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GAINS OF INTEGRABILITY AND LOCAL SMOOTHING EFFECTS FOR

QUADRATIC EVOLUTION EQUATIONS

PAUL ALPHONSE AND JOACKIM BERNIER

Abstract. We characterize geometrically the semigroups generated by non-selfadjoint quadratic
differential operators (e−tqw )t≥0 enjoying local smoothing effects and providing gains of integra-

bility. More precisely, we prove that the evolution operators e−tqw map Lp on Lq ∩ C∞, for all
1 ≤ p ≤ q ≤ ∞, if and only if the singular space of the quadratic operator qw is included in the
graph of a linear map. We also provide quantitative estimates for the associated operator norms
in the short-time asymptotics 0 < t ≪ 1.

1. Introduction

1.1. Motivation. During the last decades, remarkable advances have been made in the analysis
of the smoothing effects of semigroups generated by non-self-adjoints operators [Wei79, Her07,
HP09, HPV17, HPV18, Alp21, AB20, AB21, Whi21a, Whi21b]. One of the main objectives of
this line of research is to understand (and to quantify) how the interactions between regularizing
phenomena (encoded by the selfadjoint part of the operator) and transport dynamics (encoded
by its skew-selfadjoint part) enhance the regularizing effects of the semigroup. For instance, if we
consider the Kolmogorov equation

∂tu = v∂xu+ ∂2
vu, t ≥ 0, x, v ∈ R,

at first glance, we expect that its solutions are very smooth with respect to the speed variable v
but not especially with respect to the space variable x. Nevertheless, the Kolmogorov’s splitting
formula (see [Kol34])

(1) et(v∂x+∂2
v) = et(∂v−t∂x/2)

2+t3∂2
x/12etv∂x ,

makes clear that the solutions are actually also smooth with respect to the space variable x (but
the smoothing effects are slower in this direction due to the factor t3). Moreover, it can be noted on
(1) that this gain is due to the non-commutation (i.e. the interaction) between the free transport
v∂x and the partial diffusion ∂2

v .
In this paper, we focus on semigroups generated by quadratic differential operators acting on

L2(Rn), with n ≥ 1. They are the evolution operators associated with partial differential equations
of the form

(2) ∂tu+ qw(x,Dx)u = 0, t ≥ 0, x ∈ R
n,

where qw(x,Dx) ≡ qw is the Weyl quantization of a complex-valued quadratic form q : R2n → C

with a nonnegative real part, and Dx = −i∇. Denoting Q ∈ S2n(C) the matrix of q in the
canonical basis of R2n, qw is nothing but the differential operator

qw(x,Dx) =
(
x Dx

)
Q

(
x
Dx

)
.
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We point out that since the quadratic form q is complex-valued, the quadratic operator qw is
generally non-selfadjoint: (Re q)w is selfadjoint whereas i(Im q)w is skew-selfadjoint. This operator
is equipped with the domain D(qw) = {u ∈ L2(Rn) : qwu ∈ L2(Rn)}. Let us recall that since the
real part of the quadratic form q is nonnegative, the quadratic operator qw is shown in [Hor95, pp.
425-426] to be maximal accretive and to generate a strongly continuous contraction semigroup
(e−tq

w
)t≥0 on L2(Rn). This setting is not very general but it contains a lot of non trivial examples

(i.e. for which the regularizing effects are not directly given by an explicit formula like (1)).
Moreover, this framework includes several interesting equations coming from physics (like Fokker-
Planck equations for instance)

Being given a complex-valued quadratic form q : R2n → C, its singular space S is the subspace
of R2n defined by

(3) S :=
⋂

ℓ∈N

Ker
(
(ReQ)(ImF )ℓ

)
,

where F = JQ is the Hamilton map of q and J is the matrix of the standard symplectic form, i.e.

J =

(
0n In
−In 0n

)
.

This space, which has been introduced for the first time by Hitrik and Pravda-Starov in [HP09],
encodes most of the smoothing effects of the semigroup (e−tq

w
)t≥0. For example, we have proven

in [AB21, Thm 2.6 and 2.8] that S⊥ is the set of the directions of the phase space along which
e−q

w
is regularizing1, i.e.

(4) S⊥ =
{
(x0, ξ0) ∈ R

2n | (x0 · x+ ξ0 ·Dx) e
−qw is bounded on L2(Rn)

}
.

Actually, in [AB21, Thm 2.6], we have proven a result much stronger than (4): if e−q
w

is multiplied
by any product of operators of the form (x0 ·x+ξ0 ·Dx), with (x0, ξ0) ∈ S⊥, then it is still bounded
on L2(Rn). As a consequence, focusing only on the smoothing effects of e−q

w
, we have proven

that

(5) S ⊂ R
n × {0} ⇐⇒ e−q

w

maps L2(Rn) to H∞(Rn).

Nevertheless, in (5), we miss some local smoothing effects. Indeed, consider for example the
selfadjoint quadratic operator associated with the quadratic form q(x, ξ) = (ξ − x)2 on R

2. Its
singular space is the diagonal S = {(x, x) | x ∈ R}, so (5) does not apply. However, thanks to the
Egorov formula

e−(−i∂x−x)
2
= e

i
2
x2
e∂

2
xe−

i
2
x2
,

we note that this semigroup makes the functions smooth (but not uniformly in space due to the

highly oscillatory factor e−
i
2
x2

).

1.2. Main results. One of the main achievements of this paper is to take into account this kind
of local smoothing phenomena: we characterize geometrically the locally smoothing semigroups.
Indeed, the following theorem is a direct qualitative corollary of our results (i.e. Theorem 1.6 and
Theorem 1.9 just below).

Theorem 1.1. For any complex-valued quadratic form q on R
2n whose real part is nonnegative,

denoting by S its singular space (defined by (3)), we have

(6) S ∩ (Rn × {0})⊥ = {0} ⇐⇒ e−q
w

maps L2(Rn) to C∞(Rn).

1since q and tq have the same singular space, the time plays no role in this discussion, so we choose t = 1.
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Remark 1.2. The condition S ∩ (Rn × {0})⊥ = {0} means that S has to be included in a graph,
i.e. there exists a n × n real matrix G such that S ⊂ {(x,Gx) | x ∈ R

n}. See Lemma 6.1 in the
appendix for the proof.

Remark 1.3. It is relevant to compare (5) and (6). On the one hand, the space C∞(Rn) is
much larger than H∞(Rn) but on the other hand, it is much less restrictive to have the condition
S ∩ (Rn × {0})⊥ = {0} than S ⊂ R

n × {0}. Indeed, in the vain of Remark 1.2, the assumption
S ⊂ R

n × {0} means that S has to be included in the graph of the null matrix.

Remark 1.4. As we will see in Theorem 1.6 and Theorem 1.9, in (6), the space L2(Rn) could be
replaced by any space Lp(Rn) with 1 ≤ p ≤ ∞.

Studying carefully the new condition S ∩ (Rn×{0})⊥ = {0}, we understood that it is not only
associated with local smoothing properties but also with some gains of integrability. As we will
see in Theorem 1.6 just below, the evolution operator can be extended to any Lebesgue space Lp

and maps this later to Lq provided that p ≤ q. Somehow, this gain of integrability (which is the
same as the one for the heat equation) can be seen as another kind of regularizing effect. It seems
to us that it is an interesting property in itself but we also point out that it may be valuable to
study the well-posedness of nonlinear perturbations of the equation.

Theorem 1.5. For any complex valued quadratic form q on R
2n whose real part is nonnegative,

denoting by S its singular space (defined by (3)), we have

(7) S ∩ (Rn × {0})⊥ = {0} ⇐⇒ ∀1 ≤ p ≤ q ≤ ∞, e−q
w

maps Lp(Rn) to Lq(Rn).

This theorem is a qualitative corollary of Theorems 1.6 and 1.9 below. It extends the recent
result of White [Whi21b] which analyses this gain of integrability in the hypoelliptic case S = {0}.
As we will see at the end of this introduction (see (14)), when S ∩ (Rn × {0})⊥ = {0} it can be
proven that e−q

w
is actually an integral transform associated with a complex Gaussian kernel

(possibly degenerated). The gain of integrability of this kind of kernel has been widely studied
(see e.g. [Wei79, Lieb90, Neg95]). Nevertheless, it seems to us that Theorem 1.5 cannot be directly
deduced of these results (see the discussion about this point in subsection 1.4).

Now, we shall give a quantitative version of Theorems 1.1 and 1.5. As usual, we have to
introduce the notion of global index which quantify how fast are the smoothing effects. It is
denoted by k0 and is defined by

(8) k0 := min

{
k ∈ N | S =

k⋂

ℓ=0

Ker(ReQ)(ImF )ℓ
}
.

Note that, as a consequence of Cayley-Hamilton’s theorem, we have 0 ≤ k0 ≤ 2n−1. The following
theorem is the main result of this paper. It provides a quantitative estimate of the regularizing
effects.

Theorem 1.6. Let q be a complex-valued quadratic form on R
2n whose real part is nonnegative,

S be its singular space (defined by (3)) and k0 be its global index (defined by (8)).
If S is included in the graph of a real n×n matrix G, i.e. S ⊂ {(x,Gx) | x ∈ R

n}, then for all
1 ≤ p ≤ q ≤ +∞ and all 0 < t ≤ 1, e−tq

w
can be extended by continuity in such a way that

e−tq
w

maps Lp(Rn) to Lq(Rn) ∩ C∞(Rn),

and, for all u ∈ Lp(Rn) and m ≥ 0, we have the quantitative estimate

(9)
∥∥(〈Gx〉+ 〈tGx〉)−mdm(e−tq

w

u)
∥∥
Lq ≤

C1+m

t(k0+
1
2
)m+cp,q

√
m! ‖u‖Lp ,
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where C > 0 is a constant which is uniform with respect t, p, q, u,m and

(10) cp,q =

{
n
2r(2k0 + r− 1) when 1 ≤ r ≤ 2,

n
2r(2k0 + 1)(r− 1) when r > 2,

with
r = (1− p−1 + q−1)−1 ∈ [1,+∞].

Remark 1.7. Due to the factor (〈Gx〉 + 〈tGx〉)−m in (9), the smoothing effects are only local.
However, when S ⊂ R

n × {0} (as in (5)), we can choose G = 0 and so (9) proves that the
smoothing effects are global.

