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The accidental flatness constraint does not mean a wrong classical limit
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We shed some light on the reason why the accidental flatness constraint appears in certain limits
of the amplitudes of covariant loop quantum gravity. We show why this constraint is harmless, by
displaying how analogous accidental constraints appear in transition amplitudes of simple systems,
when certain limits are considered.

I. INTRODUCTION

The spinfoam amplitude of covariant loop-quantum-
gravity (LQG) [1–5], together with its extension with
cosmological constant [6], defines a tentative Lorentzian
quantum theory of gravity in four dimensions. Among
the open issues of this theory is a possible objection to
its viability first raised in the literature in [7], sharp-
ened by a number of authors [8–12] and confirmed by
numerical investigations [13]: in a certain ‘semiclassical’
limit, a ‘flatness constraint’, or ‘accidental curvature con-
straint’ appears: the amplitude appears to be peaked on
boundary data compatible with flat geometries only, in
apparent tension with the classical limit expected from a
quantum theory of gravity, which of course must include
curved geometries.

Here, building on a number of recent results, in partic-
ular the analytical and numerical investigations in [13–
16], as well as original ideas proposed in [11, 17], we il-
lustrate why the tension is only apparent, and that ac-
cidental constraints appear commonly from exchanging
the order of limits.

Since the pioneering thesis of Richard Feynman, a
quantum transition amplitude can be written as a sum
over paths, expressed as a limit of multiple integrals,
where the limit is the refinement of a discretization of
the dynamics. In quantum gravity, the classical limit
can be seen as the regime where the scale of the geom-
etry is large compared to the Planck scale. The inter-
play between the two limits is subtle. The appearance
of the accidental constraint shows that if one fixes the
discretization, one can find sufficiently large geometrical
boundary data for which the amplitude goes wrong. But
this does not conflict with the fact that for each bound-
ary data there is a discretization for which the amplitude
gives the correct result to any desired accuracy, which is
what is required by consistency with the classical theory.

We illustrate this point with some explicit examples,
where the logic underpinning the objection is manifestly
ill conceived.

The simple examples below show that “accidental con-
straints” analogous to the one in spinfoams are ubiqui-
tous, especially when working with overcomplete bases,
but they are harmless and they do not indicate that the
classical limit is wrong.

II. A SIMPLE EXAMPLE: TRUNCATED

FEYNMAN EXPANSION

The sum over history formulation of quantum theory
was born in the celebrated Ph.D. Thesis by Richard Feyn-
man [18]. Feynman introduces the path integral starting
from the transition amplitudes of a one-dimensional sys-
tem with Hamiltonian H = Ho + V , where Ho is a free
Hamiltonian and V a potential, breaking the time inter-
val in N steps and inserting a resolution of the identity
at each step:

W (xf , xi; t) := 〈xf |e
− i

~
Ht|xi〉

=

∫

dxn

N−1
∏

n=0

〈xn+1|e
− i

~
H t

N |xn〉 (1)

with x0 = xi, xN = xf . Here x indicates the label of
a basis in the Hilbert space, and dxn the measure that
gives the resolution of the identity. The equation above is
of course an identity for every N . The next step is to ob-
serve that ǫ := t/N is arbitrarily small if N is sufficiently
large. In this limit, we can disregard the term quadratic
in ǫ in each matrix element, and if V is diagonal in x we
can write

〈y|e−
i
~
(Ho+V )ǫ|x〉 = 〈y|e−

i
~
Hoǫe−

i
~
V ǫ|x〉+O(ǫ2) (2)

= 〈y|e−
i
~
Hoǫ|x〉e−

i
~
V (x)ǫ +O(ǫ2), (3)

If the transition amplitude of Ho is known, say

〈y|e−
i
~
Hoǫ|x〉 = e

i
~
So(y,x,ǫ) then we can define a truncated

amplitude

WN (xf , xi; t) =

∫

dxn e
i
~

∑

n ǫL(xn+1,xn,ǫ). (4)

and its limit
∫

[Dx(t)]e
i
~

∫

t
o
dtL(x,ẋ) ≡ lim

N→∞

∫

dxn e
i
~

∑

n ǫL(xn+1,xn,ǫ).

