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Visual Abstract

Large neuroimaging datasets, including information about structural connectivity (SC) and functional connec-
tivity (FC), play an increasingly important role in clinical research, where they guide the design of algorithms
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for automated stratification, diagnosis or prediction. A major obstacle is, however, the problem of missing fea-
tures [e.g., lack of concurrent DTI SC and resting-state functional magnetic resonance imaging (rsfMRI) FC
measurements for many of the subjects]. We propose here to address the missing connectivity features prob-
lem by introducing strategies based on computational whole-brain network modeling. Using two datasets, the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and a healthy aging dataset, for proof-of-concept,
we demonstrate the feasibility of virtual data completion (i.e., inferring “virtual FC” from empirical SC or “virtual

SC” from empirical FC), by using self-consistent
simulations of linear and nonlinear brain network
models. Furthermore, by performing machine learning
classification (to separate age classes or control from
patient subjects), we show that algorithms trained on
virtual connectomes achieve discrimination perform-
ance comparable to when trained on actual empirical
data; similarly, algorithms trained on virtual connec-
tomes can be used to successfully classify novel em-
pirical connectomes. Completion algorithms can be
combined and reiterated to generate realistic surro-
gate connectivity matrices in arbitrarily large number,
opening the way to the generation of virtual connec-
tomic datasets with network connectivity information
comparable to the one of the original data.

Key words: aging; Alzheimer’s diseases; connectome;
dataset completion; fMRI; whole-brain modelling

Introduction
One of the greatest challenges today is to develop ap-

proaches allowing the useful exploitation of large-scale
datasets in biomedical research in general (Margolis et
al., 2014) and neuroscience and neuroimaging in partic-
ular (Van Horn and Toga, 2014). Progress in this direc-
tion is made possible by the increasing availability of
large public datasets in the domain of connectomics
(Van Essen et al., 2013; Poldrack and Gorgolewski,
2014; Horien et al., 2021). This is true, in particular, for
research in Alzheimer’s disease (AD), in which, despite
decades of massive investment and a daunting litera-
ture on the topic, the partial and, sometimes contradic-
tory nature of the reported results (Patterson, 2018) still
prevents a complete understanding of the factors gov-
erning the progression of the disease (Braak and Braak,
1991; Braak et al., 2006; Komarova and Thalhauser,
2011; Henstridge et al., 2019) or of the diversity of cog-
nitive deficits observed in different subjects (Iacono et
al., 2009; Mungas et al., 2010; Allen et al., 2016). In AD
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Significance Statement

Personalized information on anatomic connectivity (structural connectivity; SC) or coordinated resting state
activation patterns (functional connectivity; FC) is a source of powerful neuromarkers to detect and track
the development of neurodegenerative diseases. However, there are often “gaps” in the available informa-
tion, with only SC (or FC) being known but not FC (or SC). Exploiting whole-brain modeling, we show that
gap in databases can be filled by inferring the other connectome through computational simulations. The
generated virtual connectomic data carry information analogous to the one of empirical connectomes, so
that machine learning algorithms can be trained on them. This opens the way to the release in the future of
cohorts of “virtual patients,” complementing traditional datasets in data-driven predictive medicine.
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research, datasets that compile rich and diverse genet-
ic, biomolecular, cognitive, and neuroimaging (structural
and functional) features for a large number of patients are
playing an increasingly important role (Rathore et al., 2017;
Iddi et al., 2019). Example applications include: the early di-
agnosis and prognosis by using magnetic resonance imag-
ing (MRI) images (Dennis and Thompson, 2014; Chiesa et
al., 2017; de Vos et al., 2018), the use of machine learning
for automated patient classification (Cuingnet et al., 2011;
Zhang et al., 2012; Moore et al., 2019), or prediction of the
conversion from early stages to fully developed AD
(Rombouts et al., 2005; Moradi et al., 2015; Casanova et al.,
2018), with signs of pathology difficult to distinguish from
“healthy aging” effects (Doan et al., 2017), the extraction of
decision networks based on the combination of semantic
knowledge bases and data mining of the literature (Sanchez
et al., 2011; Kodamullil et al., 2015; Iyappan et al., 2016).
Among the factors contributing to the performance of

prediction and inference approaches in AD, and, more in
general, other neurologic or psychiatric diseases (Walter
et al., 2019) or studies of aging (Cole and Franke, 2017),
are not only the large size of datasets but also the multi-
plicity of features jointly available for each patient. Indeed,
one can take advantage not only of the complementary in-
formation that different features could bring but also capital-
ize on possible synergies arising from their simultaneous
knowledge (Wang et al., 2015; Zimmermann et al., 2016;
Iddi et al., 2019). Unfortunately, even gold standard publicly
available datasets in AD, such as the datasets released by
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) con-
sortium (Wyman et al., 2013; Beckett et al., 2015; Weiner et
al., 2017), have severe limitations. Indeed, if they include
neuroimaging features of different types, structural DTI and
functional MRI (fMRI), these features are simultaneously
available for only a substantial minority of the subjects in the
dataset (i.e., the feature coverage is not uniform over the da-
taset). In addition, if the number of subjects included is rela-
tively large (hundreds of subjects), it still is too small to
properly qualify as “big data.” Furthermore, the connectom-
ic data themselves have an imperfect reliability, with a test/
retest variability that can be quite large, making potentially
difficult subject identifiability and, thus, personalized infor-
mation extraction (Termenon et al., 2016).
Here, we will introduce a new solution aiming at reliev-

ing the problems of partially missing features and limited
sample size and illustrate their validity on the two inde-
pendent example datasets. Specifically, we will focus on
two examples of structural and functional neuroimaging
datasets, as important proofs of concept: a first one ad-
dressing AD, mediated from the previously mentioned
ADNI databases (Wyman et al., 2013; Beckett et al.,
2015), and a second one investigating a cohort of healthy
subjects over a broad span of adult age, to analyze the ef-
fects of normal aging (Zimmermann et al., 2016; Battaglia
et al., 2020). It is important to stress however that the con-
sidered issues may broadly affect any other connectomic
dataset gathered for data mining intents.
To cope with missing connectomic features (and “fill-

ing the gaps” in neuroimaging datasets), we propose to
build on the quickly maturating technology of mean-
field whole-brain network modeling (for review, see

Deco et al., 2011). Indeed, computational modeling pro-
vides a natural bridge between structural and functional
connectivity (FC), the latter emerging as the manifesta-
tion of underlying dynamical states, constrained but not
entirely determined by the underlying anatomy (Ghosh
et al., 2008; Kirst et al., 2016). Theoretical work has
shown that average FC properties in the resting-state
can be accounted for by the spontaneous collective ac-
tivity of brain networks informed by empirical structural
connectivity (SC) when the system is tuned to operate
slightly below a critical point of instability (Deco et al.,
2011; Deco and Jirsa, 2012). Based on this finding, sim-
ulations of a model constructed from empirical DTI
connectomes and then tuned to a suitable slightly sub-
critical dynamic working point are expected to provide
a good rendering of resting-state FC. Such whole-brain
simulations are greatly facilitated by the availability of
dedicated neuroinformatic platforms, such as The
Virtual Brain (TVB; Sanz-Leon et al., 2013, 2015;
Woodman et al., 2014), and data preprocessing pipe-
lines (Schirner et al., 2015; Proix et al., 2016), enabling
brain model personalization and clinical translation
(Jirsa et al., 2017; Proix et al., 2017). It thus becomes
possible to complete the missing information in a data-
set about BOLD fMRI FC by running a TVB simulation in
the right regime, embedding the available empirical DTI
SC (SC-to-FC completion). Analogously, algorithmic
procedures based on mean-field modeling (MFM) steps
(“effective connectivity” approaches by Gilson et al.,
2016, 2018), here used for a different purpose) can be
used to address the inverse problem of inferring a rea-
sonable ersatz of SC from resting state FC (FC-to-SC
completion). In this study we will demonstrate the feasi-
bility of both types of completion (SC-to-FC and FC-to-
SC), applying alternative linear and nonlinear simulation
pipelines to both the ADNI and the healthy aging proof-
of-concept datasets.
Beyond a single step of virtual completion, by combin-

ing completion procedures, to map, e.g., from an empiri-
cal SC (or FC) to a virtual FC (or SC) and then, however, to
a “twice virtual” SC (or FC), we can generate for each
given empirical connectome a surrogate replacement,
i.e., map every empirical SC or FC to a matching dual
(bivirtual) connectome of the same nature. We show then
that pairs of empirical and bivirtual dual connectivity mat-
rices display highly correlated network topology features,
such as node-level strengths or clustering and centrality
coefficients (Bullmore and Sporns, 2009). We demon-
strate along the example of relevant classification tasks
[stratification of mild cognitive impairment (MCI) or AD pa-
tients from control subjects on the ADNI dataset and age-
class prediction on the healthy aging dataset] that close
performance can be reached using machine learning al-
gorithms trained on actual empirical connectomes or on
their duals. Furthermore, empirical connectomes can be
correctly categorized by classifiers trained uniquely on vir-
tual duals.
To conclude, we provide systematic recipes for gener-

ating realistic surrogate connectomic data via data-con-
strained MFMs. We show that the information that we can
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extract from computationally inferred connectivity matri-
ces are only moderately degraded with respect to the one
carried by the original empirical data. This opens the way
to the design and sharing of veritable “virtual cohorts”
data, ready for machine-learning applications in clinics,
that could complement actual empirical datasets, facilitat-
ing learning through “data augmentation” (Yaeger et al.,
1997; Taylor and Nitschke, 2018), or, even, potentially,
fully replace them, e.g., when the sharing of real data
across centers is restricted because of byzantine regula-
tion issues (not applying to their totally synthetic but op-
erationally equivalent ersatz, the virtual and bivirtual
duals).

Materials and Methods
Two datasets for proof of concept
We applied our data completion pipelines in this study

to two different and independent neuroimaging datasets,
from which SC and FC connectivity matrices could be ex-
tracted for at least a part of the subjects. A first dataset
was obtained from the ADNI database (adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private part-
nership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether
serial MRI, positron emission tomography (PET), other bi-
ological markers, and clinical and neuropsychological as-
sessment can be combined to measure the progression
of MCI and early AD. We refer in the following to this first
dataset as to the ADNI dataset.
A second dataset was generated by Petra Ritter and

co-workers at the Charité Hospital in Berlin, with the aim
of studying and investigating changes of structural and
static and dynamic FC occurring through healthy aging.
This dataset was previously investigated in Zimmermann
et al. (2016) and Battaglia et al. (2020) among others. We
refer to this second dataset in the following as to the
healthy aging dataset.

ADNI dataset
Data sample
Raw neuroimaging data from the ADNI GO/2 studies

(Wyman et al., 2013; Beckett et al., 2015) were down-
loaded for 244 subjects. These included T1w images for
all subjects, as well as DWI and resting-state fMRI
(rsfMRI) images for separate cohorts of subjects. An addi-
tional 12 subjects for which both DWI and rsfMRI were ac-
quired in the same session were identified and their data
also downloaded.
A volumetric 96-ROI parcellation was defined on the

MNI template and consisted of 82 cortical ROIs from the
regional map parcellation (Kötter and Wanke, 2005) and
an additional 14 subcortical ROIs spanning the thalamus
and basal ganglia. Details on the construction of the 96-
ROI parcellation can be found in Bezgin et al. (2017).
Among the 244 subjects we downloaded, 74 were con-

trol subjects, while the others were patients at different
stages of the pathology progression. In this study, we per-
formed a rough coarse-graining of the original ADNI labels
indicating the stage or type of pathology. We thus overall

labeled 119 patients as MCI (grouping together the labels
four patients as MCI, 64 as EMCI and 41 as LMCI) and 51
patients as AD (overall 170 patients for the simple classifi-
cation experiments of Fig. 6).
Overall, T1 and DTI were jointly available for 88 subjects

(allowing to reconstruct SC matrix), and T1 and fMRI for
178 (allowing to reconstruct FC). However, among the
244 subjects we downloaded, only 12 subjects (referred
to as the SCemp 1 FCemp subset) had a complete set of
structural and functional images (T1, DTI, fMRI), hinting at
how urgently needed is data completion.

Data preprocessing
Neuroimaging data preprocessing was done using a

custom Nipype pipeline implementation (Gorgolewski et
al., 2011). First, raw neuroimaging data were recon-
structed into NIFTI format using the dcm2nii software
package (https://www.nitrc.org/projects/dcm2nii/). Skull
stripping was performed using the Brain Extraction Tool
(BET) from the FMRIB Software Library package (FSL v5)
for all image modalities before all other preprocessing
steps. Brain extraction of T1w images using BET was
generally suboptimal and was supplemented by optiBET
(Lutkenhoff et al., 2014), an iterative routine that improved
brain extractions substantially by applying transforma-
tions and back-projections between the native brain mask
and MNI template space. Segmentation of the T1w im-
ages was performed using FSL’s FAT tool with bias field
correction to obtain into three distinct tissue classes.
To improve the registration of the ROI parcellation to

native space, the parcellation was first nonlinearly regis-
tered to a publicly-available older adult template (aged
70–74 years; Fillmore et al., 2015) using the Advanced
Normalization Tools (ANTS; Avants et al., 2011) software
package before subsequent registrations.
Diffusion-weighted images were preprocessed using

FSL’s eddy and bedpostx tools. The ROI parcellation was
first nonlinearly registered to each subject’s T1w struc-
tural image and then linearly registered to the DWI image
using ANTS.rsfMRI data were preprocessed using FSL’s
FEAT toolbox. Preprocessing included motion correction,
high-pass filtering, registration, normalization, and spatial
smoothing (FWHM: 5 mm). Subjects with excessive mo-
tion were excluded from our sample. Global white matter
and cerebrospinal fluid signals (but not global mean sig-
nal) were linearly regressed from the rsfMRI data.
All images were visually inspected following brain ex-

traction and registrations to ensure correctness.

SC construction
Details of tractography methods for reconstructing

each subject’s structural connectome can be found in
Shen et al. (2019a,b). Briefly, FSL’s probtrackx2 was used
to perform tractography between all ROIs. The set of
white matter voxels adjacent to a gray matter ROI was de-
fined as the seed mask for that particular ROI. Gray matter
voxels adjacent to each seed mask were used to define
an exclusion mask. For intra-hemispheric tracking, an ad-
ditional exclusion mask of the opposite hemisphere was
additionally defined. Tractography parameters were set to
a curvature threshold of 0.2, 5000 seeds per voxel, a
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maximum of 2000 steps, and a 0.5-mm step length. The
connection weight between each pair of ROIs was com-
puted as the number of streamlines detected between the
ROIs, divided by the total number of streamlines sent
from the seed mask. This connectivity information was
compiled for every subject in a matrix of empirical SC
SCemp.

rsfMRI timeseries and FC construction
Empirical rsfMRI time series for each ROI were com-

puted using a weighted average approach that favored
voxels nearer the center of each ROI (Shen et al., 2012).
Each subject’s matrix of empirical FC FCemp was deter-
mined by Pearson correlation of these recorded rsfMRI
time series.

Healthy aging dataset
Data sample
Forty-nine healthy subjects between the ages of 18 and

80 (mean 42.16618.37; 19 male/30 female) were re-
cruited as volunteers. Subjects with a self-reported his-
tory of neurologic, cognitive, or psychiatric conditions
were excluded from the experiment. Research was per-
formed in compliance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki).
Written informed consent was provided by all subjects
with an understanding of the study before data collection,
and was approved by the local ethics committee in ac-
cordance with the institutional guidelines at Charité
Hospital, Berlin.

