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Abstract 

Solitons are coherent structures that describe the nonlinear evolution of wave localizations in 
hydrodynamics, optics, plasma and Bose-Einstein condensates. While the Peregrine breather is known 
to amplify a single localized perturbation of a carrier wave of finite amplitude by a factor of three, there 
is a counterpart solution on zero background known as the degenerate two-soliton which also leads to 
high amplitude maxima. In this study, we report several observations of such multi-soliton with doubly-
localized peaks in a water wave flume. The data collected in this experiment confirm the distinctive 
attainment of wave amplification by a factor of two in good agreement with the dynamics of the 
nonlinear Schrödinger equation solution. Advanced numerical simulations solving the problem of 
nonlinear free water surface boundary conditions of an ideal fluid quantify the physical limitations of 
the degenerate two-soliton in hydrodynamics. 
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1 Introduction  

The Peregrine breather (PB) [1] is a fundamental solution of the nonlinear Schrödinger equation 
(NLSE) localized both in space and time, yielding a three-fold amplification of the initial amplitude at 
the point of maximum localization. These unique characteristics have led the PB to be generally 
considered as a potential backbone model allowing to describe the emergence of extreme events in 
several physical systems [2,3]. Although the PB existence was originally predicted in the early eighties 
[1], it took about three decades to observe this particular wave envelope in a laboratory environment 
[4,5,6]. These initial studies have attracted significant attention and led to many follow-up studies 
related to PB dynamics and its peculiar physical properties [10-17]. The initial or boundary conditions 
leading to the PB excitation require to impose a small perturbation on top of a plane wave background. 
Recently, generic features of PB dynamics on a stationary dnoidal background have been presented 
[18] and in fact the regular background represents only one limiting case of the exact NLSE family of 
dnoidal solutions while the other limit is the envelope soliton on zero-background [19,20]. This allows 
a more general construction of Peregrine-type coherent structures on different type of stationary 
backgrounds, which can be also described by an exact solution [21].  

In this paper, we experimentally investigate the PB dynamics in the zero background limit, which can 
be also associated with the degenerate case of two soliton interaction, resulting in an amplitude 
amplification factor of two at the point of maximum localization [22]. The laboratory experiments, 
conducted in different water wave flumes are in excellent agreement with the theory when the carrier 
steepness is moderate. Otherwise, deviations from the symmetric envelope shapes are inevitable due 
to the physical limitations of the NLSE approach to describe broadband processes in water waves. The 
numerical simulations based on the higher-order spectral method, which accurately solve the nonlinear 
water wave problem, quantify the limitations in the evolution of the hydrodynamic degenerate soliton 
on the water surface. We believe that our results will have a significant impact on the field of nonlinear 
dynamics and improve fundamental understanding of extreme wave formation in nonlinear media.  

2 Higher-order solitons on zero background and degeneracy 

The NLSE for surface gravity waves is the simplest nonlinear evolution equation that takes into account 
the interplay between dispersion and nonlinearity in the evolution of a narrowband wave field. 
Assuming unidirectional propagation of the wave field in infinite water depth, the wave envelope 
evolution equation reads [23] 

𝒊𝒊 �𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

+ 𝒄𝒄𝒈𝒈
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏
� + 𝝎𝝎

𝟖𝟖𝒌𝒌𝟐𝟐
𝝏𝝏𝟐𝟐𝝍𝝍
𝝏𝝏𝒙𝒙𝟐𝟐

+ 𝝎𝝎𝒌𝒌𝟐𝟐

𝟐𝟐
|𝝍𝝍|𝟐𝟐𝝍𝝍 = 𝟎𝟎,                                      (1) 

where 𝜓𝜓(𝑥𝑥, 𝑡𝑡) is the complex wave envelope, x is the spatial coordinate along the wave propagation, 
and t represents time. The parameters 𝜔𝜔 and 𝑘𝑘 are the carrier cyclic wave frequency and wavenumber, 
respectively. The latter are constrained by the gravitational acceleration 𝑔𝑔-dependent deep-water 
dispersion equation 

𝝎𝝎𝟐𝟐 = 𝒈𝒈𝒈𝒈,                                                               (2) 

and the envelope is assumed to propagate with the group velocity 𝑐𝑐𝑔𝑔 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜔𝜔
2𝑘𝑘

.  

