that it is the mean IOP of healthy individuals269

(14.5 mmHg [27]). We then use the patient-specific configuration Ωphysio (associated to the positions270

xphysio) as the target of a shooting method to determine the stress-free configuration. Starting from271

an assumed reference configuration (Ω0, ξ), the procedure is the following:272

Algorithm 1 Computation of the stress-free configuration
Step 1 - Computation of the deformed configuration under IOP pressure (Ωp, xp)
Step 2 - Determine the differences ∆x = xp − xphysio.
Step 3 - While any of the differences |∆x| is larger than a tolerance (taken at 10−6mm), update the
reference configuration by ξ

new
= ξ − u. Otherwise, we consider that we have found the reference

configuration.

273

Figure 2c presents the two meshes used in the algorithm for a stage 4 keratoconic cornea. The274

pink one is the corrected mesh under physiological pressure Ωphysio and the blue one corresponds to275

the associated stress-free configuration Ω0,stress−free mesh (for P = 0 mmHg): the two being barely276

distinguishable. Note that the reference configuration needs to be updated each time you change any277

mechanical parameter of the model.278

2.6 simK determination279

To compare our data with McMonnies and Boneham [35], we computed the simK of our cornea at280

different pressures. The simK is the diopter (D) associated to the steepest meridian of the cornea as281

identified at a small radius (r = 1 mm - see Fig. 6). To compute the simK, we fit the biconic equation282

(Eq. (1)) on the deformed anterior surface inside a 1mm radius from the apex. We obtain the two283

radii for each level of pressure and from them we can compute the diopter D using the steepest one:284

D(P ) = simK(P ) = naqh − nair

Rsteep(P )
(24)

where Rsteep is the radius of the steepest meridian and naqh and nair are the refraction indexes of the285

aqueous humor and air (taken at 1.3375 and 1.0000 respectively).286
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2. METHODS

Figure 6: Example of the considered surface used to compute the SimK. A subregion of 1 mm in
radius of the anterior surface is fitted by a biconic function. The steepest meridian is used to compute
the SimK.
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3 Results287

We first determine the values of our model parameters by reproducing experimental data on ex-vivo288

inflation assays [18]: these parameters will be our "reference" parameters used to investigate the origin289

of the keratoconus.290

3.1 Parameter estimation291

We simulated the experiment by Elsheik et al. [18]. To do so, we used the stress-free geometry292

Ωref
0,stress−free of a healthy cornea and applied a pressure from 0 to 160 mmHg while determining the293

apex displacement. Figure 7 shows the envelope of the experimental data (in pink), which comes from294

inter-cornea variability. The triangular markers are our simulation using the "reference" parameters295

(see Table 1), obtained after manual calibration.296

We have then varied each parameter independently by 1%. The most sensitive parameters are297

the unfolding stretches λu,min and λu,max (the results for the other parameters are presented in298

appendix A, Fig. 13). Figure 7 shows that an increase (resp. decrease) of both the unfolding stretches299

by 1% moves the pressure vs apex displacement curve to the right (resp. to the left), well outside the300

experimental data range. Unfolding stretch corresponds to the stretch above which the lamellae start301

to respond elastically. As λu > 1, the lamellae in the reference configuration are folded and do not302

contribute to the tissue rigidity. Once they become activated, the tissue becomes much stiffer. This303

explains why a change in the unfolding stretch leads to a shift of the pressure vs apical displacement304

curve: increasing the unfolding stretch will elongate the heel region, without changing the linear part305

so much.306

16



3. RESULTS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Apical displacement (mm)

0

20

40

60

80

100

120

140

160

180
P

re
s
s
u
re

 (
m

m
H

g
)

Experimental Data Range

Reference Case

Pre-elongation - 1 %

Pre-elongation + 1 %

Figure 7: Pressure with apical displacement for three different λu. Pink zones: envelopes of the
experimental data from [18].’∇’: reference case. ’o’: 1% decrease of the λu. ’x’: 1% increase of the
λu.

