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CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France

Abstract

Lattice Boltzmann schemes rely on the enlargement of the size of the target problem in order
to solve PDEs in a highly parallelizable and efficient kinetic-like fashion, split into a collision and a
stream phase. This structure, despite the well-known advantages from a computational standpoint,
is not suitable to construct a rigorous notion of consistency with respect to the target equations and
to provide a precise notion of stability. In order to alleviate these shortages and introduce a rigorous
framework, we demonstrate that any lattice Boltzmann scheme can be rewritten as a corresponding
multi-step Finite Difference scheme on the conserved variables. This is achieved by devising a
suitable formalism based on operators, commutative algebra and polynomials. Therefore, the notion
of consistency of the corresponding Finite Difference scheme allows to invoke the Lax-Richtmyer
theorem in the case of linear lattice Boltzmann schemes. Moreover, we show that the frequently-
used von Neumann-like stability analysis for lattice Boltzmann schemes entirely corresponds to
the von Neumann stability analysis of their Finite Difference counterpart. More generally, the
usual tools for the analysis of Finite Difference schemes are now readily available to study lattice
Boltzmann schemes. Their relevance is verified by means of numerical illustrations.

Keywords — Lattice Boltzmann methods, Finite Difference multi-step methods, consistency, von
Neumann stability analysis, Cayley-Hamilton theorem on the ring of Finite Difference operators
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1 Introduction

Lattice Boltzmann schemes are a class of computational methods used to simulate systems of conser-
vation laws under the form of Partial Differential Equations (PDEs). Their basic way of working is the
following: instead of taking N ∈ N? PDEs and directly discretize them, a lattice Boltzmann scheme
enlarges the size of the problem from N to q > N and treats it in a kinetic-like fashion. This means
that the new q variables undergo, at each time step, a local collision phase where different particle
distribution functions interact, followed by a lattice-constrained stream phase with discrete velocities
where no interaction is possible. The advantage of such idiosyncratic approach compared to more
traditional numerical methods (e.g. Finite Difference, Finite Volume, Finite Elements, etc.) is that
the local nature of the collision phase allows for massive parallelization of the method and the lattice-
constrained stream can be computationally implemented as a pointer shift. Although this way of
proceeding is highly beneficial from a computational perspective, it yields a deficient structure to
construct a clear and rigorous notion of consistency with respect to the N target equations, as well as
a rigorous theory of stability. Indeed, only formal procedures, either based on the Chapman-Enskog
expansion [8] or on the equivalent equations by Dubois [15, 17] are currently available to study the
consistency of lattice Boltzmann schemes. As far as stability is concerned, most of the studies rely
on the linear stability analysis of the eigenvalues of the system, see [4, 38]. Furthermore, the genesis
of lattice Boltzmann schemes is counterintuitive compared to standard methods from Numerical
Analysis, which are shaped intrinsically consistent with the PDEs. For lattice Boltzmann schemes,
one starts from devising the algorithm and eventually checks with which equations it is consistent
with, according to the particular choice of time/space scaling.

In order to bridge the gap between the lattice Boltzmann methods and the traditional approaches
known to numerical analysts, the main results of the present contribution are:
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1. Any lattice Boltzmann scheme can be rewritten as a corresponding multi-step Finite Differ-
ence scheme on the conserved variables, regardless of the linearity of the equilibria.

2. The consistency of any lattice Boltzmann scheme translates into the usual consistency of its
corresponding Finite Difference scheme.

3. The customary L2 stability analysis used for lattice Boltzmann schemes [4, 38] is equivalent to
performing the von Neumann stability analysis on the corresponding Finite Difference scheme.

The strategy to prove these results relies on the introduction of a suitable algebraic structure, namely
a commutative ring, to represent the lattice Boltzmann scheme under a matricial form and then to
invoke the Cayley-Hamilton theorem for matrices with elements on a commutative ring. The third
result comes from the first one by using the matrix-determinant lemma for matrices on a commutative
ring. The first result yields a proper notion of consistency with respect to the target equations, which
is that of Finite Difference schemes (see any standard textbook such as [39, 25]). On the other hand,
the third one confirms that the usual von Neumann analysis used for lattice Boltzmann schemes is
relevant. Moreover, we stress once more the fact that recasting a lattice Boltzmann scheme as a
Finite Difference scheme on the conserved moments is merely useful from the theoretical perspective,
being of moderate interest for actual efficient implementations.

In the past, few authors have noticed that for some particular lattice Boltzmann schemes, one
has a corresponding (sometimes called “equivalent”) Finite Difference formulation on the conserved
variables. Despite this, no general theory has been formulated. For instance: Suga [40] derives by
direct computations a three-stages Finite Difference scheme from a uni-dimensional three-velocities
D1Q3 scheme,1 limiting the computations to a linear framework with one relaxation parameter
(SRT). Dellacherie [11] derives a two-stages Finite Difference scheme for the D1Q2 lattice Boltz-
mann scheme. Again, this is limited to one spatial dimension and to a linear framework. A higher
level of generality has been reached by the works of Ginzburg and collaborators, see [23] for a recap.
They succeeded, using a link formalism, in writing a class of Lattice Boltzmann schemes as Finite
Difference schemes [13]. With their highly constrained link structure to be enforced, the resulting
Finite Difference scheme with three stages is valid regardless of the spatial dimension and the choice
of discrete velocities. The limitations are that the choice of moments is heavily constrained and only
the case of one conserved moment is handled. Moreover, the evolution equation of the moving parti-
cles can depend on the distribution of the still particles only via the conserved moment the equilibria
depend upon and the schemes must be two-relaxation time (TRT) models with “magic parameter”
equal to one-fourth for any link. The difficulty in establishing a general result comes from the cou-
pling between spatial operators and time shifts. We must mention that during the drafting of the
present contribution, an interesting work by Fuc̆ik and Straka [22] has been published covering the
very same subject and essentially coming to the first main result of our present paper. Their focus
is different than ours since they adopt a purely algorithmic approach rather than a precise algebraic
characterization of lattice Boltzmann schemes, which can be exploited without having to find the
Finite Difference scheme. We actually provide more insight into the bound on the number of time
steps of the corresponding Finite Difference scheme and our formalism, based on polynomials, aims
at providing a direct link with the classical tools for the stability analysis and allows to establish
a link with the Taylor expansions from [17], as introduced in [1]. In [22], the authors rely on a
decomposition of the scheme using an hollow matrix2 yielding an equivalent form of the scheme with
the diagonal non-equilibrium part, after a finite number of steps of their algorithm. However, to the
best of our understanding, the origin of such algorithm is not fully clear. In their work, the spatial
shifts of data introduced by the stream phase are taken into account using a rather cumbersome
system of indices, whereas we rely on an straightforward algebraic characterization of the stream
phase.

Our paper is structured as follows: in Section 2, we introduce – in guise of friendly introduction
– the link of our problem with Ordinary Differential Equations (ODEs). The right formalism to
make lattice Boltzmann schemes looking very close to a system of ODEs and to generalize the
well-known Cayley-Hamilton theorem for matrices over fields is provided in Section 3 and allows
to prove the main results of the work showcased in Section 4. We devote Section 5 to discuss
examples, possible simplifications of the problem and particular cases deserving particular attention.
In Section 6, we prove the equivalence of the von Neumann analysis for lattice Boltzmann and Finite
Difference schemes. In Section 7, we show how the well-known tools for Finite Difference schemes
can be used to prove convergence theorems for lattice Boltzmann schemes. We corroborate our claim
via numerical simulations. We eventually conclude in Section 8.

1It is customary to call DdQq a scheme in a d-dimensional space using q discrete velocities.
2Matrix with zero entries on the diagonal.
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2 The example of Ordinary Differential Equations

Since our way of rewriting any lattice Boltzmann scheme to a multi-step Finite Difference scheme
has been originally inspired by an analogy with systems of ODEs and this framework provides all
the necessary elements to easily understand the following construction, let us introduce this way
of reasoning with the following example. Consider the system of linear ODEs of size q ∈ N? with
matrix A ∈Mq(R) given by {

y′(t) = Ay(t), t ≥ 0,

y(0) = ŷ ∈ Rq.
(1)

The system is called “stable” if for every λ ∈ σ(A), in the spectrum of A, then Re(λ) < 0. Trans-
forming a single equation of higher order into a system of first order equations like Equation (1)
by considering the companion matrix is a current practice, which unsurprisingly makes the problem
more handy from the computational standpoint. Though being the analogous of what we aim at
doing of lattice Boltzmann schemes, the other way around, passing from a system of first order to a
single equation of higher order, seems to be seldom considered. We proceed like in [10]. By iterating,

we have that y(k) = Aky for k ∈ J0, qK.3 Let (γk)k=q
k=0 ⊂ R be q + 1 real coefficients, then write∑k=q

k=0 γky
(k) = (

∑k=q
k=0 γkA

k)y. Taking (γk)k=q
k=0 as the coefficients of the characteristic polynomial4

χA =
∑k=q
k=0 γkX

k of A, by virtue of the Cayley-Hamilton theorem, we deduce the corresponding
equation on the first variable y1 (playing the role of the conserved moment), given by

∑k=q
k=0 γky

(k)
1 (t) = 0, t ≥ 0,

y1(0) = (Aŷ)1,
...

y
(q−1)
1 (0) = (Aq−1ŷ)1.

(2)

This provides a systematic way of performing the transformation without having to rely on hand
computations and substitutions. Moreover, observe that the eigenvalues of A are the roots of χA,
thus this is the object directly linked with the stability analysis. To give an example, consider

AI =

1 1 1
1 2 1
1 2 0

 , with χAI
= X3 − 3X2 − 2X + 1.

Hence, the corresponding ODE on the first variable is given by y′′′1 − 3y′′1 − 2y′1 + y1 = 0.