The NLSE is a partial differential equation that belongs to the family of integrable evolution equations 
[24]. Its exact solutions provide physically-relevant models for investigating the dynamics of nonlinear 
coherent wave envelopes in controlled laboratory environments. The fields of its application are 
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hydrodynamics, optics and Bose-Einstein condensates. It is common to use the dimensionless form of 
Eq. (1) in particular when aiming for the derivation of exact solutions 

𝒊𝒊 𝝏𝝏𝚿𝚿
𝝏𝝏𝝏𝝏

+ 𝝏𝝏𝟐𝟐𝚿𝚿
𝝏𝝏𝑿𝑿𝟐𝟐

+ 𝟐𝟐|𝚿𝚿|𝟐𝟐𝚿𝚿 = 𝟎𝟎,                                                    (3) 

which is obtained by introducing the following transformations 

𝑿𝑿 = 𝟐𝟐𝟐𝟐�𝒙𝒙 − 𝒄𝒄𝒈𝒈𝒕𝒕�,   𝑻𝑻 = 𝝎𝝎
𝟐𝟐
𝒕𝒕,   𝜳𝜳 = 𝒌𝒌

√𝟐𝟐
𝝍𝝍.                                    (4) 

One of the most-fundamental solutions of the NLSE is an isolated sech-shape nonlinear wave group 
on zero-background known as envelope soliton, which can be considered as a mode of a nonlinear 
system [25] which remains unchanged with propagation. At the same time, interactions and collisions 
between envelope solitons are elastic [26,27]. The number of solitons contained in a localized initial 
condition remains fixed during the follow up evolution. The zero-velocity soliton solution with an 
amplitude of one can be written as  

𝜳𝜳𝑺𝑺(𝑿𝑿,𝑻𝑻) = 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬(𝑿𝑿) 𝐞𝐞𝐞𝐞𝐞𝐞(𝒊𝒊𝒊𝒊).                                          (5) 

The initial-value problem for the NLSE can be solved with the help of the inverse scattering technique 
(IST) [24,28,29]. More complex (higher-order) structures containing multiple solitons can be also 
constructed using the Darboux transformation [30] or other dressing method [31]. Each envelope 
soliton in these superpositions is unambiguously characterized by the pair of its two key parameters: 
the amplitude and the velocity. The NLSE solution describing the dynamics of two envelope solitons 
with fixed amplitudes 0.5 and 1.5, zero-velocities and located at the same position X=0, is known as 
the Satsuma-Yajima breather [32] 

𝚿𝚿𝑺𝑺𝟐𝟐(𝑿𝑿,𝑻𝑻) = 𝟒𝟒 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝟑𝟑𝟑𝟑+𝟑𝟑𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝑿𝑿 𝐞𝐞𝐞𝐞𝐞𝐞 𝟖𝟖𝟖𝟖𝟖𝟖
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝟒𝟒𝑿𝑿+𝟒𝟒𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐𝟐𝟐+𝟑𝟑𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝟖𝟖𝟖𝟖

𝐞𝐞𝐞𝐞𝐞𝐞(𝒊𝒊𝒊𝒊).                                          (6) 