Remark 1.8. In [Whi21b, Thm 1.1], White proves that whenever S = {0}, e−tq
w

is bounded
from Lp(Rn) to Lq(Rn) (with 1 ≤ p ≤ q ≤ +∞) and enjoys the bound ‖e−tqw‖Lp→Lq . t−(2k0+1)n.
Observing that in any case, cp,q ≤ 1

2(2k0 + 1)n, the bound given by Theorem 1.6 improves the
exponent given in [Whi21b] of a factor at least equal to 1/2.

Finally, we provide a version of the reciprocal of Theorems 1.1 and 1.5.

Theorem 1.9. For any complex-valued quadratic form q on R
2n whose real part is nonnegative,

denoting by S its singular space (defined by (3)), if

e−q
w

maps L2(Rn) to C0(Rn) or ∃q > 2, e−q
w

maps L2(Rn) to Lq(Rn),

then S ∩ (Rn × {0})⊥ = {0}.
1.3. Heuristic. Now, we discuss the heuristic behind our results and our strategy of proof.

First, let us focus on the reciprocals, i.e. Theorem 1.9. In [AB21, Thm 2.1], we have proven
that the polar decomposition of e−q

w
is of the form

(11) e−q
w

= e−a
w

U,

where U is unitary on L2(Rn) and a is a real-valued nonnegative quadratic form (i.e. aw is self-
adjoint) about which we have proven a lot of properties. In particular, using the tools introduced
in [AB21], it could be proven quite easily that S is the isotropic cone of a, see Proposition 6.2
in appendix. If S ∩ (Rn × {0})⊥ 6= {0}, up to a change of variable, we can assume without loss
of generality that (0, en) ∈ S (where (ej)j is the canonical basis of Rn). Since a vanishes on S,
this means that a does not depend on ξn or in other words, that ∂xn does not appear in aw.
Coming back to the polar decomposition (11) of e−q

w
, it is clear that since U is unitary, it is not

regularizing. Moreover, since ∂xn does not appear in aw, it is also quite intuitive that e−a
w

(and
so e−q

w
) cannot provide any regularizing effect with respect to the variable xn. The rigorous proof

of these reciprocals is done in Section 5.

Now, we focus on the heuristic of the proof of the regularizing effects, i.e. Theorem 1.6. The
most difficult part consists in proving that, under the geometrical assumption on the singular
space, e−q

w
maps Lp(Rn) on Lq(Rn) when 1 ≤ p ≤ q ≤ +∞. Indeed, the operator U in (11) can

generates a lot of troubles. For instance, U could be the evolution operator of the Schrödinger
equation, i.e. U = ei∆, and so it would not be well defined on Lp when p > 2 and would map Lp

on Lp′ when p ≤ 2 (where (p′)−1 + (p)−1 = 1). We could even imagine worst situations where U
would be the evolution operator of a degenerated2 Schrödinger equation. Therefore, we have to
prove that e−a

w
is able to compensate such bad behaviors. Of course, the best situation would

be to be able to decompose e−a
w

under the form Be−P∇·∇, with P a positive n × n symmetric

2i.e. U = eiD∇·∇ where D is symmetric but not not invertible.
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real matrix and B a bounded operator on Lq. Indeed, an operator of the form e−K∇·∇, where
K = P + iD is a complex symmetric matrix whose real part is positive, has the same regularizing
effects as the evolution operator of the heat equation. Unfortunately, we did not succeed to prove
that such a decomposition holds, and we conjecture that in general, it does not exist. Therefore,
in Section 2, we prove a new kind of decomposition of e−q

w
which is finer than (11) but holds

only under the geometrical assumption S ∩ (Rn × {0})⊥ = {0}. More precisely, if G a real n× n
matrix whose graph contains S, then, provided that t is small enough3, we prove in Theorem 2.1
that the following decomposition holds

(12) e−tq
w

= ct e
i
2
Gx·x(e−γt

α |ξ−Nx|2)we−tp
w
t (e−γt

α |ξ−Nx|2)weitDt∇·∇etMtx·∇e
i
2
(tWt−G)x·x,

where γ > 0 is a constant that does not depends on t, α = 2k0 + 1, N = (G− tG)/2 denotes the
skew-symmetric part of G, Dt,Mt,Wt are some real n × n matrices, ct is a real constant and pt
is a real-valued nonnegative quadratic form, all depending smoothly on t. The pseudo-differential

operator (e−γt
α |ξ−Nx|2)w is defined as usual through an oscillatory integral (see (16)). The ex-

istence of such decompositions is strongly related to the exact classical-quantum correspondence
(see Prop 2.2). Thanks to the decomposition (12), it is much easier to understand the action of
e−tq

w
on Lp. Indeed, we just have to analyse the action of each factor (this is done in Section 3):

· e i
2
(tWt−G)x·x is an isometry on Lp, so it plays no role.

· etMtx·∇ is the flow of a transport equation, so it is invertible on Lp and is close to the identity,
so it plays no role either.

· As explained previously, eitDt∇·∇ is the most dangerous term. We have to take into account the
action of the next term to analyse it.

· In Section 3, we establish several results proving that, somehow, (e−γt
α |ξ−Nx|2)w behaves like

eγt
α∆. More precisely, we prove in Corollary 3.3 that this operator is nothing but the following

integral transform with Gaussian kernel

(13) (e−γt
α|ξ−Nx|2)wu(x) = (4πγtα)−n/2

∫

Rn

e
− 1

4γtα
|x−y|2+i(x−y)·Nx

u(y) dy.

In particular, it allows us to prove in Corollary 3.6 that (e−γt
α|ξ−Nx|2)weitDt∇·∇ maps Lp to Lq.

· Since pt is real-valued, thanks to the Mehler formula, we prove in Theorem 3.4 that e−tp
w
t is

bounded on Lq. So it plays no role.

· In Section 4, we prove that e
i
2
Gx·x(e−γt

α|ξ−Nx|2)w is locally smoothing (i.e. that it maps Lq to

Lq ∩ C∞) which is quite natural if we keep in mind that (e−γt
α|ξ−Nx|2)w behaves like eγt

α∆ (or
considering directly the formula (13)).

1.4. Further discussions about an alternative approach. Here, in the spirit of our previous
works [AB20, Ber21, AB21], we have chosen to study the regularizing effects by decomposing
e−tq

w
as a product of evolution operators which are simple to analyse, but it is not the only

possible approach. In particular, we would now like to mention and discuss the difficulties related
to another one which seems however very natural. Indeed, thanks to the Mehler formula (see
Theorem 2.5) established by Hörmander in [Hor95], e−q

w
is actually a pseudo-differential operator

whose symbol is given4 by ce−m where c ∈ C is a constant and m is a complex valued quadratic

3here it is relevant to take into account the parameter t in order to have quantitative estimates. In order to get
the regularizing effects of e−tqw , it is sufficient to use the semigroup property.

4up to an algebraic condition.
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form on R
2n. Moreover, Rem is nonnegative and its isotropic cone is the singular space S (see

[Alp21, Lemma 3.1]). Therefore, decomposing m as

m(x, ξ) =
1

2
r(x) + Lx · ξ + 1

2
b(ξ),

the geometric condition S ∩ (Rn × {0})⊥ = {0} implies that Re b is positive. Consequently, using
the definition of (e−m)w as an oscillatory integral (see (16)), long and tedious computations5 allow
to prove that e−q

w
is nothing but an integral transform with Gaussian kernel of the form

(14) e−q
w

u(x) = c̃

∫

Rn

e−
1
2
k(x,y)u(y) dy,

where c̃ ∈ C is a complex constant, and k is a complex-valued quadratic form whose real part is
nonnegative, and takes the form

Re k(x, y) = v
(x+ y

2

)
+ p(Mx−Ny).

Here, p (resp. v) is a positive (resp. nonnegative6) real-valued quadratic form whose matrix,
denoted P (resp. V ), is given by

P = (ReB + (ImB)(ReB)−1(ImB))−1 and V = ReR− (ReL)(ReB)−1(ReL),

where R and B denote respectively the matrices of r and b, and M,N are the real n×n matrices
given by

M = In −
1

2
ImL+

1

2
(ImB)(ReB)−1(ReL) and N = In +

1

2
ImL− 1

2
(ImB)(ReB)−1(ReL).

Since we know that Re b is positive, Rem is nonnegative and S is the isotropic cone of Rem, it
follows that

(15) 2Rem(x, ξ) = v(x) + Re b(ξ + (ReB)−1(ReL)x),

then v is typically degenerated and the dimension of its kernel is

dimKerV = codimS.

Therefore, v could vanish identically7 and so we should not expect any regularizing effect coming
from v. Conversely, if both the matrices M and N are invertible, thanks to the integral represen-
tation (14), it is obvious8 that e−q

w
is locally smoothing and maps Lp in Lq when 1 ≤ p ≤ q ≤ ∞.

However, else if M or N is non-invertible, it is not sufficient to consider the real part of k to
study the regularizing effects of e−q

w
, and so the situation is much more intricate: the role of the

complex phase has to be taken into account. Moreover, it seems that there is another obstacle to
study the regularizing effects of e−q

w
by following this way: the quadratic form m enjoys some

specific algebraic properties which should be determined and be taken into account. For example,
the real part of the Fokker-Plank quadratic form m(x, ξ) = 1

2ξ
2−2ixξ is nonnegative, its isotropic

cone S = R×{0} satisfies the geometric condition S∩(R×{0})⊥ = {0}, but a direct computation
shows that

∀u ∈ S (R), (e−
1
2
ξ2+2ixξ)wu(x) = (2π)−1/2e−x

2/2

∫

R

u(y) dy.

5that we do not detail in this paper, due to their length. However, they are somehow similar to the ones in the
proof of Corollary 3.2.

6Indeed since m is nonnegative it is a consequence of (15).
7i.e. we could have dimS = n (which is the maximum with respect to the assumption S ∩ (Rn × {0})⊥ = {0}).
8the proof is the same as for the heat equation.
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Therefore, (e−
1
2
ξ2+2ixξ)w does not enjoy the regularizing effects given by Theorem 1.5, but it is

not a counter-example to our results because, since it is unbounded on L2, it cannot be of the
form e−q

w
with Re q ≥ 0.

1.5. Notations. The following notations will be used all over the work:

1. The Weyl quantization of tempered distribution a ∈ S ′(R2n) is denoted by aw and is formally
defined by the following oscillatory integral

(16) awu(x) = (2π)−n
∫∫

R2n

ei(x−y)·ξa
(x+ y

2
, ξ
)
u(y) dy dξ.

2. Implicitly, Rn is always equipped with its natural Euclidean structure: | · | is the Euclidean
norm while · is the scalar product. We also extend this scalar product by analyticity to C

n.

