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Random coordinate descent algorithm for open multi-agent systems
with complete topology and homogeneous agents

Charles Monnoyer de Galland, Renato Vizuete, Julien M. Hendrickx, Paolo Frasca, and Elena Panteley

Abstract— We study the convergence in expectation of the
Random Coordinate Descent algorithm (RCD) for solving
optimal resource allocations problems in open multi-agent
systems, i.e., multi-agent systems that are subject to arrivals
and departures of agents. Assuming all local functions are
strongly-convex and smooth, and their minimizers lie in a given
ball, we analyse the evolution of the distance to the minimizer
in expectation when the system is occasionally subject to
replacements in addition to the usual iterations of the RCD
algorithm. We focus on complete graphs where all agents
interact with each other with the same probability, and provide
conditions to guarantee convergence in open system. Finally, a
discussion around the tightness of our results is provided.

I. INTRODUCTION

We consider the optimal resource allocation problem
stated as follows, where a budget b ∈ Rd must be distributed
among n agents according to some weight distribution a ∈
Rn while minimizing the total cost f built upon local costs
fi : Rd → R (the weights ai are thus scalar):

min
x∈Rn

f(x) =

n∑
i=1

fi(xi) subject to
n∑
i=1

aixi = b. (1)

Such problems arise in different fields of research, includ-
ing power systems [1], actuator networks [2], and games
[3]. Some of the first approaches introduced to solve (1)
rely on distributed algorithms based on the well known
gradient descent [4]. Algorithms of this type however require
computing the full gradient of the network, such that the
computational complexity can be too high for large systems.

To reduce the computational complexity of gradient-based
algorithms, Nesterov introduced in [5] the coordinate descent
algorithm where optimization steps are performed along
only one direction at each iteration. Several extensions
of this algorithm have been developed, including a block
coordinate update [6], where more than one direction is
optimized at each iteration. In such algorithms, the sequence
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of coordinates in which updates are performed plays an
important role, and it is well-known that randomized choices
can guarantee convergence. Hence, [7] proposed a random
coordinate descent (RCD) algorithm, where at each iteration
only a pair of local gradients must be evaluated, and where
that pair is randomly selected, guaranteeing convergence at
the same time as reducing computational complexity.

In some applications of (1), agents are able to join and
leave the system at a time-scale similar to that of the process.
Consider for instance the integration of distributed energy
resources [8], where some devices (agents) supplying a total
amount of resource (budget) can sometimes be unavailable
because of a fault or where local objective-functions might
be time-varying (e.g., due to environmental conditions for
photovoltaic systems). When the size of the system increases,
the probability for such perturbations to happen at the
scale of the whole system increases as well, giving rise to
optimization problems in open multi-agent systems. In that
case, arrivals and departures have a significant effect on the
course of algorithms and even the most basic algorithms fail
to guarantee convergence due to the continuous change of the
set of agents. In particular, arrivals and departures of agents
result in variations of the cost functions during the process,
and hence of the location of the minimizer as well, which
prevent convergence.

Motivated by the possible changes of the functions fi
in (1), we analyze the performance of the RCD algorithm
introduced in [7] in a system subject to possible replacements
of cost functions at each iteration. We extend the results
of [7] by analysing the convergence rate in expectation of
the distance to the minimizer in open systems, under the
assumption that each iteration is either an RCD update or a
replacement. In this work, we focus on complete graphs such
that each pair of agents updates its state at some iteration
with the same probability, and we assume that the local
objective functions are smooth and strongly convex. We
then analyze the tightness of our results by considering the
particular case of quadratic cost functions, and relying on the
PESTO toolbox [9], which allows deriving exact empirical
bounds for convex problems.

A. State of the art

In the last years, traditional algorithms have been applied
and analysed in open multi-agent systems, such as gossiping
in [10]–[12], dynamic consensus in [13], [14], and stochastic
interactions in [15], [16]. Optimization in open system is also
getting attention, such as in [17], or in [18] where the authors
studied the stability of the decentralized gradient descent



algorithm where the agents try to reach agreement and can
be replaced at each iteration.

An alternative line of work on time-varying objective
functions, called online optimization [19], [20], aims at
building at each time t an estimate xt in a way that keeps
the regret function, commonly defined as

RegT :=
∑T

t=1

(
f t(xt)−min

x
f t(x)

)
, (2)

as small as possible. Nevertheless, our work is essentially
different because the objective of our algorithms is to be at
all times as close as possible to the instantaneous minimizer
of (1).

II. PROBLEM STATEMENT

For two vectors x, y ∈ Rn, we denote by 〈x, y〉 = x>y =∑n
i=1 xiyi the standard Euclidean inner product, and the

Euclidean norm by ‖x‖ =
(
x>x

)1/2
. We also denote the

vector of size n constituted of only ones by 1n and the
identity matrix of dimension n by In. Let B(x, r) = {y :
‖x− y‖ ≤ r} denote the ball of radius r ≥ 0 centered at x.