This solution is periodic in T and can be used for pulse nonlinear wave group compression. At 𝑇𝑇 = 0, 
this solution takes the form of a soliton with twice the amplitude of a single soliton of the same width, 
i.e. Ψ𝑆𝑆2(𝑋𝑋, 0) = 2 sech(𝑋𝑋) = 2 Ψ𝑆𝑆(𝑋𝑋, 0). However, this initial condition changes with propagation 
and evolves towards self-compression. Such solutions also play a key role in the formation of 
significant irreversible spectral broadening and the creation of supercontinua as a result of soliton 
fission [33,34]. Generally, when the parameters of the two envelope solitons become close, the distance 
between them increases and they repel each other, moving away towards infinity. Due to this fact, for 
more than two decades since the development of the IST, the two-soliton solution of the NLSE with 
exactly the same parameters has been considered as non-existent. Overcoming this controversy, the 
solution has been reported in [1,22]. Such solution is the degenerate two-soliton solution, as finding it 
requires considering the special limit when their amplitudes and velocities tend to the same limiting 
values. It is represented by a mixed semi-rational semi-hyperbolic function 

𝚿𝚿𝑫𝑫(𝑿𝑿,𝑻𝑻) = 𝟒𝟒 𝑿𝑿𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝑿𝑿−𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝑿𝑿−𝟐𝟐𝟐𝟐𝟐𝟐 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝑿𝑿
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐𝑿𝑿+𝟏𝟏+𝟐𝟐𝑿𝑿𝟐𝟐+𝟖𝟖𝑻𝑻𝟐𝟐

𝐞𝐞𝐞𝐞𝐞𝐞(𝒊𝒊𝒊𝒊).                                          (7) 

More specifically, the solution (7) describes the interaction of two envelope solitons with unit 
amplitudes and with their center of mass located at X=0. The envelope |Ψ𝐷𝐷| in (7) is symmetric with 
respect to the change of the sign of either X or T. Note that the solution (7) may be generalized using 
the invariant transforms of the NLSE, i.e. arbitrary phase, scaling and Galilean transforms. In the 
reduced form (7), it does not contain any free parameters. The degenerate solution (7) describes two 
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”attracting” envelope solitons when T < 0. When T = 0, the two solitons are superimposed and form an 
extreme event with an amplitude at the point of collision twice that the amplitude of the isolated 
solitons. At large times T ≫ 1, the solution (7) describes the two envelope solitons which slowly walk 
away from each other after the collision. Each of them can be approximated as a quasi-single-soliton 
solution. The opposite velocities of the two solitons reduce when T → ∞.  

What at first sight seems to be a mathematical artifact, has in fact a particular physical relevance. 
Indeed, the central part of the degenerate solution (7) can be considered as the PB on the zero-
background limit. The comparison is relevant because the solution (7) is semi-rational while PB is a 
rational solution. Representing hyperbolic functions cosh X and cosh 2X in the central part of the 
solution as an expanded series in X can reduce it to a rational approximation similar to the PB. On the 
other hand, the PB can be excited on top of exact dnoidal solutions, parameterized as Ψ𝑑𝑑𝑑𝑑(𝑋𝑋,𝑇𝑇) =
dn(𝑋𝑋,𝑚𝑚)exp(𝑖𝑖[2 −𝑚𝑚2]𝑇𝑇); 0 ≤ 𝑚𝑚 ≤, 1 see [18,21]. One limiting case of this one-parameter family 
of steady dnoidal solutions is the regular background (𝑚𝑚 = 0) and the other limit is the envelope soliton 
(𝑚𝑚 = 1). This second limit leads to the formation of the degenerate soliton solution. The 
transformation is controlled by an additional free parameter – modulus of the dn function. The role of 
this parameter in the highly nontrivial process of degenerate soliton formation can be seen from Fig. 7 
in [18]. This process admits several stages of PB transformation. A significantly simplified version of 
the process can be seen from Fig. 1 (see bottom panels from left to right). Here, the classical Peregrine 
solution on finite background is transformed to the degenerate solution on zero background with one 
intermediate step in the form of the PB on the DN-wave background (referring to the semicircle in the 
𝜆𝜆-plane in Fig. 2 of [18]).  