3. The convolution product between two functions f and g defined on R
n is denoted f ∗ g and

given (when it makes sense) by

(f ∗ g)(x) =
∫

Rn

f(x− y)g(y) dy.

2. A new decomposition

This section is devoted to the proof of the following theorem in which we decompose the
semigroups in factors which are much simpler to study.

Theorem 2.1. Let q be a complex-valued quadratic form on R
2n whose real part is nonnegative,

S be its singular space (defined by (3)) and k0 be its global index (defined by (8)).
If S is included in the graph of a real n× n matrix G, i.e. S ⊂ {(x,Gx) | x ∈ R

n}, then there
exist two positive constants γ, t0 > 0, some real-valued nonnegative quadratic forms pt, some real
n × n matrices Dt,Mt,Wt and some real constants ct, all depending smoothly on t ∈ (−t0, t0),
such that, for all t ∈ [0, t0), the following decomposition holds

(17) e−tq
w

= ct e
i
2
Gx·x(e−γt

α |ξ−Nx|2)we−tp
w
t (e−γt

α |ξ−Nx|2)weitDt∇·∇etMtx·∇e
i
2
(tWt−G)x·x,

where α = 2k0 + 1, N = (G− tG)/2 denotes the skew-symmetric part of G.

Before proving this theorem, we have to introduce some useful tools. First, as in [Vio17, AB21,
Ber21], in order to decompose a semigroup as a product of semigroup we will use the following
proposition whose proof relies on properties of the Fourier Integral Operators9 established by
Hörmander in [Hor95].

Proposition 2.2 (see e.g. Prop 4 in [Ber21]). Let m ≥ 1, T > 0 and p1,t, . . . , pm+1,t be some
complex quadratic forms on R

2n depending continuously on t ∈ [0, T ). If their real part is non-
negative, i.e. Re pk,t ≥ 0 for 1 ≤ k ≤ m + 1 and t ∈ [0, T ), and if the following decomposition
holds

∀t ∈ [0, T ), e−2itJP1,t · · · e−2itJPm,t = e−2itJPm+1,t ,

where Pk,t denotes the matrix of pk,t for 1 ≤ k ≤ m+ 1, then

∀t ∈ [0, T ), e−tp
w
1,t · · · e−tpwm,t = e−tp

w
m+1,t .

9More precisely Theorem 5.12 and Proposition 5.9 in [Hor95].
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Thank to the correspondence given by this proposition, it is sufficient to prove slitting formulas
(i.e. decompositions) for exponential of matrices. As a corollary, we prove the following decompo-
sition which is very useful to study the regularizing effects of semigroups generated by selfadjoints
operators.

Proposition 2.3. Let n ≥ 1, Q2n(R) be the space of the real-valued quadratic forms on R
2n.

There exists an analytic map p : O → Q2n(R) defined on an open neighborhood of the origin O

in (Q2n(R))
2, vanishing at the origin and such that for all (a, b) ∈ O, we have

0 ≤ 5b ≤ a =⇒ e−b
w

e−(p(a,b))
w

e−b
w

= e−a
w

and p(a, b) ≥ a

2
.

Remark 2.4. Roughly speaking, this proposition means that, for quadratic operators, regularizing
effects can be added without loss. For example, it implies that the operator exp(∂2

x − x2) makes
functions as smooth as exp(∂2

x) does. Unfortunately, this property is not true in general: there may
be some destructive interactions. For example, being given m ≥ 1, the operator exp(−(−∂2

x)
m−x2)

is only as smoothing as exp(−(−∂2
x)

2m/(1+m)) (see [Alp20]).

Proof of Proposition 2.3. Let Bε1 be the centered open ball of radius ε1 :=
1
6 log 2 in S2n(R) (the

space of n× n symmetric matrices). First, we note that if A,B ∈ Bε1 , then

|e2iJBe−2iJAe2iJB − I2n| ≤ e4|B|+2|A| − 1 < 1.

Therefore, the following map is well defined on B2
ε1

(18) P (A,B) := (−2iJ)−1 log(e2iJBe−2iJAe2iJB),
where log is defined by its power series. First, we note that P is an odd function10:

P (−A,−B) = (−2iJ)−1 log
([

e2iJBe−2iJAe2iJB
]−1)

= −P (A,B).

Then, we expand P (A,B) in power series

P (A,B) = (−2iJ)−1
∑

k≥1

(−1)k−1
k

(
e2iJBe−2iJAe2iJB − I2n

)k

= (−2iJ)−1
∑

k≥1

(−1)k−1
k

( ∑

α+β+γ>0

(2iJB)α(−2iJA)β(2iJB)γ

α!β!γ!

)k

= A− 2B +
∑

k≥1

∑

(α,β,γ)∈(N3\{0})k

|(α,β,γ)|1≥2

c
(k)
α,β,γMα,β,γ(A,B),

where
Mα,β,γ(A,B) = J−1(JB)α1(JA)β1(JB)γ1 · · · (JB)αk(JA)βk(JB)γk ,

c
(k)
α,β,γ =

(−1)k
k

(2i)−1+|(α,β,γ)|1(−1)−1+|β|1
α1!β1!γ1! · · ·αk!βk!γk!

and |(α, β, γ)|1 =

k∑

j=1

αj + βj + γj .

But, since P is odd, this expansion rewrites

(19) P (A,B) = A− 2B +
∑

k≥1

∑

(α,β,γ)∈(N3\{0})k

|(α,β,γ)|1≥2

κ
(k)
α,β,γMα,β,γ(A,B),

10this a well known and useful property in Geometric Numerical Integration which is related to the fact that
Strang splittings preserve the reversibility, see [HLW06].
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where

κ
(k)
α,β,γ = c

(k)
α,β,γ if |(α, β, γ)|1 is odd and κ

(k)
α,β,γ = 0 else.

Since κ
(k)
α,β,γ is a real number by definition, we deduce that P (A,B) is a real matrix. Then, we

note that
tMα,β,γ(A,B) = −(−1)|(α,β,γ)|1M←−γ ,

←−
β ,←−α

(A,B),

where the transformation ←−· inverse the order of the indices, i.e. if v ∈ R
k then (←−v )j = vk−j+1.

But since, κ
(k)
α,β,γ vanishes if |(α, β, γ)|1 is even and κ

(k)
α,β,γ = κ

(k)
←−γ ,
←−
β ,←−α

, we deduce from the expansion

(19) of P that P (A,B) is a real symmetric matrix.

We define naturally p(a, b) by conjugation: being given two real-valued quadratic forms a, b such
that ‖a‖L∞(S2n−1) < ε1 and ‖b‖L∞(S2n−1) < ε1, we define p(a, b) as the quadratic form associated
with P (A,B), where A and B are the matrices of a and b. From now, we consider two quadratic
forms a, b such that

0 ≤ 5b ≤ a < ε2| · |2,
where ε2 ≤ ε1 is a universal constant that will be determined later. We aim at proving that
p(a, b) ≥ a/2. Being given X ∈ R

2n, using the expansion (19), we get

(20) p(a, b)(X) ≥
(
1− 2

5

)
a(X)−

∑

k≥1

∑

(α,β,γ)∈(N3\{0})k

|(α,β,γ)|1≥2

|κ(k)α,β,γ ||
tXMα,β,γ(A,B)X|.

Hence we have to estimate | tXMα,β,γ(A,B)X|. This term is of the form (LX) · C(RX) where
L,R ∈ {A,B} and C is a matrix (a product of matrices in {A,B, J}). So, by Cauchy-Schwarz’
inequality, we have

| tXMα,β,γ(A,B)X| ≤ |C||L||R||
√
LX||

√
RX|.

Recalling that by assumption 5b ≤ a < ε2| · |2, we deduce that

| tXMα,β,γ(A,B)X| ≤ |A|−1+|(α,β,γ)|1a(X) ≤ ε
−1+|(α,β,γ)|1
2 a(X).

Plugging this estimate in (20), we get

p(a, b)(X) ≥ a(X)

(
3

5
−

∑

k≥1

∑

(α,β,γ)∈(N3\{0})k

|(α,β,γ)|1≥2

|κ(k)α,β,γ |ε
−1+|(α,β,γ)|1
2

)

= a(X)

(
3

5
− 1

(2ε2)

∑

k≥1

1

k

∑

(α,β,γ)∈(N3\{0})k

|(α,β,γ)|1≥2

1

α1!β1!γ1! · · ·αk!βk!γk!
(2ε2)

|(α,β,γ)|1

)

= a(X)

(
3

5
− 1

(2ε2)
(− log(2− e2ε2e2ε2e2ε2)− 3(2ε2))

)
.

Since 3/5 > 1/2 and the map x 7→ −x−1(log(2 − ex)− x) is smooth and vanishes as x goes to 0,
we deduce from the previous estimate that there exists ε2 > 0 such that p(a, b) ≥ a/2.

A fortiori, p(a, b) is nonnegative. Consequently, by definition of p(a, b) (see (18)), using the exact
classical-quantum correspondance (i.e. Proposition 2.2), we get the expected splitting formula:

e−b
w

e−(p(a,b))
w

e−b
w

= e−a
w

.

�
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Finally, the last tool we need is the Mehler formula which allows to express semigroups as
pseudo-differential operators.

Theorem 2.5 (Mehler formula, Thm 4.2 in [Hor95]). Let q be a complex-valued quadratic form
on R

2n whose real part is nonnegative and let Q be its matrix. Then, e−q
w

is a pseudo-differential
operator and whenever the condition det cos(JQ) 6= 0 is satisfied, the following formula holds

e−q
w

=
1√

det cos(JQ)
(e−m)w,

where m denotes the complex quadratic form associated with the matrix J−1 tan(JQ).

Remark 2.6. A priori, the Mehler formula seems ambiguous due to sign indetermination of the
square root. Fortunately it is not. Indeed, when Q is small enough it is well defined through the
standard holomorphic functional calculus (choosing the principal determination of the square root).
Moreover, Hörmander has proven in [Hor95] (just before Theorem 4.1) that there is a natural way

to extend
√

det cos(JQ) as an entire function of Q.

Proof of Theorem 2.1. We divide the proof in four steps. First, we are going to explain why we
can assume without loss of generality that G is skew-symmetric. Then we will recall some useful
properties of the polar decomposition of e−tq

w
established in [AB21]. Finally, in the two last steps,

we will decompose separately the unitary part and the symmetric part.

⊲ Step 1: Reduction to the skew-symmetric case. As a consequence of the Egorov formula, we
know that

e−
i
2
Gx·xe−tq

w

e
i
2
Gx·x = e−t(q◦L)

w

,

where L denotes the Lie transform (i.e. the Hamiltonian flow at time 1) of the classical Hamil-
tonian h(x, ξ) := −1

2Gx · x, i.e.