3 Algebraic form of lattice Boltzmann schemes

Now that the reader is familiar – through a simple example – with the main idea and the final aim
of the present contribution, we introduce the general framework of lattice Boltzmann schemes and
the right formalism to treat them almost as systems of linear ODEs.

3.1 Spatial and temporal discretization

We set the problem in any spatial dimension d = 1, 2, 3 considering the whole space Rd, because
we are not interested in studying boundary conditions. The space is discretized by a d-dimensional
lattice L := ∆xZd of constant step ∆x > 0 in all direction. The time is uniformly discretized with
step ∆t > 0. The discrete instants of time shall be indexed by the integer indices n ∈ N so that the
corresponding time is tn = n∆t. We finally introduce the so-called lattice velocity λ > 0 defined
by λ := ∆x/∆t. Observe that the developing theory is totally discrete and thus fully independent
from the scaling between ∆x and ∆t. This scaling matters only as long as one aims at performing
a consistency analysis, which is not the primary scope of this paper.

3.2 Discrete velocities and shift operators

The first choice to be made when devising a lattice Boltzmann scheme concerns the discrete velocities
(ej)

j=q
j=1 ⊂ Rd with q ∈ N?, which are multiples of the lattice velocity, namely ej = λcj for any

j ∈ J1, qK with (cj)
j=q
j=1 ⊂ Zd. Therefore, particles are stuck to move – at each time step – on the

3We shall consistently use the notation Ja, bK := {a, a+ 1, . . . , b} for a, b ∈ Z and a < b.
4In the whole work, the indeterminate of any polynomial shall be denoted by X.
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lattice L. We denote the distribution density of the particles moving with velocity ej by fj for every
j ∈ J1, qK. The shift operators associated with the discrete velocities are an important element of
the following analysis.

Definition 1 (Shift operator). Let z ∈ Zd, then the associated shift operator on the lattice L,
denoted T z∆x, is defined in the following way. Take f : L → R be any function defined on the lattice,5

then the action of T z∆x is

(T z∆xf)(x) = f(x− z∆x), ∀x ∈ L.
We also introduce T d∆x := {T z∆x with z ∈ Zd} ∼= Zd.

The shift yields information sought in the upwind direction with respect to the considered velocity.
Let us introduce the natural binary operation between shifts.

Definition 2 (Product). Let the “product” ◦ : T d∆x ×T d∆x → T d∆x be the binary operation defined as
T z∆x ◦ Tw∆x = T z+w

∆x , for any z,w ∈ Zd.

Henceforth, the product ◦ is understood whenever no ambiguity is possible. This operation
provides an algebraic structure to the shifts, directly inherited from that of Zd.

Proposition 1. (T d∆x, ◦) forms a commutative (Abelian) group.

Moreover, there is only “one movement” for each Cartesian direction which “generates” the shifts.
More precisely

for d = 1, let x := T 1
∆x, then T d∆x = 〈{x}〉, (3)

for d = 2, let x := T
(1,0)
∆x , y := T

(0,1)
∆x , then T d∆x = 〈{x, y}〉,

for d = 3, let x := T
(1,0,0)
∆x , y := T

(0,1,0)
∆x , z := T

(0,0,1)
∆x , then T d∆x = 〈{x, y, z}〉,

where 〈·〉 is the customary notation for the generating set of a group. We remark that the fact that
T d∆x is finitely-generated since d is finite – though interesting – is not mandatory to state the results
to come. The statement from Proposition 1 is finally what one really needs.

We can add one more binary operation, which is non-internal to T d∆x. This yields the cornerstone
of this work, namely the set of Finite Difference operators, finite combinations of weighted shifts
operators via a sum. It is defined as follows, see Chapter 3 of [31].

Definition 3 (Finite Difference operators). The set of Finite Difference operators on the lattice L
is defined as

Dd∆x := RT d∆x =

{∑
T∈T d∆x

αTT, where αT ∈ R and αT = 0 a.e.

}
,

the group ring of T d∆x over R. The sum + : Dd∆x ×Dd∆x → Dd∆x and the product6 ◦ : Dd∆x ×Dd∆x →
Dd∆x of two elements are defined by ∑

T∈T d∆x

αTT

+

 ∑
T∈T d∆x

βTT

 =
∑

T∈T d∆x

(αT + βT)T,

 ∑
T∈T d∆x

αTT

 ◦
 ∑

H∈T d∆x

βHH

 =
∑

T,H∈T d∆x

αTβHT ◦ H.

Furthermore, the product of σ ∈ R with elements of Dd∆x is given by

σ

 ∑
T∈T d∆x

αTT

 =
∑

T∈T d∆x

(σαT)T.

With the two binary operations, Dd∆x behaves closely to Z, R or C as stated by the following
result, see [31].

Proposition 2 (Ring of Finite Difference operators). (Dd∆x,+, ◦) is a commutative ring.7

5The function could take values in any ring, see [31].
6Which interestingly corresponds to the discrete convolution product.
7Since R is commutative, this is also an algebra over R. It also an Hopf algebra over R, since R is a field and can also

be viewed as a free module where the scalars belong to R and the basis are the elements of the group T d
∆x.
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Observe that (Dd∆x,+, ◦) is not a field: not every element of Dd∆x has multiplicative inverse, take
for example the centered approximation of the derivative along x: (T−1

∆x − T 1
∆x)/(2∆x) and see for

instance the concept of indefinite sum in the calculus of Finite Differences [34, 33]. The elements
having inverse are called “units” and divide all the other elements. It can be easily seen that the
units are the product of a non-zero real number and a shift in T d∆x. Indeed (αT z∆x)−1 = (1/α)T−z∆x

for any α ∈ Rr {0} and z ∈ Zd. The inverse of a unit shall also be denoted by a bar.

Remark 1. One can see Dd∆x as the ring of Laurent polynomials of d variables over the field R, where
the indeterminates are x, y and z. For example, for d = 1, the identification Dd∆x ∼= R[x, x−1] = R[x, x]
holds. This automatically implies that Dd∆x is more than a commutative ring, namely a unique
factorization domain.

Remark 2. The reals R can be identified with the subring R ∼= {αT 0
∆x : α ∈ R}.

3.3 Characteristic polynomial and Cayley-Hamilton theorem

Polynomials with coefficients in a commutative ring, like Dd∆x, instead of in fields like R or C (see
Section 2) and matrices with entries in Dd∆x (see [20] and [6]) play a central role in what we are
going to develop.

Definition 4 (Characteristic polynomial). Let R be a commutative ring and C ∈Mr(R) for some
r ∈ N?. The characteristic polynomial of C, denoted χC ∈ R[X], is given by χC := det(XI −C),
where det(·) is the determinant and I is the r × r identity matrix.

The naive computation of the characteristic polynomial χC using its definition via the determi-
nant could be computationally expensive, especially when dealing with symbolic computations like
it shall be in our case. For this reason, we employ the Faddeev-Leverrier algorithm [26] which is of
polynomial complexity, generally lower than that of the pivot method. The process is detailed in

Algorithm 1 Faddeev-Leverrier algorithm for the computation of the characteristic polynomial of a
square matrix on a commutative ring R.

Input: C ∈Mr(R)
Set D = C
for k ∈ J1, rK do

if k > 1 then
Compute D = C(D + γr−k+1I)

end if
Compute γr−k = − tr(D)

k
end for
Output: the coefficients (γk)k=r

k=0 ⊂ R of the characteristic polynomial χC =
∑k=r

k=0 γkX
k

Algorithm 1 and only uses matrix-matrix multiplications and the computation of the trace, denoted
by tr(·).
A central result used in this work is the Cayley-Hamilton theorem for matrices over a commutative
ring, see [6] for the proof, generalizing the same result holding for matrices on a field utilized in
Section 2.

Theorem 3 (Cayley-Hamilton). Let R be a commutative ring and C ∈Mr(R) for some r ∈ N?.
Then χC is a monic polynomial in the ring R[X] in the indeterminate X, under the form

χC = Xr + γr−1X
r−1 + . . . γ1X + γ0,

with (γk)k=r
k=0 ⊂ R. Then8

Cr + γr−1C
r−1 + · · ·+ γ1C + γ0I = 0.

This result states that any square matrix with entries in a commutative ring verifies its charac-
teristic equation. The result applies in particular when we take R = Dd∆x thanks to Proposition 2.
The scope of what follows is to rewrite lattice Boltzmann schemes in order to employ Theorem 3 on
them, as we did for ODEs in Section 2.

8Sometimes, we shall indulge to the notation χC(C) = 0.
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3.4 Lattice Boltzmann algorithm: collide and stream

We now introduce the vast class of lattice Boltzmann schemes we consider in the present contribution
and for which we shall explain how to find the corresponding Finite Difference scheme. Any lattice
Boltzmann scheme consists in an algorithm made up of two phases: a local collision phase performed
on each site of the lattice and a stream phase, where particles are exchanged between different sites
of the lattice. Let us introduce each of them.

3.4.1 Collision phase

The N conserved moments, forming the variables of interest, are linear functions of the the dis-
tributions densities f = (f1, . . . , fq)

ᵀ. Equally, the remaining q − N non-conserved moments are
linear functions of f as well. For this reason, we introduce a change of basis called moment matrix
M ∈ GLq(R). Thus, the moments are recovered by m = Mf and viceversa. From the practical
point of view, one either storesmn or fn at each node of the mesh L at time tn and then it is possible
to switch from one to the other representation by applying M . The entries of M can depend on
∆x and/or on ∆t, as we have stated that the scaling does not play any role here, but cannot be a
function of the space and time variables.
We follow the general formalism of D’Humières [12], which easily and effectively accounts for multiple-
relaxation-times (MRT) schemes. In this framework, the collision is written as a diagonal relaxation
in the moments basis. Thus, the collision phase reads, denoting by ? any post-collision state

mn,?(x) = (I − S)mn(x) + Smeq|n (x), ∀x ∈ L. (4)

This part of the algorithm is local to each site of the lattice. Here

• I ∈ GLq(R) is the identity matrix of size q;

• S ∈ Mq(R) is the relaxation matrix which is a singular with rank(S) = q − N , where N ∈
J1, q − 1K is the number of conserved moments:

S = diag(0, . . . , 0, sN+1, . . . , sq),

where the first N entries are zero9 and correspond to the conserved moments, the following
q −N are such that si ∈]0, 2] for i ∈ JN + 1, qK, see [15].