 

   

   

 

Figure 1: Spatio-temporal evolution of solitons on finite and zero-background. Top Left: single envelope soliton. Top 
Middle: Higher-order soliton of order 2. Top Right: Degenerate two-soliton solution. Bottom left: Peregrine breather. 
Bottom middle: Peregrine breather on a dnoidal background. Bottom right: Degenerate two-soliton soliton. 
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The Peregrine solution  

𝚿𝚿𝑷𝑷(𝒙𝒙, 𝒕𝒕) = �−𝟏𝟏 + 𝟒𝟒+𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝟏𝟏+𝟒𝟒𝑿𝑿𝟐𝟐+𝟏𝟏𝟏𝟏𝑻𝑻𝟐𝟐

� 𝐞𝐞𝐞𝐞𝐞𝐞(𝟐𝟐𝟐𝟐𝟐𝟐),                                              (8) 

has been found to be present in multi-soliton solutions [35]. On the other hand, the degenerate two-
soliton solution (7) can represent Peregrine-type dynamics with zero condensate. This becomes more 
evident when considering the type of localization around point of maximum amplitude. In fact, the 
shape of the extreme wave at T = 0 does resemble the shape of the Peregrine breather. This can be seen 
from Fig. 3, where the degenerate two-soliton solution at T = 0 is compared with the shape of the 
Peregrine breather at T = 0 multiplied by the factor 2/3 in order to equalize the maximal amplitudes.  

 

Figure 3: The amplitude rescaled Peregrine breather shape vs. degenerate two-soliton solution profile at T=0. 

The agreement between the two profiles is remarkably good within the interval between the zeros. 

Even though the dynamics of the degenerate two-soliton solution creates a smaller wave amplification 
than the Peregrine breather (2 rather than 3), it is still a rapidly forming extreme event. We should also 
take into account the difference between the backgrounds. Thus, such solutions can be responsible for 
the occurrence of extreme wave events, which are very similar to the PB.  

3 Laboratory experiments 

The physical experiments have been conducted in two different water wave facilities:  Hamburg 
University of Technology and the University of Sydney flumes, as described in [10] and [36], 
respectively. Although both facilities are different when considering their size and type of wave 
generators (flap- and piston-type, respectively), the experimental procedures are similar. The wave 
generator is programmed to create the temporal surface elevation as described by the NLSE solution 
at fixed position 𝑥𝑥∗ to first-order in steepness 
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𝜼𝜼𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝒙𝒙∗, 𝒕𝒕) = 𝐑𝐑𝐑𝐑(𝝍𝝍(𝒙𝒙∗, 𝒕𝒕)𝐞𝐞𝐱𝐱𝐱𝐱[𝒊𝒊(𝝎𝝎𝝎𝝎 − 𝒌𝒌𝒙𝒙∗)] ).        (9) 

Since the maximal compression occurs at x=0, a negative value for 𝑥𝑥∗ has to be chosen in order to 
observe the nonlinear soliton interaction and breather-type focusing process in the wave facility. The 
larger |𝑥𝑥|, the more the two solitons move away from each other. The second-order Stokes correction 
is considered when comparing the collected data with the theoretical NLSE predictions at the respective 
gauge location 𝑥𝑥𝑔𝑔∗, that is  

𝜼𝜼�𝒙𝒙𝒈𝒈∗ , 𝒕𝒕� = 𝐑𝐑𝐑𝐑 �𝝍𝝍�𝒙𝒙𝒈𝒈∗ , 𝒕𝒕�𝐞𝐞𝐞𝐞𝐞𝐞�𝒊𝒊�𝝎𝝎𝝎𝝎 − 𝒌𝒌𝒙𝒙𝒈𝒈∗ �� + 𝟏𝟏
𝟐𝟐
𝒌𝒌𝝍𝝍𝟐𝟐�𝒙𝒙𝒈𝒈∗ , 𝒕𝒕�𝐞𝐞𝐞𝐞𝐞𝐞�𝟐𝟐𝟐𝟐�𝝎𝝎𝝎𝝎 − 𝒌𝒌𝒙𝒙𝒈𝒈∗ �� �.   (10) 