L = Φ1 where ∂tΦt = J(∇h) ◦Φt and Φ0 = I2n.

Actually, here, L is nothing but a symplectic transvection: L(x, ξ) = (ξ + G(sym)x, x) where

G(sym) = (G+ tG)/2 denotes the symmetric part of G.

Let S̃ be the singular space of q ◦ L. In order to reduce the problem to the skew-symmetric

case, we just have to prove that S̃ = L−1S. Indeed, since by assumption S is included in the graph
of G, we would have

S̃ = L−1S ⊂ L−1
{
(x,Gx) | x ∈ R

n
}
=

{
(x,Gx−G(sym)x) | x ∈ R

n
}
=

{
(x,Nx) | x ∈ R

n
}
,

and so the decomposition of e−t(q◦L)
w

would provide the one of e−tq
w

(because we will also check

that the global indexes of the spaces S and S̃ are the same).

Now let us prove that S̃ = L−1S. By construction, since L is symplectic, it satisfies the relation
L−1J = J tL. Therefore, for all k ≥ 0, we have

(Im(J tLQL))k = (J tL(ImQ)L)k = (L−1J(ImQ)L)k = L−1(J(ImQ))kL,
and so, since tLQL is the matrix of q ◦ L, we have

S̃ =
⋂

k∈N

Ker tL(ReQ)(J(ImQ))kL =
⋂

k∈N

L−1Ker(ReQ)(J(ImQ))k = L−1S.

Moreover, we point out that, as a consequence of these identities, the global indices (i.e. k0) of S

and S̃ are equal. Thanks to this reduction, from now, we will all deal with the skew-symmetric
case (i.e. G = N and q ◦ L = q).
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⊲ Step 2: Some reminders about the polar decomposition of e−tq
w
. The properties of the polar

decomposition of e−tq
w

have been studied in details by the authors in [AB21]. More precisely, in
[AB21, Theorem 2.1], it is proven that there exist T > 0 and two families of real quadratic forms
at, bt on R

2n, depending analytically on t ∈ (−T, T ), such that for all t ∈ (0, T ), at is nonnegative
and we have

(21) e−tq
w

= e−ta
w
t e−itb

w
t .

Since the quadratic forms are real-valued, e−itb
w
t is unitary on L2 while e−ta

w
t is symmetric.

Moreover, Theorem 2.2 of [AB21] provides11 the following quantitative estimate on at:

(22) ∀t ∈ (−T, T ),∀X ∈ R
2n, at(X) & t2k0 |ΠS⊥X|2,

where ΠS⊥ denotes the orthogonal projection on S⊥ (actually this estimate is sharp in the sense
that it could be proven that at vanishes on S).

⊲ Step 3: Decomposition of the unitary part. Now, we aim at proving that there exist t0 > 0 and
some matrices Dt,Mt,Wt (as in Theorem 2.1) such that for all t ∈ (−t0, t0) we have

(23) e−itb
w
t = e−

t
2
trMteitDt∇·∇etMtx·∇e

i
2
tWtx·x.

As a consequence of the classical-quantum exact correspondence (i.e. Proposition 2.2), since
Mtx · ∇ − 1

2trMt = −i(Mtx · ξ)w, it is enough to prove a factorization of the form

(24) e2tJBt = exp

(
−2tJ

(
0 0
0 Dt

))
exp

(
−tJ

(
0 tMt

Mt 0

))
exp

(
tJ

(
Wt 0
0 0

))
,

where Bt is the matrix of bt.
Actually it is a quite direct application of the Local Inversion Theorem. Indeed, there exists

a neighborhood of the origin N in sp2n(R) := JS2n(R) (where S2n(R) denotes the space of real
symmetric matrices) such that the following map Ψ is well defined on N

Ψ(JK) = log

(
exp

(
J

(
0 0
0 K2,2

))
exp

(
J

(
0 K1,2

K2,1 0

))
exp

(
J

(
K1,1 0
0 0

)))
,

where log is defined by its power series and K =

(
K1,1 K1,2

K2,1 K2,2

)
denotes the decomposition of K

by blocks of size n× n (note that since K is symmetric, it satisfies K1,2 = tK2,1). We note that,
as a consequence of the Baker-Campbell-Hausdorff formula (see e.g. Theorem 10 in [BCOR09]),
since sp2n(R) is a Lie algebra, Ψ maps N into sp2n(R). Moreover, since both the differential of
the exponential at the origin and of the logarithm at the identity are equal to the identity, we
deduce that the differential of Ψ at the origin is equal to the identity (and so that it is invertible).
Finally, since t 7→ Bt is a smooth map, the existence of matrices Dt,Wt,Mt, depending smoothly
on t and satisfying, provided that |t| is small enough, the decomposition (24) is just a consequence
of the Local Inversion Theorem applied to Ψ at the origin.

⊲ Step 4: Decomposition of the symmetric part. Now, we focus on the decomposition of e−ta
w
t . We

aim at proving that there exist γ, t0 > 0, pt (as in Theorem 2.1) and some constants ct depending
continuously on t such that for all t ∈ [0, t0),

(25) e−ta
w
t = ct (e

−γtα |ξ−Nx|2)we−tp
w
t (e−γt

α |ξ−Nx|2)w.

11see also [AB21, Lemmata 7.13 and 4.1] for further details.
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⊲ Substep 4.1: Inversion of the Mehler formula. First, in order to get such a decomposition using
the classical-quantum exact correspondence (i.e. Proposition 2.2), we aim at rewriting the twisted

diffusion (e−γt
α |ξ−Nx|2)w as an evolution operator thanks to the Mehler formula (i.e. Theorem

2.5).
Using the holomorphic functional calculus, provided that |s| is small enough to avoid singular-

ities, we define the matrices Rs, with s ∈ R, by

Rs := (sJ)−1 arctan (sJN) where N :=

(
In N
−N N2

)
.

First, we notice that since arctan vanishes at the origin, Rs depends smoothly (analytically) on s.
Then, since N is skew-symmetric, we deduce that N is symmetric. Therefore, expanding arctan
in power series (provided that s is small enough), we get

(26) Rs = (sJ)−1
+∞∑

k=0

(−1)k (sJN)2k+1

2k + 1
=

+∞∑

k=0

t
Fk
s NFk

s

2k + 1
with Fs := sJN.

We see on this formula that Rs is a real symmetric matrix. We denote by rs (resp. n) the quadratic
form of which Rs (resp. N) is the matrix. Since n(x, ξ) = |ξ − Nx|2 is nonnegative, we deduce
from (26) that

rs = n+
∑

k≥1

n ◦ Fk
s

2k + 1
≥ n.

Therefore, rs is nonnegative. Hence, as a consequence of the Mehler formula (see Theorem 2.5),
provided that s ≥ 0 is small enough, we can write the twisted diffusion as an evolution operator

(27) e−sr
w
s =

1√
det cos(sJRs)

(e−s|ξ−Nx|2)w.

Finally, we aim at establishing an upper bound on rs. First, we note that

∀X ∈ R
2n, |FsX| ≤ |s||

√
N||
√
NX| = |s||

√
N|

√
n(X).

Therefore, as a consequence of (26), we have that for all X ∈ R
2n and |s| < 2−1/2|N|−1,

(28) rs(X) ≤ n(X)

∞∑

k=0

|s|2k|N|2k
2k + 1

≤ n(X)

1− |sN|2 ≤ 2n(X).

⊲ Substep 4.2: Strang splitting. First, we note that since S is included in the graph of N , we
have the estimate n . |ΠS⊥ · |2. Moreover, as explained in (22), we know that tα|ΠS⊥ · |2 . tat.
Consequently, there exists γ > 0 such that for all t ∈ [0, T ), we have 10γtαn ≤ tat. Moreover, we

know from (28) that if t < (γ−12−1/2|N|−1)1/α, then rγtα ≤ 2n. Therefore, we have

(29) 0 ≤ t < t1 =⇒ 5(γtαrγtα) ≤ tat,

where t1 := min(T, (γ−12−1/2|N|−1)1/α). Now, we apply Proposition 2.3 in order to decompose
e−ta

w
t : we get the map p defined on a neighborhood O of the origin in the space of the couples of

real valued quadratic forms on R
2n. First, we note that since t 7→ at is smooth, tat vanishes as t

goes to 0. Therefore, there exists t0 ∈ (0, t1) such that the following map pt := t−1p(tat, γt
αrγtα)

is well defined for t ∈ (−t0, t0) and is analytic. Moreover, thanks to the estimate (29), we have
that for all t ∈ [0, t0),

e−γt
αrw

γtαe−p
w
t e−γt

αrw
γtα = e−ta

w
t and pt ≥ at/2 ≥ 0.
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Finally, since we have shown in (27) that e−γt
αrw

γtα is a pseudo-differential operator whose symbol

is
√

det cos(γtαJRγtα)
−1

e−γt
αn, we have factorized e−tq

w
as expected in (25).

�

3. Integral transforms with Gaussian kernels

In this section, we aim at proving Lp bounds for the evolution operators involved in the decom-
position (17) given by Theorem 2.1. More precisely, the main results of this section are Theorem

3.4, in which we prove that e−t(pt)
w

maps Lq into itself, and Corollary 3.6, where we prove that

(e−γt
α |ξ−Nx|2)weitDt∇·∇ maps Lp into Lq.

To prove this result, we shall write evolution operators as integral transforms with Gaussian
kernels. Naturally, we will have to compute Fourier transforms of complex Gaussians, so we recall
the following classical result.

Proposition 3.1 (see e.g. Thm 1 in [Fol89] page 256). Let A be an n × n complex symmetric
matrix whose real part is positive-definite. Then for any z ∈ C

n,
∫

Rn

e−
1
2
Ax·xeix·z dx =

(2π)n/2√
detA

e−
1
2
A−1z·z,

where the branch of the square root is determined by the requirement that
√
detA > 0 when A is

real and positive-definite.

As a corollary, we identity the pseudo-differential operators with non-degenerated Gaussian
symbols as Gaussian integral transforms.