(5)
If the above expansion in ǫ is consistent with this limit
(which is not a priori obvious), this quantity gives back
W (xf , xi; t). This was Feynman’s thesis.
Now notice that since each matrix element of the trun-

cated amplitude disregards O(ǫ2) terms, we can equally
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write it as

〈y|e−
i
~
Hǫ|x〉 = 〈y|11−

i

~
Hǫ|x〉+O(ǫ2). (6)

Hence within the desired approximation we have

WN (xf , xi; t) =

∫

dxn

N−1
∏

n=0

〈xn+1|11−
i

~
Hǫ|xn〉. (7)

For large N , this quantity converges to the correct tran-
sition amplitude.
Now, let us assume that we repeat the above steps,

but instead of using a basis of orthogonal states |x〉 we
use, instead, an over-complete basis of coherent states,
for instance standard wave packets of average position q,
average momentum p and width (in position space) σ,
which we denote |q, p〉.
We can repeat the steps above, obtaining a truncated

transition amplitude of the form

WN (qf , pf ; qi, pi; t)

=

∫

dqndpn
π

N−1
∏

n=0

〈qn+1, pn+1|11−
i

~
Hǫ|qn, pn〉

=: 〈qf , pf |UN (t)|qi, pi〉. (8)

The limit of this truncation as N → ∞ still gives the
correct quantum transition amplitude. But let’s observe
what happens if we study the classical limit of the trun-
cated amplitude. To this aim let us study a semiclassical
regime where both ∆q/q and ∆p/p are small. This can
be obtained by rescaling both q and p, in the label of
the coherent states, by λ, and considering the large λ
limit. Note that, at least for the free (V = 0) and simple
harmonic (V = 1

2kq
2) cases, the classical equations of

motion are invariant under such a rescaling of q and p.
The cut-off transition amplitude for data so rescaled is

WN (λqf , λpf ;λqi, λpi; t) = 〈λqf , λpf |UN (t)|λqi, λpi〉
(9)

If we define the annihilation operator

a := x+ i
σ2

~
p (10)

then our coherent states are eigenstates

a|q′, p′〉 =

(

q′ + i
σ2

~
p′
)

|q′, p′〉, (11)

so that

a|λq′, λp′〉 = λ

(

q′ + i
ℓ2o
~
p′
)

|λq′, λp′〉. (12)

Now, assume that H is polynomial in x and p. Then
since UN(t) is polynomial in H , UN (t) is polynomial in x

and p, and so is polynomial in a and a† as well. Choosing
a normal ordering, UN(t) thus takes the form

UN (t) =
∑

j=0,J
k=0,K

Cjk (a
†)jak. (13)

so that

WN (λqf , λpf ;λqi, λpf ; t)

=
∑

j=0,J
k=0,K

Cjk 〈λqf , λpf |(a
†)jak|λqi, λpi〉 (14)

=
∑

j=0,J
k=0,K

Cjk
(

qf−i σ2

~
pf

)j(

qi+i σ
2

~
pi

)kλj+k 〈λqf , λpf |λqi, λpi〉

=e
−λ2

[

(qf−qi)
2

2σ2 +
σ2(pf−pi)

2

4~2

]

∑

j=0,J
k=0,K

Cjk
(

qf−i σ2

~
pf

)j(

qi+i σ2

~
pi

)kλj+k.

Because of the finiteness of the sums, this is exponentially
suppressed — i.e., o(λ−m) for all positive integers m —
unless

qf = qi and pf = pi. (15)

That is, the amplitude, for fixed cut-off N , is exponen-
tially suppressed unless (qf , pf) = (qi, pi).
In other words: if we take the classical limit at finite N ,

we get a constraint on the boundary data that is incom-
patible with the classical dynamics, or any discretized
version thereof.
If instead we removes the cut-off N first, we know that

we get the usual quantum dynamics and so gets no such
‘accidental’ constraint. Importantly this does not mean
that the truncated amplitude does not capture the clas-
sical dynamics. It does, to any desired accuracy, but a
given accuracy requires an appropriately large N .

III. ‘ACCIDENTAL’ CONSTRAINT IN THE

REGULARIZED TRANSITION AMPLITUDE

FOR ‘HALF-COHERENT’ STATES IN CASE OF

LARMOR PRECESSION

Let us next consider a richer example which tracks
closer what happens in LQG. Consider a charged particle
on a sphere, in a uniform magnetic field. This system ad-

mits exact, normalizable states |~L〉 (defined below) that
are analogous to the half-coherent Livine-Speziale states
that play a key role in the definition of the covariant
LQG amplitude [1]. Time evolution in such a system,
both classically and quantum mechanically, exhibits the
well-known Larmor precession of the angular momentum.
As we shall show, if one first expands the transition am-
plitude as one does in spin-foams, and implements a cut-
off analogous to the cut-off on the number of vertices,
and then takes the classical limit prior to removing this
cut-off, one obtains another example of an ‘accidental
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constraint’ — namely that angular momentum must be
constant — inconsistent with the known exact result of
Larmor precession.
In a flat Euclidean 3-space with Cartesian coordinates