Note that when programming the wave maker to produce the surface elevation to first-order in 
steepness, results are expected to be identical as the bound waves (higher-order Stokes harmonics) are 
immediately generated within half a wavelength due to the intrinsic feature of the nonlinearity in the 
description of water waves. Moreover, fixing two key physical parameters, namely wave amplitude a 
and the carrier frequency 𝑓𝑓 = 𝜔𝜔

2𝜋𝜋
 are sufficient to determine all physical features of the surface 

elevation. The choice for the specific values of the carrier amplitude and frequency is restricted to the 
stroke and frequency range specifications of the wave generator. The wave steepness ka, which is an 
indicator for the nonlinearity of the carrier wave, can be easily determined using the dispersion relation 
(2). One crucial step consists in scaling the solution Ψ(𝑋𝑋,𝑇𝑇) to a dimensional form ψ(𝑥𝑥, 𝑡𝑡) satisfying 
Eq. (1). Considering a scaling with respect to the space- or time-NLSE does not have a major impact 
on the evolution of the degenerate solution in a water wave flume [37].  

 

Figure 3: Experimental observation of a degenerate soliton for a=0.006 m, ka=0.12 and 𝒙𝒙∗=-27 as measured in the 
Hamburg University of Technology flume. Top: Water surface as measured by the wave gauges. Bottom: NLSE 
predictions at the same physical locations using Eq. (10).  
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The first experiment reported here aims to demonstrate the evolution of the solution over a significantly 
large distance of 45 m in order to observe the nonlinear and solution-specific interaction between the 
two envelope solitons yielding an extreme localization. On the other hand, the evolution in the 
Hamburg University of Technology flume was restricted to 15 m (when taking out the beach 
installation, effectively 12 m). To overcome this limitation, the reflection-free wave measurement at 9 
m was re-injected to the wave generator four times mimicking continuation of the wave propagation. 
The results of these tests are shown in Fig. 3.  

These results are a clear confirmation of degenerate soliton dynamics on the water surface. Note the 
excellent agreement in the distinct dynamics with the theoretical prediction, especially considering the 
total evolution distance of about 144 times the value of the wavelength.  

There are obvious limitations of the NLSE model for water waves [38-40]. In fact, when waves become 
steep, the spectral broadening applies the natural restriction to the NLSE reducing its ability to 
accurately describe the wave hydrodynamics. However, this strongly depends on the initial carrier 
steepness and the bandwidth of the wave train [41].  

 

Figure 4: Experimental observation of a degenerate soliton for a=0.01 m and 𝒙𝒙∗=-23 with varying steepness values 
as measured in the University of Sydney flume. Top left: ka=0.10. Top right: ka=0.11. Bottom right: ka=0.12. Bottom 
left: ka=0.13. 
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The next series of tests have been conducted at the University of Sydney wave flume. These 
addressed the role of wave steepnes on the collision process. Several tests have been conducted by 
gradually increasing the wave steepness from 0.10 to 0.13 with a 0.01 step for the same carrier 
amplitude of 0.01 m. The four examples of evolution of the degenerate solution at different steepness 
values are shown in Fig. 4.  

Here, we can clearly see that the increase of carrier steepness distorts the clean and ideal evolution of 
the NLSE solution, particularly when the carrier steepness values exceed 0.13. Consequently, the 
soliton interaction becomes asymmetric with a distortion of the envelope shape at the peak. These 
restrictions can be accurately addressed and quantified numerically by solving the Euler equations as 
is discussed in the next section.  