Corollary 3.2. Let m be a real-valued nonnegative quadratic on R
2n of the form

m(x, ξ) =
1

2
r(x) + Lx · ξ + 1

2
b(ξ),

where L is a real n× n matrix, r, b are some real-valued quadratic forms on R
n and b is positive-

definite. Then for all u ∈ S (Rn),

(e−m)wu(x) =

∫

Rn

g(x, y)u(y) dy,

where

(30) g(x, y) =
(2π)−n/2√

detB
exp

(
− 1

2
k
(x+ y

2

)
− 1

2
B−1(x− y) · (x− y)− i(x− y) ·B−1Lx+ y

2

)
,

B (resp. R) denotes the matrix of b (resp. r) and k, the real-valued quadratic form of matrix
K = R− tLB−1L, is nonnegative.

Proof. By definition of the Weyl quantization, we formally have that for all u ∈ S (Rn),

(e−m)wu(x) = (2π)−n
∫∫

R2n

ei(x−y)·ξe−m(x+y
2

,ξ)u(y) dy dξ.

Moreover, since the quadratic form b is positive-definite and u ∈ L1(Rn), the above integral is a
well-defined Lebesgue integral which coincides with the function (e−m)wu. The same arguments
allow to apply Fubini’s theorem to permute the integrals. Therefore, we get

(e−m)wu(x) =

∫

Rn

g(x, y)u(y) dy where g(x, y) = (2π)−n
∫

Rn

ei(x−y)·ξe−m(x+y
2

,ξ) dξ.
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Thanks to the block decomposition of m, g can be rewritten as a Fourier transform

g(x, y) = (2π)−ne−
1
2
r(x+y

2
)

∫

Rn

e−
1
2
b(ξ)ei(x−y+iLx+y

2
)·ξ dξ.

Therefore, we have

g(x, y) = (2π)−n/2
1√

detB
e−

1
2
r(x+y

2
)e−

1
2
B−1(x−y+iLx+y

2
)·(x−y+iLx+y

2
),

and so, expanding the exponent, we get (30). Finally, putting m in canonical form with respect
to ξ, i.e.

m(x, ξ) =
1

2
k(x) +

1

2
b(ξ +B−1Lx),

we note that since m is nonnegative then k is also nonnegative. �

It will be very useful to apply this result to express twisted diffusion operators as integral
transforms.

Corollary 3.3. Let N be a real n × n skew-symmetric matrix. Then, for all ε > 0 and all
u ∈ S (Rn), we have

(e−
ε
2
|ξ−Nx|2)wu(x) = (2πε)−n/2

∫

Rn

e−
1
2ε
|x−y|2+i(x−y)·Nxu(y) dy.

Proof. It is sufficient to apply Corollary 3.2 and to note that since N is skew-symmetric, we have

(x− y) ·N x+ y

2
= (x− y) ·N x+ y + x− y

2
= (x− y) ·Nx.

�

Theorem 3.4. For all 1 ≤ q ≤ +∞, all u ∈ S (Rn) and all real-valued nonnegative quadratic
form a on R

2n, we have

‖e−awu‖Lq ≤ ‖u‖Lq .

Proof. Since a 7→ e−a
w
u ∈ S (Rn) is a C∞ map [Hor95, Theorem 4.2 page 426], by density, we

only have to deal with the case where a is positive-definite. So we assume that a is positive-

definite and we denote by A its matrix. First, we note that since JA =
√
A
−1

(
√
AJ
√
A)
√
A,

JA is conjugated to a skew-symmetric matrix and so its spectrum is purely imaginary. As a
consequence, the eigenvalues of cos JA are all larger than or equal to 1 and so |

√
det cos JA| ≥ 1.

Therefore, as a consequence of the Mehler formula (see Theorem 2.5), we have

‖e−awu‖Lq ≤ ‖(e−m)wu‖Lq ,

where m is the real-valued quadratic form associated with the matrix J−1 tan(JA). Moreover,
since a is positive-definite, it can be checked (see e.g. [Hor95, Theorem 4.2 page 426] or [Alp21,
Lemma 3.1]) that m is also positive-definite. Now, we decompose m by blocks as

m(x, ξ) =
1

2
r(x) + Lx · ξ + 1

2
b(ξ),

where L is a real n × n matrix and r, b are some real-valued quadratic forms on R
n. Note that,

since m is positive-definite, both r and b are positive-definite. We denote by B the matrix of b.
Thanks to Corollary 3.2, (e−m)w can be written as a Gaussian integral transform whose kernel g
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is given by (30). Therefore, applying the triangular inequality, using that k (the quadratic form
defined in Corollary 3.2) is nonnegative, we have

|(e−m)wu(x)| ≤ (2π)−n/2√
detB

∫

Rn

e−
1
2
B−1(x−y)·(x−y)|u(y)|dy.

Hence, by applying Young’s convolution inequality, we get

‖e−awu‖Lq ≤ ‖(e−m)wu‖Lq ≤ (2π)−n/2√
detB

∥∥e− 1
2
B−1y·y

∥∥
L1‖u‖Lq = ‖u‖Lq .

�

Now, we focus on the interactions between a twisted diffusion (i.e. an operator of the form

(e−t|ξ−Nx|2)w with N skew-symmetric) and a dispersion (i.e. an operator of the form eitd(∇) with
d a real-valued quadratic form). More precisely, in the following proposition (which is the main
result of this section), we prove that the product of such operators enjoys some diffusion properties.

Proposition 3.5. Let ε > 0, N be a skew-symmetric n × n real matrix and d be a real-valued
quadratic form on R

n. Then, for all u ∈ S (Rn) and x ∈ R
n, we have

∣∣(e− ε
2
|ξ−Nx|2)we

i
2
d(∇)u(x)

∣∣ ≤ (2π)−n/2

4
√

det (ε2In +D2)
(e−ε

r
2 ∗ |u|)(x −DNx),

where D denotes the matrix of d and r is the real-valued quadratic form of matrix (ε2In +D2)−1.

Proof of Proposition 3.5. Let x ∈ R
n be fixed and u ∈ S (Rn). In Corollary 3.3, we have proven

that

(e−
ε
2
|ξ−Nx|2)we

i
2
d(∇)u(x) = (2πε)−n/2(fx ∗ e

i
2
d(∇)u)(x) where fx(y) = e−

1
2ε
|y|2+iy·Nx.

We define the Fourier transform by

∀v ∈ S (Rn),∀ξ ∈ R
n, Fv(ξ) :=

∫

Rn

e−iξ·yv(y) dy.

With this convention, the inverse Fourier transform is given by

F
−1v(y) := (2π)−n

∫

Rn

eiy·ξv(ξ) dξ.

Therefore, thanks to the convolution identity, we have

fx ∗ e
i
2
d(∇)u = F

−1[(Ffx)(Fe
i
2
d(∇)u)] = F

−1[(Ffx)e
− i

2
d
Fu] = (F−1[(Ffx)e

− i
2
d]) ∗ u,

and so

(31)
∣∣(e− ε

2
|ξ−Nx|2)we

i
2
d(∇)u(x)

∣∣ ≤ (2πε)−n/2
(
|F−1[(Ffx)e

− i
2
d]| ∗ |u|

)
(x).

As a consequence, we aim at estimating |F−1[(Ffx)e
− i

2
d]|. First, by Proposition 3.1, we have

Ffx(ξ) =

∫

Rn

e−iξ·ye−
1
2ε
|y|2+iy·Nx dy = (2πε)n/2e−

ε
2
|ξ−Nx|2.
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We therefore deduce that

F
−1[(Ffx)e

− i
2
d](y) =

( ε

2π

)n/2
∫

Rn

eiy·ξe−
ε
2
|ξ−Nx|2e−

i
2
d(ξ) dξ

=
( ε

2π

)n/2
e−

ε
2
|Nx|2

∫

Rn

ei(y−iεNx)·ξe−
1
2
(ε|·|2+id)(ξ) dξ

=
εn/2√

det (εIn + iD)
e−

ε
2
|Nx|2e−

1
2

t(y−iεNx)(εIn+iD)−1(y−iεNx),

and so, since (εIn + iD)(εIn − iD) = ε2In +D2,

(32) |F−1[(Ffx)e
− i

2
d](y)| = εn/2

4
√

det (ε2In +D2)
e−

ε
2
k(x,y),

where

k(x, y) := ε−1 Re(t(y − iεNx)(εIn + iD)−1(y − iεNx)) + |Nx|2.
Then, we have to compute this real part. First, we note that

(εIn + iD)−1 = ε(ε2In +D2)−1 − iD(ε2In +D2)−1.

Consequently, we have

k(x, y) = ty(ε2In +D2)−1y − ε2 t(Nx)(ε2In +D2)−1Nx+ |Nx|2 − 2 ty ·D(ε2In +D2)−1Nx

= ty(ε2In +D2)−1y + t(Nx)D2(ε2In +D2)−1Nx− 2 ty ·D(ε2In +D2)−1Nx

= t(y +DNx)(ε2In +D2)−1(y −DNx).

Hence to conclude, we just have to plug this formula into (32) and then into (31). �

As a corollary of this proposition, applying Young’s convolution inequality, we deduce the
following quantitative estimate.

Corollary 3.6. Let ε > 0, N be a skew-symmetric n × n real matrix and d be a real-valued
quadratic form on R

n. Then, we have that for all u ∈ S (Rn) and 1 ≤ p ≤ q ≤ ∞,

(33)
∥∥(e− ε

2
|ξ−Nx|2)we

i
2
d(∇)u

∥∥
Lq .n ε−

n
2r (det (ε2In +D2))

1
2r
− 1

4 ‖u‖Lp ,

where D denotes the matrix of d and r = (1− p−1 + q−1)−1 ∈ [1,+∞].

Proof. By Proposition 3.5, we have

∥∥(e− ε
2
|ξ−Nx|2)we

i
2
d(∇)u

∥∥
Lq ≤

(2π)−n/2

4
√

det (ε2In +D2)

∥∥(e−ε r
2 ∗ |u|) ◦ (In −DN)

∥∥
Lq .

Hence a change of variable provides the estimate

∥∥(e− ε
2
|ξ−Nx|2)we

i
2
d(∇)u

∥∥
Lq ≤

(2π)−n/2

4
√

det (ε2In +D2) |det(In −DN)|
1
q

∥∥e−ε r
2 ∗ |u|

∥∥
Lq .

Then we note that |det(In − DN)| ≥ 1. Indeed, since D is invertible and symmetric, DN
is conjugated to a skew-symmetric matrix12, and so its spectrum is purely imaginary. As a
consequence, |det(In −DN)| is a product of factors of the form |1 + iλ| with λ ∈ R which are all
larger than 1.