A. Resource allocation problem

We consider the resource allocation problem (1) where we
restrict our attention to 1-dimensional local cost functions
fi : R → R for all i = 1, . . . , n, and make the following
classical assumption.

Assumption 1: Each function fi is continuously differen-
tiable, α-strongly convex (i.e., fi(x)− α

2 ‖x‖
2 is convex) and

β-smooth (i.e., ‖f ′i(x)− f ′i(y)‖ ≤ β‖x− y‖, ∀x, y).
We let Fα,β denote the set containing the functions

satisfying Assumption 1 let κ = β/α denote the condition
number of those functions. Notice that f(x) :=

∑n
i=1 fi(xi)

also satisfies Assumption 1, so that f ∈ Fα,β . This implies
that the solution to (1), denoted x∗, is unique. Moreover,
〈a, x∗〉 = b and ∇f(x∗) = λ∗a for some scalar λ∗ ∈ R.

In open systems, the functions fi can be replaced in the
process so that the global minimizer x∗ changes along. To
ensure that the local cost functions are consistent with each
other, and prevent arbitrary changes of functions, and thus of
x∗, we follow the approach in [18] and restrict the location
of the local minimizers without loss of generality.

Assumption 2: The minimizer of each function fi denoted
x∗i := arg minx fi(x) satisfies x∗i ∈ [−1, 1] and fi(x∗i ) = 0.

The following assumption restricts our attention to the
particular case where a given budget must be allocated
among agents with the same priority, or where the budget
is provided by a group of homogeneous agents.

Assumption 3: There holds a = 1n, and we denote the
feasible set of (1) in that case by

Sb := {x ∈ Rn|〈1, x〉 = b} . (3)

B. Random Coordinate Descent algorithm

To problem (1), we associate a network constituted of n
agents such that each agent i ∈ V = {1, . . . , n} has access to
a local function fi and a local variable xi ∈ R. The agents
can exchange information according to an undirected and
connected graph G = (V,E) where E ⊆ V × V .

The Random Coordinate Descent (RCD) algorithm intro-
duced in [7] involves the update of the states of only a
pair of neighbouring agents at each iteration, so that the
numerical complexity is cheap. At a given iteration and for
some feasible estimate x, a pair of agents (i, j) ∈ E is
randomly selected with probability pij > 0 to update as

x+i = xi + di x+j = xj + dj ,

where di and dj are determined by solving[
di
dj

]
= arg min

s:aisi+ajsj=0

〈[
f ′i(xi)
f ′j(xj)

]
,

[
si
sj

]〉
+
β

2

∥∥∥∥[sisj
]∥∥∥∥2 . (4)

This choice follows the observation that for any z ∈ R2,
the function g(z) = fi(z1) + fj(z2) is β-smooth, and thus
satisfies by definition ∀z, w ∈ R2

g(z) ≤ g(w) + 〈∇g(w), z − w〉+
β

2
‖z − w‖2. (5)

Solving (4) thus amounts to minimizing the right hand side of
(5) while ensuring that the next estimate x+ is still feasible.
Following the approach in [7], the problem is solved by[

di
dj

]
= − 1

β

1− a2i
ai+aj

− aiaj
a2i+a

2
i

− aiaj
a2i+a

2
i

1− a2j
ai+aj

[f ′i(xi)
f ′j(xj)

]
. (6)

Under Assumption 3, one gets the following iteration rule

x+ = x− 1

β
Qij∇f(x), (7)

where Qij is a n×n matrix filled with zeroes except for the
four following entries

[Qij ]i,i = [Qij ]j,j =
1

2
; [Qij ]i,j = [Qij ]j,i = −1

2
.

In this preliminary work, we restrain to fully connected
networks as in [10], [11]. We have thus all-to-all (possible)
communications and each edge has the same probability to
be selected at an iteration of the RCD algorithm.

Assumption 4: The graph G = (V,E) is fully connected,
and for all (i, j) ∈ E there holds pij = p = 2

n(n−1) .
Hence, under Assumption 4, there holds∑

(i,j)∈E

pijQ
ij =

p

2
L, (8)

where L is the Laplacian matrix of G, given by

L = nIn − 1n1>n . (9)

C. Function replacement

In this analysis, we consider that the system is open. In
particular, any agent i can be replaced during the process,
in which case it receives a new local objective function
satisfying Assumptions 1 and 2 and maintains its label and
estimate so that 〈a, x〉 = b is preserved. Let fki denote
the local objective function held by the agent labelled i at
iteration k, then (1) can be reformulated in our setting as

min
x∈Sb

fk(x) :=

n∑
i=1

fki (xi). (10)



The solution of (10) thus changes with replacements, and we
denote x∗,k := arg minx∈Sb f

k(x). Let xk be the estimate
of x∗,k at iteration k, we define the following error metric:

Ck := ‖xk − x∗,k‖2. (11)

Our goal is to derive a convergence rate for criterion (11)
in expectation given by E

[
Ck
]
, where xk is a sequence

generated by the Random Coordinate Descent algorithm (7)
applied in a system subject to possible replacements of
agents.