(x, y, z), a particle with mass m and electric charge q is

constrained to the sphere r ≡
√

x2 + y2 + z2 = R, and

driven by a uniform magnetic field ~B = Bẑ, where ẑ is
the unit vector in the z direction. The vector potential
in the Coulomb gauge is then

~A =
1

2
~B × ~r =

B

2
(−yx̂+ xŷ)

where x̂, ŷ are the unit vectors in the x and y directions.
The Lagrangian is

L = T − U =
1

2
m~v2 + q~v · ~A

=
1

2
mR2

(

θ̇2 + sin2 θφ̇2
)

+
1

2
qBR2 sin2 θφ̇

where we have used spherical coordinates (θ, φ) for the
position of the particle, related to (x, y, z) in the usual
way and where dot denotes time derivative. This yields
the conjugate momenta

πθ :=
∂L

∂θ̇
=mR2θ̇ πφ :=

∂L

∂φ̇
=mR2sin2θ

(

φ̇+
qB

2m

)

.

From this, one can check that

~L := ~r × ~π := ~r ×
(

~p+ q ~A
)

= (− sinφπθ − cot θ cosφπφ)x

+ (cosφπθ − cot θ sinφπφ) y + πφz (16)

generate rotations in the usual way and so are the physi-
cally correct angular momentum components in the pres-
ence of a magnetic field. The Hamiltonian is

H := πθ θ̇ + πφφ̇− L =
1

2
mR2

(

θ̇2 + sin2 θφ̇2
)

=
1

2
m~v2 =

(~r × ~p)2

2mR2
=

(

~L− q~r × ~p
)2

2mR2

=
~L2

2mR2
+
qB

2m
Lz +

q2B2R2

8m
sin2 θ.

With the usual assumption that the last term is much
smaller than the others, this becomes

H =
~L2

2mR2
+
qB

2m
Lz (17)

which yields

~̇L = {~L,H} =
qB

2m
{~L, Lz}

so that, under time evolution, ~L rotates about the z-axis
with the usual Larmor angular frequency ω := qB

2m .

Quantum states can be written as wave functions on
the 2-sphere ψ(θ, φ). Equation (16) leads to the standard
angular momentum operators Li on this space. Hermitic-
ity of these operators forces use of the usual spherical
measure sin2 θdθdφ in defining the inner product for the
Hilbert space of states H. Quantization of (17) provides
an unambiguous Hamiltonian operator H .

We define a family of normalizable coherent states in
H which are peaked on the operators Li but not peaked

in (θ, φ) — what we call ‘half-coherent’ or ‘~L-coherent’

states. Specifically, for each ~L′ ∈ R
3 such that |~L′| =: ℓ ∈

N, let |~L′〉 denote the normalized simultaneous eigenstate

of ~L2 and n · ~L := (~L′/|~L′|) · ~L with eigenvalues ~2ℓ(ℓ+1)
and ~ℓ, respectively, with phase chosen arbitrarily. This
family of coherent states are in fact those introduced by
Livine and Speziale to quantum gravity [1], and give the
following expectation values and uncertainties

〈~L′|Li|~L′〉 = (L′)i (18)

∆ := 〈~L2〉 − 〈~L〉2 = (∆Lx)
2 + (∆Ly)

2 + (∆Lz)
2 = ℓ

as well as the resolution of the identity

I =
∞
∑

ℓ=0

(2ℓ+ 1)

∫

d2n|ℓn〉〈ℓn|.

Now, suppose |Ψ(0)〉 = |~L′〉 =: |ℓn〉 at time t = 0. Then
|Ψ(T )〉 at time t = T satisfies

~L2|Ψ(T )〉 = ~L2e
iT
~

(

~L2

2mR2 +ωLz

)

|ℓn〉

= e
iT
~

(

~L2

2mR2 +ωLz

)

~L2|ℓn〉

= ~
2ℓ(ℓ+ 1)|Ψ(T )〉

and

(Rz(Tω)n) · ~L|Ψ(T )〉

= e
iT
~

~L2

2mR2 (Rz(Tω)n) · ~Le
iTωLz

~ |ℓn〉

= e
iT
~

(

~L2

2mR2 +ωLz

)

n · ~L|ℓn〉 = ~ℓ|Ψ(T )〉

whereRz(α) denotes rotation about the z axis by angle α.