4 Numerical simulations 

The numerical simulation is performed within the framework of the potential Euler equations using the 
High-Order Spectral Method (HOSM) following [42]. The  HOSM  simulations include 210 grid points 
in the physical space and  a  twice  larger  number in the Fourier domain. The iterations in time are 
performed with the help of a split-step Fourier procedure. The order of nonlinearity is set to M = 6. 
This corresponds to the solution that is accurate of up to 7-wave nonlinear interactions. The initial-
value problem is solved in a periodic spatial domain. The wave steepness is the only physical parameter 
which controls the wave evolution. The steepness is determined by the quantity ka, where a is the 
amplitude of the envelope solitons long before they start to collide.  

With the purpose of comparing the results of the simulations with the NLSE solution (7), the computed 
surface evolution was transformed to the co-moving dimensionless variables (4) as used in the NLSE. 
It is then re-scaled to provide the unit amplitudes of the envelope solitons when these are detached at 
T → –∞, according to the transformations similar to (4) 

𝑿𝑿 = 𝟐𝟐𝟐𝟐𝟐𝟐�𝒙𝒙 − 𝒄𝒄𝒈𝒈𝒕𝒕�,     𝑻𝑻 = 𝒂𝒂𝟐𝟐 𝝎𝝎
𝟐𝟐
𝒕𝒕,     𝚿𝚿 = 𝒌𝒌

√𝟐𝟐
𝜼𝜼
𝒂𝒂
.                                   (11) 

Note that in (11) the function Ψ(𝑋𝑋,𝑇𝑇) is now real-valued. Three cases of the wave steepness were 
simulated, which correspond to ka = 0.05, ka = 0.10 and ka = 0.15. In all these cases, the initial 
condition is specified according to the solution (8). The dimensionless time is chosen to be T0 ≈ –12. 
This choice corresponds to the situation when solitons already exhibit partial overlap as can be seen in 
Fig. 5. This overlap seeds the interaction process in the simulations.  

 
Figure. 5. Initial conditions for the numerical simulations of the degenerate soliton. Left: ka = 0.05. Middle: ka = 0.1. 
Right: ka = 0.15. The axes show the physical scaled coordinate and surface displacement (y-axis left), the standard NSLE 
coordinate 𝑋𝑋 = 2𝑎𝑎𝑎𝑎�𝑥𝑥 − 𝑐𝑐𝑔𝑔𝑡𝑡� (x-axis) and the complex amplitude  Ψ = 𝑘𝑘

√2
𝜂𝜂
𝑎𝑎
 (y-axis right). 
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The physical time of the start of the simulation t0 depends on the wave steepness, see Eq. (11). In fact, 
it corresponds to about 340 wave periods in the steepest case shown in the right panel of Fig. 5, and to 
about 3000 periods in the small-amplitude case shown in the left panel of Fig. 5. In order to initiate the 
simulation of the HOSM code, the surface displacement and the surface velocity potential are 
calculated from 𝜓𝜓(𝑥𝑥,−𝑡𝑡0) with  a  more  precise  definition  than  Eq. (10),  using the third-order 
asymptotic solution for nonlinear modulated waves, see [43]. Only the cases without wave breaking 
were simulated, thus, no filters are required to take into account wave breaking effects.  

Six runs of the numerical simulations were performed with different complex phases of the initial 
condition 𝜓𝜓(𝑥𝑥,−𝑡𝑡0), for several wave steepness conditions. The envelope Ψ𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋,𝑇𝑇) is calculated as 
the maximal values of Ψ among these six simulations at every X and T. The surface displacements of 
the initial conditions are plotted in Figs. 5 with respect to two versions of the dimensionless space and 
amplitude variables.   

A false color representation of the evolution of each degenerate soliton envelope in time and space is 
shown in Fig. 6.  

 

Figure. 6. Numerical simulations of the Euler equations of the degenerate soliton for different steepness for different 
initial conditions. Left: ka = 0.05.  Middle: ka = 0.1. Right: ka = 0.15. The color-coded evolution of the wave envelope 
Ψ𝑒𝑒𝑒𝑒𝑒𝑒 is shown. 

