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Abstract: Birefringence phase-matched third-harmonic generation at 1594 nm is performed for
the first time in a KTiOPO4 single crystal micrometric ridge waveguide. The energy conversion
efficiency reaches 3.4% for a pump energy as low as 2 µJ over a pulse duration of 15 ps
at a repetition rate of 10 Hz. Strong agreements between theory and experiments for both
phase-matching and conversion efficiency is obtained, which let us envision future triple photon
generation quantum experiments.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Beside efficient generation of short wavelengths, nonlinear Third-Harmonic Generation (THG)
components also have the thrilling potential for novel quantum optical experiments based on
direct Triple Photons Generation (TPG) [1,2]. The biaxial nonlinear crystal KTiOPO4 (KTP) is of
prime interest in this quantum framework, including Second-Order spontaneous down-conversion
[3]. Note also that the quest for compact, efficient and fiber compatible THG devices is thus still
a hot topic.

THG can be achieved in a direct way by a Third-Order nonlinear process, i.e. ω+ω+ω→ 3ω,
or by two cascaded Second-Order nonlinear processes, i.e. ω+ω→ 2ω followed by ω+ 2ω→

3ω. The achievement and refinement of such interactions in the framework of guided optics is a
current challenge of photonics. The wavelength of the fundamental beam would be preferentially
positioned where commercial laser and characterization tools are available such as in the telecom
domain around λω = 1550 nm. For instance, interesting results of direct THG can be based
on mode-matching in silicon waveguides [4,5] or in polycrystal anatase TiO2 [6]. Due to the
versatility and high conversion efficiencies of the quasi-phase-matching (QPM) configuration, it
is often considered in the case of cascaded THG. Promising results have hence been obtained
in planar periodically-poled LiNbO3 (PPLN) waveguides [7] and in ridge waveguides using
two PPLN crystals [7,8]. The latter nonlinear micrometric ridge waveguides are emerging
due to their high frequency conversion efficiency and good matching with optical fibers [8,9].
Demonstrations have also been realized in ridge waveguides carved in KTP bulk single crystals
exploiting birefringence phase-matching (BPM) [10,11] or in QPM periodically-poled KTP
[12,13] showing strong performances for second-harmonic generation. Since KTP crystals also
exhibit a significant Third-Order nonlinear effect [14], KTP ridge waveguides are appealing for
direct THG generation.
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In this paper, we report on the first experimental demonstration of direct THG in micrometric
KTP ridge waveguides. The BPM conditions is tuned to the chosen wavelengths by tailoring the
waveguide transverse dimensions. This study is a preliminary step for designing further quantum
optical experiments based on direct Triple Photons Generation (TPG), i.e. 3ω→ ω+ω+ω,
that is the exact reverse process of THG, thus exhibiting the same BPM conditions [2]. The
targeted wavelength for that purpose is λ3ω = 532 nm, leading to triplets in the telecom range at
λω = 3λ3ω = 1596 nm.

2. Design of a Y-cut ridge waveguide

The first step is to calculate the BPM conditions as a function of the dimensions of the waveguide
in order to design a structure in accordance with the targeted wavelengths. To facilitate light
coupling we consider a squared-transverse-section ridge, d being the side of the square. The BPM
conditions rely on the wavelength dispersion equations of the effective indices in the considered
direction of propagation that is the ridge guide axis. We used the same empirical dispersion
equations than those of Ref. [11] relative to the fundamental mode, i.e.:

neff d
i (λ) =

(︄
Ad

i × λ
Bd

i +
Cd

i

10−6 × λDd
i − Ed

i

− Fd
i × 10−6 × λGd

i

)︄Hd
i

+ Id
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with i = (x, y, z) is relative to the dielectric frame of KTP
The dispersion coefficients {Ad
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i , Cd

i , Dd
i , Ed

i , Fd
i , Gd

i , Hd
i , Id

i } depends on the waveguide
transverse dimension d and are obtained by fitting discrete values of the effective indices neffi
calculated by COMSOL for different couples (λ, d) in the fundamental transverse mode [11].
These coefficients are given below in Table 1 for d = 6 µm, which is very close to the targeted
transverse dimension as it will be seen hereafter.