• We employ the notation meq |n (x) = meq(mn
1 (x), . . . ,mn

N (x)) for x ∈ L, where meq :
RN → Rq are the equilibria for the moments, which are possibly non-linear functions of the N
conserved moments. Since these equilibria are then multiplied by S, the first N components
do not need to be defined.

In the collision phase Equation (4), the entries of S can depend on ∆x or ∆t, but not on space and
time. The equilibria are allowed to follow the same dependencies plus those on space and time and
can also depend on some “external variable” as in the case of vectorial schemes [24].

3.4.2 Stream phase

As previously said, the post-collisional distributions are recovered at each node by computing fn,? =
M−1mn,?. The stream phase is diagonal in the space of the distributions densities. It can be written
as

fn+1(x) =
(
diag(T c1

∆x, . . . , T
cq
∆x)fn,?

)
(x), ∀x ∈ L, (5)

where for the first time, the matrices have entries in a commutative ring, see [20] and [6], instead than
in the field R. The setMq(Dd∆x) of square matrices of size q with entries belonging to Dd∆x forms a
ring under the usual operations between matrices. Even if Dd∆x is commutative from Proposition 2,
Mq(Dd∆x) is not commutative for q ≥ 2, as for real matrices and matrices of first-order differential
operators [17].

3.4.3 Monolithic scheme

The stream phase Equation (5) can be rewritten in a non-diagonal form in the space of moments
as done by [17, 21] by introducing the matrix T := Mdiag(T c1

∆x, . . . , T
cq
∆x)M−1 ∈ Mq(Dd∆x) and

merged with the collision phase Equation (4) to obtain the scheme

mn+1(x) = Amn(x) +Bmeq|n (x), ∀x ∈ L, (6)

9This is not always the case in literature but shall be used consistently in this paper. We put them at the beginning
for the sake of presentation.
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where A := T (I − S) ∈ Mq(Dd∆x) and B := TS ∈ Mq(Dd∆x). In the sequel, we shall not indicate
the spatial variable x ∈ L for the sake of readability.

We observe that the operators (T
cj
∆x)j=qj=1 ⊂ T d∆x ⊂ Dd∆x are the eigenvalues of the matrix T .

However, they are not the eigenvalues of the matrix A. Indeed, it is general false that the eigenvalues
of A belong to the space Dd∆x. It is interesting to interpret the lattice Boltzmann scheme under the
form Equation (6) as discrete-time linear control system with matrices on a commutative ring [6].
The moments are the state of the system evolving via the matrix A, whereas the equilibria are the
control via B being a feedback observing only a part of the state, namely the conserved moments.

We introduce our example of choice, which shall be used through the whole paper. It is introduced
via the usual approach in the lattice Boltzmann community: first the scheme and then the physical
problem it approximates, contrarily to the usual approach of Numerical Analysis.

Example 1 (D1Q3 scheme with one conserved moment). Consider a D1Q3 scheme, see [18], by
taking d = 1, q = 3 and N = 1, with c1 = 0, c2 = 1, c3 = −1 and

M =

 1 1 1
0 λ −λ
−2λ2 λ2 λ2

 , and S = diag(0, s2, s3), with s2, s3 ∈]0, 2].

Here, we recall that λ = ∆x/∆t and meq
2 ,m

eq
3 : R→ R are given functions of m1. With this in mind,

we can write T , A and B for this scheme.

T =

 1
3 (x + 1 + x) 1

2λ (x− x) 1
6λ2 (x− 2 + x)

λ
3 (x− x) 1

2 (x + x) 1
6λ (x− x)

λ2

3 (x− 2 + x) λ
2 (x− x) 1

6 (x + 2 + x)

 ,

A =

 1
3 (x + 1 + x) (1−s2)

2λ (x− x) (1−s3)
6λ2 (x− 2 + x)

λ
3 (x− x) (1−s2)

2 (x + x) (1−s3)
6λ (x− x)

λ2

3 (x− 2 + x) λ(1−s2)
2 (x− x) (1−s3)

6 (x + 2 + x)

 , B =

0 s2
2λ (x− x) s3

6λ2 (x− 2 + x)
0 s2

2 (x + x) s3
6λ (x− x)

0 λs2
2 (x− x) s3

6 (x + 2 + x)

 .

Here, x is defined by Equation (3) for d = 1. It is easy to show either by manual computations or
by using Algorithm 1 that χA = X3 + γ2X

2 + γ1X + γ0 with

γ2 = s3(x + 4 + x)/6 + s2(x + x)/2− (x + 1 + x),

= −(1− s3)(x + 4 + x)/6− (1− s2)(x + x)/2− (x + 1 + x)/3,

γ1 = s2s3(x + 1 + x)/3− s3(5x + 2 + 5x)/6− s2(x + 2 + x)/2 + (x + 1 + x),

= (−s3(1− s2)/3− (s3 + s2 − 2)/2) (x + x) + 2 ((1− s2)− s2(1− s3)− (s2 + s3 − 2)) ,

γ0 = −(1− s2)(1− s3).

We see that γ0 = 0 if either s2 or s3 are equal to one, this shall be discussed in Section 5.2. On the
other hand γ1 = 0 if we have s2 = s3 = 1. As pointed out in the Introduction, we can now specify the
scaling between ∆t and ∆x and look for a target equation. In particular, aiming at approximating
the solution of the monodimensional scalar conservation law under the form

∂tu+ ∂x (φ(u)) = 0, (7)

where φ ∈ C1(R) is the (possibly non-linear) flux, we take meq
2 (m1) = φ(m1), any function meq

3 :
R → R and the acoustic scaling corresponding to selecting λ independent of ∆x and ∆t. Then, the
conserved moment m1 is an approximation of u, as we shall eventually see.

4 Main result of the paper: corresponding Finite Differ-
ence schemes

With a new way of writing any lattice Boltzmann scheme using Definition 3, thanks to Proposition 2
and the generalization of the Cayley-Hamilton theorem Theorem 3, we can proceed like in Section 2
to prove the main result of the paper: any lattice Boltzmann can be viewed as a multi-step Finite
Difference scheme on the conserved variables.

We first analyze the case of one conserved moment, namely N = 1, to keep the presentation as
simple as possible and because it conveys the core idea of the work. We shall eventually deal with
N > 1 once the principles are established and briefly discuss the issue of initializing the schemes.
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At most q + 1
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Figure 1: Maximal space-time domain of dependence of the corresponding Finite Difference scheme for N = 1
(full black points inside the grey area) by virtue of Proposition 4 in the case of d = 1. The maximal space-time
slopes are determined by the maximal shift of the considered scheme whereas the number of involved time-steps
is at most q + 1.

4.1 One conserved moment

Proposition 4 (Corresponding Finite Difference scheme for N = 1). Let N = 1, then the lattice
Boltzmann scheme Equation (6) corresponds to a multi-step explicit Finite Difference scheme on the
conserved moment m1 under the form

mn+1
1 = −

q−1∑
k=0

γkm
n+1−q+k
1 +

(
q−1∑
k=0

(
k∑
`=0

γq+`−kA
`

)
Bmeq|n−k

)
1

,

where (γk)k=q
k=0 ⊂ Dd∆x are the coefficients of χA =

∑k=q
k=0 γkX

k, the characteristic polynomial of A.

This result means that the conserved moment satisfies an explicit multi-step Finite Differ-
ence scheme with at most q steps, thus involving q + 1 discrete time instants, see Figure 1. The
maximal size of spatial influence at each past time step can be deduced by looking at Algorithm 1,
derived from the Newton’s identities.

It is interesting to observe that also the non-conserved moments satisfy a Finite Difference nu-
merical scheme, see the following proof. However, these schemes would depend on the conserved
moment via the equilibria and are therefore not independent from the rest of the system.

Proof. Let n ∈ N. Then for any k ∈ N, applying Equation (6) recursively we have

mn+1 = Akmn−(k−1) +

k−1∑
`=0

A`Bmeq|n−` .

We perform a temporal shift in order to fix the first term on the right hand side regardless of the
value of k. Introduce ñ := n− (k − 1), therefore

mñ+k = Akmñ +

k−1∑
`=0

A`Bmeq|ñ+k−1−` .

This holds true, in particular, for any k ∈ J0, qK. We can then consider the coefficients (γk)k=q
k=0 of

the characteristic polynomial χA =
∑k=q
k=0 γkX

k of A and write

q∑
k=0

γkm
ñ+k =

(
q∑

k=0

γkA
k

)
mñ +

q∑
k=0

γk

(
k−1∑
`=0

A`Bmeq|ñ+k−1−`

)
.
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Applying the Cayley-Hamilton Theorem 3 by virtue of Proposition 2, we know that
∑k=q
k=0 γkA

k = 0.
Using the monicity of the characteristic polynomial and coming back by setting ñ+ q = n+ 1 gives

mn+1 = −
q−1∑
k=0

γkm
n+1−q+k +

q∑
k=0

γk

(
k−1∑
`=0

A`Bmeq|n−q+k−`
)
.