III. CONVERGENCE OF RCD IN CLOSED SYSTEM

In this section we analyze the convergence rate in expecta-
tion of the RCD algorithm for criterion (11) in closed system
for our setting. In that case, the minimizer x∗,k does not
depend on k, since the local objective functions fi remain
the same during the process. Therefore, we refer to that
minimizer as x∗ in this section.

A related result was presented in [7], where such conver-
gence rate in expectation was derived for the objective value
f(x)−f(x∗). Proposition 1 is thus an extension of that result
for our metric, and will serve as an intermediate result for
working on open systems. Interestingly, one can show that
while f(x)−f(x∗) is always decreasing, the metric ‖x−x∗‖
can increase for certain choices of edges. We consider the
following iteration rule, which is a generalization of (7) for
general positive step-sizes h:

x+ = x− hQij∇f(x). (12)

Proposition 1: Let a function f(x) :=
∑n
i=1 fi(xi) and

x∗ := arg minx∈Sb f(x). Under Assumptions 1 to 4, for any
positive scalar h ≤ 1/β, and for any initial point x ∈ Sb,
then the update rule (12) applied on the randomly selected
pair of agents (i, j) ∈ E satisfies

E
[
‖x+ − x∗‖2

]
≤
(

1− h α

n− 1

)
‖x− x∗‖2. (13)

Proof: Starting from the update rule (12), there holds

E
[
‖x+ − x∗‖2

]
=

∑
(i,j)∈E

pE
[
‖x− hQij∇f(x)− x∗‖2

]
=

∑
(i,j)∈E

p‖x− hQij∇f(x)− x∗‖2.

Let H(x) = E
[
‖x+ − x∗‖2

]
. It follows that

H(x) =‖x− x∗‖2 + h2
∑

(i,j)∈E
p‖Qij∇f(x)‖2

− 2h
∑

(i,j)∈E
p〈Qij∇f(x), x− x∗〉.

From (8), there holds
∑

(i,j)∈E Q
ij = 1

2L. Moreover, one

has (Qij)> = Qij and
(
Qij
)2

= Qij , and it follows

n∑
i=1

p‖Qij∇f(x)‖2 = p∇f(x)>

 ∑
(i,j)∈E

(Qij)2

∇f(x)

=
p

2
∇f(x)>L∇f(x);

n∑
i=1

p〈Qij∇f(x), x− x∗〉 = p∇f(x)>

 ∑
(i,j)∈E

Qij

 (x− x∗)

=
p

2
∇f(x)>L(x− x∗).

Hence, using p = 2
n(n−1) from Assumption 4, there holds

H(x) = ‖x− x∗‖2

+
1

n− 1

(
h2

n ∇f(x)>L∇f(x)− 2hn∇f(x)>L(x− x∗)
)
.

The optimality conditions of our problem imply ∇f(x∗) =
λ∗1n for some λ∗ ∈ R, and from (9) we have

L∇f(x∗) = 1nnλ
∗ − 1n1>n1nλ∗ = 0.

Hence, since L∇f(x∗) = 0, since L = L>, and since the
largest eigenvalue of L is n, there holds

h2

n
∇f(x)>L∇f(x)= h2

n
(∇f(x)−∇f(x∗))>L(∇f(x)−∇f(x∗))

≤ h2‖∇f(x)−∇f(x∗)‖2.

Moreover, one has 〈1n, x− x∗〉 = 0, and using (9) yields

h
n∇f(x)>L(x− x∗) = h〈∇f(x)− 1

n1
>
n∇f(x)1n, x− x∗〉

= h〈∇f(x), x− x∗〉.

Furthermore, since 〈∇f(x∗), x − x∗〉 = 0, and since f is
α-strongly convex and β-smooth, it follows that

〈∇f(x), x− x∗〉 = 〈∇f(x)−∇f(x∗), x− x∗〉

≥ β−1‖∇f(x)−∇f(x∗)‖2
1+κ−1 + α‖x−x∗‖2

1+κ−1 ,

where we remind κ = β/α is the condition number of f .
Re-injecting those expressions into that of H yields

H(x) ≤ ‖x− x∗‖2 − 1

n− 1

(
2hα

1+κ−1 ‖x− x∗‖2
)

+
1

n− 1

((
h2 − 2hβ−1

1+κ−1

)
‖∇f(x)−∇fx∗)‖2

)
.

Observe that for h ≤ 1/β, we have

h2 − 2hβ−1

1+κ−1 ≤ 0,

so that for any h ≤ 1/β there holds

H(x) ≤
(

1− 2

1 + κ−1
αh

n− 1

)
‖x− x∗‖2.

Finally, since 2
1+κ−1 ≥ 1, there holds

E
[
‖x+ − x∗‖2

]
= H(x) ≤

(
1− αh

n− 1

)
‖x− x∗‖2,

which concludes the proof.