Table 1. Dispersion coefficients of a KTP ridge waveguide of transverse dimension d=6 µm, at
room temperature

Ad
i Bd

i Cd
i Dd

i Ed
i Fd

i Gd
i Hd

i Id
i

i (nm−1) (nm) (nm) (nm−1)

x 0.4488 0.01948 0.5288 2.277 0.4939 0.88 1.615 0.07128 0.7808

y 1.017 0.004481 1.47 2.323 0.6407 1.242 1.653 0.07207 0.7373

z 2.236 0.006506 0.8399 2.14 0.1814 0.5619 1.811 0.1125 0.7183

Note that Eq. (1) has been established starting from the bulk KTP crystal Sellmeier equations
of Ref. [15], which gave a better agreement than using the other main Sellmeier equations of
KTP [16,17,18].

From these effective indices data, it has been possible to show that THG can be phase-matched
with a Fundamental wavelength around 1600 nm for a propagation along the y-axis of the
dielectric frame (x, y, z) of KTP. Assuming that both waves in their fundamental transverse mode
propagate in the ridge of transverse dimension d, the corresponding BPM relation is:

neff d
x (λ

BPM
ω ) + 2neff d

z (λ
BPM
ω ) − 3neff d

x (λ
BPM
3ω ) = 0 (2)

The indices x and z stand for the direction of polarization of the waves at the BPM Fundamental
wavelength λBPM

ω or at the third-harmonic λBPM
3ω , the corresponding effective indices being neff d

x
or neff d

z . The z-polarization corresponds to the TM0 mode and the x-polarization to the TE0
mode.



Research Article Vol. 29, No. 14 / 5 July 2021 / Optics Express 22268

We calculated λBPM
ω thanks to Eq. (2) with the effective indices given by Eq. (1) for several

discrete values of d. Then we fitted these data by the following empirical equation:

λBPM
ω (d) = λBPM

ω (∞) + ρd−α (3)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λBPM
ω (∞) = 1476nm

ρ = 5945

α = 2.144

(4)

Figure 1 shows the BPM interpolation curve given by Eqs. (3)–(4), where λBPM
ω is plotted as a

function of the transverse dimension of the ridge d.

Fig. 1. Calculated BPM THG Fundamental wavelength λBPM
ω versus the transverse ridge

dimension d. The horizontal blue dash line indicates the bulk limit, i.e. d → ∞, calculated
with the refractive indices taken from [14]. The horizontal red dash line corresponds to the
targeted BPM wavelengths.

Equation (3) is compatible with the fact that the BPM Fundamental wavelength reaches the
value of bulk KTP, i.e. λBPM

ω (d → ∞) = 1476nm. From Eqs. (3)–(4), it comes that the ridge
transverse dimension has to be d = 6.12µm in order to get λω = 1596nm.

3. Fabrication and geometrical characterization of the waveguide

The general process, similar to the one described in Refs. [11,19], is depicted in Fig. 2. A
bulk KTP single crystal provided by Cristal Laser SA whose dimensions are 20 mm along
the x-axis, 10 mm along the y-axis and 500 µm along the z-axis is coated on a polished z-face
with a 600-nm-thick silica layer using inductively-coupled plasma chemical vapor deposition
(ICPECVD). This layer is used to provide confinement of light and acts as a cladding, as shown in
Fig. 2(a)). A 300-nm-thick gold layer is then sputtered onto the silica as well as onto a high flatness
4 inches diameter silicon wafer (Fig. 2(a)). The KTP sample is then positioned at the center of
the silicon wafer so that both metallized faces are brought into contact. Subsequently they are
pressed in an EVG wafer bonding machine to form a KTP-silicon heterostructure (Fig. 2(b)).
The bonding is realized at room temperature in order to prevent mechanical stress induced by
the different thermal coefficients of the materials. The resulting bonding is characterized by an
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ultrasound technique which ensures that more than 98% of the surface is bonded [19]. In order
to limit the edge effect during the subsequent mechanical thinning, the 500 µm KTP is embedded
in a silica matrix (Fig. 2(c)). The KTP-silica structure is then roughly thinned down to 100 µm by
surface grinding, followed by a precise grinding and polishing process to be as close as possible
to the targeted thickness d=6 µm (Fig. 2(d)).