3.2 Keratoconus: geometrical and mechanical effect307

To distinguish between mechanical and geometrical origin of keratoconus, we first simulated a healthy308

and a stage 4 keratoconic cornea with "reference" mechanical parameters, and compared with the309

observations from McMonnies and Boneham [35]. They showed that the simK of the healthy corneas310

does not change significantly for a change of intra-ocular pressure in the range of 15−30mmHg whereas311

the simK of keratoconic corneas increases of 2 diopters. Figure 8 shows the simulated keratometry (or312

simK) as a function of the applied pressure: for the "reference" parameters (∇ symbols, see table 3)313

in both healthy (pink) and keratoconic (purple) corneas, the simK does not change significantly (less314

than 0.5 diopter). This implies that a modification of the mechanical properties is needed to reproduce315

the keratoconus response.316

Then, we modified the mechanical parameters to obtain a change of keratometry of 2 diopters,317

by a manual adjustment. We modified separately the non-fibrillar matrix stiffness (κapparent
1 ), the318

distributed fibril stiffness (Ci ∗ klam), or the pre-elongation (λu). The only parameter that gives a319

significant change of diopter without changing of order of magnitude is the fibril stiffness klam, the320

mean values of distributed lamellae stiffnesses (C1 ∗ klam) and (C2 ∗ klam) decreasing by around 40321

and 30% respectively. Table 3 gives the changed parameters of each simulation. To obtain a change322

of 1 diopter by weakening the matrix, a two orders of magnitude change was needed on κapparent
1 , and323

no set of parameters was found to have a change greater than 0.3 diopter thanks to a variation of the324

pre-elongation parameters λu. Figure 8 shows the simK variation with pressure of the reference and325

weakened fibril stiffness cases. Our results show that the keratoconus pressure response can easily326

be captured by a change in the mechanical behavior, even if we changed the parameters slightly327
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differently for healthy and keratoconic corneas.328
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Figure 8: Computation of the SimK for the reference and fiber weakness cases considered in ta-
ble 3 with healthy (up) and keratoconic (down) geometries. Modifying the value of the mechanical
parameters of the anisotropic part of the cornea, a variation of 2 diopters can be observed.

Figure 9 presents the stresses in the Nasal-Temporal (NT) and Superior-Inferior (SI) directions for329

healthy and keratoconic geometries, without and with mechanical weaknesses at physiological pres-330

sure. The pattern at the boundary is due to the highly rigid boundary condition, and is heterogeneous331

in the thickness. Both healthy and keratoconic corneas show a higher concentration of the stress in332

the central region of the anterior surface (even higher in the keratoconic case), whereas the stress in333

the posterior surface is quite homogeneous. This means that the geometry has a strong impact on334

the stress, even if it does not affect the keratometry response. On the contrary, modifications of the335

mechanical parameters do not affect the pattern strongly - mainly smoothing it. This indicates that336

the stress distribution is mostly due to the fiber distribution, except at the vicinity of the corneal337

boundary.338
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3. RESULTS

Figure 9: Cauchy stress at physiological pressure for different cases of mechanical weaknesses in
the cornea with healthy and keratoconic geometries. Fig. 9a-h: Naso-Temporal and Superior-Inferior
stresses for the healthy geometry (a-d: reference case and e-h: case of the fibril weakness with an
increase of 2 diopters between 15 and 31 mmHg) on the anterior and posterior surfaces. Fig. 9i-
p: Naso-Temporal and Superior-Inferior stresses for the keratoconic geometry on the anterior and
posterior surfaces (i-l: reference case and m-p: case of the fibril weakness with an increase of 2
diopters between 15 and 31 mmHg).

3.3 Induced keratoconus339

So far, we have separated the problem of the geometry and of the mechanical parameters: we have340

chosen either the healthy parameters and changed the geometry, or chosen an observed geometry and341

modified the mechanical parameters. In both cases, we show that the change in diopter associated342

with keratoconus response cannot be explained by the change in geometry but can be reproduced by343

a decrease in the mechanical properties, in particular of the fiber rigidity. To do so, we started from344

an observed geometry, and simulated a stress-free configuration, obtained such that it reproduces345

at physiological pressure the observed geometry, for the chosen set of mechanical parameter. This346

means that the keratoconic cornea has a stress-free configuration which is different from the healthy347

cornea. Here, we ask ourselves what will be the geometry of a cornea under pressure if we use on the348

healthy-stress cornea the keratoconic mechanical parameters: we would like to see if the change of349

mechanical parameters is able to recreate the keratoconic geometry.350

We first determine the stress-free configuration of our reference case (healthy geometry, with351

reference mechanical parameters), and simulated the response of the cornea at different pressures for352

weakened fibril stiffness corresponding to a 2 diopter increase.353

Figure 10 shows the computed SimK for this new case. We also reproduced the simulation of the354

reference case, which leads to a constant SimK (see Fig. 8). The decreased mechanical properties lead355

to a higher SimK at physiological pressure than for the reference case, although it is smaller than the356

one for the simulation starting from keratoconic stress-free configuration (around 61 D). This reflects357
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the fact that a different stress-free configuration will lead to a different geometry under pressure, and358

is in line with stage-1 keratoconus based on Krumeich’s classification [42]. We also observe an increase359

of 2 diopters, consistent with a keratoconic response.360
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Figure 10: SimK computed for the different cases of mechanical weakness on the reference stress-free
configuration.