The last sum can start from k = 1. Performing a change of indices in the last double sum yields the
result.

mn+1 = −
q−1∑
k=0

γkm
n+1−q+k +

q−1∑
k=0

(
k∑
`=0

γq+`−kA
`

)
Bmeq|n−k . (8)

Example 2. We come back to Example 1. Using Proposition 4, we have the corresponding Finite
Difference scheme given by

mn+1
1 =− s3

6
(x + 4 + x)mn

1 −
s2

2
(x + x)mn

1 + (x + 1 + x)mn
1 −

s2s3

3
(x + 1 + x)mn−1

1

s2

2
(x + 2 + x)mn−1

1 +
s3

6
(5x + 2 + 5x)mn−1

1 − (x + 1 + x)mn−1
1

+ (1− s2)(1− s3)mn−2
1 +

s2

2λ
(x− x)meq

2 |n −
s2(1− s3)

2λ
(x− x)meq

2 |n−1

+
s3

6λ2
(x− 2 + x)meq

3 |n +
s3(1− s2)

6λ2
(x− 2 + x)meq

3 |n−1 . (9)

One can easily check, by performing Taylor expansions in space and time under the acoustic scaling
and selecting meq

2 (m1) = φ(m1), that this scheme Equation (9) is consistent with the target conser-
vation law Equation (7) in the usual sense of Finite Difference, see [39, 25]. Observe that, compared
to the original lattice Boltzmann scheme where either fn ∈ R3 or mn ∈ R3 at time tn had to be
stored at each node of the mesh L in order to evolve the solution, if we consider the Finite Differ-
ence formulation Equation (9), we have only to store m1 but at three different times mn

1 ,m
n−1
1 and

mn−2
1 . Moreover, if we take, for example, s3 = 1, then the third moment relaxes on its equilibrium

which totally determines it at each time step as function of the conserved moment. In this case, in
the original lattice Boltzmann method, one could only store mn

1 and mn
2 at each node. Conversely,

we see that Equation (9) only involves mn
1 and mn−1

1 , hence again, only two variables per node. This
means that the Finite Difference formulation does not allow, in general, to save memory.

Remark 3. One could think of allowing M and/or S to depend on the space and time variables.
This would imply to consider weights made up of functions instead of the real numbers in Definition 3.
However, Dd∆x would no longer be commutative, because the multiplication by a function does not
commute with shifts (not shift-invariant according to [36]). For example, take z ∈ Zd and a function
g : L → R, then ((

T z∆x ◦
(
gT 0

∆x

))
f
)

(x) = g(x− z∆x)f(x− z∆x),(((
gT 0

∆x

)
◦ T z∆x

)
f
)

(x) = g(x)f(x− z∆x),

for every x ∈ L and for any function f : L → R. The right-hand sides are not equal in general,
except if g is constant.

4.2 Several conserved moments and vectorial schemes

Consider now to deal with multiple conservation laws, namely N > 1. We select a conserved
moment and we consider the other conserved moments as “slave” variables as the equilibria have
been until so far, for N = 1, because they imply variables that we eventually want to keep in the
Finite Difference formulation. In particular, we utilize different polynomials for different conserved
moments to obtain the Finite Difference schemes. To formalize this concept, for any square matrix
C ∈ Mq(Dd∆x), consider CI := (

∑
i∈I ei ⊗ ei)C(

∑
i∈I ei ⊗ ei) ∈ Mq(Dd∆x) for any I ⊂ J1, qK,

corresponding to the matrix where only the rows and columns of indices I are conserved and the
remaining ones are set to zero. We can also consider the matrix C[I] ∈ M|I|(Dd∆x) obtained by
keeping only the rows and the columns indexed in I. A useful corollary of Theorem 3 and of the
Laplace formula for the determinant is the following.

Corollary 5. Let C ∈ Mq(Dd∆x) and I ⊂ J1, qK, then one has that χCI = Xq−|I|χC[I]. Moreover,
the polynomial χC[I] annihilates CI .
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This means that the characteristic polynomial of CI is directly linked to that of the smaller
matrix C[I], which is thus faster to compute, and that the latter is an annihilator for the first
matrix.

For any conserved moment indexed by i ∈ J1, NK we introduce the matrix Ai := A{i}∪JN+1,qK
and A�i := A−Ai. Notice that we have the additive decomposition A = Ai+A

�
i . Indeed, we “save”

the conserved moments other than the ith by placing them into A�i , which shall not participate in
the computation of the characteristic polynomial. With this notations, we have generated a family
of problems from Equation (6) under the form

mn+1 = Aim
n +A�im

n +Bmeq|n, i ∈ J1, NK. (10)

It is useful to stress that the term Aim
n in Equation (10) does not involve any conserved moment

other than the ith. Conversely, A�im
n does not involve any function except the conserved moments

other than the ith. Then, the corresponding Finite Difference schemes come under the form stated
by the following Proposition.

Proposition 6 (Corresponding Finite Difference scheme for N ≥ 1). Let N ≥ 1, then the lattice
Boltzmann scheme Equation (6) rewritten as Equation (10) corresponds to the multi-step explicit
Finite Difference schemes on the conserved moments m1, . . . ,mN under the form

mn+1
i = −

q−N∑
k=0

γi,km
n−q+N+k
i +

(
q−N∑
k=0

(
k∑
`=0

γi,q+1−N+`−kA
`
i

)
A�im

n−k

)
i

+

(
q−N∑
k=0

(
k∑
`=0

γi,q+1−N+`−kA
`
i

)
Bmeq|n−k

)
i

,

for any i ∈ J1, NK where (γi,k)k=q+1−N
k=0 ⊂ Dd∆x are the coefficients of the characteristic polynomial

χAi = XN−1
∑k=q+1−N
k=0 γi,kX

k of Ai.

This Proposition states that for each conserved moment, the corresponding Finite Difference scheme
has at most q −N steps, thus involves q −N + 1 discrete times. This result encompasses and gen-
eralizes Proposition 4. The proof is the same than that of Proposition 4 by taking advantage of
Corollary 5. We show in another contribution [1] that the result of Proposition 6 is the right one to
bridge between the consistency analysis of Finite Difference schemes and the Taylor expansions on
the lattice Boltzmann schemes for N ≥ 1 proposed by [17].

Example 3 (D1Q3 for two conservation laws). Consider the D1Q3 scheme [3] with d = 1, q = 3
and N = 2,with c1 = 0, c2 = 1 and c3 = −1

M =

1 1 1
0 λ −λ
0 λ2 λ2

 , and S = diag(0, 0, s3), with s3 ∈]0, 2], (11)

where meq
3 : R2 → R is a given function of m1 and m2. Using Proposition 6 we have

mn+1
1 = mn

1 +
1

2
(1− s3)(x + x)mn

1 −
1

2
(1− s3)(x + x)mn−1

1 +
(x− x)

2λ
mn

2

− (1− s3)(x− x)

2λ
mn−1

2 +
s3(x− 2 + x)

2λ2
meq

3 |n,

mn+1
2 =

1

2
(2− s3)(x + x)mn

2 − (1− s3)mn−1
2 +

s3(x− x)

2λ
meq

3 |n . (12)

One could remark that the linear part is different from one scheme to the other, since we have used
different polynomials for each conserved moment. Aiming at approximating the solution of the system
of conservation laws {

∂tu+ ∂xv = 0,

∂tv + ∂x(φ(u, v)) = 0,
(13)

with φ : R2 → R a flux, we can consider the previously introduced acoustic scaling and the choice
meq

3 (m1,m2) = φ(m1,m2). One can easily see that Equation (12) is a consistent scheme with the
target Equation (13).
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4.3 Initialization schemes

In the corresponding Finite Difference schemes in Proposition 4 and Proposition 6, the only remaining
freedom is to devise the initialization schemes for the multi-step schemes at regime, analogously to
Equation (2) in Section 2. This is the counter-part of the freedom of choice on the initial data for
the original lattice Boltzmann scheme, which are not necessarily taken at equilibrium, see [28]. By
applying Equation (6) to the initial data as many times as needed, one progressively obtains the
initialization schemes, as function of the initial datum, which is only known on the N conserved
moments. It is worthwhile observing that the choice of initial datum does not play any role in the
previous procedure and does not influence the stability analysis of Section 6. It only comes into play
during the consistency analysis of the numerical method, which is not investigated in this paper, in
particular, as far as time boundary layers are concerned, see [41, 35].

5 Examples, simplifications and particular cases

Now that the main results of the paper, namely Proposition 4 and Proposition 6, have been stated
and proved, we can analyze and comment some particular cases. More examples are available in the
Appendices.

Example 4 (ODEs). To illustrate some basic peculiarities that easily transpose to lattice Boltz-
mann schemes, we introduce the following matrices extending the discussion of Section 2.

AII =

1 1 1
0 2 0
0 0 2

 , AIII =

1 1 0
1 2 0
1 2 1

 , AIV =

1 0 1
0 −2 0
0 0 2

 .

For AII, we have χAII = X3−5X2 +8X−4, corresponding to y′′′1 −5y′′1 +8y′1−4y1 = 0. However,
contrarily to AI in Section 2, the characteristic polynomial χAII does not correspond to the minimal
polynomial µAII

= X2 − 3X + 2. Thus in this case, we could use the latter to obtain Equation (2)
having y′′1 − 3y′1 + 2y1 = 0. This phenomenon is studied in Section 5.1. It indicates that we can
achieve a more compact corresponding ODE by using the annihilating polynomial of smallest degree
on every variable. This does not change the core of the strategy.

For AIII, we obtain χAIII = X3 − 4X2 + 4X − 1, corresponding to y′′′1 − 4y′′1 + 4y′1 − y1 = 0.
However, by inspecting AIII, one notices that the first two equations do not depend on the last
variable y3. For this reason, we could have considered the matrix AIII[{1, 2}] obtained from AIII

by removing the last row and column. In this case χAIII[{1,2}] = X2 − 3X + 1, corresponding to the
equation y′′1 − 3y′1 + y1 = 0. This kind of situation for lattice Boltzmann schemes is investigated in
Section 5.2. It is interesting to observe once more that χAIII[{1,2}] divides χAIII . This shows that an
initial inspection of the matrix can yield a reduction of the size of the problem that can be achieved
by a simple trimming operation, which eliminates some variable from the problem but treats the
remaining ones as usual.