Observe that for h = 1/β, the iteration rule (12) corre-
sponds to that of the RCD algorithm given in (7), which
yields the following convergence rate in closed system

E
[
‖x+ − x∗‖2

]
≤
(

1− 1
(n−1)κ

)
‖x− x∗‖2. (14)

This also corresponds to the contraction rate observed in an
open system upon one iteration where no replacement takes
place. Observe moreover that this rate is linear, and similar
to that of a gradient descent algorithm [21], [22].

IV. CONVERGENCE OF RCD IN OPEN SYSTEM

We now consider that the system is open and suffers from
occasional replacements of agents so that the local objec-
tive functions fi change. In particular, when a replacement
occurs, then the replaced agent i is uniformly randomly
selected, and receives a new objective function fi satisfying
Assumptions 1 and 2 while maintaining its estimate.

Let Uij denote the event that an RCD iteration as defined
in (7) happens on the pair of agents (i, j), and let Ri denote
the event of a replacement of agent i as described above.
Then we define the set of all possible events as

Ξ =

 ⋃
(i,j)∈E

Uij

 ∪(⋃
i∈V

Ri

)
. (15)

We consider that at each iteration one event ξ ∈ Ξ takes
place, so that we can define the history of the process up to
iteration k as follows:

ωk = {(1, ξ1), . . . , (k, ξk)} , (16)

with ξj ∈ Ξ for all j = 1, . . . , k. We will work under the
following assumption of statistical independence:

Assumption 5: The events ξi constituting any sequence of
events ωk are independent of each other and of the state
of the system, so that at any iteration i, the event ξi is a
RCD update with probability pU , and a replacement with
probability pR = 1− pU .
The assumption above guarantees that the replacements and
RCD updates happening in the system are independent
processes, and allows analyzing the behavior of the RCD
algorithm by decoupling the impact of these. In the remain-
der of this section, we will analyze the convergence rate of
the algorithm by analyzing separately the effect of updates of
the algorithm and of replacements on the error metric (11).

Observe that the probabilities pU and pR act at the whole
system level, and can equivalently be replaced by the corre-
sponding probabilities acting on every single agent and edge
on the system. In particular, it follows from Assumption 5

pe = 2
n(n−1)pU pa = 1

npR, (17)

where pe and pa respectively stand for the probabilities that
any given edge gets activated at a RCD update, and that any
given agent (whichever it is) is replaced at some iteration.

A. Impact of replacements on the error

In this section, we analyze how much the minimizer x∗,k

of Problem (10) is impacted by replacements, and to what
extent the error E

[
Ck
]

is affected by these. Observe that the
way we model replacements legitimates the analysis of the
effect of a single change, as only one replacement at most
can occur at a given iteration.

We first provide in the next proposition the region in which
that minimizer can be located in our setting.

Proposition 2: Let κ = β/α denote the condition number
of f , and let Rb,κ :=

√
n +

(
1 + |b|

n

)√
κn. If fi satisfies

Assumptions 1 and 2 for all i = 1, . . . , n, then:

arg min
x∈Sb

f(x) ∈ B(0, Rb,κ). (18)

Proof: Let x /∈ B(0, Rb,κ) such that x ∈ Sb, and
let x̄∗ = arg minx f(x) denote the minimizer of f without
the constraint. Observe that from Assumption 2, there holds
f(x̄∗) = 0 since it amounts to evaluating every local function
fi at their minimal values. Moreover, we have x̄∗ ∈ B(0, 1)n

so that ‖x̄∗‖ ≤
√
n, and it follows that ‖x−x̄∗‖ > Rb,κ−

√
n.

Hence, since f is α-strongly convex, there holds

f(x) ≥ α

2
‖x− x̄∗‖2 > α

2

(
1 + |b|

n

)2
κn = βn

2

(
1 + |b|

n

)2
.

Now let xb := b
n1n. Since f is β-smooth, and since f(x̄∗) =

0 from Assumption 2, there holds

f(xb) ≤ β
2 ‖xb − x̄

∗‖2 ≤ βn
2

(
1 + |b|

n

)2
.

Hence, since xb ∈ Sb, there holds

f(x) > βn
2

(
1 + |b|

n

)2
≥ f(xb) ≥ f(x∗),

and we conclude that x cannot be the minimizer of (10).
We can now analyze the impact of a function change on

the location of the minimizer. Without loss of generality,
we assume that the function that gets replaced is fn, and
for the n+ 1 functions f1, f2, . . . , fn−1, f

(1)
n , f

(2)
n satisfying

Assumptions 1 and 2, we define

x(1) := arg min
x∈Sb

(∑n−1

i=1
fi(xi) + f (1)n (xn)

)
;

x(2) := arg min
x∈Sb

(∑n−1

i=1
fi(xi) + f (2)n (xn)

)
. (19)

We provide in the next proposition an upper bound on
‖x(2) − x(1)‖2, built upon Proposition 2.