Acquisition procedures
Acquisition procedures for these data (magnetic reso-

nance acquisition procedure, dwMRI data preprocessing
and tractography, fMRI data preprocessing, computation
of SC and FC connectome matrices) have been described
by Zimmermann et al. (2016), where we redirect the
reader interested in full detail.
Briefly, functional and structural image acquisition was

performed on a 3T Siemens Tim Trio Scanner MR
equipped with a 12-channel Siemens head coil. After ana-
tomic and dwMRI measurements, subjects were removed
from the scanner and again put in later for the functional
measurements. Data were obtained from subjects at rest-
ing state; subjects were asked to close their eyes, relax,
and avoid falling asleep.
Anatomical and diffusion images were preprocessed

using a fully automated open-source pipeline for extrac-
tion of functional and structural connectomes (Schirner et
al., 2015). The pipeline performed the following steps.
Using the FreeSurfer software toolbox (http://surfer.nmr.
mgh.harvard.edu/), anatomic T1-weighted images were
motion corrected and intensity normalized, nonbrain tis-
sue was removed, and a brain mask was generated.
White matter and subcortical segmentation was per-
formed, and a cortical parcellation based on the proba-
bilistic Desikan– Killiany FreeSurfer atlas divided the
gray matter into 68 ROIs (regions of interest, 34 per
hemisphere; Desikan et al., 2006). The diffusion data
were further corrected (for head movement, eddy

current distortions, etc.). Probabilistic fiber tracking
was performed using MRTrix streamtrack algorithm.
The fMRI resting-state preprocessing was performed

using the FEAT (fMRI Expert Analysis Tool) version 6.0
first-level analysis software tool from the FMRIB (fMRI
of the brain) Software Library (www.fmrib.ox.ac.uk).
MCFLIRT motion correction was used to adjust for
head movement. Nuisance variables were regressed
from the BOLD signal, including the six motion parame-
ters, mean white matter, and CSF signals. Regression
of global mean was not performed.

Two types of computational whole brain models
To bridge between SC and FC via dynamics, we relied

on computational modeling of whole-brain intrinsic dy-
namics. We used two categories of models differing in
their complexity, stochastic linear models (SLMs) and fully
nonlinear MFMs. SLM procedures are used for linear SC-
to-FC and FC-to-SC completions, while MFM procedures
are used for analogous but nonlinear completions.

SLMmodels
The SLM model used in this study is a linear stochastic

system of coupled Ornstein–Uhlenbeck processes which
is deeply investigated in (Saggio et al., 2016). For each
brain region, neural activity xiðtÞ is modeled as a linear sto-
chastic model, coupled to the fluctuations of other
regions:

_xðtÞ ¼ AxðtÞ1sj ðtÞ; (1)

where A is the coupling matrix, j is a normal Gaussian
white noise, and s the SD of the local drive noise. The
coupling matrix A can be written as:

A ¼ 2I1G:W; (2)

where I is the identity matrix, G is the global coupling pa-
rameter andW is a weight matrix set to match SCemp. The
negative identity matrix guarantees that the nodes have a
stable equilibrium point. If all the eigenvalues of A are
negative, which happens for all positive values of G ,
Gcritic = 1=maxðl iÞ (where l i are the eigenvalues of W),
the system will be in an equilibrium state. After some
mathematical steps (Saggio et al., 2016), the covariance
matrix between regional fluctuations can be analytically
expressed at this critical point Gcritic as:

C ¼ �s 2

2
A�1; (3)

whose normalized entries provide the strength of FC be-
tween different regions. The noise strength can be arbitra-
rily set at the critical point since it provides only a scaling
constant to be reabsorbed into the Pearson correlation
normalization. However, the only parameter that needs to
be explored is G, whose range goes from Gmin = 0, i.e.,
uncoupled nodes, to slightly before Gcritic = 1=maxðl iÞ, or
Gmax = Gcritic –e . In Extended Data Figure 3-1A, running
explicit simulations of SLM models for different values of
coupling G and evaluating on the FCemp 1 SCemp subset
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of ADNI subjects the match between the simulated and
empirical activity correlation matrices, we confirm
(Hansen et al., 2015) that the best match (max of Pearson
correlation between the upper-triangular parts of the em-
pirical and virtual FCs) is obtained at a slightly subcritical
point for G* = Gcritic –e .

Linear SC-to-FC and FC-to-SC completion
To infer FCSLM from SCemp, we chose to always use a

common value G*ref = 0.83, which is the median of G* for
all 12 FCemp 1 SCemp subjects in the ADNI and healthy
ageing dataset (the error made in doing this approxima-
tion is estimated to be ,1% in Extended Data Fig. 3-1C).
When the connectome FCemp is not known, Equations 2,
3 can directly be used to evaluate the covariance matrix C
(setting s = 1 and G=G*ref). We then estimate the regional
fluctuation covariance from these inferences and normal-
ize it into a Pearson correlation matrix to infer FCSLM (see
pseudo-code in Extended Data Table 1-1). Linear FCSLM

completions for our ADNI dataset and for the healthy
aging dataset can be downloaded as MATLAB workspace
within Extended Data 1 FC_SLM.mat (available at the ad-
dress https://github.com/FunDyn/VirtualCohorts).
To infer SCSLM from FCemp, we invert the analytical ex-

pressions of Equations 2, 3 and always set s = 1 and
G=G*ref leading to:

Wp ¼ �C�1=Gp
ref (4)

,where C is the covariance matrix estimated from empiri-
cal BOLD time series. The linearly completed SCSLM is
then set to be identical to W* setting its diagonal to zero
to avoid offsets, which would be meaningless given the
conventional choice of noise s which we have made (see
Extended Data Table 2-1). Note that all the free parame-
ters of the SLM model appear uniquely as scaling factors
and do not affect the (normalized) correlation of the in-
ferred SCSLM with the SCemp. However, the absolute
strengths of inferred structural connections remain arbi-
trary, with only the relative strengths between different
connections being reliable (since unaffected by arbitrary
choices of scaling parameters; see pseudo-code in
Extended Data Table 2-1). Linear SCSLM completions for
the ADNI dataset and for the healthy aging dataset can be
downloaded as MATLAB workspace within Extended
Data 1 SC_SLM.mat (available at the address https://
github.com/FunDyn/VirtualCohorts).

MFMmodels
For nonlinear completion algorithms, we performed

simulations of whole-brain MFMs analogous to Deco et
al. (2013) or Hansen et al. (2015). We used a modified ver-
sion of the MFM designed by Wong and Wang (2006), to
describe the mean neural activity for each brain region,
following the reduction performed in (Deco et al., 2013).
The resulting neural mass equations are given by:

dSi

dt
¼ �Si

tS
1ð1� SiÞgRi 1sh iðtÞ (5)

Ri ¼ axi � b
1� exp½�dðaxi � bÞ� (6)

xi ¼ vJNSi 1 JNG
X

j

CijSj 1 I0 (7)

,where Si represents NMDA synaptic input currents and
tS the NMDA decay time constant; Ri is collective firing
rates; g ¼ 0:641 is a kinetic parameter; a ¼ 270ðV:nCÞ�1,
b ¼ 108Hz, d ¼ 0:154s are parameters values for the
input-output function; xi are the total synaptic inputs to a
regions; JN ¼ 0:2609nA is an intensity scale for synaptic
currents; v is the relative strength of recurrent connec-
tions within the region; Cij are the entries of the SCemp ma-
trix reweighted by global scale of long-range connectivity
strength G as a control parameter; s is the noise ampli-
tude, and h i is a stochastic Gaussian variable with a zero
mean and unit variance. Finally, I0 represents the external
input and sets the level of regional excitability. Different
sets of parameters yield different neural network dynam-
ics and, therefore, patterns of FCMFM non-stationarity.
To emulate BOLD fMRI signals, we then transformed

the raw model output activity xi
through a standard Balloon–Windkessel hemodynamic

model. All details of the hemodynamic model are set ac-
cording to Friston et al. (2003).

Non-linear SC-to-FC completion
In general, our simple MFM model has three free pa-

rameters at the level of the local neural mass dynamics
(t ;v ; and I0) and one free global parameter G. Since
changing the values of v and I0 had lesser effects on the
collective dynamics of the system (see Extended Data
Fig. 3-2), we set their values to v = 0.9 and I0 = 0.32, re-
spectively, and remain then just two free parameters
which we allow to vary in the ranges G 2 [1 3] and t 2 [1
100] ms when seeking for an optimal working point of the
model. As revealed by the analyses of Figure 3, the zone
in this restricted parameter space associated with the
best FC-rendering performance can be identified through
the joint inspection of three scores, varying as a function
of both G and t . The first criterion is the spatial heteroge-
neity of activation (see Table 1, line 2.5) computed by tak-
ing the coefficient of variation of BOLDMFM time series.
By computing the Pearson correlation coefficient of

upper-triangular between FCMFM and FCemp for every
subject from SCemp 1 FCemp subset in the ADNI dataset
(see Table 1, line 2.3), we obtained a best-fitting zone in a
narrow concave stripe (see Fig. 3A for one subject), (G*,
t *) parameter set, bring the system to this best-fitting
zone and values lower than this is ðG�; t�Þ set and higher
values are ðG1; t1Þ. Qualitatively analogous results are
found for the healthy aging dataset. This non-monotonic
behavior of yellow zone in G/t plane occurs where three
criteria are jointly met; the second criterion is the cluster-
ing coefficient of time-average FCMFM matrices (see Table
1, line 2.6) and finally, the third criterion is the clustering
coefficient of dFCMFM matrices (see Table 1, line 2.6),
where the dFC matrices were computed for an arbitrary
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window using the dFCwalk toolbox (Arbabyazd et al.,
2020; https://github.com/FunDyn/dFCwalk.git). By know-
ing the optimal working point of the system where all
three criteria are jointly optimum (see Table 1, line 2),
we freeze the algorithm and finally run a last simulation
with the chosen parameters to perform nonlinear SC-
to-FC data completion (see Table 1, lines 3–5). Non-
linear FCMFM completions for our ADNI dataset and for
the healthy aging dataset can be downloaded as a
MATLAB workspace within Extended Data 1 FC_MFM.
mat (available at the address https://github.com/
FunDyn/VirtualCohorts).

Non-linear FC-to-SC completion
We implemented a heuristic approach to infer the most

likely connectivity matrix (i.e., effective connectivity) that
maximizes the similarity between empirical and simulated
FC. As an initial point, we considered a random symmetric
matrix and removed diagonal as SC*(0) (see Table 2, line 1)
and run the algorithm in Table 1 to simulate the FC*(0).
Then iteratively we adjusted the SC as a function of the
difference between the current FC and empirical FC
(see Table 2, line 2), in other words SC*(1) = SC*(0) 1
lDFC(0), where DFC(0) = FCemp – FC*(0) and l is the
learning rate (see Table 2, line 3). The iteration will stop
when the correlation between FCemp and FC*(k)
reaches to the threshold CCtarget = 0.7 and giving the
SC*(k) as SCMFM. All the parameter used in this section
is identical to the nonlinear SC-to-FC completion pro-
cedure. Nonlinear SCMFM completions for our ADNI
and healthy aging datasets can be downloaded as a
MATLAB workspace within Extended Data 1 SC_MFM.
mat (available at the address https://github.com/
FunDyn/VirtualCohorts).

Trivial completion using the “other connectome”
In the case in which one of the two connectomes is

missing (e.g., just SC available but not FC) one may think
to use the available connectome (in this example, SC) as
a “good guess” for the missing one (in this example, FC).
We refer to this trivial procedure as a completion using
the other connectome. If the match quality between surro-
gate connectomes obtained via more complex proce-
dures and the target empirical connectome to reconstruct
happened to be comparable with the one that one can get

Table 1: Pseudo-code for nonlinear SC-to-FC completion (FC virtual duals to SC)

Algorithm non-linear SC-to-FC completion is
External input: empirical SC (SCemp)
Output: non-linear virtual FC (FCMFM)
Fixed parameters: noise level (s ), simulation time (T), range to scan Gstart � G � Gstop, range to scan tstart � t � tstop, other frozen
Wong-Wang neural mass parameters

Begin
1. Construct a MFM embedding SCemp and the default frozen Wong-Wang neural mass parameters
For Gstart � G � Gstop

For tstart � t � tstop
2.1 Simulate the MFM with current parameter values for a short time 0.2*T (discarding an initial transient)
2.2 Compute surrogate BOLD from MFM time series via Balloon–Windkessel model
2.3 Compute Corr(BOLD), i.e. the time-averaged FC matrix
2.4 Compute stream of time-resolved FC(t) and the associated dFC matrix
2.5 Compute and store Crit1[G, t ] (Spatial heterogeneity of activations)
2.6 Compute and store Crit2[G, t ] (Clustering coefficient of time-averaged FC matrix)
2.7 Compute and store Crit3[G, t ] (Clustering coefficient of dFC matrix)

End
End
3. Identify G* and t * for which Crit1[G, t ], Crit2[G, t ] and Crit3[G, t ] are jointly optimum
4. Simulate the MFM with parameter values G* and t * for a time T (discarding an initial transient)
5. Compute surrogate BOLD from MFM time series via Balloon–Windkessel model
6. Compute C = Corr(BOLD), i.e. the time-averaged FC matrix at G* and t *
Return FCMFM = C

End

Table 2: Pseudo-code for nonlinear FC-to-SC completion
(SC virtual duals to FC)

Algorithm non-linear FC-to-SC completion is
External input: empirical FC (FCemp)
Output: non-linear virtual SC (SCMFM)
Fixed parameters: FC* fitting quality (CCtarget), initial guess
SC*(0), learning rate l , noise level (s ), simulation time (T),
range to scan Gstart � G � Gstop, range to scan t start � t
� tstop, other frozen Wong-Wang neural mass parameters

Begin
1. FC*(0) = non-linear SC-to-FC completion starting from

SC*(0)
2. Dist = corr(FC*(0), FCemp)
3. Iteration = 0

While (Dist � CCtarget)
Iteration = iteration1 1
SC*(iteration) = SC*(iteration – 1) 1 l *(FC*(iteration) – FC*(iteration))
FC*(iteration) = non-linear SC-to-FC completion starting from
SC*(iteration)

Dist = corr(FC*(iteration), FCemp)
End
Return SCMFM = SC*(iteration)
End
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via the trivial completion, then it would not be worth using
more sophisticated methods. We assessed then, for com-
parison with other strategies, the performance of such
trivial completion approach on the SCemp 1 FCemp subset
of the ADNI dataset and on the whole healthy aging data-
set. In order for a completion approach to be considered
viable, it is necessary that it outperforms significantly this
trivial completion via the “other type” connectome, which
can be quantified by a relative improvement coefficient:

Dtrivial

¼CC½VirtualConnectome;ActualConnectome�
�CC½OtherConnectome;Actualconnectome�
CC½OtherConnectome;Actualconnectome�%:

Bivirtual data completion
The pipelines for data completion described above can

be concatenated, by performing. e.g., FC-to-SC comple-
tion on a virtually FC or SC-to-FC completion on a virtual
SC (rather than actual FCemp or SCemp, respectively).
In this way, one can create bivirtual dual counterparts
SCbi-MFM (FCbi-MFM) or SCbi-SLM (FC bi-SLM) for any of the
available empirical SCemp (FCemp) by applying in se-
quence nonlinear MFM-based or linear SLM-based pro-
cedures for SC-to-FC and then FC-to-SC completion (or,
conversely, FC-to SC followed by SC-to-FC completions).
Linear and nonlinear bivirtual completions for our ADNI
and healthy aging datasets can be downloaded as
MATLAB workspaces within Extended Data 1 SC_bivirt.
mat and FC_bivirt.mat (available at the address https://
github.com/FunDyn/VirtualCohorts).
For every pair of subjects, we computed the correlation

distance between the respective empirical connectomes
(pairs of FCemp or SCemp) and the corresponding bivirtual
duals (pairs of FCbi-MFM or SCbi-MFM) and plotted the em-
pirical-empirical distances versus the corresponding bi-
virtual-bivirtual distances (compare Fig. 6) to reveal the
large degree of metric correspondence between real and
bivirtual dual spaces. This correspondence was also
quantified computing Pearson correlation between empir-
ical and bivirtual pairwise distances. These correlations
(computed as well for virtual connectomes, beyond the bi-
virtual duals) are tabulated in Table 3 and Table 4.