Fig. 2. Chart showing the KTP ridge waveguides fabrication process.

15 ridge waveguides with different widths w are then carved in the KTP layer by a precision
dicing saw equipped with a 56-mm-diameter and 400-µm-thick diamond blade (Fig. 2(e)). The
output and input faces are also diced with the same technique. An average roughness (Ra) of
about 2 nm is measured on the top face of the waveguides while Ra is near 5 nm on the diced faces.
40% of the fabricated waveguides are suitable for optical characterizations. The main defects are
due to damaged input/output faces attributed to weaker bonding at the edge of the KTP sample.
Larger dimensions bulk KTP samples should bring a larger fabrication yield. Waveguides were
then analyzed by Scanning Electron Microscopy (SEM), as shown in Fig. 3.

Fig. 3. Left: Electron microscopy image of a waveguide. (x, y, z) is the dielectric frame
of KTP. Right: Schematic view of the geometrical prismatic shape of the waveguide and
dimensions of the input and output faces.
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Figure 3 shows that the In and Out sections, i.e. Sin and Sout respectively, are not equal,
which is due to the polishing of the upper face as well as to the dicing regarding the two
lateral faces. Thus, there is a constant gradient of the transverse section, ranging between
Sin= 39.5 µm2 and Sout= 36.7 µm2. The calculations and analysis of experimental data described
in section 4 were performed by considering a “theoretical equivalent” waveguide that has a
constant geometry along its axis and with a square transverse section. The square side was then
defined by davg =

√︁
(Sin + Sout)/2 = 6.17µm which is only 50 nm away from the targeted one.

The corresponding theoretical BPM Fundamental wavelength calculated according to Fig. 1 or
Eqs. (3)–(4) is λBPM

ω = 1594.2nm, which is very close to the 1596 nm expected wavelength.

4. BPM wavelengths and spectral acceptance

The experimental investigation of the THG in the above characterized ridge waveguide is carried
out using a TOPAS Optical Parametric Generator to deliver the pump beam. Its pulse duration
is τω= 15ps, the repetition rate is 10 Hz, and the wavelength is tunable near 1600 nm with an
accuracy of± 1 nm. The polarization is properly adjusted in order to achieve the BPM condition
described by Eq. (2). The Fundamental beam is injected in the waveguide using a x20 microscope
objective (MO). Proper alignment is made to favor excitation of the fundamental mode of the
waveguide as witnessed by the observation of the output light distribution. The generated
Third-Harmonic beam is collected by a x40 MO placed at the exit of the waveguide and its
energy is measured by a J3S10 Molectron joulemeter. The output Fundamental beam residue is
blocked thanks to FGS900M and FGB37 Thorlabs filters. The measured peak intensity of the
Third-Harmonic beam plotted as a function of the Fundamental wavelength is shown in Fig. 4.

Fig. 4. Normalized intensity of the generated Third-Harmonic beam as a function of the
Fundamental wavelength. The black squares are experimental data. The pump intensity
is fixed at 0.4 GW.cm−2. The red curve corresponds to the calculation in the case of a
perfectly uniform 8.6 mm long square ridge with a side davg = 6.17 µm. The blue curve is a
sinc2 fit. The vertical dashed lines indicate the BPM Fundamental wavelengths, λBPM

ω,in and
λBPM
ω,out corresponding to the measured transverse sections Sin and Sout, respectively. The

bandwidths δλexp
ω = 4.75nm and δλcalc

ω = 1.5nm are measured at 0.405 of the maxima.
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Figure 4 shows that the BPM Fundamental wavelength is measured at λBPM
ω = 1594nm. It

is very close to the value predicted by Eq. (3), i.e. λBPM
ω = 1594.2nm, which validates our

approximation of the ridge shape by a parallelepiped with an average square transverse section.
It would have been necessary to take into account the exact geometry if the deviation to a square
section had been larger.