Proposition 3: Consider x(1) and x(2) from (19), then

‖x(2) − x(1)‖2 ≤ 4nκ
(

1 + 1√
κ

+ |b|
n

)2
. (20)

Proof: From Proposition 2, the minimizer x∗,k of
Problem (10) satisfies

‖x∗,k‖2 ≤ n
(

1 +
(

1 + |b|
n

)√
κ
)2
.

Hence, the conclusion follows from

‖x(2) − x(1)‖2 ≤ 2
(
‖x(2)‖2 + ‖x(1)‖2

)
,



as both x(2) and x(1) are such minimizers.
The bound obtained in Proposition 3 builds on the possi-

bility for all agents to be replaced at once in a single iteration.
As a consequence, the results we derive using it are valid for
that more general setting. This also means that this result
is a source of conservatism in the particular setting where
only one agent can get replaced at a time, and it is expected
that a tighter bound can be obtained in that case, especially
regarding its dependence in n. This possibility is discussed
in detail in Section IV-C, through the study of a specific case,
and based on the PESTO toolbox for performance estimation
[9]. However, the analysis in general remains open shall be
the object of future work.

We can now evaluate the effect of replacements on the
expected error E

[
Ck
]
.

Proposition 4: Let R denote the event of a replacement
happening in the system. Then there holds

E
[
Ck+1|R

]
≤ 2E

[
Ck
]

+ 8nκ
(

1 + 1√
κ

+ |b|
n

)2
. (21)

Proof: Let us fix some event sequence ωk−1. Using
Assumption 5, there holds

E
[
Ck+1|R,ωk−1

]
=

n∑
i=1

piE
[
Ck+1|Ri, ωk−1

]
,

where pi is the probability that agent i is the replaced agent
at the occurrence of a replacement.

Let x∗,k denote the minimizer of (10) before the replace-
ment, so that Ck = ‖xk − x∗,k‖2. In the event Ri, the
estimates satisfy xk+1 = xk, and there holds

Ck+1 = ‖xk+1 − x∗,k+1‖2

≤
(
‖xk − x∗,k‖+ ‖x∗,k − x∗,k+1‖

)2
≤ 2

(
Ck + ‖x∗,k − x∗,k+1‖2

)
,

where we have used the fact that (a + b)2 ≤ 2a2 + 2b2 for
a, b ∈ R to obtain the last inequality. It then follows from
Proposition 3 that

‖x∗,k − x∗,k+1‖2 ≤ 4nκ
(

1 + 1√
κ

+ |b|
n

)2
,

so that

E
[
Ck+1|Ri, ωk−1

]
≤ 2Ck + 8nκ

(
1 + 1√

κ
+ |b|

n

)2
.

The conclusion then follows from pi = 1/n for all i by
definition and from taking the expectation over ωk−1.

B. Convergence rate

We now analyze the convergence in expectation of the
RCD algorithm when the system is subject to replacements.
Relying on the definition of the replacement process, our
approach allows decoupling the effects of the algorithm and
of replacements by considering that either a replacement
or an update of the algorithm happens at each iteration.
Therefore, our results strongly depend on the analysis of the
effect of replacement events obtained in the previous section.
Moreover, our methodology can be extended to different

algorithms than the Random Coordinate Descent, as the
impact of function changes is independent of the algorithm.

We provide in the following theorem a convergence rate
in expectation for our error metric (11) in a system subject
to replacements.

Theorem 1: Under Assumptions 1 to 5, the iteration rule
(7) applied on a system subject to replacements generates a
sequence of estimates xk satisfying for all k ≥ 0

E
[
Ck+1

]
≤
(

2− pU
(

1 + 1
(n−1)κ

))
E
[
Ck
]

+ Γ, (22)

with

Γ = 8(1− pU )
(

1 + 1√
κ

+ |b|
n

)2
nκ. (23)

Proof: Let U and R respectively denote the occurence
of a RCD update and of a replacement. There holds

E
[
Ck+1

]
= pUE

[
Ck+1|U

]
+ pRE

[
Ck+1|R

]
,

where we remind pU stands for the probability that an event
is a RCD iteration, and pR the complementary probability
that an event is a replacement, so that pU + pR = 1.

The first term corresponds to the convergence rate in
expectation of a RCD iteration in closed system with a step-
size of 1/β. Hence, from Proposition 1, there holds

E
[
Ck+1|U

]
≤
(

1− 1
(n−1)κ

)
E
[
Ck
]
.

Similarly, the second term is obtained from Proposition 4
and there holds

E
[
Ck+1|R

]
≤ 2E

[
Ck
]

+ 8nκ
(

1 + 1√
κ

+ |b|
n

)2
.

Combining those expressions, and using the fact that pU +
pR = 1 concludes the proof.

The convergence rate obtained in Theorem 1 allows upper
bounding the performance of the RCD algorithm under
replacements events.

First observe that convergence is guaranteed as long as the
probability for an event to be an RCD update pU satisfies

pU >
κ(n− 1)

κ(n− 1) + 1
, (24)

which corresponds to the worst-case contraction rate guar-
anteeing contraction in expectation at each iteration.