Improvement by personalization
Completion procedures map a connectome for a given

subject to subject-specific virtual and bivirtual dual con-
nectomes. The question is whether the similarity between
empirical and completed connectomes is better when
considering connectome pairs formed by an empirical
and its subject-specific dual connectomes, or pairs made
by an empirical and a generic virtual or bivirtual connec-
tome, not specific to the considered subject. We expect
that empirical-to-virtual match is improved by personali-
zation. To quantify it, we introduce an Improvement by
Personalization coefficient DPers, evaluating it for all the
types of completion.
For simulated data one can define CCpersonalized = CC

[Connectomevirt(a subject), Connectomeemp(same

subject)], where “connectome” refers to the considered con-
nectome matrix (of either the SC or the FC type) and the
ondex “virt” to any type of completion (SLM or MFM
based, virtual or bivirtual). Analogously, we define
CCgeneric = group average of CC[Connectomevirt(same
subject), Connectomeemp(a different subject)]. The
Improvement by personalization coefficient is then de-
fined as DPers = (CCpersonalized – CCgeneric)/CCgeneric.
This coefficient significantly larger than zero denotes
that completion pipelines get to improved results when
completion is personalized.
At least for FC, we can estimate from empirical data

how much the improvement by personalization could be
expected to be in the case in which a first FC extraction
for a given subject had to be replaced by a second one
coming from a second scan from the same subject versus
a scan for another generic subject. To obtain such an esti-
mate, we focus on a dataset mediated from the Human
Connectome Project and conceived to probe test/retest
variability (Termenon et al., 2016). In this dataset, 100
subjects underwent two resting state scans, so that two
FCemp can be extracted for each of them. If we redefine
CCpersonalized = CC[FCemp(same subject first scan),
FCemp(same subject second scan)] and CCgeneric = Group
average of CC[FCemp(same subject, first scan), FCemp(a
different subject, first scan)], then we can evaluate an em-
pirical DPers = (CCpersonalized – CCgeneric)/CCgeneric. For em-
pirical FCs from the Termenon et al. (2016) dataset we
obtain an improvement by personalization of ;122%, to
be used as a comparison level when looking at improve-
ments by personalization in virtual and bivirtual
connectomes.

Network topology features and their personalized
preservation through data completion
To evaluate the correspondence between empirical and

bivirtual connectomes we evaluated a variety of graph-
theoretical descriptors of the connectomes and com-
pared them within pairs of empirical and bivirtual dual
adjacency matrices. Every connectome, functional or
structural, was described by a weighted undirected matrix
Cij, where i and j are two brain regions, and the matrix en-
tries denote the strength of coupling, anatomic or at the
level of activity correlations, between them. For each
brain region i, we then computed: its strength Si = Rj Cij,
indicating how strongly a given region is connected to its
local neighborhood; its clustering coefficient Clui = |trian-
gles involving i|/|pairs of neighbors of i| (with j � j denoting
the count of a type of object), determining how densely
connected are between them the neighbors of the consid-
ered region; and its centrality coefficient, quantifying the
tendency for paths interconnecting any two nodes in the
networks to pass through the considered node. In particu-
lar, we computed here centrality using a version of the
PageRank algorithm (Brin and Page, 1998) for weighted
undirected networks in an implementation from the Brain
Connectivity Toolbox (Bullmore and Sporns, 2009), with a
typical damping parameter of 0.9. Without entering in the
details of the algorithm (for details, see Brin and Page,
1998), a node is deemed important according to
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PageRank centrality if it receives strong links from other
important nodes sending selective and parsimonious in
their connections, i.e., sending only a few strong links.
Strengths, clustering, and centrality measures provide to-
gether a rich and detailed portrait of complementary as-
pects of network topology and on how it varies across
brain regions. We computed then the correlations be-
tween the above graph theoretical features for matching
regions in empirical connectomes and their bivirtual coun-
terparts. Note that the number of network nodes were dif-
ferent for connectomes in the ADNI and in the healthy
aging datasets, since the used reference parcellations in-
cluded a different number of regions in the two cases.
However, graph theoretical metrics can be computed in
precisely the same way and we perform in this study
uniquely within-dataset analyses. In Figure 8, we show
point clouds for all subjects of the ADNI dataset pooled
together. Analogous plots for the healthy aging dataset
are shown in Extended Data Figure 8-1.
We then computed correlations between vectors of

graph-theoretical features over the different brain regions
within specific subjects. This analysis is an important
probe of the personalization quality in data completion,
since every subject may have a different spectrum of
graph-theoretical properties across the different regions
and that it is important that information about these topo-
logical specificities is maintained by completion. These
within-subject correlations, often higher than global popu-
lation correlations, since not disturbed by variations of
mean feature values across subjects, are summarized in
Table 3 for the ADNI dataset and in Extended Data
Table 3-1 for the healthy aging dataset. In these tables,
we provide both absolute correlation values and the in-
dication of how each correlation is improved by com-
puting it within subjects rather than across the whole
sample. Correlations were evaluated over data points
belonging to the interquartile range of empirical data
and then extrapolated to the whole range to avoid esti-
mation to be fully dominated by cloud tails of extreme
outliers.
We extracted then the community structure of empirical

and bivirtual dual connectomes using the Louvain algo-
rithm (Blondel et al., 2008), with default parameter C = 1
and “negative symmetric” treatment of negative matrix

entries (once again, in the implementation of the Brain
Connectivity Toolbox). To compare the resulting commu-
nity assignments to different regions across pairs of dual
empirical and bivirtual connectomes we computed the
mutual information between the respective labelings and
normalized it in the unit range by dividing it by the largest
among the entropies of the community labelings of each
connectome. Such normalized mutual information mea-
sure is not sensitive to changes in names of the labels and
can be applied independently on the number of retrieved
communities. Chance levels for relative mutual informa-
tion can be estimated by permuting randomly the labels
and finding the 99th percentile of values for shuffled la-
bels. Average mutual information between community la-
bels are tabulated as well in Table 3 for the ADNI dataset
and in Extended Data Table 3-1 for the healthy aging da-
taset, once again giving absolute values and relative im-
provements of personalized with respect to generic
correspondence.

Supervised subject classification
To show the possibility to extract personalized informa-

tion relevant for subject characterization, we performed
different machine-learning supervised classification tasks
using as input features derived from empirical and (bi)vir-
tual connectomes. The input and target features to pre-
dict were different for the ADNI and the healthy aging
datasets.
Concerning the ADNI dataset, we separated subjects in

two subgroups: controls and patients (MCI or AD).
Subjects (the actual ones or their associated virtual coun-
terparts) are thus labeled as “positive” when belonging to
the patient subgroup or negative otherwise. Note that our
classifiers were not sufficiently powerful to reliably dis-
criminate subjects in three classes (control, MCI, and AD)
on this dataset, at least under the simple classification
strategies we used. For illustration, we constructed classi-
fiers predicting subject category from input vectors
compiling the total connectivity strengths (in either SC or
FC connectomes, real, virtual, or bivirtual) of different
brain regions. The dimension of the input space was thus
limited to the number of regions in the used 96-ROIs par-
cellation, which is of the same order of the number of
available subjects in the overall dataset.

Table 3: Single-subject correlations between network features in real and bivirtual dual connectomes for the ADNI dataset

SC FC
Median and range Within
subject cross-subject D%

Median and range Within
subject cross-subject D%

Strength 0.16 60.20 25 6 18 0.77 6 0.18 342 6 8
0.13 6 0.17 0.17 6 0.20

Clustering �0.05 6 0.12 �17 6 24 0.65 6 0.24 359 6 13
�0.06 6 0.11 0.14 6 0.21

Centrality 0.21 6 0.18 24 6 12 0.66 6 0.20 312 6 10
0.16 6 0.15 0.16 6 0.18

Communities 59 6 10% 23 6 2 45 6 10% 260 6 6
47 6 8% 12 6 6%

Indicated values for real/bivirtual dual correlations (for strength, clustering, and centrality coefficients) or relative mutual information (for communities) are mean
6 SD of the mean over subjects.
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Concerning the healthy aging dataset, we separated
subjects in four age classes with 13 subjects in Class I
(age= 18–25), and 12 subjects in Classes II (age=26–39),
III (age= 40–57), and IV (age =58–80) and used as target
labels for classification the ordinal of the specific age
class of each subject. As input vectors we used in this
case the top 10 PCA of upper-triangular of connectome.
In both cases, we chose as classifier a boosted ensemble
of 50 shallow decision trees. For the ADNI dataset, we
trained it using the RUSBoost algorithm (Seiffert et al.,
2010), particularly adapted to data in which the number of
input features is large with respect to the training dataset
size and in which positive and negative labels are unbal-
anced. For the healthy aging dataset, we used a standard
random forest method (Breiman, 2001). For both data-
sets, for training and testing we split the dataset into five
folds, each of them with a proportion of labels maintained
identical to the one of the full dataset and performed train-
ing on three of the five folds and testing on the remaining
two folds (generalization performance). We considered
classifiers in which the training features were of the same
type of the testing features (e.g., classifiers trained on
SCemp and tested on SCemp data; or classifiers trained on
FCMFM and tested on FCMFM data in Figure 7D, center, E,
right; etc.). We also considered classifiers in which the
type of data differed in training and testing (e.g., classi-
fiers trained on SCbi-MFM and tested on SCemp data, in Fig.
7F). In all cases, generalization performance was as-
sessed on data from different subjects than the ones used
for training (i.e., prediction performed on the folds of data
not actually used for training). The split in random folds
was repeated 1000 times, so to be able to evaluate me-
dian performances and their confidence intervals, given
by 5th and 95th percentile performances over the 1000
repetitions of training and testing. We measured perform-
ance based on confusion matrices between predicted
and actual class labels and, just for the binary classifica-
tion problem on the ADNI dataset, on the receiver opera-
tor curve (ROC) analysis as well. For ROC analysis, we
quantified fractions of true and false positives (numbers of
true or false positives over the total number of actual posi-
tives) during generalization, which depend on an arbitrary
threshold to be applied to the classifier ensemble output
to decide for positivity of not of the input data. ROCs are
generated by smoothly growing this threshold. An area
under the curve (AUC) was then evaluated as a summary
performance indicator, being significantly larger than
50% in the case of performance above chance level. The
ROC curves plotted in Figure 7B,C, as well as their asso-
ciated 95% confidence range of variation are smoothed
using a cubic smoothing spline based on the cloud of TP
and FP values at different thresholds over the 1000 indi-
vidual training and testing classification runs. We report
confidence intervals for AUCs only for “direct” classifica-
tions (pooling performances for classifiers trained on ei-
ther SCemp or FCemp and tested on same-type empirical
connectomes) and “virtual” classifications (pooling per-
formances for classifiers trained on any type of virtual
or bivirtual connectomes and tested on same nature vir-
tual or empirical connectomes) since confidence

intervals for more specific types of classifiers were
largely overlapping.

Virtual cohorts
To generate virtual cohorts, i.e., synthetic datasets

made of a multitude of virtual connectomes beyond indi-
vidual subject or patient data completion, we artificially
boosted the size of the original dataset by generating a
much larger number of virtual subjects with multiple alter-
native (but all equally valuable) completions of the missing
connectomic data. Concretely, to generate the virtual
cohort dataset illustrated in Figure 9A, we took the 88
subjects in the SCemp only plus the 12 subjects in the
SCemp 1 FCemp subsets of the ADNI dataset (including 21
AD subjects, 35 MCI, and 32 control subjects) and run for
each of them the nonlinear SC-to-FC completion algo-
rithm 100 times, using each time a different random seed.
The net result was a group of 100 alternative FCMFM in-
stances for each of the subjects, yielding in total a virtual
cohort of 8800 FCMFM matrices to be potentially used for
classifier training. Such a cohort can be downloaded as a
MATLAB workspace within Extended Data 1 FC_cohort.
mat (available at the address https://github.com/FunDyn/
VirtualCohorts). To generate Figure 9A, showing a dimen-
sionally reduced representation of the relative distances
between these 8800 virtual matrices, we used an exact t-
SNE projection (Maaten and Hinton, 2008) of the vectors
of upper-triangular parts of the different FCMFMs toward a
two-dimensional space, using a default perplexity value
of 30 and no-exaggeration.
On the same t-SNE projection, beyond the FCMFM con-

nectomes within the virtual cohort connectomes we show
as well additional FC connectomes, for the sake of com-
parison (using the same t-SNE neural network adopted
for projecting the virtual cohort connectomes on the
Euclidean plane). Specifically, for the 12 subjects with
available FCemp in addition to SCemp, we also show the
projected positions corresponding to the real FCemp.
Moreover, we also show positions of bivirtual FCs gener-
ated from the FCemp only subset paired to the corre-
sponding FCemp projection.

Code accessibility
Code/software to perform procedures described in

the paper is freely available online at https://github.
com/FunDyn/VirtualCohorts. The code is available as
Extended Data 1, together with workspaces including
virtual cohorts. Code is designed for MATLAB and was
run on Mac OS 10.15 system.

Results
Connectomic data may have gaps: the example of
ADNI
The first dataset we have chosen to focus in the frame-

work of this study corresponds to one of the earliest and
most popular available datasets in AD research, including
a substantial amount of structural and functional connec-
tomic information, i.e., the ADNI database (adni.loni.usc.
edu). ADNI is impressive for the variety of features it
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aimed at systematically gathering (Fig. 1A). Importantly,
based on the T1, DTI and rsBOLD fMRI images available
through the ADNI datasets, state-of-the-art processing
pipelines can be used to extract subject-specific struc-
tural and resting-state functional connectomes, compiled
into connectivity matrices adapted to the brain parcella-
tion of choice (Fig. 1B; for details, see Materials and
Methods).
We had access to 244 overall subjects (119 labeled as

MCI and 51 as AD, thus 170 patients, in addition to 74
control subjects, see Materials and Methods) for which
MRI data had been gathered. We could extract an FC ma-
trix for 168 subjects (starting from rsfMRI) and a SC matrix
(starting from DTI) for 88 subjects. However, only for a mi-
nority of 12 subjects rsBOLD and DTI information were
both available. In a majority of cases, either DTI or
rsBOLD were missing (Fig. 1C). This reduced number of
“complete” subjects constitutes a serious challenge to at-
tempts of automatedly categorize them through machine
learning or inference approaches capitalizing on both SC
and FC features simultaneously. As a matter of fact, the
total numbers of AD-labeled and MCI-labeled subjects in
this complete subset decreased, respectively, to just two

and four, against six controls. In these conditions, the de-
velopment of effective data completion strategies would
be an important asset toward the development of classi-
fier schemes exploiting FC/SC synergies. Therefore, ap-
proaches to “fill gaps” (completion) and, possibly, even
artificially boosting sample size (augmentation) are verita-
bly needed.

Control dataset: healthy aging
To confirm the robustness of all following analyses per-

formed on the first ADNI dataset, we also consider in the
following comparisons with analogous analyses con-
ducted on a second control dataset. In this previously an-
alyzed dataset (Zimmermann et al., 2016; Battaglia et al.,
2020), we considered 49 healthy adult subjects covering
an age-span from 18 to 80 years that we split in four age
classes (for details, see Materials and Methods). For all
these 49 subjects, both FCemp and SCemp are simultane-
ously available, thus extending the number of subjects for
which a ground truth connectome against which evaluate
the performance of each tested completion pipeline is
possible.
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Figure 1. Connectomic information extracted from the ADNI dataset has gaps. A, The different dataset releases by the ADNI con-
sortium include a variety of information relative to different biomarkers and imaging modalities. Here, we focus on structural and
fMRI features and, chiefly: T1, DTI (allowing to extract empirical structural connectomes), and rsfMRI BOLD time series (allowing to
extract empirical functional connectomes). B, Matrices SCemp and FCemp summarizing connectomic information about, respectively,
SC and FC are obtained via elaborated multistep processing pipelines, using various software including FreeSurfer, FSL, ANTS, and
MRtrix3. C, The total number of subjects in healthy aging dataset is 49 between the ages of 18 and 80 (mean=42.166 18.37; 19
male/30 female) in which with approximately equal number of subjects they were divided into four categories (I:IV). The total number
of ADNI-derived subjects investigated in this study is 244, in which 74 subjects were control, while 119 subjects labeled as MCI,
and 51 subjects as AD. Out of these 244, FCemp could be extracted for 168 subjects, and SCemp for 88. However, SCemp and FCemp

were both simultaneously available for just a minority of 12 subjects (referred to as the SCemp 1 FCemp subset). The available data
are shown in blue and the missing data in gray, the SCemp 1 FCemp subset is shown in pink.
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We also note that connectomes in the two ADNI and
healthy aging datasets were defined in terms of different
brain parcellations, involving a different number of re-
gions. This fact will allow further testing the robustness of
our analyses against changes of the used parcellation.