Finally, consider AIV. In this case the characteristic polynomial and the minimal polynomial
coincide χAIV

= X3−X2−4X+ 4 corresponding to the equation y′′′1 −y′′1 −4y′1 + 4y1 = 0. However,
if we take the polynomial νAIV = X2 − 3X + 2 such that νAIV divides χAIV = µAIV and such that

νAIV(AIV) =

0 0 0
0 12 0
0 0 0

 ,

we see that it annihilates the first row, thus can be used instead of the other polynomials to yield
Equation (2). This gives y′′1−3y′1+2y1 = 0. The question is elucidated for lattice Boltzmann schemes
in Section 5.3 and show that asking for the annihilation of the whole matrix is too much to achieve
a restatement of the equation focusing only on the first variable. This strategy is different from the
previous one because not all the lines of the matrix are treated in the same way.

Let us transpose these observations to actual lattice Boltzmann schemes. A question which might
arise concerns the possibility of performing better than the characteristic polynomial, in terms of
number of steps in the resulting Finite Difference scheme. There are cases, which seem quite rare
according to our experience (we succeeded in finding only one special case where this happens,
presented in the forthcoming pages), where the answer is positive (see Section 5.3 and the example
therein). This phenomenon has also been discussed by [22], without envisioning a systematic way of
guaranteeing the minimality of the Finite Difference scheme obtained by their algorithm.
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5.1 Minimal reductions in terms of time-steps

The first idea to obtain a simpler scheme is to use the minimal polynomial of A (or its submatrices,
if needed) as done for AII in Example 4.

Definition 5 (Minimal polynomial). Let R be a commutative ring and C ∈ Mr(R) for some
r ∈ N?. We define the minimal polynomial of C, denoted µC as being the monic polynomial in R[X]
of smallest degree, thus under the form

µC = Xdeg(µC) + ωdeg(µC)−1X
deg(µC)−1 + · · ·+ ω1X + ω0,

with (ωk)
k=deg(µC)
k=0 ⊂ R such that

Cdeg(µC) + ωdeg(µC)−1C
deg(µC)−1 + · · ·+ ω1C + ω0I = 0.

The characteristic and the minimal polynomial for problems set of a commutative ring are linked
by a divisibility property.

Lemma 7. Let R be a commutative ring and C ∈ Mr(R) for some r ∈ N?, then µC divides χC .
Therefore, we also have deg(µC) ≤ deg(χC).

Proof. The proof is standard and works the same than that of Lemma 16.

Unfortunately, the minimal polynomial cannot be mechanically computed by something like Al-
gorithm 1 as for the characteristic polynomial, nor it allows to deduce some information on the
Finite Difference scheme without explicitly computing it, since it does not stem from the deter-
minant function with its peculiarities. The same reduction of Proposition 4 with deg(µA) instead
of q and ωk instead of γk is possible. It can be observed that for Example 1, the minimal and
the characteristic polynomial of the matrix A coincide. More generally, we have been unable to
find an example of lattice Boltzmann scheme where the minimal polynomial does not match the
characteristic polynomial.

5.2 Relaxation on the equilibrium

Secondly, a more careful look at relaxation matrix allows us to write it as

S = diag(0, . . . , 0, sN+1, . . . , sN+Q, 1, . . . , 1),

where si ∈]0, 1[∪]1, 2] for i ∈ JN + 1, N + QK for some Q ∈ N and the last q − Q − N relaxation
parameters are equal to one, meaning that the corresponding moments exactly relax on their respec-
tive equilibrium. Without loss of generality, we have decided to put them at the end of S. The fact
of considering some relaxation rates equal to one is used in the so-called “regularization” models,
see [9] and references therein, showing the enhancement of the stability features of the schemes.

In terms of matrix structure, the consequence is that the last q − N − Q columns of A are
zero, analogously to AIII in Example 4. We can therefore employ the following decomposition of A:
A = AJ1,N+QK + Ã similarly to Equation (10). We shall consider the characteristic polynomial of
A[J1, N + QK] (if N = 1, otherwise the characteristic polynomials of its submatrices), whereas we
know that the second matrix does not involve the last q −N −Q moments (indeed, non conserved)
because the corresponding columns are zero. In particular, by Corollary 5, we have that χA =
Xq−Q−NχAJ1,N+QK . Therefore, Proposition 4 and Proposition 6 are still valid using N+Q instead of q
and the matrixA[J1, N+QK] instead ofA for the computation of the polynomial. The corresponding
Finite Difference scheme for each conserved moment shall therefore have at most Q+1 steps instead
of q + 1.

Example 5. We come back to Example 1 taking s3 = 1 and s2 6= 1, thus having Q = 1. Following the
procedure described before gives χA[J1,2K] = X2 +γ1X+γ0 with γ1 = −(1−s2)(x+x)/2−(x+1+x)/3
and γ0 = (1− s2)(x + 4 + x)/6 and the corresponding scheme

mn+1
1 =

(1− s2)

2
(x + x)mn

1 +
1

3
(x + 1 + x)mn

1 −
(1− s2)

6
(x + 4 + x)mn−1

1

+
s2

2λ
(x− x)meq

2 |n +
1

6λ2
(x− 2 + x)meq

3 |n +
(1− s2)

6λ2
(x− 2 + x)meq

3 |n−1 .

Unsurprisingly, this is Equation (9) setting s3 = 1, obtained treating a smaller problem.
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Observe that the fact of taking all the relaxation rates equal to one, relaxing on the equilibria,
is the core mechanism of the relaxation schemes [5]. In this case, there is nothing to do since the
original lattice Boltzmann scheme is already in the form of a Finite Difference scheme on the con-
served moments. Our way of proposing a corresponding Finite Difference scheme using characteristic
polynomials is flawlessly compatible with this setting.

5.3 A different reduction strategy

The third idea is to proceed as forAIV in Example 4, namely looking for a polynomial which does not
annihilate the whole matrix A. To simplify the presentation, we limit ourselves to N = 1, namely
one conserved moment. We sketch this strategy to account for previous results on the subject [13, 23]
and – to keep the paper fluently readable and clear – we provide the full theorical discussion in the
Appendices. Nevertheless, we shall justify its limited interest at the end of the Section.

Example 6 (Link scheme with magic parameter). Consider the so-called link scheme by [13, 23]
defined for any spatial dimension d = 1, 2, 3 considering q = 1 + 2W with W ∈ N? with c1 = 0
and any c2j = −c2j+1 6= 0 for j ∈ J1,W K. That is, for any non vanishing velocity, the opposite
one is also considered, along what is called “link”. The system is taken with all the so-called “magic
parameters” equal to one-fourth, therefore S = diag(0, s2, 2 − s2, s2, 2 − s2, . . . ) ∈ M1+2W (R) for
s2 ∈]0, 2] and

M =



1 1 1 · · · · · · 1 1
0 λ −λ 0 0 0 0
0 λ2 λ2 0 0 0 0
... 0 0

. . .
. . . 0 0

... 0 0
. . .

. . . 0 0
0 0 0 0 0 λ −λ
0 0 0 0 0 λ2 λ2


∈M1+2W (R),

The claim in [23] is that the corresponding Finite Difference scheme is the two-steps scheme

mn+1
1 = (2− s2)mn

1 − (1− s2)mn−1
1 + s2

(
W∑
`=1

(T c2`

∆x − T
−c2`

∆x )

2λ
meq

2`|
n

)

+
(2− s2)

2

(
W∑
`=1

(T c2`

∆x − 2 + T−c2`

∆x )

λ2
meq

2`+1|
n

)
. (14)

This is true regardless of the choice of d and W . By direct inspection of the corresponding Finite
Difference scheme Equation (14), we can say that this reduction has been achieved using the polyno-
mial νA = X2 − (2− s2)X + (1− s2). However, it can be easily shown that this polynomial does not
annihilate the entire matrix A as the minimal and characteristic polynomials do: it only does so for
the first row.

Indeed, we have seen for ODEs in Example 4 that we might try just to annihilate the first row
of the problem or the first row except the very first entry, corresponding to the conserved moment.
This procedure is fully detailed in the Appendices.

Example 7. We come back to Example 6. We introduce the notations A` := T c2`

∆x + T
c2`+1

∆x , the
“average” on the `th link and D` := T c2`

∆x − T
c2`+1

∆x , the “difference” on the `th link, for any ` ∈
J1,W K. Elementary computations show that the coefficient ψ1 of a second-degree polynomial νA =
X2+ψ1 X+ψ0 annihilating all the first row of A except the first entry is the solutions of V2(ψ1)ᵀ = r2

where

V2 =



(1−s2)D1

2λ

− (1−s2)(A1−2)
2λ2

(1−s2)D2

2λ

− (1−s2)(A2−2)
2λ2

...
(1−s2)DW

2λ

− (1−s2)(AW−2)
2λ2


∈M(2W )×1(Dd∆x), r2 =



− (1−s2)(2−s2)D1

2λ
(1−s2)(2−s2)(A1−2)

2λ2

− (1−s2)(2−s2)D2

2λ
(1−s2)(2−s2)(A2−2)

2λ2

...

− (1−s2)(2−s2)DW
2λ

(1−s2)(2−s2)(AW−2)
2λ2


∈ (Dd∆x)2W .

The equations have the same structure for every block of two equations: thus we can find a solution
by studying each block if it turns out that the solution does not depend on the block indices. Let
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` ∈ J1,W K. We want to solve{
(1−s2)D`

2λ ψ1 = − (1−s2)(2−s2)D`
2λ ,

− (1−s2)(A`−2)
2λ2 ψ1 = (1−s2)(2−s2)(A`−2)

2λ2 ,

thus we clearly see that the solution is ψ1 = −(2− s2)ψ2 independently from `. Thus, the polynomial
νA = X2 − (2 − s2)X + ψ0. Selecting ψ0 = −ψ2(A2)11 − ψ1(A)11 = −1 + (2 − s2) = 1 − s2 yields
the polynomial ν̃A annhilating the whole first line of A.