12because DN =
√
D
√
DN

√
D
√
D

−1
.
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Therefore, applying Young’s convolution inequality, we get

∥∥(e− ε
2
|ξ−Nx|2)we

i
2
d(∇)u

∥∥
Lq ≤

(2π)−n/2

4
√

det (ε2In +D2)
‖e−ε r

2 ‖Lr‖u‖Lp ,

where r = (1− p−1 + q−1)−1 ∈ [1,+∞] is well-defined thanks to the assumption that 1 ≤ p ≤ q ≤
∞. Finally, recalling that (ε2In +D2)−1 is the matrix of r, we deduce from Proposition 3.1 that
(if r 6= +∞),

‖e−ε r
2 ‖Lr =

(∫

Rn

e−εr
r(x)
2 dx

) 1
r

=
((2π

εr

)n/2√
det (ε2In +D2)

) 1
r

,

which provides the estimate (33) we aimed at proving. �

4. Local smoothing effects

This section is devoting in proving the main result of this paper, namely Theorem 1.6. This
result deals with the local smoothing effects and the gains of integrability of semigroups generated
by accretive quadratic operators whose singular spaces are assumed to be included in the graph
of a real n × n matrix. To that end, we will use the decomposition (17) established in Theorem
2.1, and also the gains of integrability results established in Section 3.

First of all, we focus on the case of twisted diffusions:

Proposition 4.1. Let N be a real n× n skew-symmetric matrix. Then, for all 1 ≤ q ≤ ∞, there
exists a positive constant C > 1 such that for all m ≥ 0, ε > 0 and u ∈ S (Rn),

(34)
∥∥〈Nx〉−mdm((e−

ε
2
|ξ−Nx|2)wu)

∥∥
Lq ≤ C1+m ε−

m
2

√
m! ‖u‖Lq .

Proof. Considering some 1 ≤ q ≤ ∞ fixed, let us begin by establishing the estimate (34) in terms
of partial derivatives, instead of differentials. More precisely, let us prove that there exists a
positive constant C > 0 such that for all α ∈ N

n, ε > 0 and u ∈ S (Rn),

(35)
∥∥〈Nx〉−|α|1∂α

x ((e
− ε

2
|ξ−Nx|2)wu)

∥∥
Lq ≤ C1+|α|1 ε

|α|1
2

√
α! ‖u‖Lq ,

where |α|1 = α1+ · · ·+αn, ∂α
x = ∂α1

x1
· · · ∂αn

xn
, x1, · · · , xn denoting the coordinates in the canonical

basis of Rn as usual, and α! = α1! · · ·αn!. Let ε > 0 and u ∈ S (Rn) be fixed. In order to alleviate

the writing, we set f = (e−
ε
2
|ξ−Nx|2)wu. Also fixing x ∈ R

n, we first deduce from Corollary 3.3
that

f(x) = (2πε)−n/2
∫

Rn

e−
1
2ε
|x−y|2+i(x−y)·Nxu(y) dy = (2πε)−n/2

∫

Rn

e−
1
2ε
|y|2+iy·Nxu(x− y) dy.

Since the function u belongs to the Schwartz space S (Rn) and that the integrand of the above
integral is smooth, we deduce from Leibniz’ formula and an integration by parts that

∂α
x f(x) = (2πε)−n/2

∫

Rn

∑

α′≤α

(
α

α′

)
∂α′

x (e−
1
2ε
|y|2+iy·Nx)∂α−α′

x (u(x− y)) dy

= (2πε)−n/2
∫

Rn

∑

α′≤α

(
α

α′

)
(−iNy)α

′
e−

1
2ε
|y|2+iy·Nx∂α−α′

y (−u(x− y)) dy

= (2πε)−n/2
∫

Rn

∑

α′≤α

(
α

α′

)
∂α−α′

y

(
(−iNy)α

′
e−

1
2ε
|y|2+iy·Nx

)
u(x− y) dy,
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where we used the fact that the matrix N is skew-symmetric. Another use of Leibniz’ formula
gives that the above derivatives are given by

∂α−α′

y

(
(−iNy)α

′
(e−

1
2ε
|y|2+iy·Nx)

)
=

∑

α′′≤α−α′

(
α− α′

α′′

)
∂α−α′−α′′

y

(
(−iNy)α

′
e−

1
2ε
|y|2

)
∂α′′

y (eiy·Nx)

=
∑

α′′≤α−α′

(
α− α′

α′′

)
∂α−α′−α′′

y

(
(−iNy)α

′
e−

1
2ε
|y|2

)
(iNx)α

′′
(eiy·Nx).

Gathering these two equalities, we therefore deduce that

∣∣〈Nx〉−|α|1∂α
x f(x)

∣∣ ≤ (2πε)−n/2
∑

α′≤α

∑

α′′≤α−α′

(
α

α′

)(
α− α′

α′′

)

×
∫

Rn

∣∣∂α−α′−α′′

y

(
(Ny)α

′
e−

1
2ε
|y|2

)∣∣〈Nx〉−|α|1 |(Nx)α
′′ ||u(x− y)|dy.

Using the fact that |α′′|1 ≤ |α|1 and Young’s convolution inequality, we obtain the following
estimate

∥∥〈Nx〉−|α|1∂α
x f

∥∥
Lq(36)

≤ (2πε)−n/2
∑

α′≤α

∑

α′′≤α−α′

(
α

α′

)(
α− α′

α′′

)∥∥∣∣∂α−α′−α′′

y

(
(Ny)α

′
e−

1
2ε
|y|2

)∣∣ ∗ |u|
∥∥
Lq

≤ (2πε)−n/2
∑

α′≤α

∑

α′′≤α−α′

(
α

α′

)(
α− α′

α′′

)∥∥∂α−α′−α′′

y

(
(Ny)α

′
e−

1
2ε
|y|2

)∥∥
L1‖u‖Lq .

We now aim at controlling the above L1 norm. First of all, by an homogeneity argument and a
change of variable, we have

∥∥∂α−α′−α′′

y

(
(Ny)α

′
e−

1
2ε
|y|2

)∥∥
L1 =

(2ε)|α
′|/2+n/2

(2ε)|α−α′−α′′|/2

∥∥∂α−α′−α′′

y

(
(Ny)α

′
e−|y|

2)∥∥
L1 .

Then, we will use the fact that the standard Gaussian function enjoys Gelfand-Shilov regularity.
More precisely, it follows from Example 6.3.1 and Theorem 6.1.6 in [NR10] that there exists a
positive constant C1 > 1 such that for all β, γ ∈ N

n,

∥∥yβ∂γ
y (e
−|y|2)

∥∥
L∞ ≤ C

1+|β|1+|γ|1
1

√
β!

√
γ!.

By using Leibniz’s formula, we get that there exists another positive constant C2 > 0 such that
for all m ≥ 0 and β, γ ∈ N

n,

∥∥〈y〉m∂β
y ((Ny)γe−|y|

2
)
∥∥
L∞ ≤ C

1+m+|β|1+|γ|1
2

√
m!

√
β!

√
γ!.
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As a consequence, we obtain that for all α,α′, α′′ ∈ N
n satisfying α′ ≤ α and α′′ ≤ α− α′,

∥∥∂α−α′−α′′

y

(
(Ny)α

′
e−|y|

2)∥∥
L1 =

∥∥〈y〉−n−1〈y〉n+1∂α−α′−α′′

y

(
(Ny)α

′
e−|y|

2)∥∥
L1

≤
∥∥〈y〉−n−1

∥∥
L1

∥∥〈y〉n+1∂α−α′−α′′

y

(
(Ny)α

′
e−|y|

2)∥∥
L∞

≤
∥∥〈y〉−n−1

∥∥
L1C

2+n+|α−α′−α′′|1
2

√
(n+ 1)!

√
(α − α′ − α′′)!

√
α′!

≤
∥∥〈y〉−n−1

∥∥
L1C

2+n+|α−α′−α′′|1
2

√
(n+ 1)!

√
α!.

Plugging this estimate in (36), and using the fact that
∑

α′≤α

(
α
α′

)
= 2|α|1 , we deduce that the

estimate (35) holds. Let us now derive the estimate (34) from (35). First, notice that the norm
we aim at bounding is given by

∥∥〈Nx〉−mdmf
∥∥q
Lq =

∫

Rn

‖〈Nx〉−mdmf(x)‖qLm dx,

where Lm denotes the space of continuous m-linear forms on R
n. Recalling that for all m ≥ 0,

x ∈ R
n and h1, . . . , hm ∈ R

n, we have

(37) dmf(x) · (h1, · · · , hm) =
∑

1≤i1,··· ,im≤n

∂m
xi1

,··· ,xim
f(x)(h1)i1 · · · (hm)im ,

we get that

‖dmf(x)‖Lm ≤
∑

1≤i1,··· ,im≤n

∣∣∂m
xi1

,··· ,xim
f(x)

∣∣.

We therefore deduce from (35) that for all m ≥ 0,

∥∥〈Nx〉−mdmf
∥∥
Lq ≤

∑

1≤i1,··· ,im≤n

∥∥〈Nx〉−m∂m
xi1

,··· ,xim
f
∥∥
Lq ≤

nmC1+m

ε
m
2

√
m! ‖u‖Lq .

�

By using Proposition 4.1 and the key decomposition (17), we can now tackle the proof of
Theorem 1.6, which is a consequence of the following

Corollary 4.2. Let q : R2n → C be a complex-valued quadratic form with a nonnegative real part.
Let S be its singular space (defined by (3)) and k0 be its global index (defined by (8)). Assume
that S is included in the graph of a real n×n matrix G, i.e. S ⊂ {(x,Gx) | x ∈ R

n}. Then, for all
1 ≤ p ≤ q ≤ ∞, there exist C > 1 and t0 > 0 such that for all m ≥ 0, 0 < t < t0 and u ∈ S (Rn),

(38)
∥∥(〈Gx〉+ 〈tGx〉)−mdm(e−tq

w

u)
∥∥
Lq ≤

C1+m

t(k0+
1
2
)m+cp,q

√
m! ‖u‖Lp ,

where the positive constant cp,q > 0 is defined by (10).