Linking SC and resting-state FC via computational
modeling
As previously mentioned, FC and SC are related only in-

directly through the rich nonlinear dynamics supported by
brain networks (Ghosh et al., 2008; Deco et al., 2011;
Kirst et al., 2016). MFM of large-scale brain networks has
emerged initially as the key tool to predict the emergent
dynamic patterns of resting-state FC, from spontaneous
dynamics constrained by SC (Ghosh et al., 2008). It is
thus natural to propose the use of model-based solutions
to perform data-completion, which, in both the SC-to-FC
and FC-to-SC directions, requires to capture the interrela-
tion between the two as mediated by dynamics.
Large-scale mean-field brain network models are speci-

fied by (1) a parcellation of cortical and subcortical brain
areas; (2) a co-registered input SC matrix in the same par-
cellation; (3) a forward solutions linking source and sensor
space; (4) a neuronal mass model, describing the nonlin-
ear dynamics of the regions at each of the nodes of the
SC matrix; (5) a choice of a few global parameters (e.g.,
scale of strength of interregional connectivity or speed of
signal propagation along fiber tracts); (6) an external input
given to the different regions, that, in the simplest case,
corresponds to simple white noise uncorrelated across
each of the different sites and of homogeneous strength.
TVB enables the complete workflow from brain images
to simulation (TVB; Sanz-Leon et al., 2013, 2015).
Personalization is accomplished by the subject-specific
structural skeleton, ingredients (1) through (4), which has
been demonstrated to be individually predictive (Proix et
al., 2017; Melozzi et al., 2019). Simulations of the model
can be run to generate surrogate BOLD time series of ar-
bitrary length (for details, see Materials and Methods)
and the associated simulated resting-state FC, time-
averaged (static FC) or even time-resolved (FC dynamics
or dFC; Hansen et al., 2015). The thus obtained simu-
lated FC will depend on the chosen global parameters,
setting the dynamic working point of the model. The
model dynamics will eventually switch between alter-
native dynamical regimes when its global control pa-
rameters cross specific critical points. Tuning global
parameters will thus uniquely determine, in which re-
gime the model operates. Mean-field large scale mod-
els constrained by empirical SC tend to generate
simulated resting-state FC that best matches empirical
observations when the dynamic working point of the
model lies in the proximity of a model’s critical point
(Deco et al., 2011, 2013; Hansen et al., 2015; Triebkorn
et al., 2020).
We here chose one of the simplest possible whole-brain

network model designs, which emphasizes activity-based
network organization (as opposed to reorganization be-
cause of synchronization) and thus ignores interregional
propagation delays. This approach is frequently used in

the literature (Deco et al., 2013; Hansen et al., 2015; Aerts
et al., 2018) and has the advantage of avoiding the need
for complex delay differential equation integration schemes
(for more details, see Discussion). Activation-based ap-
proaches adopt particularly simple neural mass models
such as the reduced Wong–Wang model (Deco et al.,
2013), in which the dynamics of an isolated brain region is
approximated by either one of two possible steady states,
one “down state” at low firing rate and an “up state” at high
firing rate, a feature initially meant to mimic bi-stability in
working memory or decision-making (Wong and Wang,
2006). By varying G, the model will switch from a low-cou-
pling regime, in which all regional activations are low to a
high-coupling regime, in which all regional activations are
high, passing through an intermediate range, in which both
regimes can exist in a multistable manner and regions dis-
play spatially and temporally heterogeneous activations (a
changing mix of high and low firing rates). The best fit be-
tween simulated and empirical FC occurs slightly before
the critical rate instability, at which modes of activity with
low firing rate disappear (Deco et al., 2013).
As alternatives to the just described nonlinear MFMs of

resting-state brain dynamics, simpler SLMs have also
been considered (Goñi et al., 2014; Messé et al., 2014;
Saggio et al., 2016). In these models, the activity of each
region is modeled as a stochastic process (linear, in con-
trast to the nonlinear neural mass dynamics of conven-
tional MFMs), biased by the fluctuations of the other
regions weighted by the SC connectome (see Materials
and Methods). SLMs have also two different regimes. In
the first regime, the activities of all regions converge to a
fixed-point of constant mean fluctuating activities, while,
in the second, regional activities diverge with exponential
growth. Once again, the best fit between the simulated
and the empirical resting-state FCs is observed when tun-
ing the model parameters slightly below the critical point
(Hansen et al., 2015; Saggio et al., 2016).
MFMs and SLMs provide thus two natural ways to

generate simulated resting-state FCs, depending on the
chosen dynamic regime, starting from a selected SC.
Strategies have also been devised to approximately solve
the inverse problem of determining which SC matrix
should be used as input to a model to give rise to a simu-
lated FC matching a specific, predetermined target ma-
trix. For the SLM, a simple analytic solution to the inverse
problem exists (Saggio et al., 2016). For MFMs, inverse
problems have not been studied with the same level of
rigor, but algorithms have been introduced that iteratively
adjust the weights of the SC matrix currently embedded
in the model to improve the fit between simulated and tar-
get FCs (Gilson et al., 2016, 2018). We will show later that
these algorithms, although initially designed to identify
changes of effective connectivity occurring between rest-
ing state and task conditions, have the potential to cope
with the actual problem of MFM inversion, providing rea-
sonably good ansatz for SC inference.
As linear approaches are significantly faster than nonlin-

ear approaches, it is important to study their performance
alongside nonlinear approaches to confirm the actual jus-
tification of the use of more complicated algorithms. We
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will see that for one of the two considered datasets, the
ADNI one, nonlinear methods are superior for the data
completion applications we are interested in. However,
performance of completion happened to be slightly supe-
rior for the SLM-based than for the MFM-based methods
in the case of the second healthy aging dataset (hence
the interest of exploring and benchmarking both linear
and nonlinear completion strategies).

Model-driven data completion
Figure 2 summarizes many of the modeling operations

described in the previous section framing them in the spe-
cific context of connectomic data completion. MRI data

can be used to generate empirical SC matrices SCemp

(from DTI) or FCemp (from rs fMRI BOLD). By embedding
the empirical matrix SCemp into a nonlinear MFM or a line-
ar SLM, it is possible to compute surrogate FC matrices
(Fig. 2A, upward arrows), denoted, respectively, FCMFM

and FCSLM. The MFM and SLM global parameters are
suitably tuned (slightly subcritical) then FCMFM and FCSLM

will be maximally similar to the empirical FCemp (dynamic
working point tuning; Fig. 2A, dashed gray arrows).
Starting from the empirical matrix FCemp, one can then
infer surrogate SC matrices (Fig. 2A, downward arrows),
either by using a linear theory, developed by Saggio et al.
(2016), to compute a surrogate SCSLM; or by exploiting
nonlinear effective connectivity algorithm, generalized
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Figure 2. From MFM to connectomic data completion. A, We present here a graphical summary of the various computational simu-
lation and inference strategies used in this study to bridge between different types of connectivity matrices. Mean-field simulation
and the associated analytic theory can be used to generate virtual FC, through simulations of resting-state whole-brain models em-
bedding a given input SC connectome (ascending arrows). Algorithmic procedures, that may still include computational simulation
steps, can be used to perform the inverse inference of a virtual SC that is compatible with a given input FC (descending arrows).
Both simulation and inference can be performed using simpler linear (green arrows) or nonlinear (blue arrows) approaches. When
the input SC (or FC) connectomes used as input for FC simulation (or SC inverse inference) correspond to empirical connectomes
SCemp (or FCemp), derived from T1 and DTI (fMRI) images, then model simulation (inversion) can be used to complete gaps in the da-
taset, whenever FCemp (or SCemp) is missing. We refer then to these operations as (B) SC-to-FC completion and (C) FC-to-SC com-
pletion. Both exist in linear and nonlinear versions.
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from Gilson et al. (2016, 2018), to infer a surrogate SCMFM

starting from a random initial guess (see section Non-line-
ar FC-to-SC completion).
When connectomic data are incomplete (only SCemp or

only FCemp are available, but not both simultaneously),
computational simulation or inference procedures can be
used to fill these gaps: by using FCMFM or FCSLM as virtual
replacements for a missing FCemp (Fig. 2B), or by using
SCMFM or SCSLM as virtual replacements for a missing
SCemp (Fig. 2C). The quality of the model-generated vir-
tual SCs and FCs can be assessed by comparing them
with the actual empirical counterparts for the small subset
of subjects for which both SCemp and FCemp are simulta-
neously available. Optimizing the quality of the virtually
completed matrices on subjects for which both empirical
connectomes are available (as, e.g., the subset of ADNI
SCemp 1 FCemp subjects), also allows extrapolating target
criteria for identifying when the model is operating a suita-
ble dynamic working point, that can be evaluated solely
based on simulated dynamics when a fitting target matrix
is missing and thus fitting quality cannot be explicitly
measured (compare Figs. 3 and 4). We can thus translate
these criteria into precise algorithmic procedures that in-
form linear or nonlinear SC-to-FC and FC-to-SC comple-
tion (see Tables 1, 2; Extended Data Tables 1-1, 2-1).
We now, provide more details on implementation and

performance for each of the four mentioned types of data
completion.

Linear SC-to-FC completion
In linear SC-to-FC completion, a simple SLM (see

Materials and Methods) is constructed based on the avail-
able SCemp and its direct simulations or even, in a much
faster manner, analytical formulas deriving from the mod-
el’s theory are used to generate the associated virtual
Pearson correlation matrix FCSLM (Extended Data Fig. 3-
1). In this SLM scheme, once the driving noise strength is
arbitrarily chosen and fixed and the input connectome
SCemp is specified, there remains a single parameter to
adjust, the global scale of long-range connectivity
strength G. Extended Data Figure 3-1A shows a system-
atic exploration, performed on subjects from the ADNI
SCemp 1 FCemp subset, of how the completion quality de-
pends on tuning this parameter G. As shown by the main
plot in Extended Data Figure 3-1A for a representative sub-
ject, increasing G the correlation between the empirical
FCemp and the simulated FCSLM, derived here from direct
SLM simulations, initially grows to peak in proximity of a crit-
ical value G*. The correlation then drops dramatically when
further increasingG beyond the critical pointG*.
The exact value of G* depends on the specific personal-

ized SCemp connectome embedded into the SLM and is
therefore different for each subject. Extended Data Figure
3-1A, small boxplot inset, gives the distribution of the per-
sonalized G* over all the subjects in the ADNI SCemp 1
FCemp subset. However, when performing linear FC com-
pletion because BOLD data and FCemp are missing, the
exact location of the fitting optimum cannot be deter-
mined. To perform linear SC-to-FC completion for the
ADNI subjects with missing BOLD we chose to always

use a common prescribed valueG*ref = 0.83, set to be equal
to the median of the personalized G* over the SCemp 1
FCemp subset of ADNI subjects.
Once a G*ref value and a noise strength are set, the line-

ar completion can be further sped-up by the fact that the
covariance matrix FCSLM for these frozen parameters can
be analytically evaluated, as discussed in Saggio et al.
(2016). Therefore, one can directly apply the SLM analyti-
cal formulas (see Materials and Methods) on the available
SCemp as input, without the need for performing direct
simulations to generate surrogate BOLD first. Extended
Data Figure 3-1B,C analyzes the expected performance
of this “simulation-less” procedure, as benchmarked by
applying it on the ADNI SCemp 1 FCemp subset. The box-
plot in Extended Data Figure 3-1B (centermost box) re-
ports a median Pearson correlation between the linear
virtual FCSLM and the actual empirical FCemp close to
;0.24 for the ADNI dataset. This correlation is larger and
rise to ;0.37 for the healthy aging dataset, in which
FCSLM are generated from SCemp using precisely the
same algorithm. Extended Data Figure 3-1C indicates
then the percent loss in correlation that has been caused by
using the common value G*ref and the analytical formula to
evaluate the linear virtual FCSLM rather than direct simula-
tions at the actual personalized optimum G* for each of the
ADNI SCemp 1 FCemp subjects. The median quality loss is
;0.5%, indicating that the lack of personalized tuning of the
SLMworking point is only a minor issue and that is accepta-
ble to speed-up completion by relying on analytical
evaluations.
The median Pearson correlations of;0.24 or;0.37 be-

tween the linear virtual FCSLM and the actual empirical
FCemp for the ADNI and the healthy aging datasets, re-
spectively, are significant but still absolutely weak. A way
to assess whether linear SC-to-FC completion is worthy,
despite these low correlation values, it is possible to com-
pare the achieved reconstruction quality with the one that
one could trivially achieve by simply taking the SCemp

connectome itself as surrogate FC, since we know that
SC and FC connectomes are already strongly related
(Hagmann et al., 2008). This strategy of using the other
connectome to perform FC completion would be even faster
than SLM-based completion. We thus computed the per-
cent improvement in rendering FCemp via FCSLM for subjects
in the ADNI SCemp 1 FCemp subset and for subjects in the
healthy aging datasets. As shown in Extended Data Figure
2-1A, for the ADNI dataset, the use of FCSLM resulted sys-
tematically in a worse performance (median drop Dtrivial ¼
�15%; for definition, see Materials and Methods) in repro-
ducing the actual FCemp than using the other available con-
nectome SCemp. However, in the case of the healthy aging
dataset, the use of FCSLM resulted in a clearly better per-
formance than when using the other connectome (median
improvement Dtrivial ¼ 140%). Thus, the performance of lin-
ear SC-to-FC completion can be good but was not robustly
maintained across the two considered datasets.

Non-linear SC-to-FC completion
In nonlinear SC-to-FC completion, a more complex

MFM (see Materials and Methods) is constructed based
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on the available SCemp and is simulated to generate surro-
gate BOLD data and the associated Pearson correlation
matrix FCMFM (Fig. 3). Non-linear mechanistic MFM mod-
els are supposedly more compliant with neurophysiology
than the phenomenological SLMs. Furthermore, because
of their non-linearities, they are potentially able to capture
complex emergent collective dynamics resulting in non-

trivial dFC (which SLMs cannot render, compare Hansen
et al., 2015). However, MFMs have also more parameters
and are computationally costlier to simulate than SLMs.
We chose here to limit ourselves to MFMs based on a

reduced Wong–Wang regional dynamics (for model equa-
tions, see Materials and Methods), which has previously
been used to successfully reproduce rsFC (Deco et al.,
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Figure 3. Non-linear SC-to-FC data completion. Simulations of a nonlinear model embedding a given input SCemp matrix can be
used to generate surrogate FCMFM matrices. A, Systematic exploration (here shown for a representative subject) of the dependency
of the correlation between FCemp and FCMFM on the MFM parameters G (interregional coupling strength) and t (synaptic time-con-
stant of within-region excitation) indicates that the best fitting performances are obtained when parameters are concentrated in a
narrow concave stripe across the G/t plane. B, Enlarged zoom of panel A over the range G [ [1 3] and t [ [10 30]. C, For a value of
t = 25, representatively chosen here for illustration, we identify a value G* for which the Pearson correlation between FCemp and
FCMFM reaches a clear local maximum. Panels A–C thus indicate that it makes sense speaking of a best-fit zone and that reliable
nonlinear SC-to-FC completion should be performed using MFM parameters within this zone. Three criteria help us identifying pa-
rameter combinations in this best fitting zone when the actual FCemp is unknown. D, First criterion: we define the spatial coefficient
of variation of the time series of simulated BOLD activity TSMFM as the ratio between the variance and the mean across regions of
the time-averaged activation of different regions. The best fit zone is associated with a peaking of this spatial coefficient of variation,
associated with a maximally heterogeneous mix or low and high activation levels for different regions (see time series in lower car-
toons). E, Second criterion: in the best fitting zone, the resulting FCMFM is neither randomly organized nor excessively regular
(synchronized) but presents a complex clustering structure (see lower cartoons), which can be tracked by a peak in the clustering
coefficient of the FCMFM, seen as weighted adjacency matrix. F, Third criterion: in the best fitting zone, resting-state FCMFM display
a relatively richer dynamics than in other sectors of the parameter space. This gives rise to an “dFC matrix” (correlation between
time-resolved FC observed at different times) which is neither random nor too regular but displays a certain degree of clustering
(see lower cartoons). The emergence of complex dynamics of FC can be tracked by an increase in the clustering coefficient of the
dFC matrix extracted from simulated resting-state dynamics. G, The boxplot shows the distribution of correlations between the ac-
tual FCemp and FCMFM estimated within the best fitting zone for all subjects from the SCemp 1 FCemp ADNI subset and the aging da-
taset. See Extended Data Figure 3-1 for linear SC-to-FC completion and Extended Data Figure 3-2 for dependency of MFM best fit
zone on additional parameters.
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2013) and dFC (Hansen et al., 2015) starting from empiri-
cal SC, despite its relative simplicity with respect to other
possible neural masses implemented in the TVB platform.
In addition to the global scale of long-range connectivity
strength G, the MFM model dynamics depend also on re-
gional dynamics parameters. In Figure 3, we froze all local
parameters but the NMDA decay time-constant t , since
they affected the dynamic behavior of the model less than
the other control parameters and, in particular, did not
alter qualitatively the repertoire of accessible dynamical
regimes (compare Fig. 3A and Extended Data Fig. 3-2).
The simulated collective dynamics and the resulting non-
linear virtual FCMFM will depend on the choice of the free
control parameters G and t . In Figure 3A, we have ex-
plored the dependency of the correlation between FCMFM