This approach correctly recovers the result from [23] following a different path. However, to our
understanding, this new strategy is of moderate interest since it relies on an ad hoc and problem-
dependent procedure illustrated by the previous example and detailed in the Appendices which can
be practically exploited only for highly constrained systems, see Example 6 or for schemes of modest
size (small q and/or Q). Moreover, for general schemes, it yields the same result as Proposition 4
using the characteristic polynomial (take Example 1 for instance) but passing from an inefficient
approach to the computation of the polynomial instead of using the more efficient Algorithm 1.
More precisely, it is advisable to utilize Algorithm 1 – which cost is polynomial in the size of the
matrix – instead of progressively construct the matrices VK introduced in the Appendices, try to
find the minimum K with the desired property and then realizing that we found K = q and thus
the corresponding polynomial is the characteristic polynomial.

5.4 Conclusion and future perspectives

The fact of not utilizing the characteristic polynomial with its explicit Definition 4 constitutes – due
to the previously highlighted lack of generality – an obstruction to show the link with the Taylor
expansions [17], as we did in [1]. Indeed, the fact of avoiding using the characteristic polynomial
obliges one to explicitly compute the Finite Difference scheme and nothing can be a priori said
on it. We therefore stress once more the interest of the general formulations by Proposition 4 and
Proposition 6, which shall allow to enlighten the issue of the stability of the schemes, as in the
following Section.

6 Stability

Quite likely, the von Neumann analysis is the most widely used technique to investigate the stability
of lattice Boltzmann schemes. Though employed for any number N of conserved moments, we shall
consider it only for N = 1, to lay in a mathematically rigorous setting. The von Neumann analysis
consists in the linearization of the problem around an equilibrium state [38], followed by the rewrite
of the scheme using the Fourier transform and the study of the spectrum of the derived matrix.
Unsurprisingly, this is also common in the framework of Finite Difference methods (see Chapter 4
in [25] and Chapter 4 in [39]). We observe that the linear L2 stability, though being widespread, is
not the only possible one for lattice Boltzmann schemes: the interested reader can refer to [29, 28]
for the L2-weighted stability, to [7] for the L1 stability and finally to [18] for the L∞ stability.

6.1 Fourier analysis

We briefly introduce the Fourier analysis on lattices following Chapter 2 of [39]. We define F : `2(L)∩
`1(L) → L2([−π/∆x, π/∆x]d), called Fourier transform, defined as follows. Let f ∈ `2(L) ∩ `1(L),
then

F [f ](ξ) :=
1

(2π)d/2

∑
x∈L

e−ıx·ξf(x), ξ ∈
[
− π

∆x
,
π

∆x

]d
.

In this Section, the regularity assumptions shall hold for any function. The Fourier transform
is extended to less regular entities by density arguments. The interest of the Fourier transform
lies in the fact that it is an isometry, thanks to the Parseval’s identity [39] and that it allows to
represent the action of operators acting via the convolution product (also called filters) like the Finite
Difference operators Dd∆x as a multiplication on C. We can therefore represent any shift operator in
the Fourier space.

Lemma 8 (Shift operator in the Fourier space). Let z ∈ Zd and f ∈ `2(L) ∩ `1(L), then

F [T z∆xf ](ξ) = e−ı∆xz·ξF [f ](ξ), ξ ∈
[
− π

∆x
,
π

∆x

]d
.
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Therefore, the representation of the shift operator T z∆x in the Fourier space is T̂ z∆x := e−ı∆xz·ξ and
acts multiplicatively.

Proof. Let f : L → R with f ∈ `2(L)∩ `1(L). We have, for every wave number ξ ∈ [−π/∆x, π/∆x]d

F [T z∆xf ](ξ) =
1

(2π)d/2

∑
x∈L

e−ıx·ξf(x− z∆x),

=
1

(2π)d/2

∑
y∈L

e−ı(y+z∆x)·ξf(y) = e−ı∆xz·ξF [f ](ξ).

The rewrite of T d∆x and Dd∆x in the Fourier space is done in the straightforward manner, namely

T̂ d∆x :=
{
T̂ z∆x = e−ı∆xz·ξ with z ∈ Zd

}
, D̂d∆x := RT̂ d∆x,

where the sum and the products are the standard ones on C. All that has been said for Dd∆x holds

for the new representation in the Fourier space D̂d∆x. Indeed, for any D =
∑

T∈T d∆x
αTT ∈ Dd∆x,

we indicate D̂ :=
∑

T∈T d∆x
αTT̂ ∈ D̂d∆x its representative in the Fourier space. Considering a matrix

C ∈ Mq(Dd∆x), its Fourier representation Ĉ ∈ Mq(D̂d∆x) is obtained by taking the entry-wise
Fourier transform of C. Moreover, we have that

χC =

q∑
k=0

γkX
k,

F⇐==⇒ χĈ =

q∑
k=0

γ̂kX
k, (15)

where (γk)k=q
k=0 ⊂ Dd∆x and (γ̂k)k=q

k=0 ⊂ D̂d∆x.

6.2 Correspondence between the stability analysis for Finite Difference and
lattice Boltzmann schemes

Considering linear (or linearized) schemes written in the Fourier space is, thanks to the Parseval’s
identity, the standard setting to perform the L2 linear stability analysis both for lattice Boltz-
mann and Finite Difference schemes. Assume to deal only with one conserved variable, thus N = 1.

The polynomial associated with a linear Finite Difference scheme – or quite often, its Fourier
representation – is called amplification polynomial, see Chapter 4 of [39]. The study of its roots in
the Fourier space is the key of the so-called von Neumann stability analysis.

Definition 6 (von Neumann stability of a Finite Difference scheme). Consider a multi-step linear
Finite Difference scheme for the variable u under the form10

q∑
k=0

ϕq−ku
n+1−k = 0, (16)

for (ϕk)k=q
k=0 ⊂ Dd∆x. Consider its amplification polynomial Φ :=

∑k=q
k=0 ϕkX

k, with corresponding

amplification polynomial in the Fourier space Φ̂ :=
∑k=q
k=0 ϕ̂kX

k. We say that the Finite Differ-
ence scheme Equation (16) is stable in the von Neumann sense if for every ĝ : [−π/∆x, π/∆x]d → C
such that Φ̂(ĝ(ξ)) =

∑k=q
k=0 ϕ̂k(ξ)ĝ(ξ)k = 0, then

1. |ĝ(ξ)| ≤ 1, for every ξ ∈ [−π/∆x, π/∆x]d.

2. If |ĝ(ξ)| = 1 for some ξ ∈ [−π/∆x, π/∆x]d, then ĝ(ξ) is a simple root.

The conditions by Definition 6 are necessary and sufficient for stability (Theorem 4.2.1 in [39])
if the scheme is explicitly independent of ∆x and ∆t.

Consider now the lattice Boltzmann scheme Equation (6) with linear (or linearized) equilibria,
that is, there exists ε ∈ Rq such that meq = εm1 = (ε ⊗ e1)m. Writing the corresponding Finite
Difference scheme from Proposition 4, we have

mn+1
1 +

q−1∑
k=0

γkm
n+1−q+k
1 −

(
q−1∑
k=0

(
k∑
`=0

γq+`−kA
`Bε⊗ e1

)
11

mn−k
1

)
= 0, (17)

10In this formulation, we do not account for the presence of source terms, since they do not play any role in the linear
stability analysis.
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where χA =
∑k=q
k=0 γkX

k. Rearranging gives

mn+1
1 +

q−1∑
k=0

(
γq−1−k −

(
k∑
`=0

γq+`−kA
`Bε⊗ e1

)
11

)
mn−k

1 = 0, (18)

which is a Finite Difference scheme of the form given in Equation (16) (with u = m1) by setting

ϕk =

{
1, if k = q,

γk −
(∑`=q−1−k

`=0 γk+1+`A
`Bε⊗ e1

)
11
, if k ∈ J0, q − 1K.

(19)

Proposition 9. Let N = 1 and consider the lattice Boltzmann scheme Equation (6) with linear
equilibria, that is, there exists ε ∈ Rq such that meq = εm1 = (ε ⊗ e1)m. It thus reads mn+1 =
(A+Bε⊗ e1)mn, where A+Bε⊗ e1 ∈Mq(Dd∆x). Then

Φ ≡ χA+Bε⊗e1
,

where Φ :=
∑q
k=0 ϕkX

k, with (ϕk)k=q
k=0 given by Equation (19).

This result – proved at the end of the section – states that, under adequate assumptions, the am-
plification polynomial of the corresponding Finite Difference scheme coincides with the characteristic
polynomial associated with the original lattice Boltzmann scheme. Proposition 9 has also confirmed
that assuming the linearity of the equilibria and then performing the computation of the correspond-
ing Finite Difference scheme using the polynomial χA+Bε⊗e1 yields the same result than performing
the computation with χA on the possibly non-linear scheme and then considering linear equilibria
only at the very end. Thus, a similar notion of stability holds for lattice Boltzmann schemes.

Definition 7 (von Neumann stability of a lattice Boltzmann scheme). Let N = 1 and consider the
lattice Boltzmann scheme Equation (6) with linear equilibria. It thus reads

mn+1 = (A+Bε⊗ e1)mn, (20)

where A+Bε⊗ e1 ∈Mq(Dd∆x). We say that the lattice Boltzmann scheme Equation (20) is stable

in the von Neumann sense if for every ξ ∈ [−π/∆x, π/∆x]d, then every ĝ ∈ σ(Â(ξ) + B̂(ξ)ε⊗ e1)
is such that

1. |ĝ| ≤ 1.