Let us denote ρR := pR/pU the expected number of
replacements happening between two RCD updates in the
whole system. Then one can reformulate (22) in terms of
ρR using the fact that pU = 1

1+ρR
, and it follows that

convergence is guaranteed as long as

ρR <
1

(n− 1)κ
, (25)

namely as long as on average at most one replacement
happens every (n − 1)κ RCD updates. This is equivalently
formulated in terms of pa and pe which we remind respec-
tively denote the probability that at an event a particular agent
is replaced and a particular pair of agents performs a RCD
update (see (17)), and it follows that pa < 1

2κpe.



Observe moreover that the recurrence equation (22) can
be solved, yielding

E
[
Ck
]
− γ ≤

(
1 +

ρR − 1
(n−1)κ

1 + ρR

)k (
E
[
C0
]
− γ
)
, (26)

where

γ = 8nκ

(
1 + 1√

κ
+ |b|

n

)
ρR

1
(n−1)κ − ρR

, (27)

so that provided convergence occurs, there holds

lim
k→∞

E
[
Ck
]
≤ γ.

Observe that conservatism is induced by the term ρR in
the numerator of the contraction rate of (26). It exhibits
how replacements can get in the way of convergence. In
particular, as ρR increases, E

[
Ck
]

is expected to grow
unbounded. Conversely, with ρR decreasing, it is expected
that γ ∼ ρR(nκ)2, until γ → 0 as ρR → 0 (i.e., in total
absence of replacements, or equivalently as pU → 1). In that
case, one retrieves the contraction rate of Proposition 1, and

E
[
Ck
]
≤
(

1− 1
(n−1)κ

)k
E
[
C0
]
.

C. Tightness Analysis

A critical part determining the tightness of our result
is the analysis of the impact of a function change from
Proposition 3, currently in O(nκ). That result is most likely
conservative because it includes the possibility for all the
functions to be replaced at once, whereas only replacements
of single functions are allowed by our model. In this section,
we show why we expect a possible improvement of that re-
sult that does not scale with n, with two different approaches.

a) Quadratic functions: We consider the particular case
where every local objective function is quadratic, as defined
in the following assumption.

Assumption 6: For all i, there holds fi(xi) = θi(xi−µi)2,
for some θi ∈ 1

2 [α, β], and for some µi ∈ [−1, 1].
Under Assumption 6, it is possible to obtain an alternative

result for Proposition 3 in O(κ6) that yields the following
theorem that is proved in Appendix A.

Theorem 2: Under Assumptions 1 to 6, the iteration rule
(7) applied on a system subject to replacements generates a
sequence of estimates xk satisfying for all k ≥ 0

E
[
Ck+1

]
≤
(

2− pU
(

1 + 1
(n−1)κ

))
E
[
Ck
]

+ Γ′, (28)

with

Γ′ = (1− pU )8

(
κ3+κn−2

κn
+

(|b|+n)2(κ−1)2κ2(κ2n2+n−1)
n4

)
.

The difference between Theorems 1 and 2 lies in the terms
Γ and Γ′, which are respectively in O(κn) and O(κ6). That
difference illustrates the possible improvement achievable for
our bound with respect to n at the cost of its tightness in
κ. Fig. 1 presents the results of the computations of E

[
Ck
]

based on 10000 realizations of the process and the upper
bound given by (28) for a network constituted of n = 5
agents, with κ = 1.2, pU = 0.95 and b = 1. The figure seems

Fig. 1. Performance of the RCD algorithm in an open system of 5 agents
with κ = 1.2, b = 1 and pU = 0.95 (i.e., ρR ≈ 0.053), where each local
objective function is quadratic. The plain blue line represents the actual
performance of the algorithm, and the dashed red line the upper bound (28)
obtained from Theorem 2. The expected value was computed with 10000
realizations of the process.

to confirm the tightness of the convergence rate derived for
quadratic functions provided that κ is not too large.

b) PESTO analysis: The possibility to improve our
bound is also illustrated by an analysis performed using
the PESTO toolbox [9], which allows deriving numerical
exact bounds for questions related to convex functions. Using
PESTO, we obtain an upper bound on a generalization of
‖x(2) − x(1)‖2, where x(1) and x(2) are defined in (19), for
multi-dimensional functions fi. Details on the way the analy-
sis with PESTO was performed are presented in Appendix B.

The results of the PESTO analysis are presented in Fig. 2,
and suggest a sublinear increase of the bound with n for some
fixed κ, and with b = 1. Additional numerical exploration of
that result suggests a possible asymptotic independence of
the bound with respect to n for fixed values of κ and with
b = 1 (similar results were observed for other values of b),
and we conjecture the following bound, also illustrated in
Fig. 2:

‖x(2) − x(1)‖2 ≤ (κ+ 1)2 − c1κ
3

n+ κ+ c2
, (29)

for some c1, c2 ∈ R. The above conjecture would yield an
equivalent result as that of Theorem 2 with

Γ′ = 2(1− pU )

(
(κ+ 1)2 − c1κ

3

n+ κ+ c2

)
.