and the actual empirical FCemp as a function of G and t
achievable over the subjects in the ADNI SCemp 1 FCemp

subset. As evident in Figure 3A, this dependence is non-
monotonic and the best-fitting qualities are concentrated
in a narrow concave stripe across the G/t plane. Figure
3B,C reports zoom of Figure 3A into increasingly smaller
regions, revealing an extended zone of high fitting quality

which some absolute optimum parameters G* and t *
(here G* =; 1.5 and t * = 25).
Remarkably, this best-fitting quality zone on the G/t

plane is associated as well to other properties that can be
evaluated just based on the simulated dynamics (and,
therefore even when the actual target FCemp is unknown
and missing). We found that the best fit quality systemati-
cally occurs in a region where three criteria are jointly met
(Fig. 3D–F).
First, there is a mixture of “ignited” regions with large

activation and of not yet ignited regions with a weaker fir-
ing rate (spatial heterogeneity; Fig. 3D). Conversely, when
moving out of the best-fitting zone, the activity becomes
more spatially homogeneous, either with all regions stable
at low (forG,,, G*) or high (for G... G*) firing rates.
Second, the time-averaged FCMFM has a complex mod-

ular organization between order and disorder, associated
to high average clustering coefficient, in contrast with the
absence of clustering observed for G ,,, G* or G ... G*
(structured FC; Fig. 3E).
Third, the simulated collective dynamics give rise to

meta-stability of FC along time, i.e., to a non-trivially
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Figure 4. Non-linear FC-to-SC data completion. An iterative procedure can be used to perform resting-state simulations of an MFM
model starting from a randomly guessed structural connectome SC* and progressively modify this SC* to make it compatible with a
known target FCemp. A, Starting from an initial random SC*(0) matrix, there is no correlation between the target FCemp and the gener-
ated FC*(0) matrix. However, by adjusting the weights of the used SC* through the algorithm of Table 2, SC* gradually develops a
richer organization, leading to an increase of the correlation between FC* and FCemp (violet dashed line) and in parallel, of the corre-
lation between SC* and SCemp (violet solid line), as shown here for a representative subject within the SCemp 1 FCemp subset. The
algorithm stops when the correlation between FC* and the input target FCemp reaches a desired quality threshold (here 0.7 after
2000 iterations) and the SC* at the last iteration is used as virtual surrogate SCMFM. B, The boxplot shows the distribution of correla-
tion between SCemp and SCMFM for all subjects in the SCemp 1 FCemp ADNI subset and the healthy ageing dataset. C, The correla-
tion between SCemp and SCMFM can vary using different random initial connectomes SC*(0). Here, we show a boxplot of the percent
dispersions of the correlation values obtained for different initial conditions around the median correlation value. The fact that these
dispersions lie within a narrow interval of 62.5% indicates that the expected performance is robust against changes of the initial
conditions. See Extended Data Figure 4-1 for linear FC-to-SC completion.
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structured dFC, which alternates between “knots” of tran-
siently slowed-down FC network reconfiguration and
“leaps” of accelerated reconfigurations. Such non-trivial-
ity of dFC can be detected by the inspection of the so-
called dFC matrix (Hansen et al., 2015; Arbabyazd et al.,
2020; Battaglia et al., 2020; Lombardo et al., 2020), repre-
senting the similarity between FC matrices computed at
different time-windows (see Materials and Methods). In
this dFC matrix analysis, dFC knots are visualized as
blocks with high inter-FC correlations, while dFC leaps
give rise to stripes of low inter-FC correlation. The promi-
nence of the block structure of the dFC matrix can be
measured by the dFC clustering coefficient (see Materials
and Methods), higher when the dFC matrix includes more
evident knots. The dFC clustering coefficient is higher in
the best fit zone, while it drops moving outside it toward G
,,, G* orG... G* (structured dFC; Fig. 3F).
By scanning the G/t plane in search of a zone with si-

multaneous spatial heterogeneity of activations, struc-
tured FC and structured dFC, the MFM model parameters
can be tuned to bring it in a zone invariantly resulting in
relatively higher fitting quality. Figure 3G shows the analy-
sis of the expected performance of this procedure, as
benchmarked by applying it on the ADNI SCemp 1 FCemp

subset (on the center) and the healthy aging dataset (on
the right). We measured a median Pearson correlation be-
tween the nonlinear virtual FCMFM and the actual empirical
FCemp close to ;0.32 for both datasets, which is larger
than for FCSLM in the case of the ADNI but slightly maller
in the case of healthy aging datasets.
Table 1 provides a compact pseudo-code for the non-

linear SC-to-FC completion procedure (for all details, see
Materials and Methods). Non-linear SC-to-FC comple-
tions for the DTI-only subjects in the considered ADNI da-
taset can be downloaded as part of Extended Data 1
FC_MFM.
The value of correlation with FCemp achieved by FCMFM

can thus be larger than the one achieved by FCSLM and
also appear more robust, since attained in both datasets.
Nevertheless, it remains necessary to check, as previ-
ously for the FCSLM, that it constitutes an improvement on
the trivial strategy over taking the other connectome as
substitute (i.e., taking FC to be identical to SCemp). In
Extended Data Figure 2-1A, we show that this is indeed
the case, unlike for linear SC-to-FC completion. The pro-
cedure sketched in Extended Data Table 1-1 led to a me-
dian improvement on using the other connectome
approaching ;20% for both datasets that can go as high
as160% in some subjects.

Linear FC-to-SC completion
In linear FC-to-SC completion, we use once again the

analytic theory derived for the SLM (Saggio et al., 2016) to
deterministically compute a surrogate SCSLM as a func-
tion of the available FCemp or, more precisely, of the
rsBOLDemp time series used to derive FCemp. In this
scheme, the linear virtual SCSLM is indeed taken to be di-
rectly proportional to the inverse covariance of the BOLD
time series (see Materials and Methods). The proportion-
ality constant would depend on the free parameters

chosen for the SLM, serving as a link between FC and SC.
Here, we set arbitrarily this constant to the unit value.
Extended Data Figure 4-1 shows the analysis of the ex-

pected performance of this procedure, as benchmarked
by applying it on the ADNI SCemp 1 FCemp subset. For
this ADNI dataset, we measured a median Pearson correla-
tion between the linear virtual SCSLM and the actual empiri-
cal SCemp close to;0.22. On the healthy aging dataset, this
correlation rose even up to;0.42.
Extended Data Table 2-1 provides a pseudo-code for

the linear FC-to-SC completion procedure (for all details,
see Materials and Methods). linear FC-to-SC completions
for the BOLD-only subjects in the considered ADNI and
the healthy ageing datasets can be downloaded as part of
Extended Data 1 SC_SLM.
As for SC-to-FC completions, we confirmed if the per-

formance reached by linear FC-to-SC completion is supe-
rior to the one that is obtainable through the trivial
strategy of using the other connectome (in this case, the
available FCemp). In Extended Data Figure 2-1B, we show
that using SCSLM rather than FCemp as an ersatz for
SCemp leads to drops of improvements in quality with a
pattern similar to the reverse SC-to-FC completion, i.e., a
drop in quality, with a median value of approximately
�20%, for the ADNI dataset but an increase of ;50% for
the healthy aging dataset. Once again, thus, linear FC-to-
SC completion can yield good results, but this perform-
ance did not robustly generalize through datasets.

Non-linear FC-to-SC completion
Non-linear FC-to-SC completion consists in the infer-

ence of a SCMFM matrix that, used as input to an MFM,
produces as output a simulated FC* matrix highly corre-
lated with the available empirical FCemp (Fig. 4). This non-
linear inverse problem is more sophisticated than linear
FC-to-SC completion, because, for the MFM a theory
providing an explicit formal link between input structural
connectome (SC*) and output functional connectome
(FC*) is not available, unlike for the SLM. Note indeed that
MFMs, at the best-fitting dynamic working point, give rise
not just to a single dynamical mode, but to a multiplicity of
them (Deco and Jirsa, 2012; Hansen et al., 2015; Golos et
al., 2015) and that each of them may be associated, in
general, to a different state-specific FC (Battaglia et al.,
2012; Hansen et al., 2015; Kirst et al., 2016) so that the
final static FC* results from averaging over a mixture of dif-
ferent states sampled in stochastic proportions. Therefore,
to derive the FC* associated with a given input SC*, it is nec-
essary to run explicit MFM simulations, long enough to sam-
ple a variety of possible dynamical states.
Gilson et al. (2016, 2018) have introduced iterative opti-

mization procedures aiming at updating a current guess
for the input SC* to a model to improve the match be-
tween the model output FC* and a target FCemp. They ini-
tially conceived such a procedure as a form of effective
connectivity analysis, aiming at constructing models
which capture the origin of subtle changes between rest-
ing state and task conditions. Thus, starting from an em-
pirical SC connectivity and from a model reproducing
suitably rest FC, they slightly adjusted SC weights
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through an iterative procedure to morph simulated FC in
the direction of specific task-based FCs. Nothing however
prevents to use the same algorithm in a more radical way,
to grow from purely random initial conditions a suitable ef-
fective connectome, as an ersatz of missing SCemp, com-
patible with the observed FCemp.
In this effective connectivity procedure connectome

weights are iteratively and selectively adjusted as a func-
tion of the difference occurring between the current FC*
and the target FCemp. Such optimization leads to infer re-
fined connectomes, that, with respect to empirical DTI SC
matrix, may display non-symmetric connections (distin-
guishing thus between “feeder” and “receiver” regions as
in Gilson et al., 2016) or enhanced interhemispheric con-
nections, usually under-estimated by DTI (as in Gilson et
al., 2018). Here, we use a similar algorithm to learn a suita-
ble nonlinear virtual SCMFM.

The initial SC*(0) is taken to be a matrix with fully random
entries. An MFM embedding such SC*(0) is built and simu-
lations are run to generate an output FC*(0) which is com-
pared with the target FCemp of the subject for which FC-
to-SC completion must be performed. The used SC*(0) is
then modified into a different SC*(1) = SC*(0) 1 lDFC(0)

matrix, by performing a small update step in the direction
of the gradient defined by the difference DFC(0) = FCemp –

FC*(0). A new simulation is then run to produce a new
FC(1). The produce is repeated generating new SC(1) =
SC(i-1) 1 lDFC(i-1) until when the difference between FC(1)

and the target FCemp becomes smaller than a specified
tolerance, i.e., |DFC(1)| , « . The last generation SC(1) is
then taken as nonlinear virtual surrogate SCMFM (for de-
tails, see Materials and Methods).
Figure 4A provides an illustration of the nonlinear FC-

to-SC completion when applied to subjects in the ADNI
ADNI SCemp 1 FCemp subset. In the first step, the matrix
SC*(0) is random and there is no correlation between the
output FC*(0) and FCemp. Advancing through the itera-
tions, SC*(k) develops gradually more complex internal
structures and correspondingly, the correlation between
FC*(k) and FCemp increases until when it reaches the de-
sired quality threshold, here set to CCtarget = 0.7. This
threshold quality is usually reached after ;1500 itera-
tions. In the ADNI SCemp 1 FCemp subset we take advant-
age of the availability of the actual SCemp to quantify as
well the convergence of SC*(k) toward SCemp. Figure 4A
shows that advancing through the iterations, the correla-
tion between SC*(k) and SCemp improves, in agreement
with our hypothesis that effective connectivity can provide
a reasonable replacement for SC. The expected quality of
reconstruction, as estimated from results on the ADNI
SCemp 1 FCemp subset is reported in Figure 4B and
amounts to an expected correlation between SCMFM and
SCemp of ;0.31. For the healthy aging dataset, we obtain
a slightly smaller median value of ;0.28, but the differ-
ence is not statistically significant.
Table 2 provides a compact pseudo-code for the non-

linear FC-to-SC completion procedure (for all details, see
Materials and Methods). Non-linear FC-to-SC comple-
tions for the BOLD-only subjects in the considered ADNI
dataset can be downloaded as part of Extended Data 1
SC_MFM.

As for SC-to-FC completion, we then confirmed if the
nonlinear FC-to-SC completion SCMFM does provide a
superior reconstruction of SCemp than the trivial alterna-
tive offered by just taking the other connectome (the avail-
able FCemp). As shown in Extended Data Figure 2-1B, the
use of nonlinear FC-to-SC completion led to a median im-
provement on the order of ;15% for the ADNI dataset
and of;10% for the healthy aging dataset. If the improve-
ment achieved by nonlinear completion is smaller than for
linear completion in the healthy aging dataset, nonlinear
FC-to-SC completions succeeds in the ADNI dataset
where its linear counterpart failed. Therefore, nonlinear
FC-to-SC computational generation provides a worthy
strategy for data completion, although not yet as efficient
as SC-to-FC completion.
We note that nonlinear FC-to-SC completion, as for

nonlinear SC-to-FC completion, is a non- deterministic
procedure, meaning that a different SCMFM is generated
depending on the starting initial condition SC*(0).
However, the different nonlinear virtual surrogates lie at
distances from the common actual ground truth SCemp

which are tightly concentrated around the median correla-
tion. As revealed by Figure 4C, the reported correlations
between SCMFM and SCemp were within a narrow interval
of 62.5% of the relative difference from the median dis-
tance for all the tested random initial conditions (30 per
subject, see Materials and Methods), showing that the ex-
pected performance is poorly affected by the initial condi-
tions. This stochastic aspect of the nonlinear completion
algorithm is going to allow us to generate not just one but
arbitrarily many completions, starting from each available
empirical connectivity matrix (see later section).