It follows that |Ψ(T )〉 equals |Rz(Tω)~L
′〉 up to a phase, so

that the quantum evolution of ~L-coherent states exactly

mimics the classical evolution of ~L.

Now let us imitate the construction leading to the spin-
foam transition amplitude. For this, let us follow the
original idea in [19], leading to a sum over two complexes.
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The ~L-coherent state transition amplitude can be written

W (~Lf ; ~Li;T ) := 〈~Lf | exp

(

i

~
TH

)

|~Li〉

=
∞
∑

N=0

1

N !

(

iT

~

)N

〈~Lf |H
N |~Li〉 (19)

=

∞
∑

N=0

1

N !

(

iT

~

)N







N−1
∏

n=1

∞
∑

N

ℓ n=0

(2
N

ℓn + 1)

∫

d2
N

nn







×

N−1
∏

n=0

〈
N

ℓn+1
N

nn+1|H |
N

ℓn
N

nn〉 (20)

where, for each N ,
N

ℓ0
N

n0 := Li and
N

ℓN
N

nN := Lf . The
above is the analogue of the spin-foam expansion in the
Livine-Speziale coherent state basis [1]. From compari-

son with [19], the factor A(~L′; ~L) := 〈~L′|H |~L〉 is analo-
gous to the vertex amplitude, and N analogous to the
number of vertices in the spin-foam.
Truncating the spin-foam sum to a fixed triangulation

is here analogous to taking only a single term in the above
sum over N . More precisely, to regularize the spin-foam
sum, we can put a cut-off on the number of vertices N
to be less than some M . The accidental curvature con-
straint has been derived for fixed triangulations; because
the sum over all spin-foams with number of vertices less
thanM is finite, such a regularized sum will still yield the
same constraint. The regularization of (19) analogous to
this is the cut-off transition amplitude

WM (~Lf ; ~Li;T ) :=

M
∑

N=0

1

N !

(

iT

~

)N

〈~Lf |H
N |~Li〉 (21)

= 〈~Lf |

(

M
∑

N=0

1

N !

(

iT

~

)N

HN

)

|~Li〉

=: 〈~Lf |UM (T )|~Li〉

where UM (T ) is a ‘cut-off time evolution operator’.

Consider now, for each ~Lo = ℓono, the one parameter

family of coherent states |λ~Lo〉. From (18), we have the
relative uncertainty

∆

〈~L2〉
:=

(∆Lx)
2 + (∆Ly)

2 + (∆Lx)
z

〈~L2〉
=

1

λℓo + 1

which goes to zero as λ→ ∞. For this reason, the λ→ ∞
limit of such states is often taken as a classical limit.
Furthermore, the flow (λ, ~Lo) 7→ λ~Lo, underlying these
families of states, is a symmetry of the classical equations

of motion for ~L(t): For ~L(T ) = λ~Lf and ~L(0) = λ~Li, the
classical equations of motion imply

~Lf = Rz(ωT )~Li (22)

independent of λ.

The cut-off transition amplitude for such families of
states is

WM (λ~Lf ;λ~Li;T ) = 〈λ~Lf |UM (T )|λ~Li〉.

Now, since UM (T ) is polynomial in H , which in turn is

polynomial in ~L, theorem 1 in the appendix below implies
that this expression is zero or exponentially suppressed
in the classical limit λ→ ∞ unless

~Lf = ~Li. (23)

This is inconsistent with the classical evolution (22) of
~L. It is a spurious ‘accidental’ constraint arising from
taking the classical limit prior to removing the cut-off
M , similar to the accidental curvature constraint arising
in spin-foams due to taking the classical limit prior to
removing the cut-off on the number of vertices.
However, if one removes the cut-off M first, M → ∞,

from the previous section, we know that one gets the
usual quantum dynamics and so gets no such ‘acciden-
tal’ constraint. One can see how this is possible explic-
itly from equation (26) in the proof of theorem 1 in the
appendix: In the limit M → ∞, the upper limit N of
the sum multiplying the suppressing exponential term
becomes infinite, so that an exponentially suppressing
bound is no longer implied. Again, this doesn’t mean
that the correct dynamics are not captured for finite M ,
but rather that, for a given desired degree of accuracy,
M must be sufficiently large.
The accidental constraint in this case, as well as in

the previous example, and in spin-foams, is the result of
a wrong exchange of limits.