Proof. Let 1 ≤ p ≤ q ≤ ∞ be fixed. As in the proof of Proposition 4.1, we will derive a version
of the estimate (38) stated with partial derivatives, instead of differentials. However, in opposite
of what we have done in the proof of Proposition 4.1, we will not work with the partial derivates
associated with the canonical basis of Rn, but with other ones well adapted in the present situation,
defined as follows. Let M = (G+ tG)/2 be the symmetric part of the matrix G. Since the matrix
M is real and symmetric, it is diagonalisable in an orthonormal basis. Let y1, · · · , yn be the
coordinates in this new basis and ∂y1 , · · · , ∂yn be the associated partial derivatives. Using the
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same notations as in the proof of Proposition 4.1, we will establish that there exist some positive
constants C > 1 and t0 > 0 such that for all α ∈ N

n, 0 < t < t0 and u ∈ S (Rn),

(39)
∥∥(〈Gx〉 + 〈tGx〉)−|α|1∂α

y (e
−tqwu)

∥∥
Lq ≤

C1+|α|1

t(k0+
1
2
)|α|1+cp,q

√
α! ‖u‖Lp ,

where the constant cp,q is the same as in (10). Then, we can deduce the estimate (38) by using
(37) anew. As explained before stating Corollary 4.2, the key point is to use the decomposition
given by Theorem 2.1, which allows to write the evolution operators e−tq

w
in the following way

for all 0 < t < t0, with t0 > 0,

e−tq
w

= ct e
i
2
Gx·x(e−γt

α |ξ−Nx|2)we−tp
w
t (e−γt

α |ξ−Nx|2)weitDt∇·∇etMtx·∇e
i
2
(tWt−G)x·x,

where γ > 0 is a positive constant, Dt,Mt and Wt are real n × n matrices, ct > 0 is a positive
constant, all depending smoothly on t ∈ (−t0, t0), α = 2k0 + 1 and N = (G − tG)/2 denotes the
skew-symmetric part of G. Notice that we can assume the matrices Dt to be symmetric, since we
get that

Dt∇ · ∇ =
1

2
(Dt +

tDt)∇ · ∇.
Let 0 < t < t0 and u ∈ S (Rn) be fixed. We consider the time-dependent function vt defined

by

(40) vt = e−tp
w
t (e−γt

α |ξ−Nx|2)weitDt∇·∇etMtx·∇e
i
2
(tWt−G)x·xu.

Notice that from Theorem 4.2 in [Hor95], vt is also a Schwartz function, since the evolution
operators generated by accretive quadratic operators map S (Rn) into itself. Setting εt = 2γtα,
we first get from Leibniz’ formula that for all α ∈ N

n,

∂α
y (e
−tqwu) = ct

∑

α′≤α

(
α

α′

)
∂α−α′

y (e
i
2
Gx·x)∂α′

y ((e−
εt
2
|ξ−Nx|2)wvt).

We therefore obtain that for all α ∈ N
n,

(41)
∥∥(〈Gx〉 + 〈tGx〉)−|α|1∂α

y (e
−tqwu)

∥∥
Lq ≤ ct

∑

α′≤α

(
α

α′

)∥∥(〈Gx〉 + 〈tGx〉)−|α−α′|1∂α−α′

y (e
i
2
Gx·x)

∥∥
L∞

×
∥∥(〈Gx〉 + 〈tGx〉)−|α′|1∂α′

y ((e−
εt
2
|ξ−Nx|2)wvt)

∥∥
Lq .

The purpose is now to estimate the two terms appearing in the above sum. On the one hand, we
need to bound the following L∞ norms for all β ∈ N

n:
∥∥(〈Gx〉 + 〈tGx〉)−|β|1∂β

y (e
i
2
Gx·x)

∥∥
L∞ .

First, notice that in this term, the matrix G can be replaced by M (recall that it is its symmetric
part) and the weight 〈Gx〉+ 〈tGx〉 can be replaced by 〈Mx〉, since we have that for all x ∈ R

n,

〈Mx〉 . 〈Gx〉 + 〈tGx〉 and e
i
2
Gx·x = e

i
2
Mx·x.

Moreover, since y1, · · · , yn denote the coordinates in a basis that diagonalises the matrix M , we
have

(42)
∥∥〈Mx〉−|β|1∂β

y (e
i
2
Mx·x)

∥∥
L∞ ≤

n∏

j=1

∥∥〈2λjy〉−βj∂
βj
y (eiλj |y|2)

∥∥
L∞ ,
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where λ1, . . . , λn ∈ R are the eigenvalues of the matrix M/2. In the following, we consider the
determination

√· of the square root on C \ R−. Let β ≥ 0 be a integer and λ ∈ R be one of the
λj . We need to introduce the Hermite polynomial, see e.g. [Sze75, eq 5.5.3],

Hβ(y) = (−1)βe−y2 dβ

dyβ
(e−y

2
).

Let us recall that the following formula holds, see e.g. [Sze75, eq 5.5.4],

Hβ(y) =

⌊β/2⌋∑

k=1

(−1)k β!

k!(β − 2k)!
(2y)β−2k.

As a consequence, we obtain that
∥∥〈2λy〉−β∂β

y (e
iλ|y|2)

∥∥
L∞ =

∥∥〈2λy〉−β
√
−iλβ

(−1)βHβ(
√
−iλ y)

∥∥
L∞

≤ |
√
−iλ|β

⌊β/2⌋∑

k=1

2β−2kβ!

k!(β − 2k)!

∥∥〈2λy〉−β(
√
−iλ y)β−2k

∥∥
L∞

≤ |
√
−iλ|β 2β

⌊β/2⌋∑

k=1

(2k)!

k!

(
β

2k

)
≤ |
√
−iλ|β 4β

⌊β/2⌋∑

k=1

2kk!

Moreover, since ββ ≤ eββ!, we get that for all 1 ≤ k ≤ ⌊β/2⌋, k! ≤ kk ≤ (β/2)β/2 ≤ (e/2)β/2
√
β!,

which implies that

∥∥〈λy〉−β∂β
y (e

iλ|y|2)
∥∥
L∞ ≤ |

√
−iλ|β 8β

(
e

2

)β/2 ⌊β
2

⌋√
β!.

As a consequence of this estimate and (42), we deduce that there exists a positive constant C1 > 0
such that for all β ∈ N

n,

(43)
∥∥(〈Gx〉 + 〈tGx〉)−|β|1∂β

y (e
i
2
Gx·x)

∥∥
L∞ .

∥∥〈Mx〉−|β|1∂β
y (e

i
2
Mx·x)

∥∥
L∞ ≤ C

1+|β|1
1

√
β!.

On the other hand, since N is the skew-symmetric part of G, we also have

∀x ∈ R
n, 〈Nx〉 . 〈Gx〉+ 〈tGx〉,

and we deduce from Proposition 4.1 that there exists another positive constant C2 > 0 such that
for all β ∈ N

n and 0 < t < t0,
∥∥(〈Gx〉+ 〈tGx〉)−|β|1∂β

y ((e
−

εt
2
|ξ−Nx|2)wvt)

∥∥
Lq .

∥∥〈Nx〉−|β|1∂β
y ((e

−
εt
2
|ξ−Nx|2)wvt)

∥∥
Lq(44)

≤
∥∥〈Nx〉−|β|1dβ((e−

εt
2
|ξ−Nx|2)wvt)

∥∥
Lq

≤ C
1+|β|1
2 ε

−
|β|
2

t

√
β! ‖vt‖Lq .

Combining the estimates (43) and (44) with (41), we obtain that

(45)
∥∥(〈Gx〉+ 〈tGx〉)−|α|1∂α

x (e
−tqwu)

∥∥
Lq ≤ C

1+|α|1
3 ε

−
|α|1
2

t

√
α! ‖vt‖Lq ,

where C3 > 0 is a positive constant not depending on α ∈ N
n, 0 < t < t0, neither u ∈ S (Rn).

Now, it only remains to estimate the Lq norm of the function vt. To that end, we need to study
the action on the Lebesgue spaces of the operators involved in the definition (40) of the function
vt. First of all, notice that the operator e(i/2)(tWt−G)x·x is an isometry on Lp so it plays no role,
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and etMtx·∇ is the flow of a transport equation, so it is invertible on Lp and is close to the identity,
and plays no role neither. Moreover, we get from Corollary 3.6 that for all w ∈ S (Rn),

∥∥(e− ε
2
|ξ−Nx|2)weitDt∇·∇w

∥∥
Lq ≤ C4 ε

− n
2r (det (ε2In +D2))

1
2r
− 1

4 ‖w‖Lp ,

where C4 > 0 is a positive constant only depending on the dimension, and r = (1− p−1 + q−1)−1.
At last, it follows from Theorem 3.4 that for all w ∈ S (Rn), ‖e−tpwt w‖Lq ≤ ‖w‖Lq . In a nutshell,
we obtain that the Lq norm of the function vt is bounded as follows

(46) ‖vt‖Lq ≤ C5 ε
− n

2r (det(ε2In + t2D2
t ))

1
2r
− 1

4 ‖u‖Lp ,

with C5 > 0 another positive constant only depending on the dimension. Recalling that εt =
2γt2k0+1, we lastly need to control the right-hand side of the above estimate. We denote by
λ1,t, . . . , λn,t the eigenvalues of the matrix ε2t In + t2D2

t . First, since the symmetric matrix D2
t is

nonnegative, we get that

∀j ∈ {1, . . . , n}, λj,t ≥ ε2t = 4γ2t2(2k0+1).

Let us denote by ρt the spectral radius of the matrix ε2t In + t2D2
t . Since the norm ‖ · ‖ is induced

by the canonical Euclidean norm on R
n, we get that ρt ≤ ‖ε2t In+t2D2

t ‖. Moreover, the matrix D2
t

is smooth with respect to the time-variable t ∈ (−t0, t0), so that there exists a positive constant
C6 > 0 such that for all 1 ≤ j ≤ n,

λj,t ≤ ρt ≤ ‖ε2t In + t2D2
t ‖ = t2‖4γ2t4k0In +D2

t ‖ ≤ C6 t
2.

The determinant of a matrix being equal to the product of its eigenvalues, we obtain that

(47) (4γ2)nt2n(2k0+1) ≤ det(ε2t In + t2D2
t ) ≤ Cn

6 t
2n.

By gathering the estimates (45), (46) and (47), we deduce that there exists a positive constant
C > 0 such that for all α ∈ N

n, 0 < t < t0 and u ∈ S (Rn),

∥∥(〈Gx〉 + 〈tGx〉)−|α|1∂α
x (e
−tqwu)

∥∥
Lq ≤

C1+|α|1

t(k0+
1
2
)|α|1+cp,q

√
α! ‖u‖Lp ,

where the positive constant cp,q > 0 is given by

cp,q =
n

2r
(2k0 + 1)− 2n

(
1

2r
− 1

4

)
=

n

2r
(2k0 + r− 1), when 1 ≤ r ≤ 2,

cp,q =
n

2r
(2k0 + 1)− 2n(2k0 + 1)

(
1

2r
− 1

4

)
=

n

2r
(2k0 + 1)(r − 1), when r > 2.