Virtual and bivirtual duals
SLMs and MFMs have thus the capacity to bridge from

SC to FC or from FC to SC in a way that, in most cases,
goes beyond capturing the mere similarity between the
empirical SCemp and FCemp connectomes. When using
these models for data completion, the input matrix is al-
ways an empirical matrix (SCemp or FCemp) and the output
a surrogate virtual matrix (respectively, FCvirt or SCvirt,
where the index “virt” refers generally to any completion
algorithm, i.e., either using the SLM or the MFM models).
However, the algorithms presented in Tables 1, 2 and
Extended Data Tables 1-1, 2-1 can still be applied even
when the input connectivity matrix is already a virtual ma-
trix. In this case, the input could be surrogate matrices
(SCvirt or FCvirt) from data completion and the output
would be bivirtual (respectively, FCbivirt or SCbivirt), i.e.,
twice virtual, since, to obtain them starting from an empiri-
cal input connectome, two different model-based proce-
dures have to be chained. The final result of passing an
original empirical connectome through two chained com-
pletion procedures is then a bivirtual surrogate matrix of
the same type (structural or functional) of the initially fed
connectome. In other words, SCemp is mapped to a
SCbivirt (passing through an intermediate FCvirt step) and
FCemp is mapped to an FCbivirt (passing through an inter-
mediate SCvirt step). If the information loss is not too high,
pairs of virtual and bivirtual SC and FC connectomes
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should be shared instead of pairs involving empirical con-
nectomes, potentially reducing difficulties to disclosing in
public personal clinical data (see Discussion).
The virtual and bivirtual matrices obtained by operations

of data-completion can be seen as a set of connectomes
dual to the original real connectome. In mathematics, one
often speaks of “duality” relations when two alternative
spaces are put into relation by an element-to-element struc-
ture-preserving mapping. Here, one could reinterpret our al-
gorithmic procedures for SC-to-FC or FC-to-SC completion
as mapping between alternative “spaces” in which to de-
scribe the interrelations between the connectomes of differ-
ent subjects. Although our definition of duality is not as
rigorous as in more mathematical contexts (as in the case,
e.g., of linear algebra dual or bidual spaces; or in graph
theory, where duality refers to node-to-link transformations),
we will see that dissimilarities or similarities between the per-
sonalized connectomes of different subjects are substan-
tially preserved by the application of completion procedure
that maps an original space of empirical connectomes into a
dual space of virtual connectomes. In other way, the infor-
mation carried by a set of connectomes and by the set of

their dual counterparts is, at least in part, equivalent (com-
pare Figs. 5-7; Table 3; Discussion). In this view, the first
“dualization” operation would map a real connectome to a
virtual connectome of a different type (a virtual dual, swap-
ping SC with FC). The second dualization would then map it
to a bivirtual dual of the same type (mapping SC to SC and
FC to FC; compare Figs. 5A,B, center cartoons, 7A). If the
completion quality is good, then empirical connectomes
and their bivirtual duals should be highly related between
them. Before, discussing more in detail the crucial issue of
the preservation or loss of personalized information in duals,
we start here by performing a self-consistency check of the
data completion procedures and compare thus the start
(FCemp or SCemp) and the end (FCbivirt or SCbivirt) points of
dualization chains.
Figure 5 shows the correspondence between empirical

and bivirtual SC and FC pairs, both when using SLM-
based and MFM-based procedures. We first evaluated
the quality of SCbivirt generation, over the ADNI-subset of
88 subjects for which a SCemp matrix was available and
over the healthy aging dataset (Fig. 5A). Considering the
nonlinear bivirtual completion chain SCemp to FCMFM to
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Figure 5. Bivirtual connectomes. This figure shows the correspondence between empirical and bivirtual SC and FC pairs, both
when using chained linear (SLM-based) and nonlinear (MFM-based) completion procedures. A, For 88 subjects from the ADNI-sub-
set with only SCemp available, considering the linear bivirtual completion chain SCemp to FCSLM to SCbi-SLM, we obtained a median
correlation between SCemp and SCbi-SLM equal to 0.63 and 0.92 for 49 subjects from the healthy ageing dataset (green boxplot); si-
multaneously, considering the nonlinear bivirtual completion chain SCemp to FCMFM to SCbi-MFM, we obtained a median correlation
between SCemp and SCbi-MFM equal to 0.58 for the ADNI datast and 0.64 for the healthy ageing dataset (blue boxplot). B, For 168
subjects from the ADNI-subset with only FCemp available, considering the linear bivirtual completion chain FCemp to SCSLM to FCbi-

SLM, we obtained a median correlation between FCemp and FCbi-SLM equal to 0.12 and 0.42 for 49 subjects from healthy ageing da-
taset (green boxplot); simultaneously, considering the nonlinear bivirtual completion chain FCemp to SCMFM to FCbi-MFM, we obtained
a median correlation between FCemp and FCbi-MFM equal to 0.59 for the ADNI dataset and 0.45 for the healthy ageing dataset (blue
boxplot).
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SCbi-MFM we obtained a median correlation between
SCemp and SCbi-MFM of ;0.58 for ADNI dataset and
;0.64 for the healthy aging dataset. This quality of ren-
dering aligned well with the performance of the linear bi-
virtual completion with a correlation between SCemp and
SCbi-SLM of ;0.63 for the ADNI dataset. On the healthy
aging dataset, linear bivirtual duals SCbi-SLM were of ex-
ceptionally high quality, reaching a correlation with SCemp

nearly as high as;0.92.
We then evaluated the quality of FCbivirt generation over

the ADNI-subset of 168 subjects for which an FCemp ma-
trix was available and over the healthy aging dataset (Fig.
5B). Considering the nonlinear bivirtual completion chain
FCemp to SCMFM to FCbi-MFM the median correlation be-
tween FCemp and FCbi-MFM was of ;0.59 for the ADNI da-
taset and of ;0.45 for the healthy aging dataset. Moving
to linear bivirtual FCbi-SLM, the performance on the healthy
aging dataset was of ;0.42, equivalent to the nonlinear
duals. However, linear bivirtual dualization failed for the
ADNI dataset, with a correlation dropping to ;0.12, not
surprisingly given the poor quality of already the first step
from FCemp to SCMFM. Even in this latter case, neverthe-
less, the empirical-to-bivirtual correlations remained
significant.

Are dual connectomes still personalized?
Although significant, correlations between virtual and

bivirtual with matching empirical connectomes can be
small. Is this average performance sufficient not to lose
subject-specific information through the various steps of
transformation? The most straightforward way to answer
to this question is to check whether FC(bi)virt or SC(bi)virt

connectomes are closer to the FCemp or SCemp of the
same subject from which they derive than to the ones of
other generic subjects. Since SCs and FCs are related but
not identical and their divergence can be stronger or
weaker depending on the subjects (Zimmermann et al.,
2019) the answer to this question is not obvious and must
be checked.
We therefore introduced a measure of the improvement

in connectome matching obtained by using personalized
virtual and bivirtual duals rather than generic connec-
tomes. The coefficient DPers (see Materials and Methods)
quantifying the percent improvement obtained by using
personalized connectomes are tabulated in Table 5 for
the different types of completion.
Improvements by personalization were always positive,

indicating that on average some subject-specific informa-
tion is preserved. These numbers, however, are diverse
between datasets and completion types. Furthermore,
they should be compared with the uncertainty itself exist-
ing on empirical connectomes. Indeed the DPers analysis
implicitly assume that empirical connectomes are exact
reference comparison terms. In reality, there is a strong
uncertainty on empirical connectome themselves, with an
elevated test-retest variability within individual subjects
(Wang et al., 2012; Chen et al., 2015; Termenon et al.,
2016). In particular, the connectomic dataset released to-
gether with the study by Termenon et al. (2016) allows an
evaluation of what would be the expected “empirical

personalization improvement” in the case in which we ac-
tually had to compare two connectomes obtained empiri-
cally for a same subject and assess how more similar are
they between them, than to a connectome of the same
type but obtained from a different subject. Termenon et
al. (2016) considers data mediated from the Human
Connectome Project and provides for 100 subjects two
different FCemp matrices deriving from different scans.
Using a definition of the DPers coefficient analogous to the
one used for virtual and bivirtual completions but adapted
to these test-retest empirical dataset, one can estimate a
value of DPers of about ;122% for empirical FCs. In other
words, the similarity between two FCemp from a same
subject is expected to be only a 22% larger than similarity
with FCemp from different subjects. We do not dispose of
an analogous estimation for SCemp connectomes, how-
ever we expect personalization improvements to be even
in this case comparable in value, if not smaller, given that
intersubject variability for SCemp connectomes tend to be
smaller than for FCemp (Zimmermann et al., 2019).
The DPers registered for bivirtual dual connectomes are

of the same order of magnitude than this empirical ex-
pectancy allowing us to conclude that they are “personal-
ized” at least as much as empirical connectomes (and at
least according to this rough DPers measure). In some
cases, notably for nonlinear bivirtual FC duals, the similar-
ity with the original empirical connectome is way larger
than what expected for empirical test-retest scans, prob-
ably because of the fact, that the effective connectivity al-
gorithm used for FCemp to SCMFM nonlinear completion
emphasize similarities between SC and FC, thus allowing
FCbi-MFM to more faithfully mirror FCemp without being
fully identical to it (average correlation between FCbi-MFM

and FCemp is of ;0.4–0.6; compare Fig. 5B). Remarkably,
this strong preservation of personalization by bivirtual
duals is achieved despite smaller relative improvements
by personalization at the first step of the dualization chain,
e.g., the transition from empirical to simple virtual duals.
This means that the variability generated in the simulation
leading to virtual duals, although large must maintain im-
portant subject-specific features useful to regenerate a
good personalization at the following stage of generating
the bivirtual dual. This also means that the DPers measure
could be a too rough and not sensitive enough metric of
personalization, since it weights equally any difference or
similarity in the connectomes, independently from their
relevance. Better, complementary measures of personali-
zation are thus needed.
Since individual connectomes are affected by a neces-

sary uncertainty a more reliable measure of the quality of
personalization can be achieved by looking at the ca-
pacity of dualization to preserve overall preservation of in-
tersubject relations rather than specific individual data-
points. Indeed, individual connectomes could be dis-
torted through the mapping into dual virtual and bivirtual
spaces, but if the distortion is such to maintain the sub-
ject’s connectome close to other subjects’ connectome
to which it was close and far from other subjects’ connec-
tome from which it was far, then the possibility to discrimi-
nate subject categories based on connectome features
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could still be preserved. Therefore, we computed the dis-
tances between the empirical connectomes SCemp (or
FCemp) of different subjects and the intersubject distances
for corresponding pairs of subjects but, this time, between
their bivirtual dual connectomes SCbi-virt (or FCbi-virt). As
shown in Figure 6 and Extended Data Table 5-1, the correla-
tion between the intersubject distances in real and bidual
spaces were noticeable and significant, for both ADNI and
healthy aging datasets and for both MFM-based and SLM-
based approaches (Extended Data Table 5-1), apart from
the very poor performance of bivirtual linear FC completion
in the ADNI (expected, given previously reported failures in
this case). We also noticed that distances between bivirtual
duals were often amplified, with respect to the original em-
pirical distances. The space of dual bivirtual connectomes
can thus be considered as a “virtual mirror” of the real con-
nectome space, reproducing to a reasonable extent despite
some deformation of the geometry of the original distribution
of subjects.

Subject classification based on real and virtual
connectomes
The compilation of large datasets, including connectiv-

ity data from structural and functional neuroimaging is

considered essential for the development of algorithmic
patient stratification and predictive approaches. Here, we
have described approaches for connectomic data com-
pletion and studied their consistency. We now show that
such completion procedures are also compliant, in per-
spective, with the extraction via machine learning algo-
rithms of the personalized information preserved in duals.
As a first proof-of-concept, we studied here two simple

(and academic) supervised classification problems in which
subjects are separated into different classes based on con-
nectomic features, empirical and/or virtual, used as input.
First, in the ADNI dataset, we try separating subjects into
two subgroups of control and patients (i.e., MCI or AD) sub-
jects. Second, in the healthy aging dataset, we separate
subjects into four classes of age, from the youngest to the
oldest. Importantly, input features can be computed from all
different types of connectomes (at least for the subjects for
which they were available): empirical SCemp or FCemp; their
virtual duals FCMFM or SCMFM; or their bivirtual duals SCbi-

MFM or FCbi-MFM (see Fig. 7).

Discriminating control and patient subjects in the
ADNI dataset
For the first toy classification problem, we used target

classification labels already provided within the ADNI

Distances SCemp vs SCemp 

D
is

ta
nc

es
 S

C
bi

-M
F

M
 v

s 
S

C
bi

-M
F

M
 

Distances FCemp vs FCemp 

D
is

ta
nc

es
 F

C
bi

-M
F

M
 v

s 
F

C
bi

-M
F

M
 

ADNI Ageing

0.5 0.7 0.9

0.2

1.0

0.6

0.15 0.25 0.35

0.3

0.5

0.7

0.1 0.2 0.3
Distances SCemp vs SCemp 

Distances FCemp vs FCemp 

D
is

ta
nc

es
 F

C
bi

-M
F

M
 v

s 
F

C
bi

-M
F

M
 

D
is

ta
nc

es
 S

C
bi

-M
F

M
 v

s 
S

C
bi

-M
F

M
 

0.4 0.6 0.80.2

1.0

0.6

0.8

0.6

0.8

0.2

0.4

cc=0.39*** cc=0.53***

cc=0.43*** cc=0.40***

A

B

C

D
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connectome. Subjects classifications into controls (light blue) or MCI (yellow) and AD (red) patients are shared between empirical
connectomes and their virtual and bivirtual duals. Virtual duals have a different nature than their associated empirical connectomes
(empirical SCs are mapped to virtual FCs and vice versa), while bivirtual duals have the same nature. B, C, Performance of tree en-
semble classifiers discriminating control from patient subjects, evaluated via ROC analysis (fractions of true vs false positive, as a
function of applied decision threshold; generalization performance via crossvalidation; thick lines indicate median performance,
shaded regions 95% confidence intervals). In panel B, we show example of classification in dual space, compared with a real con-
nectome space classification: in green, classification with classifiers trained on empirical SCs evaluated on other empirical SCs; in
blue, classifiers trained on virtual FCs evaluated on other virtual FCs (or the virtual duals of other empirical SCs); in magenta, classi-
fiers trained on bivirtual SCs evaluated on other bivirtual SCs (or the bivirtual duals or other empirical SCs). In panel B, we show an
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dataset, assuming them to be exact (for a summary of the
used stratification criteria, see Materials and Methods).
We performed then classification based on input vectors
of regional node strengths estimated subject-by-subject
from the connectome matrices of interest (Q=96 input
features, corresponding to the number of brain regions in
the used parcellation, see Materials and Methods). As su-
pervised classifier algorithm, we chose a variant (Seiffert
et al., 2010) of the random forest algorithm, which is par-
ticularly suitable when the number of input features is of
the same order of the number of available data-points in
the training set (Breiman, 2001), as in our case.
Examples of ADNI classifications based on empirical

connectomes are shown in Figure 7, notably, based on
SCemp matrices (Fig. 7B, green line) or on FCemp matrices
(Fig. 7C, green line). The available subjects were randomly
split into a training set and a testing set (with maintained
relative proportions of the different classification labels).
Figure 7B,C describe the average generalization perform-
ance for classifiers trained on the training set and eval-
uated on a testing set. Training and testing on real
empirical connectomes, we achieved a moderate but sig-
nificantly above chance level classification performance,
as revealed by the green Receiver-Operator-Curves
(ROC) in Figure 7B,C, for both SCemp and FCemp connec-
tomes, deviating away from the diagonal (corresponding
to chance level classification performance). As a more
quantitative measure, one can also measure the median
area under the ROC curve (AUC), here equal to ;0.69 for
the SCemp on SCemp classifier and to ;0.75 for the FCemp

on FCemp classifier. AUC scores for different types of clas-
sification on the ADNI dataset are compiled in Extended
Data Table 3-1, Table 3-2.
We considered then ADNI classification based on vir-

tual and bivirtual duals instead of empirical connectomes.
In this case of “dual space classification” (Fig. 7B), virtual
and bivirtual duals are used both when training the classi-
fiers and when evaluating them. Therefore, to classify a
new empirical connectome with a “dual space classifier,”
it is first necessary to “lift” it in dual space, i.e., to map it via
data completion algorithms to the suitable type of dual for
which the classifier has been trained. Figure 7B shows two
examples of dual space ADNI classification based on
FCMFM (blue curve, median AUC ;0.64) and SCbiMFM (ma-
genta curve, median AUC ;0.59), respectively, virtual dual
and bivirtual duals of the real connectomes SCemp. Once
again, for both virtual and bivirtual duals, classification

performance remained above chance level. While the classi-
fication performance drops slightly with respect to classifi-
cation with the actual empirical connectomes, this drop was
not significant for a broad range of the most conservative
decision thresholds. Above chance-level classification is
thus possible as well using dual connectomes generated
from data completion, achieving performances substantially
equivalent to the one obtained for empirical connectomes.
We considered finally the case of ADNI classifiers trained

on bivirtual duals and then evaluated on empirical connec-
tomes (Fig. 7C). In this case of “cross-space classification,”
the trained classifier is able to operate in a performing man-
ner as well on a different type of connectomes (e.g., empiri-
cal) than the one for which it has been trained (e.g., bivirtual
dual). Therefore, to classify a new empirical connectome
with a “cross-space classifier,” it is not necessary to first lift
in dual space as for dual space classifiers. Figure 7C shows
an example of cross-space classification trained on bivirtual
dual FCbiMFM and then tested on FCemp (orange curve, me-
dian AUC ;0.70). Remarkably, the performance was not
significantly different for most decision thresholds from clas-
sification trained and tested on empirical FCemp connec-
tomes. Therefore, classification of empirical connectomes
based on classifier trained on virtual connectomes is possi-
ble as well.
Significant classification was possible even for some

other combinations of connectomes (see Extended Data
Table 3-1, Table 3-2); however, performance was poorer
in most cases. We did not attempt classification based on
SLM-based virtual and bivirtual duals, given the deceiving
quality of connectome rendering by these linear methods
(in the ADNI dataset).