Figure 11 presents the NT ans SI stress distributions for the reference and mechanical weakness361

cases. The distributions of stresses are very similar to those in Fig. 9, in agreement with our previous362

observation that this stress pattern is more controlled by the fiber distribution than by the cornea363

geometry.364

Figure 11: Stress at physiological pressure with reference parameters and mechanical weakening of
the cornea with healthy geometry and stress-free configuration of the reference case used for every
computation. Fig. 11a-d: Naso-Temporal and Superior-Inferior stresses for the reference case a,
Fig. 11e-h: Naso-Temporal and Superior-Inferior stresses for case of the fibril weakness with an
increase of 2 diopters between 15 and 31 mmHg.

Figure 12 show the elevation maps obtained at physiological pressure and at P = 30 mmHg, for365
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the reference case and for the weakened mechanical properties. The fibril weakening does not lead366

to a major change of the elevation, but we can see that in the posterior surface, the elevation in the367

central region is higher than in the reference case (it is even clearer at 30 mmHg), which can lead368

to the suspicion of a very early stage of a keratoconus. Those results are coherent with the value of369

the SimK at physiological pressure previously computed and tend to indicate that the keratoconus370

may appear following a weakening of the anisotropic part of the cornea. On the other hand, elevation371

maps do not show an off-centered elevation (neither an off-centered thinning on thickness maps is372

seen) that could lead to suspect a keratoconus [6, 16]. Indeed the quasi-incompressibility of the cornea373

does not allow for a significant change in the cornea geometry with a thinning of the cone region, thus374

it cannot change to become an advanced stage keratoconic cornea, although the change of diopter -375

and thus the change of curvature radii - is coherent with a keratoconus.376

Figure 12: Anterior and posterior elevation maps with respect to the best fit spheres for the reference
(a-d) and weakened fiber (e-f) cases at physiological pressure (a,b,e,f) and for P = 30 mmHg (c,d,g,h).
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4 Discussion377

To investigate the origin of keratoconus, we have compared the effects of a change in geometry and of378

a change in mechanical properties. To do so, we constructed a patient-specific mesh, which reproduces379

the geometry measured in clinic. We have built a multi-scale model, which contains explicitly the380

different contributions (fibrils, isotropic matrix, etc.), but it was not possible to obtain patient-specific381

data for these parameters. The collagen organization was obtained from experimental observations382

(X-ray [1] or SHG [61]). The different mechanical stiffnesses were manually calibrated to reproduce383

the reported data [18]. As we have access only to the displacement of the apex in human cornea, with384

a variability between corneas, we did not try a proper identification. This implies that our "reference"385

set of parameters may not be unique. Corneal strain maps have been measured on other animals (as386

bovine [10]), but then the keratoconus geometry is not available on the same animal.387

We have tested the influence of small variations of each mechanical parameter, and we observed388

that the most sensitive one is the unfolding stretch, i.e. the stretch at which the fibrils start to389

generate force. Associated with our observation that the stress distribution corresponds to the fibril390

distribution (Fig. 9), this supports the idea that the forces in the cornea are mainly due to the fibrils,391

and only partly to the isotropic matrix or the volume variation. Note that the fibers become more392

and more unfolded as the pressure increases above physiological pressure, contributing to the increase393

of the tissue stiffness (see Fig. 7). SHG observations of the lamellae show straight fibrils [8, 31]. It394

may be explained by the fibril organization at smaller scale [7]. In any case, it implies that the fibril395

tensions play a major role in the corneal response, which could have an impact on the recovery of the396

cornea after a laser surgery.397

We simulated the inflation of a cornea with a keratoconic geometry. Using directly our reference398

mechanical parameter fails to reproduce the reported variation of keratometry during the inflation399

test [35]. This shows that keratoconic geometry alone (thinner cornea) is not enough to have a400

keratoconic behavior. However, a 30 to 40 % decrease in the average fiber stiffnesses allows our401

model to reproduce the 2 diopters variations, even for healthy geometries. Thus, our approach shows402

that mechanical weakening, contrary to the geometry, is able to reproduce the keratoconus changes403

in SimK, emphasizing the importance of mechanical weakening on the keratoconic response. The404