Interestingly, whereas Γ′ grows in κ2 for most values of c1
and c2, some choices yield a linear growth of Γ′ in κ (e.g.,
if c1 = 1, as shown in Fig. 2). Moreover, Γ′ does not grow
with n anymore, consistently with the improvement that we
expect to achieve for future work.

V. CONCLUSION

In this work we analyzed the random coordinate descent
algorithm for a complete graph in an open multi-agent
systems scenario when agents can be replaced during the
iterations. We analyzed the behavior of the minimizer under
replacement events, and derived an upper bound for the error
in expectation and conditions for its stability.
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Fig. 2. Evolution of the exact worst-case of ‖x(2)−x(1)‖2 with x(1), x(2)
as defined in (19), obtained using PESTO with respect to n for different
values of κ, and with b = 1 (plain line). The results are compared with the
conjecture (29) with c1 = 1 and c2 = 1 (dotted line).

As future work, we would like to improve the bounds
for general classes of functions following the discussion on
tightness performed in Section IV-C, especially since tighter
bounds were obtained for particular settings and can be con-
jectured empirically. Possible extensions include considering
agents interacting through networks with different graph
topologies, and generalizing the constraint to general a ∈ Rn.
Also, it would be interesting to consider the case where the
states of the agents in the network are d-dimensional and
where more than one edge can be updated at each iteration.
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[2] A. Teixeira, J. Araújo, H. Sandberg, and K. H. Johansson, “Distributed
actuator reconfiguration in networked control systems,” IFAC Proceed-
ings Volumes, vol. 46, no. 27, pp. 61–68, 2013.

[3] S. Liang, P. Yi, and Y. Hong, “Distributed Nash equilibrium seeking
for aggregative games with coupled constraints,” Automatica, vol. 85,
pp. 179–185, 2017.

[4] L. Xiao and S. Boyd, “Optimal scaling of a gradient method for
distributed resource allocation,” Journal of Optimization Theory and
Applications, vol. 129, no. 3, pp. 469–488, 2006.

[5] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems,” SIAM Journal on Optimization, vol. 22, no. 2,
p. 341–362, 2012.
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APPENDIX

A. Proof of Theorem 2

Proposition 5: Under Assumptions 1, 2, 3 and 6, for x(1)

and x(2) as defined in (19), there holds

‖x(2) − x(1)‖2 ≤ 8

(
κ3 + κn− 2

κn

)
(30)

+
8(|b|+ n)2(κ− 1)2κ2

n4
(
κ2n2 + n− 1

)
.

Proof: Using Lagrange multipliers, we have: L(x, λ) =
f(x) + λ(1>x− b), which yields

∂L
∂x

= ∇f(x) + λ1n = 0 =⇒ xi = µi −
λ

2θi
;

∂L
∂λ

= 1>n x− b = 0 =⇒
∑

i
µi − λ

∑
i

1

2θi
= b,

and hence the minimizer of each local function in (10) is
given by x∗i = µi +

b−
∑
j µj∑

j θi/θj
. The difference between the

minimizers can be expressed as:

‖x(1) − x(2)‖2 =

n−1∑
i=1

(
x
(1)
i − x

(2)
i

)2
+
(
x(1)n − x(2)n

)2
. (31)

To find an upper bound for (31) let consider first the
difference between the minimizers when only θn changes.
Let denote Mn =

∑n−1
i=1 µi and ζ0 =

∑n−1
j 1/θj , such that

ζ(1) =
∑n−1

j

1

θj
+

1

θ
(1)
n

= ζ0 +
1

θ
(1)
n

ζ(2) =
∑n−1

j

1

θj
+

1

θ
(2)
n

= ζ0 +
1

θ
(2)
n

.

For i 6= n we have:(
x
(1)
i − x

(2)
i

)2
=
(
µi + b−Mn−µn

θiζ(1)
− µi − b−Mn−µn

θiζ(2)

)2
= (b−Mn−µn)2

θ2i

(
ζ(2)−ζ(1)
ζ(1)ζ(2)

)2



Since θi ∈ 1
2 [α, β] we obtain:(

x
(1)
i − x

(2)
i

)2
≤ (b−Mn−µn)2

θ2i
4
(
β−α
αβ

)2(
1

ζ(1)ζ(2)

)2
≤ 4 (|b|+n)2

α2

(κα−α)2
α2β2

1
n4β−4

= 4(|b|+n)2(κ−1)2κ2

n4 . (32)

For i = n we have:(
x(1)n − x(2)n

)2
=
(
µn + b−Mn−µn

θ
(1)
n ζ(1)

− µn − b−Mn−µn
θ
(2)
n ζ(2)

)2
= (b−Mn − µn)2

(
θ(2)n ζ(2)−θ(1)n ζ(1)

θ
(1)
n θ

(2)
n ζ(1)ζ(2)

)2
=

(b−Mn − µn)2
(
θ
(2)
n − θ(1)n

)2
ζ20(

θ
(1)
n θ

(2)
n ζ(1)ζ(2)