Discriminating age classes in the healthy aging
dataset
For the second toy classification problem, we split the

subjects in the healthy aging datasets into four age cate-
gories and used the ordinal number of the age class from I
to IV as target classification label. As input features we did
not use any more high-dimensional vectors of connection
strengths but the loadings on the first 10 principal compo-
nents of each connectivity matrices. As classifier we still
used random forests Breiman algorithm (for full detail, see
Materials and Methods). As before, we highlight here a
few examples of classification with real empirical connec-
tomes (Fig. 7D), classification in dual space (Fig. 7E) and

continued
example of cross-space classification, compared with a real connectome space classification: in green classification with classifiers
trained on empirical FCs evaluated on other empirical FCs; and in orange, classification with classifiers trained on bivirtual FCs eval-
uated directly on other empirical FCs, without prior “lifting” into bivirtual dual space. In all the shown cases, classifications per-
formed with classifiers trained in virtual or bivirtual connectomes are slightly less performing than for classifiers trained on empirical
data, but the drop in performance is not significant for most thresholds. D–F, The confusion matrix for classification of four age
classes of the healthy aging database using the random forest Breiman algorithm is shown. D, When the classifier was trained and
tested on the empirical SC and FC connectome, the accuracy was closed to ;0.37 and ;0.43, respectively. E, The classification
accuracy for the classifier which was trained and tested on the virtual connectomes was above the chance level (;0.25) with ;0.43
for SCSLM and ;0.43 for FCMFM connectomes which the performance was better or equivalent to the empirical connectome (D). F,
Here, we shown the classification performance of cross-training, when the classifier was trained on SCMFM and tested on FCemp

with accuracy equal to ;0.35 (F-center) and when the classifier was trained on FCSLM and tested on FCemp with accuracy of ;0.30
(F-right; see Extended Data Fig. 7-1 for the classification performances on other virtual connectomes from healthy aging dataset).
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cross-space classification (Fig. 7F). We characterize per-
formance both in terms of general accuracy (fraction of
subjects correctly classified in their age class) and of de-
tailed confusion matrices between the actual and the pre-
dicted age classes, revealing typical error syndromes.
General accuracies were typically above the chance level
of ;25%, approaching (or exceeding), for instance,
;37% for classifiers: trained and tested on SCemp (Fig.
7D, center, ;37% accuracy) or FCemp (Fig. 7D, right,
;43% accuracy), or, in virtual dual space, on SCSLM (Fig.
7E, center, ;45% accuracy) or FCMFM (Fig. 6D, center,
;43% accuracy). For cross-space classification exam-
ples, accuracies dropped but remained, e.g., of;35% for
classifiers trained on SCMFM and generalized on FCemp

(Fig. 7F, center) or of ;30% when trained on FCSLM and
tested on FCemp. More examples are shown in Extended
Data Figure 7-1, including for classifiers using bivirtual
connectomes (e.g., classifiers trained and tested on FCbi-

SLM with an accuracy of ;42%; but a minority of classifi-
cations were below chance level, e.g., trained on FCbi-SLM
and tested on FCemp, with an accuracy of only;19%).
General accuracy does not reflect fully the performance,

since it averages over all possible classes. The capability to
proper classify subjects of specific classes could be much
larger. For instance, all but one of the classifiers highlighted
in Figure 7D–Fwould classify elderly subjects in the IVth age
class (58–80 years) with accuracies exceeding ;60%.
Furthermore, when misclassified, subjects tended to be at-
tributed to neighboring but not radically different age
classes, e.g., Class I (18–25 years) with Class II (26–39), or
Class IV (58–80 years) with Class III (40–57), more rarely mix-
ing up classes with stronger age separation. Suchmisclassi-
fication may also reflect meaningfully differences between
subjects, whose connectome could look “younger” or
“older” than themedian of their age class, possibly reflecting
cognitive differences, large within each age class (compare
Glisky, 2007; Battaglia et al., 2020). The analysis of factors
explaining misclassification goes however beyond the
scope of the present study.
As a matter of fact, we are still far from providing au-

thentically useful examples of classification, neither on
the ADNI dataset nor on the healthy aging dataset.
However, this was not our aim here, the chosen classifica-
tion problems themselves being rather academic and
serving as first proofs-of-concept. Importantly, we can at
least show that dual and cross-space classification per-
formance, if not good, was not much worse than for real
empirical connectomes. This step is already sufficient to
show that empirical and virtual duals share an extractable
part of information and that this shared information can
be still relevant for classification.
Such information preservation, despite loose correspon-

dence, can be explained by revealing the similarity of network
topology features between real connectomes and their bivir-
tual duals, independently from our capacity to achieve more
or less performing classifications based on these features.

Matching network topology between real and virtual
connectomes
The connectome matrices describe the weighted undir-

ected topology of graphs of structural or FC. All

information conveyed by these connectomes about pa-
thology or other conditions is potentially encoded into this
network topology. While genuine model-free analyses of
network topology across all scales are still under develop-
ment, see, for instance, promising topological data analy-
ses approaches (Petri et al., 2014; Sizemore et al., 2018),
classic graph theoretical features provide a first multifac-
eted characterization of the specific features of each indi-
vidual connectome object (Bullmore and Sporns, 2009).
We evaluated here for each empirical connectome SCemp

or FCemp a spectrum of different graph theoretical fea-
tures. In particular we evaluated for both the ADNI and the
healthy aging datasets and for each brain region within
each of the connectomes (for details, see Materials and
Methods): the total strengths (sum of the connection
weights of all the links incident the region), the clustering
coefficients (tendency of the regions neighboring to the
considered node to also be interconnected between them),
and the centrality coefficients (tendency for any path linking
two different nodes in the network to pass through the con-
sidered node), evaluated via the PageRank algorithm (Brin
and Page, 1998). We also evaluated for each connectome
its modular partition into communities, by using a Louvain
algorithm with default parameters (Blondel et al., 2008).
Finally, we also inspected the global link weight distribu-
tions. We then evaluated analogous quantities for the dual
connectomes associated with each of the connectomes, fo-
cusing here, for conciseness and simplicity, on bivirtual
duals, sharing a common nature (structural or functional)
with their correspondent empirical partner.
In Figure 8, we illustrate this correspondence between

graph-theoretical features evaluated for different real/bi-
virtual dual connectome pairs in the ADNI dataset. An
analogous figure for the healthy aging dataset is shown in
Extended Data Figure 8-1, showing qualitatively equiva-
lent results. To compare node degrees, clustering and
centrality features we plot, for every brain region in every
connectome, the feature value evaluated in a real connec-
tome against the corresponding feature value evaluated
in the associated bivirtual dual. To compare community
structures, we evaluate for every real/bivirtual dual con-
nectome pair the relative mutual information MI normal-
ized by entropy H (see Materials and Methods) between
the community labels extracted for the two connectomes,
with 0% �MI/H� 100% and 100% corresponding to per-
fect overlap. We show results for ADNI (or healthy aging)
SC real/bivirtual dual pairs in Figure 8A (Extended Data
Fig. 8-1A) and for FC pairs in Figure 8B (Extended Data
Fig. 8-1B). In all cases we find correspondence between
real and bivirtual dual connectome features significantly
above chance levels. Highly significant real/bivirtual dual
correlations subsist for regional strengths and centralities.
For ADNI FC, these correlations can become as high as
CCmedian = 0.66 (95% bootstrap confidence interval) for
regional strengths and CCmedian = 0.55 (95% bootstrap
confidence interval) for regional centralities. Correlations
are found even for regional clustering coefficients, even if
the small values of clustering coefficients observed in
SCemp connectomes are systematically overestimated in
the denser bivirtual dual SCbiMFM. Finally, concerning
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community matching, for SC and FC real/bivirtual dual
pairs we found a median relative mutual information of
;61% and ;45%, respectively, for the ADNI dataset,
safely above chance level (estimated at ;16%, permuta-
tion-based 95% confidence interval; see Table 3 for the
superior correspondence at the single subject level). For
the healthy aging dataset, for both SC and FC these cor-
relations were even higher (Extended Data Fig. 8-1) with
CCmedian � 0.8 for regional strengths, centralities, and
clustering coefficients of SC real/bivirtual dual parts and
CCmedian � 0.7 for the FC real/bivirtual dual parts. Finally,

for the community matching for SC pairs the median rela-
tive mutual information was ;44% and for FC pairs
;50% (see Table 4 for the superior correspondence at
the single subject level for healthy aging dataset).
The analyses of Figure 8 and Extended Data Figure 8-1

are performed at the ensemble level, i.e., pooling network
features estimated from different subjects into a same
point cloud. However, network features can have impor-
tant variations of values not only across regions but also
across subjects, which is expected to be a key indicator
of subject-specific traits useful for classification. The
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Figure 8. Correspondence of network topology between empirical and their bivirtual dual connectomes (ADNI dataset). The bivirtual
dual connectomes share the same nature (SC or FC) of the corresponding empirical connectome. Therefore, network topology can
be directly compared between empirical and bivirtual SCs or empirical and bivirtual FCs. A, B, We show here scatter plots of con-
nectivity strengths (top center), local clustering coefficients (top right) and local centrality coefficients (bottom center) for different
brain regions and subjects, plotting feature values for empirical connectomes versus their bivirtual counterparts. We also show his-
tograms over different subjects of the relative mutual information (normalized between 0 and 1, the latter corresponding to perfect
matching) between the community structures (bottom right) of empirical connectomes and their bivirtual duals. Results are shown in
panel A for SC and in panel B for FC connectomes for the ADNI dataset (see Extended Data Fig. 8-1 for analogous results holding
for the healthy aging dataset). In both cases, there is a remarkable correlation at the ensemble level between network topology fea-
tures for empirical bivirtual connectomes (see Table 3 for the even superior correspondence at the single subject level for the ADNI
dataset).
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capability to preserve these traits would thus be a crucial
factor allowing the achievement of personalization when
generating virtual and bivirtual duals. Therefore, we com-
puted correlations between vectors of regional features in
real and empirical connectomes but now limited to be
within individual subjects obtaining thus, for every feature
type, a different correlation value for every subject. Table
3 (for the ADNI dataset) and Table 4 (for the healthy aging
dataset) show that within-subject correlations were also
high (apart for SC clustering) and, for FC, even superior to
ensemble-level correlations, manifesting, once again, the
personalized nature of bivirtual dual connectomes.
Indeed, when computing personalized correlations for
pairs of real and bivirtual connectomes associated to a
same matching subject, they resulted systematically
superior to unpersonalized control correlations evaluated
over real/bivirtual connectome pairs assembled out of dif-
ferent subjects (see Materials and Methods). Percent im-
provements in same-subject real/dual correlations with
respect to average correlations in cross-subject pairs are
compiled as well in Tables 3, 4. Personalization can lead
to very strong percent improvements in real/virtual topol-
ogy correlations, particularly in the case of FC connec-
tomes. The operation of dualization thus preserves
aspects of network topology which are specific to each
subject and not just generic to a connectome ensemble.
Finally, we plot in Extended Data Figure 6-1, global dis-

tributions of link weights for the different types of connec-
tomes and both datasets. Most distributions displayed an
overall similarity in shape: SC weights distributions with a
peak at small values and a fat right tail; FC weights distri-
bution more symmetric and with a broader peak at inter-
mediate strengths. These different distribution shapes
reflect that SCemp networks are diluted matrices with a few
strong connections only, while FCemp networks have a high-
er and more uniform density of connections. Virtual and bi-
virtual SC connectomes tend to have fatter right tails (and
even displaced mode peaks for SCMFM), reflecting that, in
absence of any arbitrary sparsification strategy, completion
pipelines generate surrogate SCs without the sparsity con-
straint and, thus, with less near-zero link weights. Such sys-
tematic discrepancy, well visible in Extended Data Figure 6-
1, however, does not prevent correlations between single
subject-specific connectivity traits to remain strong, which
is a necessary condition for personalized predictive informa-
tion preservation.

Virtual cohorts
All nonlinear data completion algorithms involve a sto-

chastic component. Therefore, by construction, each sim-
ulation run will provide different virtual and bivirtual
connectomes, associated with the same empirical seed
connectome. This property allows the generation of an ar-
bitrarily large ensemble of surrogate virtual connectomes,
forming the virtual cohorts associated with a specific sub-
ject (see Materials and Methods). Every virtual cohort
maintains a strict relation to its empirical counterparts be-
cause all the matrices in the cohort are dual to the same
original empirical connectome. In particular, distances be-
tween virtual connectomes sampled within two different
virtual cohorts were always closely correlated to the dis-
tance between the respective seed connectomes of the
two cohorts. The close relationship between the original
data and the respective virtual cohorts (already studied in
Fig. 6 for individual instances of bivirtual connectomes) is
visually manifested in Figure 9A where a distance-re-
specting nonlinear t-SNE projection (Maaten and Hinton,
2008) has been used to represent in two dimensions the
virtual cohorts of surrogate virtual FCMFMs associated to
the 88 subjects with available SCemp in the ADNI dataset
(among which, thus, also the 12 of the SC 1 FC subset).
Every dot corresponds here to the two-dimensional pro-
jection of a high-dimensional virtual dual FCMFM (100 dif-
ferent virtual FCMFMs have been generated starting from
each one of the 88 SCemp connectomes). Clusters of dots
(color-coded by their nature, of control subjects or MCI
and AD patients) are visually evident in the projection indi-
cating that the distance between dual connectomes with-
in each virtual cohort is smaller than the distance between
dual connectomes belonging to different cohorts.
We also plotted, for comparison, the cloud of the pro-

jected FCemp connectomes for the twelve subjects of the
ADNI SC 1 FC dataset for which it was available, and
connected these projections via a thin line to the projec-
tion of one of their virtual FCMFM images in the corre-
sponding subjects’ virtual cohorts. The projections for all
the FCemp connectomes seem to collapse in a single addi-
tional cluster close to the center of the global t-SNE map.
This collapse manifests that empirical connectomes and
virtual connectomes live in different spaces, as previously
stressed (Fig. 7A). Eventually, when projecting a sample
composed of hundred more virtual than empirical

Table 4: Single-subject correlations between network features in real and bivirtual dual connectomes for the healthy aging
dataset

SC FC
Median and range Within subject cross-subject D% Median and range Within subject cross-subject D%

Strength 0.80 6 0.04 5 6 1 0.65 6 0.18 75 6 7
0.76 6 0.07 0.37 6 0.16

Clustering 0.83 6 0.06 6 6 1 0.64 6 0.22 70 6 8
0.79 6 0.08 0.38 6 0.19

Centrality 0.80 6 0.05 4 6 1 0.63 6 0.18 65 6 7
0.76 6 0.06 0.38 6 0.16

Communities 44 6 8% 16 6 3 53 6 10% 10 6 3
38 6 8% 48 6 12%

Indicated values for real/bivirtual dual correlations (for strength, clustering, and centrality coefficients) or relative mutual information (for communities) are mean
6 SD of the mean over subjects.
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connectomes, the two-dimensional rendering of the origi-
nal high-dimensional metric relations is dominated by vir-
tual connectomes. Therefore, the cloud of the empirical
connectomes’ projections appears, using a figurative
image, as a “distant galaxy,” with the dots (“stars”) asso-
ciated to different subjects appearing grouped in a small
region of the observation field. Nevertheless, the distan-
ces between stars within the distant galaxy are mirrored
by the distances between the foreground FCMFM cohorts
“globular clusters”mapped to each of these distant back-
ground FCemp stars. The thin lines linking FCemp to one of
their FCMFM images reveal indeed the global t-SNE pro-
jection contains an exploded view of the projection of the
original SC 1 FC subset FCemp connectomes (further
confirming for virtual cohorts the preservation of intersub-
ject distances in bivirtual duals revealed by Tables 3, 4).
A further analogy could be drawn between generating a

cohort of virtual connectomes rather than a single virtual
connectome and between generating an ensemble of
slightly rotated or distorted images (Fig. 9B). Different
connectomes in a same cohort could be conceptualized
as different “views” of the same connectome (as the
four representative connectomes in the top of Fig. 9B,
sampled within the cohort of a same subject) much like
different transformations of a single image that modify
the exact appearance but do not prevent losing the
identity of the depicted object (as the four warped kit-
tens at the bottom of Fig. 9B). For these reasons, the
generation of virtual cohorts including a larger number
of identity-preserving redundant connectome items
may become in perspective beneficial to classifiers

training, as a form of “data augmentation,” commonly
used in machine learning applications in image recogni-
tion (Taylor and Nitschke, 2018; see Discussion).