———
CR thanks Farshid Soltani for correcting a mistake in

a calculation and Pietro Donà and Hal Haggard for their
patience in long discussions on this topic. JE was sup-
ported in part by NSF grants PHY-1806290 and PHY-
2110234. CR was supported by the QISS JFT grant
#61466.

Appendix: Theorem regarding ~L-coherent states

Consider the decomposition of the Hilbert space of

states of our toy model into eigenspaces of ~L2:

H = ⊗∞
ℓ=0Hℓ.

In this appendix we use the natural isomorphism [20]

(

~L,Hℓ

) nat.
∼= ⊗2ℓ

symm.

(

~

2
~σ,H1/2

)

(24)

between representations of su(2), where σi are the Pauli
matrices, H1/2 := C2 is the Hilbert space for the spin

1/2 representation, and ⊗2ℓ
symm.(·) denotes the symmet-

ric tensor product of 2ℓ copies of the argument. In
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terms of this isomorphism, and with appropriate choice

of phase convention, the ~L-coherent state |ℓn〉, with
n = (sin θL cosφL, sin θL sinφL, cos θL) is given by

|ℓn〉 = ⊗2ℓ|n〉, with |n〉 :=

(

cos(θL/2)
eiφL sin(θL/2)

)

. (25)

Theorem 1. If M is any operator on H polynomial in
~L, then 〈ℓ′n′|M |ℓn〉 is zero unless ℓ′ = ℓ, and is exponen-

tially suppressed as ℓ′ = ℓ→ ∞ if n′ 6= n.

Proof. Using the angular momentum commutation re-

lations, M can be cast in the form

M =

N
∑

k,m,n=0

Ak,m,nL
k
xL

m
y L

n
z

for some set of coefficients {Ak,m,n} ⊂ C. Since Li all

commute with ~L2, M |ℓn〉 is again an eigenstate of ~L2

with eigenvalue ~2ℓ(ℓ+1), so that 〈ℓ′n′|M |ℓn〉 = 0 unless
ℓ′ = ℓ. For the case ℓ′ = ℓ, we have

〈ℓn′|M |ℓn〉 = ⊗2ℓ〈n′|

N
∑

k,m,n=0

Ak,m,nL
k
xL

m
y L

n
z |n〉

⊗2ℓ

=

(

~

2

)k+m+n N
∑

k,m,n=0

Ak,m,n
⊗2ℓ〈n′|

(

2ℓ
∑

p=1

pσx

)k( 2ℓ
∑

q=1

qσy

)m( 2ℓ
∑

r=1

rσz

)n

|n〉⊗2ℓ

=

(

~

2

)k+m+n N
∑

k,m,n=0

Ak,m,n
⊗2ℓ〈n′|

(

k
∏

s=1

2ℓ
∑

ps=1

psσx

)(

m
∏

u=1

2ℓ
∑

qu=1

quσy

)(

n
∏

v=1

2ℓ
∑

rv=1

rvσz

)

|n〉⊗2ℓ

=

(

~

2

)k+m+n N
∑

k,m,n=0

Ak,m,n

∑

1≤{ps},{qu},{rv}≤2ℓ

⊗2ℓ〈n′|

(

k
∏

s=1

psσx

)(

m
∏

u=1

quσy

)(

n
∏

v=1

rvσz

)

|n〉⊗2ℓ

where pσi denotes the action of σi on the pth copy ofH1/2

in the symmetrized tensor product decomposition of Hℓ.
Because (σi)

a = 1 for a even, (σi)
a = σi for a odd, and

σxσy = iσz and cyclic permutations, each of the terms
in the above sum consists in a product of powers of the
factors 〈n′|n〉 and 〈n′|σi|n〉. Furthermore, in any term,
the maximum number of factors of the form 〈n′|σi|n〉 for
some i is k +m + n. As the total number of factors in
each term is 2ℓ, it follows that each term has a minimum
of 2ℓ − (k + m + n) factors of the form 〈n′|n〉. From
the normalization of |n〉, |n′〉, the fact that each σi has
spectrum {±1}, and the Cauchy-Schwarz inequality, the

rest of the factors have absolute value less than or equal
to 1. This, combined with the triangle inequality, implies

|〈ℓn′|M |ℓn〉| ≤ (26)

(~ℓ)
k+m+n





N
∑

k,m,n=0

|Ak,m,n|



 |〈n′|n〉|
2ℓ−(k+m+n)

.

Thus, if n′ 6= n, so that 〈n′|n〉 < 1, we have that
|〈ℓn′|M |ℓn〉| is exponentially suppressed as ℓ→ ∞. �
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