)2
≤ 4(|b|+ n)2(β − α)2κ4n2

α2n4

=
4(|b|+ n)2(κ− 1)2κ4

n2
. (33)

Now we consider the general case when both µn and θn can
change. Let denote δµ = µ

(1)
n − µ(2)

n .
For i 6= n we have:(
x
(1)
i −x

(2)
i

)2
=
(
µi +

b−Mn−µ(1)
n

θiζ(1)
− µi − b−Mn−µ(2)

n

θiζ(2)

)2
=
(
b−Mn−µ(2)

n

θiζ(1)
− b−Mn−µ(2)

n

θiζ(2)
− δµ

θiζ(1)

)2
≤
(∣∣∣ b−Mn−µ(2)

n

θiζ(1)
− b−Mn−µ(2)

n

θiζ(2)

∣∣∣+
∣∣∣ δµ
θiζ(1)

∣∣∣)2
≤2
(
b−Mn−µ(2)

n

θiζ(1)
− b−Mn−µ(2)

n

θiζ(2)

)2
+2
(

δµ
θiζ(1)

)2
.

Then, by using (32) we obtain:(
x
(1)
i −x

(2)
i

)2
≤ 8(|b|+ n)2(κ− 1)2κ2

n4
+2

(
2

α
∑
j 1/β

)2

≤ 8(|b|+ n)2(κ− 1)2κ2

n4
+

8κ2

n2
. (34)

For i = n we have:(
x(1)n −x(2)n

)2
=
(
µ(1)
n +

b−Mn−µ(1)
n

θ
(1)
n ζ(1)

− µ(2)
n −

b−Mn−µ(2)
n

θ
(2)
n ζ(2)

)2
=
(
δµ+

b−Mn−µ(2)
n

θ
(1)
n ζ(1)

− b−Mn−µ(2)
n

θ
(2)
n ζ(2)

− δµ

θ
(1)
n ζ(1)

)2
≤
( ∣∣∣ b−Mn−µ(2)

n

θ
(1)
n ζ(1)

− b−Mn−µ(2)
n

θ
(2)
n ζ(2)

∣∣∣
+
∣∣∣δµ − δµ

θ
(1)
n ζ(1)

∣∣∣ )2
≤ 2

(
b−Mn−µ(2)

n

θ
(1)
n ζ(1)

− b−Mn−µ(2)
n

θ
(2)
n ζ(2)

)2
+ 2

(
δµ − δµ

θ
(1)
n ζ(1)

)2
.

Then, by using (33) we obtain:(
x(1)n − x(2)n

)2
≤ 8(|b|+n)2(κ−1)2κ4

n2

+ 8
(

1− 2

θ
(1)
n ζ(1)

+ 1

(θ
(1)
n ζ(1))2

)
≤ 8(|b|+n)2(κ−1)2κ4

n2 +8
(

1− 2
κn+ κ2

n2

)
. (35)
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Fig. 3. (Top): Evolution of the exact worst-case empirical performance
for ‖x(2) − x(1)‖2 with κ = 5 and b = 1 with respect to n. (Bottom):
Variation of the result presented in (top), suggesting the possible asymptotic
independence of the bound with n.

Finally, using (34) and (35) in (31) yields the conclusion.
The proof of Theorem 2 follows the same steps as that of

Theorem 1 using Proposition 5 instead of Proposition 4.

B. PESTO implementation for the tightness analysis

In this section we describe how the analysis relying on the
PESTO toolbox presented in Section IV-C was performed.
This toolbox was initially developed to numerically compute
the exact worst-case performance of first-order convex op-
timization algorithms, and more generally allows deriving
exact bounds on questions related to convex functions.

We consider a general setting with multi-dimensional
functions fi : Rd → R that are α-strongly convex and β-
smooth, with arg minx fi(x) ∈ B(0, 1). We use PESTO
to evaluate max‖x(2) − x(1)‖2, where x(1) and x(2) are
defined as in (19) for that multi-dimensional setting, and
where we impose

∑
i x

(1)
i =

∑
i x

(2)
i = vb, for some vector

vb satisfying ‖vb‖ = b. This setting is exactly equivalent to
that of Proposition 3 when d = 1. However, PESTO does
not allow imposing d = 1 in the implementation, so that we
solve this more general problem, whose solution will thus
also be valid for more general values of d.

Hence, the problem is implemented in PESTO as
max‖x(2) − x(1)‖2, with the variables of the problem being
the functions fi, the vector vb and the decision variables xi,
so that it derives the performance achieved by the empirical
worst-case instance of the problem.

The result that is obtained for κ = 5 and b = 1 with
respect to n is presented in Fig. 3. The top plot shows
the sublinear increase of the bound with n, and suggests
its possible asymptotic independence in n. The bottom plot
seems to confirm that conjecture, and it is expected that the
bound converges to (κ + 1)2 as n → ∞, consistently with
the analysis and conjecture presented in Section IV-C.
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