2. If |ĝ| = 1, then ĝ is a simple eigenvalue of Â(ξ) + B̂(ξ)ε⊗ e1.

Here, σ(·) denotes the spectrum of a matrix.

Item 1 alone, in Definition 7, coincides with the standard definition of stability for lattice Boltz-
mann schemes, see [38]. With Item 2, we have been more precise on the subtle question of multiple
eigenvalues11 by bringing this definition closer to Definition 6. This subtlety arises when considering
multi-step schemes. Thus, Proposition 9 has the following Corollary.

Corollary 10. For N = 1, the lattice Boltzmann scheme Equation (6), rewritten as Equation (20)
under linearity assumption on the equilibria, is stable in the von Neumann sense according to Defi-
nition 7 if and only if its corresponding Finite Difference scheme obtained by Proposition 4 is stable
in the von Neumann sense according to Definition 6.

We finish on the proof of Proposition 9. We need the following result concerning the determinant
of matrices under rank-one updates, see [14] for the proof.

Lemma 11 (Matrix determinant). Let R be a commutative ring, C ∈Mr(R) for some r ∈ N? and
u,v ∈ Rr, then det(C + u ⊗ v) = det(C) + vᵀadj(C)u, where adj(·) denotes the adjugate matrix,
also known as classical adjoint.

We are ready to prove Proposition 9.

Proof. Using Lemma 11, one has

χA+Bε⊗e1
: = det(XI −A− (Bε⊗ e1)) = det(XI −A)− eᵀ1adj(XI −A)Bε,

= χA − eᵀ1adj(XI −A)Bε.

11This question is not harmless since for instance the D1Q2 scheme rewrites as a leap-frog scheme [11] if the relaxation
parameter is equal to two (see Appendices). This very Finite Difference scheme can suffer from linear growth of the
solution due to this issue, see Chapter 4 of [39].
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By the definition of adjugate and by the Cayley-Hamilton Theorem 3, we have

(XI −A)adj(XI −A) = det(XI −A)I = det(XI −A)I − χA(A),

= −
q∑

k=0

γk(Ak −XkI) = −
q∑

k=1

γk(Ak − (XI)k),

= (XI −A)

q∑
k=1

γk

k−1∑
`=0

A`(XI)k−1−` = (XI −A)

q∑
k=1

γk

k−1∑
`=0

A`Xk−1−`,

where we have used that if C,D ∈Mq(R) on a commutative ring, then Ck−Dk = (C−D)(Ck−1 +
Ck−2D + · · ·+CDk−2 +Dk−1). We deduce that

adj(XI −A) =

q∑
k=1

γk

k−1∑
`=0

A`Xk−1−`. (21)

This yields

χA+Bε⊗e1
(X) = Xq +

q−1∑
k=0

γkX
k − eᵀ1

q∑
k=1

γk

k−1∑
`=0

A`Xk−1−`Bε.

Performing the following change of variable t = k − 1 − ` ∈ J0, q − 1K with ` ∈ J0, q − 1 − tK, thus
k = t+ 1 + `, gives

χA+Bε⊗e1
(X) = Xq +

q−1∑
k=0

(
γk − eᵀ1

q−1−k∑
`=0

A`Bεγk+1+`

)
Xk,

= Xq +

q−1∑
k=0

(
γk −

(
q−1−k∑
`=0

γk+1+`A
`Bε⊗ e1

)
11

)
Xk.

Thus we have that Φ :=
∑k=q
k=0 ϕkX

k = χA+Bε⊗e1
.

We conclude by saying that the results of this Section, in particular Corollary 10, provide a precise
and rigorous framework to the widely employed notion of stability [38] for lattice Boltzmann schemes.

7 Convergence of lattice Boltzmann schemes on an example

In this Section, we show on Example 1 (taking s3 = 1 to simplify the stability analysis, see Exam-
ple 5) that the theory available for multi-step Finite Difference schemes can be used to study the
underlying lattice Boltzmann scheme. The target conservation law Equation (7) in its linear form is
complemented by an inital condition, to form the Cauchy problem{

∂tu(t, x) + λC∂xu(t, x) = 0, (t, x) ∈ [0, T ]× R,
u(t = 0, x) = u0(x), x ∈ R.

(22)

The equilibria are considered to be linear as in Section 6: meq
2 = λCm1 where C is the Courant

number and meq
3 = 2λ2Dm1 with D the Fourier number. An acoustic scaling is considered. The

corresponding Finite Difference scheme from Example 1 and Example 5 is consistent with

∂tm1 + λC∂xm1 − λ∆x

(
1

s2
− 1

2

)(
2

3
(1 + D)− C2

)
∂xxm1 = O(∆x2). (23)

In what follows, we shall fix C = 1/2, that is, the target transport velocity. One can make the
residual diffusion in this equation vanish if s2 = 2, which is a staple of lattice Boltzmann schemes
[15, 27, 24, 37], or by having D = 3C2/2 − 1. We shall analyze both the case D > 3C2/2 − 1, where
expect only linear consistency with Equation (22) or – using the notations from [39] – where the
scheme is accurate of order [r, ρ] = [1, 2] and the case D = 3C2/2 − 1, the scheme is second-order
consistent with Equation (22) or [r, ρ] = [2, 3] accurate.

The numerical von Neumann stability analysis has been done and the result is shown in Figure 2.
One sees that enforcing positive residual diffusivity is necessary but not sufficient to obtain stability.
Using the method from [32] to locate the zeros of the amplification polynomial, we show the following.
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Figure 2: Stability region (in black), obtained numerically, as function of s2 and D for the D1Q3 of Example 1,
considering C = 1/2. The black dashed line corresponds to D = 3C2/2 − 1 = −0.625, for which the residual
diffusivity vanishes, see Equation (23). The right image is a magnification of the left one close to s2 = 1.2.

Proposition 12. The amplification polynomial of the Finite Difference scheme corresponding to
the D1Q3 scheme from Example 5 considered in this Section is a simple von Neumann polynomial,
namely fulfills Definition 6, if the following constraints hold.

3

2
C2 − 1 ≤ D ≤ 1

2
, and max

ω∈[−1,1]

{
s2

2C
2(1 + ω)(1 + Ω)2

+
4

9
(2− s2)(D + 1)(1− Ω)

(
(2− s2)(D + 1)(1− ω)(1− Ω) + 3(Ω2 − 1)

)}
≤ 0,

where Ω = Ω(ω; D, s2) := (1− s2)(ω + 2 + 2D(1− ω))/3.

The first inequality from this Proposition gives only a necessary condition selecting a rectangle
in the (s2, D) plane. The second one provides a sufficient condition yielding the non-straightforward
profile visible on Figure 2. This comes from the fact that the maximum can be reached either on the
boundary of [−1, 1] (for s2 ≤ 1.18 approximately) yielding the flat profile close to s2 = 1, or inside
this compact (for s2 > 1.18), giving the tightening shape as s2 increases towards s2 = 2.

Using the generalization of Theorem 10.1.4 from [39] to multi-step schemes for regular data and
that of Corollary 10.3.2 for non-smooth data, one obtains the following convergence result for the
lattice Boltzmann scheme considered in this section.

Proposition 13 (Convergence of the D1Q3 scheme). Consider the D1Q3 linear scheme of Exam-
ple 1 presented in this Section with a choice of (C, D, s2) rendering a stable scheme according to
Definition 7, as discussed in Proposition 12. The scheme is initialized with the point values of u0

and at equilibrium. Then

• For D > 3C2/2 − 1, namely the corresponding Finite Difference scheme is accurate of order
[r, ρ] = [1, 2].

– If u0 ∈ H2, the convergence of the lattice Boltzmann scheme is linear:

‖Eu(tn, ·)−mn
1‖`2,∆x ≤ C∆x‖u0‖H2 , n ∈ J0, [T/∆t]K,

where E is the evaluation operator such that Eu : L → R with (Eu)(x) = u(x) for every
x ∈ L.

– If u0 ∈ Hσ for any σ < σ0 < 2 and there exists a constant C(u0) such that ‖u0‖Hσ ≤
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C(u0)/
√
σ − σ0, then

‖Eu(tn, ·)−mn
1‖`2,∆x ≤ C∆xσ0/2

√
|ln(∆x)|C(u0), n ∈ J0, [T/∆t]K.12

• For D = 3C2/2 − 1, namely the corresponding Finite Difference scheme is accurate of order
[r, ρ] = [2, 3].

– If u0 ∈ H3, the convergence of the lattice Boltzmann scheme is quadratic:

‖Eu(tn, ·)−mn
1‖`2,∆x ≤ C∆x2‖u0‖H3 , n ∈ J0, [T/∆t]K.

– If u0 ∈ Hσ for any σ < σ0 < 3 and there exists a constant C(u0) such that ‖u0‖Hσ ≤
C(u0)/

√
σ − σ0, then

‖Eu(tn, ·)−mn
1‖`2,∆x ≤ C∆x2σ0/3

√
|ln(∆x)|C(u0), n ∈ J0, [T/∆t]K.

The constants C have the following dependencies: C = C(T, C, D, s2).

We now corroborate these results with numerical simulations, which are carried, for the sake of the
numerical implementation, on the bounded domain [−1, 1] enforcing periodic boundary conditions.
The final simulation time is T = 1/2 and λ = 1. We stress the fact that we employ the lattice
Boltzmann scheme and not its corresponding Finite Difference scheme. The conserved moment is
initialized using the point values of the initial condition. The non-conserved data are initialized
at equilibrium. Guided by the considerations from Proposition 13 in terms of regularity, we take
different initial functions with various smoothness, inspired by [39].

(a) u0(x) = χ|x|≤1/2(x) ∈ Hσ, for any σ < σ0 = 1/2.

(b) u0(x) = (1− 2|x|)χ|x|≤1/2(x) ∈ Hσ, for any σ < σ0 = 3/2.