weakened parameters reproducing the keratoconus behavior (see Table 3) indicate that it requires405

a relatively small decrease of the fibril stiffness to obtain a 2 diopter variation. This points toward406

the key role of the collagen lamellae in the development of the keratoconus, in agreement with the407

proposed treatments by the addition of cross-links.408

By using the weakened mechanical parameters on the healthy stress-free configuration (see Fig. 12),409

we were able to reproduce partly a keratoconic shape at physiological pressure. This again supports410

the idea that the primary motor of the keratoconus is a weakening of the collagen fibrils, consistent411

with the disorganization of the lamellae observed in [38]. However, the obtained shape is not the412

one of a real keratoconus, with a large elevation peak slightly off-centered. This may come from our413

quasi-incompressibility assumption, which prevents a thinning of the cornea. But more likely, to go414

further in the modeling of the keratoconus, we need a better understanding of the remodeling going415

on inside the tissue.416
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5. CONCLUSIONS

5 Conclusions417

In this paper, we have built a multi-scale model of the cornea, coupled to a patient-specific geometry418

to investigate the origin of the keratoconus. We have first used our model to reproduce the pressure419

versus apex displacement curve from Elsheikh et al. [18] and determined a reference set of mechanical420

parameters, describing a healthy cornea. We show that the central element of the mechanical response421

is the one of the fibrils, and in particular their prestretch.422

Our simulation of cornea with keratoconic geometry but healthy mechanical parameters shows that423

the geometry change is not able to reproduce the response of keratoconic cornea to an increase of the424

intraocular pressure [35]. In fact, we showed that the keratoconic response is well reproduced when425

the mechanical properties are altered, whatever the initial geometry, and that the main component426

involved in this response is the lamellae stiffness. The lamellae weakening is even sufficient to obtain427

a shape resembling an early-stage keratoconus.428

Although they could be completed by a better description of the induced remodeling, our simula-429

tions show the importance of a fine measurement of the mechanical properties in the understanding430

and diagnosis of keratoconus.431
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A. SENSITIVITY ANALYSIS

A Sensitivity analysis616
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Figure 13: Pressure with apical displacement for sensitivity analysis cases. Pink zones: envelopes
of the experimental data from [18].’∇’ markers curve: reference case. ’o’ violet markers curve: 1%
decrease of the λu. ’x’ violet markers curve: 1% increase of the λu. ’o’ blue markers curve: 1%
decrease of the κapparent

1 . ’x’ blue markers curve: 1% increase of the κapparent
1 . ’o’ green markers

curve: 1% decrease of the klam. ’x’ green markers curve: 1% increase of the klam.

B Mechanical parameters used in the computation617

Geometry Healthy (associated stress-
free configuration)

Keratoconic (associated
stress-free configuration )

Ref = no mechanical weakness RefH (ΩRefH
0 ) RefK (ΩRefK

0 )

ElongM1 = Pre-elongation
minus one percent

ElongM1 (ΩElongM1
0 ) /

ElongP1 = Pre-elongation
plus one percent

ElongP1 (ΩElongP 1
0 ) /

Fib2 = Mechanical weakness
on the lamellae leading to a 2
diopters change

Fib2H (ΩF ib2H
0 ) and

Fib2H2 (ΩRefH
0 )

Fib2K (ΩF ib2K
0 )

Table 2: Cases considered in the mechanical study of keratoconic cornea (Sec. 3.2 and 3.3). The
reference case for healthy geometry (RefH) corresponds to the ones calibrated on Elsheik’s group
data (see Sec. 3.1). Between brackets are noted the stress-free meshes Ω0,stress−free used for each
computational cases.
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Parameter

Case considered
RefH / RefK ElongM1 ElongP1 Fib2H / Fib2H2 Fib2K

Average of distributed isotropic co-
efficient κ1(MPa)

0,97 0,97 0,97 0,97 0,97

Minimum "unfolding" elongation
λu,min

1,0195 1,0093 1,0297 1,0195 1,0195

Maximum "unfolding" elongation
λu,max

1,0245 1,0143 1,0347 1,0245 1,0245

Average of distributed anisotropic
coefficient C1 ∗ klam (MPa)

7,15 7,15 7,15 4,10 4,11

Average of distributed anisotropic
coefficient C2 ∗ klam (MPa)

18,70 18,70 18,70 12,43 12,76

Table 3: Mechanical parameters used in the different computations on the cornea. The different cases
are presented in Table 2. For the distributed parameters (κ1, C1 ∗ klam and C2 ∗ klam) the average
values on all over the cornea are given.
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