The intersection of the white dashed lines corresponds to the point in time and space where the 
maximum wave is expected within the NLSE framework. Qualitatively, the evolution of waves with 
small steepness ka = 0.05 (see Fig. 6 left panel) is similar to the one obtained from the NLSE (Fig. 1 
right panel) and in the laboratory experiment (Fig. 3). In simulations, the two solitary groups separated 
initially collide, form an extreme event and then, separate again restoring their soliton shape. However, 
the strongly nonlinear simulation results in faster propagation of the wave groups and slightly quicker 
formation of the large wave (yellow dot). Interestingly, the amplitudes of the solitons after the 
separation are slightly different: the amplitude of the leading group is larger. The described features of 
the strongly nonlinear simulation becoming more pronounced when the steepness is larger than ka = 
0.1 (Fig. 6, middle panel). 

Indeed, when the steepness further increases, ka = 0.15, the new recurrence effects are becoming more 
apparent (Fig. 6 right panel). Moreover, when the two soliton groups merge, they form a bound state 
similar to the bi-soliton described in [1,32]. However, in contrast to the bi-soliton, the interaction here 
is asymmetric. The two subsequent extreme events are still large in amplitude in this type of recurrent 
dynamics. Fig. 7 shows the time evolution of the maxima of the wave elevation for the three 
simulations shown in Fig.6.  
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Figure. 7. Evolution of the wave maxima in the numerical simulations shown in Fig. 6. 

After a few beating cycles, the solitary groups finally decouple. At the end of the interaction process 
the leading soliton has a higher in amplitude than the trailing one. After the three collisions, the 
envelope solitons are completely separated. The groups emerged after the third collision are not 
stationary. The leading soliton reveals the breathing dynamics (this can be seen in Fig. 7 for T >20). 
The second solitary group spreads decaying in amplitude. Thus, the water wave dynamics of very steep 
degenerate solitons shows the survival of only one (leading) soliton. Its amplitude increases while the 
energy of the other group reduces.  

The extreme wave groups with highest amplitude which arise in the course of the wave dynamics are 
shown in Fig. 8.  

 

Figure. 8. Extreme events with highest amplitude during the evolution presented in Fig. 6. 

In contrast to the envelopes shown in Fig. 5, these wave profiles possess strong back-to-front 
asymmetry. Some alteration of the central feature with maximal amplitude, when the wave steepness 
grows, may be noticed as well. This difference from the experimental observations is most-probably 
caused by dissipative effects [20]. The maximum water elevation is slightly smaller than anticipated 
by the NLSE solution for Ψ = 2 (marked by the dotted lines in Fig. 8) in the smaller wave steepness 
case, shown in Fig. 8 (left panel). However, this limit is slightly exceeded in the case of larger wave 
steepness shown in Fig. 8 right panel. The wave groups in Fig. 8 possess noticeable vertical asymmetry 
in the steeper cases (Fig. 8 middle and right panel) due to the bound (phase-locked) waves. While the 
wave crest exceeds the value of Ψ = 2 in the steepest wave case (Fig. 8 right panel), the deepest wave 
trough is well under the level of the NLSE solution. We emphasize that the wavelength of the carrier 
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wave is assumed to be sufficiently large so that the capillary effects may be neglected while being 
small enough to satisfy the deep-water condition. 

5 Conclusions 

We have reported for the first time the experimental observation of the degenerate soliton interaction 
in nonlinear physics. This coherent structure can be considered to be a PB on the zero-background 
limit. The experimental data and numerical simulations are both in excellent agreement for small and 
moderate steepness values. This fact confirms the accuracy of the NLSE in the description of extreme 
wave events. Future studies will be devoted to higher-order soliton degeneracy beyond the collision of 
two solitons. This will improve our understanding of such effects in formation of rogue waves. 
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