Concerning their full widths at 0.405 of the maxima, the calculation gives a value δλcalc
ω = 1.5nm

which is smaller than the measured value δλexp
ω = 4.75nm by more than a factor of three. This

difference is well explained by the prismatic shape of the waveguides. Actually, there is a gradual
change of the transverse sections, the extremal values being Sin = 39.5µm2 and Sout = 36.7µm2

according to Fig. 3. The consequence is a corresponding gradient of effective indices leading
to a change of phase-matching conditions. Figure 4 shows that the values of the bandwidths
corresponding to Sin and Sout, i.e. λBPM

ω,in = 1590nm and λBPM
ω,out = 1599nm respectively, well frame

the phase-matching peak at 1594 nm. These data well illustrate the fact that a variation in the
waveguide dimension can influence the phase-matching conditions [20].

All these good agreements validate our calculation of the effective indices as well as the fact
that the experiments have been achieved in the fundamental mode for both the ω and 3ω waves.

5. Conversion efficiency

Figure 5 shows the Third-Harmonic energy measured at the exit of the KTP ridge as a function
of the incoming Fundamental energy, both energies being measured by a J3S10 Molectron
joulemeter.

Fig. 5. Measured Third-Harmonic energy (black square) at the exit of the crystal as a
function of the Fundamental energy at the entrance. Calculated energy (blue curve) without
any adjusting parameter.

The energy conversion efficiency reaches up to 3.4% for a Fundamental energy as low as 2 µJ.
This energy has not been exceeded in order to avoid any damage to the waveguide.

The theoretical prediction of the conversion efficiency fully matches the experimental results
without any fitting parameters, as shown in Fig. 5. The calculations were performed in the
undepleted pump approximation (UPA) starting from the following relation that expresses the
first derivative of the complex amplitude of the Third-Harmonic electric field Ex

3ω as function of
the two components of the Fundamental complex electric field Ex

ω and Ez
ω where indices x and z

stand for the orientations of the polarization in the dielectric frame, the waves propagating in the
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y-axis:
∂Ex

3ω(y)
∂y

= j
π

nef fx (3ω)λ3ω
χ
(3)
16 (3ω)E

x
ω(y)E

z
ω(y)E

z
ω(y) (5)

where χ(3)16 is the excited Third-Order nonlinear coefficient [14].
Even under the UPA, the Fundamental amplitudes are taken with a possible variation as a

function of y in order to take into account the propagation losses, i.e.:

Ex,z
ω (y) = Ex,z

ω (0)
√︁

exp(−βωy) (6)

where βω is the loss coefficient at the Fundamental wavelength.
To take into account the longitudinal gradient of the phase-matching conditions due to the

change of the transverse section of the KTP ridge, calculation has been achieved through the
introduction of an effective interaction length, denoted Leff . This parameter can be directly
deduced from the widths of the calculated and experimental phase-matching curves shown in
Fig. 4. Indeed, the product between the interaction length by the bandwidth of the phase-matching
peak has to be a constant quantity [21]. It is then straightforward to deduce an effective length
Leff = L.(δλcalc

ω /δλ
exp
ω ) = 2.7mm, where L = 8.6mm is the geometrical length of the KTP ridge.

It appears that the effective length is about 1/3 smaller than the geometrical length, which reflects
the fact that the mismatch between the nonlinear polarization and the Third-Harmonic wave
varies as a function of the longitudinal coordinate y.