�

5. Reciprocals

The aim of this before last section is to prove Theorem 1.9, which is the reciprocal of Theorem
1.6 proven in Section 4. The strategy is to use the polar decomposition (11) introduced by the
authors in [AB21]. Thanks to this decomposition, it is sufficient to consider only semigroups
generated by quadratic selfadjoint operators.

The following lemma will be key in this section.

Lemma 5.1. Let q : R2n → R+ be a nonnegative quadratic form which does not depend on the
variable ξn. Then, we have that for all f ∈ S (Rn−1) and g ∈ S (R),

e−q
w

(f ⊗ g)(x, xn) = (e−q
w
xnf)(x)g(xn), (x, xn) ∈ R

n−1 × R,
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where the symbol qxn : R2(n−1) → R is defined by

qxn(x, ξ) = q(x, xn, ξ, 0), (x, ξ) ∈ R
2(n−1).

Proof. Being given u ∈ S (Rn) a Schwartz function, we recall from Theorem 4.2 in [Hor95] that
e−q

w
u is also a Schwartz function. Then, as a consequence13 of [Ber21, Lemma 4], we have14

∀xn ∈ R, (e−q
w

u)|Rn−1×{xn} = (e−q
w
xnu|Rn−1×{xn}).

Applying this identity with u = f ⊗ g, where f ∈ S (Rn−1) and g ∈ S (R), it comes naturally, as
expected, that

∀xn ∈ R, e−q
w

(f ⊗ g)(·, xn) = e−q
w
xn (g(xn)f) = (e−q

w
xnf)g(xn).

�

As announced, we begin by studying the reciprocal of Theorem 1.6 for semigroups generated
by nonnegative quadratic forms.

Proposition 5.2. Let q : R
2n → R+ be a nonnegative quadratic form. Let S ⊂ R

2n be the
isotropic cone of q. Assume that the geometric condition S ∩ ({0} × R

n) 6= {0} holds. Then:

(i) There exists u ∈ L2(Rn) such that e−q
w
u is not a continuous function.

(ii) For all 2 < p ≤ ∞, there exists up ∈ L2(Rn) such that e−q
w
up /∈ Lp(Rn).

Proof. Let us assume once and for all that S ∩ ({0} ×R
n) 6= {0}. Therefore, there exists a vector

ξ0 ∈ R
n \ {0} such that (0, ξ0) ∈ S. We begin by checking that we can choose ξ0 = en :=

(0, · · · , 0, 1). Let us consider an invertible matrix A ∈ GLn(R) such that AT en = ξ0. It is classical
that the following unitary operator on L2(Rn)

KAu =
√
detAu(A ·), u ∈ L2(Rn),

is associated with the following Egorov relation

K∗Ae
−qwKA = e−(q◦TA)w where TA =

(
A−1 0
0 tA

)
∈ Sp2n(R),

the operator K∗A standing for the L2-adjoint of the operator KA. Notice that KA is also an
isometry on Lp for all 2 < p < +∞, and maps the space C0(Rn) into itself. Moreover, since
(0, ξ0) ∈ S and that the vector space S is the isotropic cone of the quadratic form q, we have

(q ◦ TA)(0, en) = q(0, tAen) = q(0, ξ0) = 0.

We can therefore choose ξ0 = en.
Let us now tackle the proof of the assertion (i). We have to prove that there exists a function

u ∈ L2(Rn) such that e−q
w
u /∈ C0(Rn). To that end, for all xn ∈ R, we consider the degree-2

polynomial qxn : R2(n−1) → R defined by

(48) qxn(x, ξ) = q(x, xn, ξ, 0), (x, ξ) ∈ R
2(n−1).

We know from [AB21, Corollary 7.9] that the operator e−q
w
0 generated by the nonnegative qua-

dratic form q0 is one-to-one, so there exists a function f from the Schwartz space S (Rn−1) such
that the function e−q

w
0 f is not identically equal to zero. As a consequence,

(49) ∃x∗ ∈ R
n−1, (e−q

w
0 f)(x∗) 6= 0.

13replacing {1} by {xn} in its proof.
14a priori in L2(Rn−1) but actually in S (Rn) since e−qwu is a Schwartz function.



24 PAUL ALPHONSE AND JOACKIM BERNIER

We set g(xn) = (log(xn))
−2

1|xn |<1 and u = f ⊗ g ∈ L2(Rn). Let us assume that the function

e−q
w
u is continuous at (x∗, 0). Since q(0, en) = 0, the quadratic form q does not dependent on

the variable ξn ∈ R
n, and it follows from Lemma 5.1 that e−q

w
u is given by

(50) (e−q
w

u)(x, xn) = (e−q
w
xnf)(x)g(xn), (x, xn) ∈ R

n−1 × R,

where the symbol qxn is the one defined in (48). Notice that the function e−q
w
xnf does not vanish

at (x∗, 0) by definition of the point x∗:

(e−q
w
xnf)(x∗, 0) = (e−q

w
0 f)(x∗) 6= 0.

Moreover, the function e−q
w
xnf is continuous, since we deduce from Lemma 5.1 anew that

e−q
w
xnf = e−q

w

(f ⊗ e−|xn|2)e|xn|2 ,

and e−q
w
: S (Rn)→ S (Rn) from [Hor95, Theorem 4.2]. According to (50), the function g would

therefore be continuous, but is not.
Now, we prove the assertion (ii). Given 2 < p ≤ ∞, we aim at finding a function up ∈ L2(Rn)

such that e−q
w
up /∈ Lp(Rn). We first assume that 2 < p < ∞. Let f ∈ S (Rn−1) be the same

Schwartz function as in the previous paragraph. In particular, (49) holds, and since the function
e−q

w
0 f is continuous at (x∗, 0), where x∗ ∈ R

n−1 is the point appearing in (49), we deduce that
there exists m > 0 and r∗ > 0 such that for all (x, xn) ∈ R

n−1 × R,

(51) |x− x∗|+ |xn| ≤ r∗ ⇒
∣∣(e−qwxnf)(x)

∣∣ ≥ m.

Let us now consider the function gp ∈ L2(R) \ Lp(R) defined by

gp(xn) =
1

|xn|1/p
1|xn |≤r∗ , xn ∈ R.

Setting up = f ⊗ gp ∈ L2(Rn), it follows from (50) and (51) that

∥∥e−qwup
∥∥p
Lp =

∫

R×Rn−1

∣∣(e−qwxnf)(x)gp(xn)
∣∣p dxdxn ≥ mp

∫

|x−x∗|+|xn|≤r∗

|gp(xn)|p dxdxn = +∞.

As a consequence, e−q
w
up /∈ Lp(Rn) as expected. The case p = ∞ can be treated the same way

by considering g∞ ∈ L2(R) \ L∞(R). �

We can now tackle the proof of Theorem 1.9.

Proof of Theorem 1.9. This theorem is a quite straightforward consequence of Proposition 5.2 and
the polar decomposition introduced in [AB21]. Indeed, on the one hand, Theorem 2.1 in [AB21]
implies that there exist a nonnegative quadratic form a : R2n → R+ and a unitary operator U on
L2(Rn) such that

(52) e−q
w

= e−a
w

U.

On the other hand, assuming that S ∩ (Rn × {0})⊥ 6= {0}, and since S is the isotropic cone of
the quadratic form a, see Proposition 6.2 in appendix, we deduce that there exists a function
u ∈ L2(Rn) such that e−q

w
u is not continuous, and for all 2 < p ≤ ∞, there exists up ∈ L2(Rn)

such that e−a
w
up /∈ Lp(Rn). Setting ũ = U−1u ∈ L2(Rn) and ũp = U−1up ∈ L2(Rn), we therefore

get from (52) that e−q
w
ũ /∈ C0(Rn) and e−q

w
ũp /∈ Lp(Rn) for all 2 < p ≤ ∞. This proves the

result by contraposition. �
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6. Appendix

6.1. The geometric condition.

Lemma 6.1. Let n ≥ 1 and S be a subspace of R2n. The following assertions are equivalent:

(i) S is included in the graph of a n× n real matrix G, i.e. S ⊂ {(x,Gx) | x ∈ R
n},

(ii) S ∩ (Rn × {0})⊥ = {0}.
Proof. Since (Rn × {0})⊥ = {0} × R

n and G0 = 0, it is obvious that (i) implies (ii). So from
now, we only aim at proving that (ii) implies (i). We assume that S ∩ (Rn×{0})⊥ = {0} and we
denote by Π the orthogonal projection on R

n × {0}. We set V = ΠS. First, we check that for all
x ∈ V there exists a unique g(x) ∈ R

n such that (x, g(x)) ∈ S. Indeed, the existence is obvious
by definition of Π. Moreover if both (x, ξ) ∈ S and (x, ζ) ∈ S then, since S is a vector space,
(0, ξ − ζ) ∈ S. But, by assumption S ∩ ({0}×R

n) = {0} and so (0, ξ − ζ) = 0, i.e. ξ = ζ. Finally,
we just have to check that x 7→ g(x) is linear but this is a straightforward consequence of the fact
that S is a vector space. �

6.2. Singular space and polar decomposition. Let q : R2n → C be a complex-valued qua-
dratic form with a nonnegative real part. We have proven in [AB21, Theorem 2.1] that there
exists a family (at)t∈R of nonnegative quadratic forms at : R

2n → R+ depending analytically on
the time-variable t ∈ R and a family (Ut)t∈R of unitary operators on L2(Rn) such that

∀t ≥ 0, e−tq
w

= e−ta
w
t Ut.

In the following proposition, we make the link between the isotropic cones of the quadratic forms
at and the singular space S of q, defined by (3).

Proposition 6.2. The singular space S of the quadratic form q is the isotropic cone of the
quadratic form at for all t > 0.

Proof. First of all, the fact that the isotropic cone of at contains the singular space S is a straight-
forward consequence of an estimate stated in [AB21, Theorem 2.1] and an analyticity argument.
For the reciprocal, a simple way to see that at vanishes on S is to use the Baker-Campbell-Hausdorff
formula thanks to the following relation, see [AB21, Theorem 3.2],

e−4itJAt = e−2itJQe−2itJQ,

where At (resp. Q) denotes the matrix of at (resp. q). Indeed, it proves that tAt is an analytic
function of (tRe JQ, t Im JQ). But since tAt is a real matrix, each term of its analytic expansion
has to contain at least one factor of the form tRe JQ. As a consequence, each term is of the form
Mt(Re JQ)(t Im JQ)k for some matrix Mt and some integer k ∈ N. Therefore, by definition of S,
each term of this analytic expansion vanishes on S, and so At also vanishes on S. �
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