Discussion
We have here demonstrated the feasibility of connec-

tomic dataset completion using algorithms based on
mean-field computational modeling. In particular, we
have completed an ADNI gold standard connectomic da-
taset and verified that analogous completion performance
could be reached on a control healthy aging dataset. We
have then shown that machine learning classifiers trained
on virtual connectomes can reach comparable perform-
ance to those trained on empirical connectomes. This
renders the classification of novel empirical connectomes
via classifiers trained exclusively on virtual connectomes
possible. Furthermore, the generation of virtual and bivir-
tual dual connectomes is a procedure preserving at least
some personalized information about detailed network to-
pology. As a consequence, virtual cohorts offer an immense
opportunity to enable or unblock, and, in perspective, possi-
bly improve machine learning efforts on large patient
databases.
Incomplete datasets for clinical research are certainly

among the factors contributing to slow progress in the de-
velopment of new diagnostic and therapeutic tools in neu-
rodegenerative diseases and AD in particular. Our data
completion procedures provide a step forward toward
“filling dataset gaps” since they allowed us to infer FC
when only SC was available or SC when only FC were

Figure 9. The Virtual cohorts. We created virtual cohorts of surrogate FC data, generating 100 different FCMFM matrices for each of
the 88 subjects in the ADNI dataset with an available SCemp. A, Shown here is a low-dimensional t-SNE projection of the resulting
8800 virtual FCMFMs, colored depending on the associated subject label (blue for control subjects, yellow for MCI patients, and red
for AD patients). For the subjects in the ADNI FC 1 SC subset, we also projected the actual empirical FCemp connectome and link
their projections to one virtual connectome within the cohort for the matching subjects. All FCemp connectomes appear grouped in a
single cluster, since all far away to connectomes in dual space (they belong to a different space, so appear as “distant” in this pro-
jected view emphasizing differences within virtual space). However, virtual cohorts interrelations reproduce an exploded view of the
fine structure of this All FCemp cluster. Virtual connectomes within a same virtual cohort are closer between them than connectomes
belonging to different cohorts since they maintain a strict relation to their empirical counterparts and are thus good candidates for
data augmentation applications. B, We show, on top, example alternative connectomes within a representative cohort for a single
subject that could be used as alternative identity preserving distorted connectomes for data augmentation applications, analogously
to slightly distorted versions of object images (on the bottom) used to boost training of object classifiers.
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available. Such procedures for data completion could
easily be implemented within popular neuroinformatic
platforms as TVB. TVB provides practical graphical inter-
faces or fully scriptable code-line environments for “plug-
and-play” large-scale brain network behavior, signal emu-
lation, and dataset management, including simulating SC
and FC with adjustable complexity MFMs or SLMs (Sanz-
Leon et al., 2013). In this way, capitalizing on the software
built-in capabilities, even the more elaborated nonlinear
completion algorithms could become accessible to non-
expert users with only a little training. The possibility of
having access to both types of connectomic information
brought up by model-based data completion is vital be-
cause structural and FC convey complementary informa-
tion. It has been shown for instance, that analyses of SC-
to-FC interrelations can yield better characterizations and
group discriminations than analyses of SC or FC alone in
a variety of pathologies or conditions (Zhang et al., 2011;
Davis et al., 2012; Zimmermann et al., 2016; Straathof et
al., 2019).
Indeed, FC networks in the resting-state do not merely

mirror SC but are believed to be the by-product of com-
plex dynamics of multiscale brain circuits (Honey et al.,
2007; Deco et al., 2011). As such, they are constrained
but not entirely determined by the underlying anatomy
(encoded in the SC matrix), as also confirmed by the fact
that variability between FCs of different subjects may be
larger than the one between SCs (Zimmermann et al.,
2019). Indeed, FC also carries valuable information about
the dynamic regime giving rise to the observed resting-
state activity fluctuations (Hansen et al., 2015) and FC dif-
ferences are thus leveraged by the nonlinear effects of dy-
namics that small variations in SC can have and that MFM
models can in principle capture.
In particular, brain networks are thought to operate at a

regime close to criticality. For a fixed SC, the resulting FC
would be different depending on how closely dynamics is
tuned to be in proximity of a critical working point (Deco
et al., 2013; Hansen et al., 2015). This information that
brain networks are supposed to operate close to a critical
boundary is used to generate the surrogate virtual FCMFM,
when performing nonlinear SC-to-FC completion. Thus,
FCMFM carries indirectly extra information about a (puta-
tive) dynamic regime that was not conveyed by the origi-
nal empirical SC (nor by virtual completions with linear
SLM-based pipelines). This effective “reinjection” of infor-
mation could potentially compensate for unavoidable
loss, compare “data processing inequality” (Cover and
Thomas, 2006), along the algorithmic processing chain
represented by completion. This could be a possible
explanation for the superior performance of nonlinear
methods in the ADNI dataset completion. For this com-
pensation to happen, however, the guess about the
right working point should be close to reality. In this
paper we were implicitly supposing that all the subjects
have the same working point of dynamic operation
(e.g., the same distance from critical rate instability;
Hansen et al., 2015). Now, pathology or aging may pre-
cisely be also altering this working point itself, making
of our assumption in MFM-based completion only an

approximation. For instance, the distributions of match-
ing between empirical and virtual community structure
in FC connectomes for the healthy aging dataset
(Extended Data Fig. 8-1B) are clearly bimodal, indicat-
ing that the used completion ansatz may be more ap-
propriate for certain subjects than for others. Thus,
diverse working points of dynamic operation for differ-
ent subjects, here not accounted for, may contribute to
the inferior performance of nonlinear methods in the
healthy aging dataset. We defer to future studies con-
siderations about how to further optimize the selection
of a working point.
When both empirical SC and FC were available, we

could measure the quality of reconstruction achieved by
our models. The correlation reached between empirical
and reconstructed connectivity matrices is only moder-
ate, however. There are multiple reasons for this limited
performance. One evident reason is the simplicity of the
neural mass model adopted in our proof-of-concept il-
lustration. The Wong–Wang neural mass model is able
only to express two states of lower or higher local acti-
vation (Wong and Wang, 2006). Instead, neuronal popu-
lations can display a much more extensive repertoire of
possible dynamics, including, e.g., coherent oscilla-
tions at multiple frequencies, bursting, or chaotic tra-
jectories (Stefanescu and Jirsa, 2008; Spiegler et al.,
2011). Synchronization in a network depends on vari-
ous factors, including frequency, network topology,
and time delays via signal propagation, all of which
have been ignored here and in large parts of the litera-
ture (Deco et al., 2009; Petkoski and Jirsa, 2019). It is
acknowledged that delay-less approaches serve as a
useful approximation (Deco et al., 2015). Nevertheless,
we are aware that our choice to restrict our analyses on
the subset of activation-based mechanisms introduces
critical limitations. Indeed, our models, ignoring delay-
mediated synchronization, are incapable of capturing a
range of dynamic oscillatory behaviors, such as multi-
frequency coupling or multiphase coupling. More so-
phisticated mean-field virtual brain models could thus
reach superior performance (Stefanovski et al., 2019),
going beyond the first proof-of-concept examples pre-
sented here.
However, even such a simple model, achieving such a

limited reconstruction performance proved to be consist-
ent and useful. First, when concatenating data completion
pipelines to give rise to bivirtual data, we found a robust
self-consistency, i.e., remarkable matching between, e.g.,
the original SC (or FC) and the bivirtual SCbi-MFM (or FCbi-

MFM) generated via the intermediated FCMFM (or SCMFM)
step. This self-consistent correspondence is not limited to
generic correlations but captures actual personalized as-
pects of detailed network topology (Table 3 and Fig. 8 for
the ADNI dataset and Table 4 and Extended Data Fig. 8-1
for the healthy aging dataset). Second, classification per-
formance reached based on empirical data could be
nearly equated by classifiers trained on virtual or bivirtual
dual connectomes (Fig. 7). Therefore, even if the recon-
struction quality of our model-based completion proce-
dures is modest, a meaningful relationship with the
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original seed data are still maintained, even after two
steps of virtual completion. The use of simple models has
the additional advantage of being less computationally
expensive to simulate. SLMs are even simpler and faster
to run than our basic MFMs and their performance was
better than the one of nonlinear models in many aspects
when dealing with the healthy aging dataset. Note that
SLMs have been shown to be very performing in render-
ing static aspects of FC in other contexts as well (Hansen
et al., 2015; Messé et al., 2014). However, linear models
were down-performing on the ADNI dataset, while nonlin-
ear models performance seemed more stable across da-
tasets. This shows once again that linear and nonlinear
models may capture different facets of the actual, possi-
bly unknown empirical connectomes and that there is an
interest in computing and sharing both type of surrogates,
given their potential complementarity.
In terms of computation costs, basic MFMs as our vir-

tual brains based on the Wong–Wang model, provide a
reasonable compromise between computational speed
and the need to render structured brain dynamics beyond
mere Gaussian fluctuations (Haken, 1983) constrained by
SC. The most expensive aspect of nonlinear completion
procedures –both SC-to-FC and FC-to-SC– is however
their iterative nature. Indeed, not just one, but many virtual
brain simulations must be performed, to scan parameter
space for the best working point for FC simulation (com-
pare Fig. 3) or to grow from random initial conditions an
effective connectivity matrix sufficiently mature to render
genuine aspects of SC (compare Fig. 4). Note however
that, in reality, the number of iterations can be dramati-
cally reduced by choosing good guesses for initial condi-
tions. In the case of SC-to-FC completion, the a priori
knowledge that best working point lie close to a critical
line and that the monitored metrics landscape is convex,
a bisection search strategy (Boyd and Vandenberghe,
2004) can be used instead of exhaustive grid search. In
the case of FC-to-SC completion, starting from an initial
SC* conditions close to a generic group-averaged SC
connectome rather than fully random can speed-up
convergence.
We have provided in Figure 7 the first proof of concept

of the possibility to use virtual and bivirtual connectomes
for performing subject classification. For the purpose of

classification, data completion procedures are seen as
veritable computational bridges between alternative
“spaces” in which to perform machine learning, linked by
duality relations (Fig. 7A). We propose in this respect two
possible types of strategy. The first one is to abandon the
“real space” of actual empirical connectomes and to op-
erate directly in dual spaces (Fig. 7B). In these ap-
proaches, empirical connectomes would have to be
transformed into their virtual or bivirtual dual counterparts
as a necessary preprocessing step. In the second type of
strategy, classifiers trained in dual spaces are used to op-
erate in the real space. While such approach does not re-
quire the virtualization of empirical input connectomes
before their classification, performance could be poten-
tially reduced by a possible systematic mismatch in input
feature distributions between real and dual spaces (Fig. 8
and Extended Data Fig. 8-1 show, for instance, some net-
work features such as, respectively, SC clustering or SC
weights themselves tend to get overestimated in dual
connectomes). The specific examples highlighted in
Figure 7B,C for ADNI patient discrimination and Figure
7D–F for healthy aging age class prediction show compa-
rable qualities of classification for dual space and cross-
space classifications (in both cases, not significantly de-
creases with respect to classification in real space).
Generally, we were able only to reach poor classification
performances, barely above chance level. However, the
performance was not significantly better for direct classifi-
cation based on empirical connectomes. As a matter of
fact, we have to acknowledge that we are still far from
being able to reliably discriminate subject classes based
on connectome features, independently from training
being performed on real or dual connectomes. We would
like to stress that the number of used input features, e.g.,
K= 96, corresponding to the number of regions in the
used parcellation (see Materials and Methods) for which
connectivity strengths were computed in the ADNI data-
set classification problem, is comparable to the number
of subjects in the considered dataset (N= 88 or 178, re-
spectively, for ADNI subjects with available SCemp or
FCemp). Therefore, it is not surprising that high performan-
ces are difficult to access, even when using classification
approaches specially adapted to this situation, as in our
case. Superior classification performance could be poten-
tially reached via a more careful feature selection (Guyon
and Elisseeff, 2003) that goes beyond the scope of the
current study. Hopefully, future attempts to classification
will be able to approach more robustly these tendential
performances. Given the high degree of personalized cor-
respondence between real and dual connectomes (com-
pare Table 3 for the ADNI dataset and Table 4 for the
healthy aging dataset), we are confident that any perform-
ance level reached by future classifiers trained in real
space could be closely approached by classifiers trained
in dual virtual and bivirtual spaces.
In perspective, the use of virtual connectomes could

become beneficial to the training of machine learning al-
gorithms in a further way. The use of a wider ensemble of
surrogate date with statistical distributions of multidimen-
sional features equivalent to the original data are a

Table 5: Percent improvement in connectome matching ob-
tained by using personalized virtual and bivirtual duals

Type of completion DPers ADNI
DPers healthy
aging

SCemp to FCvirt Linear 126 6 7% 112 6 4%
Nonlinear 117 6 5% 113 6 4%

SCemp to SCbivirt Linear 140 6 18% 123 6 8%
Nonlinear 117 6 5% 113 6 4%

FCemp to SCvirt Linear 151 6 35% 128 6 22%
Nonlinear 1200 6 37% 187 6 19%

FCemp to FCbivirt Linear 146 6 70% 117 6 28%
Nonlinear 1297 6 140%1108 6 52%

FCemp test/retest DPers122 6 13%

Indicated values for real/virtual and bivirtual dual are mean 6 SD of the mean
over subjects.
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common practice in machine learning, known as data
augmentation (Yaeger et al., 1997; Taylor and Nitschke,
2018), as previously mentioned. Data augmentation is,
e.g., very popular in object recognition (where surrogate
training data are produced by clipping or variously trans-
forming copies of the original training images). Data aug-
mentation aims to expand the training dataset beyond the
initially available data to boost the learning by a classifier
of the target categories (e.g., object identities). Crucial for
dataset augmentation applications is that the surrogate
data generated are not just identical to the actual data
with some added noise but are genuinely new and can
serve as actual good guesses for alternative (unob-
served) instances of data-points belonging to the same
category (compare Fig. 9B). Indeed, if information can-
not be created (Cover and Thomas, 2006), redundant
information can nevertheless improve the performance
of decoding and classification (Guyon and Elisseeff,
2003). Computational models such as MFM do not pro-
vide mappings between input and output connectomes,
but rather between statistical ensembles of connec-
tomes, with both mean and correlated dispersion realis-
tically shaped by trustworthy nonlinear dynamics. In
other words, differences between alternative connec-
tomes in a generated surrogate virtual cohort are not
mere “noise,” but reflect realistic data-compliant possi-
bilities of variation. The different connectome realiza-
tions sample indeed the specific landscapes of possible
FCs that may be compatible with a given SCs, degener-
ate because the allowed dynamics to unfold along with
low-dimensional manifolds, rather than being frozen in
strict vicinity of a trivial fixed point (Mehrkanoon et al.,
2014; Pillai and Jirsa, 2017). Therefore, given that inter-
relations between virtual cohorts mirror interrelations
between empirical subjects (Figs. 6, 8; Extended Data
Fig. 8-1; Table 3-Table 5; Extended Data Table 5-1), the
generation of surrogate virtual cohorts of arbitrarily
large size could provide natural candidates for future
data augmentation applications.
However, by capitalizing exclusively on redundancy,

augmentation cannot replace the gathering of more em-
pirical data (Carrillo et al., 2012; Toga et al., 2016).
Unfortunately, federation (or even mining) of data are
often impeded by unavoidable juridical concerns linked
to strict and diverse regulations (de Rosnay, 2017;
Thorogood et al., 2018) The use of virtual cohorts may
once again relieve this burden. Virtual cohorts maintain
their statistical relation to the original data, in a way suffi-
ciently good to be exploitable for classification, but do not
precisely match the original data, maintaining an inherent
variability. This fact may constitute a feature rather than a
bug, in the context of data sharing. Indeed, if virtual data
carry information operationally equivalent to the one car-
ried by empirical data, they do not carry exactly the same
information. It is not, therefore, possible to exactly recon-
struct the original subject data from virtualized connec-
tomes, and privacy concerns would be considerably
reduced if not entirely removed by sharing dual space im-
ages of actual data, eventually demultiplied into virtual co-
horts, rather than the original real space data. We thus

anticipate a near future in which virtual cohorts, providing
vast numbers of virtual and bivirtual connectivity informa-
tion, will play an increasing role in massive data-driven ex-
plorations of factors predictive of pathology and, in
particular, neurodegenerative disease progression.
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