Equation (6) inserted in Eq. (5) followed by its integration over Leff leads to the following
relation:

Ex
3ω(Leff ) = jΩΓLeff Ex

ω(0)[Ez
ω(0)]2 (7)

with Ω and Γ defined as ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Ω = π

nef fx(3ω)λ3ω
χ
(3)
16 (3ω)

Γ =
√︁

exp(−β3ωLeff )

Leff∫
0

[exp(−βωy)]3/2dy

= 2
3
√︁

exp(−β3ωLeff )
[︂

1−exp(−3βωLeff /2)
βω

]︂ (8)

where β3ω is the propagation loss coefficient at the Third-Harmonic wavelength.
Finally, the Third-Harmonic energy is:

ε3ω(Leff ) =
103

3π3
√

3
µ0
ε0

(Tz
ω)

2Tx
ωTx

3ω

(τωW2
ω)

2
Ω2

nx
eff ,ω(n

z
eff ,3ω)

2 Γ
2[εω(0)]3 (9)

where Tx,z
ω,3ω = 4nx,z(ω, 3ω)/[1 + nx,z(ω, 3ω)]2 are the Fresnel transmissions coefficient, Wω is

the 1/e2 mode radius, and εω(0) is the Fundamental incident energy. The numerical values of the
parameters used in the calculation are summed up in Table 2.

Table 2. Parameters used in the calculation of the generated Third-Harmonic energy. The nonlinear
coefficient χ(3)

16 , and the principal refractive indices nx and nz are calculated from [14].

λ [nm] χ
(3)
16 [m2V−2] τ [ps] W [µm] Tz Tx β [cm−1] nx nz

ω 1594 - 15 2.5 0.92 0.93 0.3 1.7205 1.8067

3ω 531.3 8.05.10−22 - - - 0.92 0.1 1.7780 -

The propagation loss coefficients βω,3ω and Fundamental mode radius Wω are calculated from
Rsoft simulations. It also reveals than the losses mainly come from the presence of the gold layer
below the silica buffer layer. Improved structures with a thicker buffer layer are planned.
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As mentioned in section 4 about phase-matching, the previous calculations of generated
intensity are in perfect agreement with the measurements by assuming that the Fundamental and
Third-Harmonic waves are in the fundamental waveguide modes. This accordance validates
this assumption of a single and fundamental mode operation, for which the overlap between the
interacting waves is maximal.

6. Conclusions

In summary, we have shown that KTP ridge waveguides are good candidates for efficient phase-
matched THG of which we made the first experimental demonstration. Tailoring waveguide
dimensions enables birefringence phase-matching at telecom wavelengths. A 8.6-mm-long ridge
waveguide based on a single KTP crystal allowing THG to be phase-matched at 1594 nm has
been fabricated. We obtained an energy conversion efficiency of 3.4% for a fundamental energy
of 2 µJ in the picosecond regime. The THG conversion efficiency can be optimized by improving
the waveguide cross section uniformity and by decreasing the propagation losses. The later will
be done by increasing the thickness of the silica buffer layer between the gold film and the KTP
crystal. The fabrication of samples with a 2-µm-thick silica layer is in progress with the target to
reach a THG conversion efficiency up to 50%, which would be a record for direct THG. Such an
efficiency would be at the best level compared with commercially available sources, knowing
that the later ones are systematically based on Second-Order cascaded THG and so are more
complex to setup.

The full agreement between calculation and measurement validates our calculation of effective
indices as well as the notion of effective interaction length for modeling the nonlinear effect
along the unperfect ridge waveguide.

This study of BPM THG (ω+ω+ω→ 3ω) paves the way for an optimal design of TPG (3ω
→ ω+ω+ω) experiments. Using a reliable quantum model [22] and assuming no losses due to
evanescent waves, i.e. with 2-µm-thick silica layer, we expect to generate up to 100 triplets per
second at λω = 1596 nm in a 5-cm-long KTP ridge waveguide pumped with 5 W at λ3ω = 532 nm
in the CW regime. A new quantum information frontier is foreseen.
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