(c) u0(x) = cos2 (πx)χ|x|≤1/2(x) ∈ Hσ, for any σ < σ0 = 5/2.

(d) u0(x) = exp
(
−1/(1− |2x|2)

)
χ|x|≤1/2(x) ∈ C∞c .

The numerical convergence for the case D = 0.4 is given on Figure 3. According to Figure 2 and
Proposition 12, we expect stability for every choice of s2. Thus, the empirical convergence rates are
in excellent agreement with Proposition 13. The error constant is smaller for larger s2, since for this
choice, less numerical diffusion is present.

Concerning the case D = −0.625 presented on Figure 4, we had to utilize relaxation parameters s2

close to one in order to remain in the stability region as prescribed by Figure 2 and Proposition 12.
As far as the scheme stays stable, for s2 ≤ 1.15, we observe the expected convergence rates according
to Proposition 13. Nevertheless, looking at the right image in Figure 2, we see that s2 = 1.2 is not in
the stability region. This is why we observe, in (a) from Figure 4, thus for the less smooth solution,
that the scheme is not convergent. The instability originates from high-frequency modes which are
abundant in the test case (a). This is the empirical evidence that the Lax-Richtmyer theorem [30]
holds for lattice Boltzmann schemes: an unstable scheme cannot be convergent.

8 Conclusions

In this paper, we proved that any lattice Boltzmann scheme corresponds to a multi-step Finite
Difference scheme on the conserved moments, using a simple yet crucial result of linear algebra.
This showed that lattice Boltzmann schemes, where conserved and non-conserved quantities mingle,
can be recast, as far as the discrete dynamics of the conserved moments is concerned, as Finite
Difference schemes solely on these variables. However, it is important to emphasize that viewing
lattice Boltzmann schemes as Finite Difference scheme must be seen as a tool for theoretical analysis
and not as the right way of implementing them. For example, the original formulation of the lattice
Boltzmann schemes is highly suitable for parallelization and the implementation of the stream phase
can be strongly optimized. On the other hand, its Finite Difference counterpart cannot easily handle
these optimizations, showing that the original formulation of the lattice Boltzmann schemes is the
right choice when implementation is concerned. Indeed, the original lattice Boltzmann can be seen
as a strongly optimized implementation of the corresponding Finite Difference scheme introduced
in this paper. Moreover, for linear problems and one conserved moment, we proved that the usual
notion of stability employed for lattice Boltzmann schemes is relevant, since it corresponds to the von
Neumann stability analysis for the Finite Difference schemes. Therefore, the Lax-Richtmyer theorem

12The logarithmic term is rarely observed in simulations.

19



10−4 10−3 10−2 10−1

10−1

(a)

s2 = 1.0

s2 = 1.2

s2 = 1.5

s2 = 1.7

s2 = 1.9

∆x1/4

10−4 10−3 10−2 10−1

10−4

10−3

10−2

10−1

(b)

∆x3/4

10−4 10−3 10−2 10−1

∆x

10−5

10−4

10−3

10−2

10−1

(c)

∆x

10−4 10−3 10−2 10−1

∆x

10−5

10−4

10−3

10−2

10−1

(d)

∆x

Figure 3: D = 0.4. `2 error at final time T between the solution (conserved moment) of lattice Boltzmann scheme
and the exact solution, for different initial data (a), (b), (c) and (d) and different relaxation parameters s2.

[30, 39], stipulating that consistency and stability are the necessary and sufficient conditions for the
convergence of linear Finite Difference schemes, also holds for the lattice Boltzmann schemes.

Future investigations shall concentrate on different notions of stability that could be studied
using the corresponding Finite Difference scheme. A question left unanswered in this work, being
the object of current investigations, concerns the link between the consistency for the corresponding
Finite Difference scheme and the theory of equivalent equations by [15, 17]. In a complementary
work [1], we have proved that the two notions are equivalent up to second-order in the case of
acoustic scaling. The conjecture is that this holds for higher orders. The difficulty lies in the fact
that performing a priori Taylor expansions on the coefficients of the characteristic polynomial of
A is generally a hard task, due to their intrinsic non-linear dependence on A. Furthermore, the
multi-step nature of the corresponding Finite Difference scheme is an additional toil.
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Figure 4: D = −0.625. `2 error at final time T between the solution (conserved moment) of lattice Boltz-
mann scheme and the exact solution, for different initial data (a), (b), (c) and (d) and different relaxation
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Appendices

A different reduction strategy: mathematical framework

According to the discussion presented in Section 5.3 through an example and again in the case
N = 1, we define the polynomial annihilating all the first row of the matrix A, except the very first
element.

Definition 8. We call νA ∈ Dd∆x[X] “minimal polynomial annihilating most of the first row”
(MPAMFR) of A the monic polynomial of minimal degree under the form

νA = Xdeg(νA) + ψdeg(νA)−1X
deg(νA)−1 + · · ·+ ψ1X + ψ0,

with (ψk)
k=deg(νA)
k=0 ⊂ Dd∆x such that for every j ∈ J2, qK

(Adeg(νA))1j + ψdeg(νA)−1(Adeg(νA)−1)1j + · · ·+ ψ1(A)1j = 0.

By seeing the coefficients of this unknown polynomial as the unknowns of a linear system, the
problem of finding νA can be rewritten in terms of matrices.13 Let K ∈ J1,deg(µA)K and construct
the matrix of variable size

VK =

 (A)12 · · · (AK−1)12

...
...

(A)1,Q+1 · · · (AK−1)1,Q+1

 ∈MQ×(K−1)(Dd∆x), rK =

 −(AK)12

...
−(AK)1,Q+1

 ∈ (Dd∆x)Q.

(24)
Therefore, we want to find the smallest K ∈ J1,deg(µA)K such that VK(ψ1, . . . , ψK−1)ᵀ = rK
On the other hand, it should be observed that the zero order coefficient ψ0 remains free. This
underdetermination comes from the fact that we do not request that νA annihilates the whole first
row.

Proposition 14. Let N = 1, then the lattice Boltzmann scheme (6) can be rewritten as a Finite
Difference scheme on the conserved moment m1 under the form

mn+1
1 =−

deg(νA)−1∑
k=1

ψkm
n+1−deg(νA)+k
1 +

deg(νA)∑
k=1

ψk(Ak)11

m
n+1−deg(νA)
1

+

deg(νA)−1∑
k=0

(
k∑
`=0

ψdeg(νA)+`−kA
`

)
Bmeq|n−k


1

, (25)

13The same procedure is used to find the minimal polynomial, since we do not have a definition like Definition 4.

23



where (ψk)
k=deg(νA)
k=1 ⊂ Dd∆x are the coefficients of νA =

∑k=deg(νA)
k=0 ψkX

k.

Proof. By the choice of polynomial, we have thatdeg(νA)∑
k=0

ψkA
k


1·

=

ψ0 +

deg(νA)∑
k=1

ψk(Ak)11, 0, . . . , 0

 .

Restarting from the proof of Proposition 4, we have

deg(νA)∑
k=0

ψkm
ñ+k
1 = m

ñ+deg(νA)
1 +

deg(νA)−1∑
k=1

ψkm
ñ+k
1 + ψ0m

ñ
1 ,

=

deg(νA)∑
k=0

ψkA
k

mñ


1

+

deg(νA)∑
k=1

ψk

(
k−1∑
`=0

A`Bmeq|ñ+k−1−`

)
1

,

= ψ0m
ñ +

deg(νA)∑
k=1

ψk(Ak)11

mñ
1

+

deg(νA)∑
k=1

ψk

(
k−1∑
`=0

A`Bmeq|ñ+k−1−`

)
1

,

therefore

m
ñ+deg(νA)
1 = −

deg(νA)−1∑
k=1

ψkm
ñ+k
1 +

deg(νA)∑
k=1

ψk(Ak)11

mñ
1

+

deg(νA)∑
k=1

ψk

(
k−1∑
`=0

A`Bmeq|ñ+k−1−`

)
1

. (26)

Performing the usual change of indices yields the result.

Looking at Equation (25), we see that we do not need the value of ψ0 to reduce the scheme,
neither to reduce A nor to deal with the equilibria through B. Changing time indices and putting
everything on the left hand side

deg(νA)∑
k=1

ψkm
ñ+k
1 −

deg(νA)∑
k=1

ψk(Ak)11

mñ =

deg(νA)∑
k=0

ψ̃km
ñ+k
1 ,

=

deg(νA)∑
k=1

ψk

(
k−1∑
`=0

A`Bmeq|ñ+k−1−`

)
1

,

=

deg(νA)∑
k=1

ψ̃k

(
k−1∑
`=0

A`Bmeq|ñ+k−1−`

)
1

,

where we have defined

ψ̃k =

{
ψk, k ∈ J1,deg(νA)K,
−
∑`=deg(νA)
`=1 ψ`(A

`)11, k = 0.

This generates a polynomial, which is indeed νA but with a precise choice of ψ0. We will soon give
a precise characterization of this particular polynomial.

Definition 9. We call ν̃A ∈ Dd∆x[X] “minimal polynomial annihilating the first row” (MPAFR) of
A the monic polynomial of minimal degree under the form

ν̃A = Xdeg(ν̃A) + ψ̃deg(ν̃A)−1X
deg(ν̃A)−1 + · · ·+ ψ̃1X

1 + ψ̃0,

such that for every j ∈ J1, qK

(Adeg(ν̃A))1j + ψ̃deg(ν̃A)−1(Adeg(ν̃A)−1)1j + · · ·+ ψ̃1(A)1j + ψ̃0 = 0. (27)
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Compared to Definition 8, we are just asking the property to hold also for the very first element
of the first row, namely for j = 1. This polynomial is νA for a particular choice of ψ0. It has been
deduced from the reduction of the lattice Boltzmann scheme.

Lemma 15. The polynomial of degree deg(νA) given by

ν̃A = Xdeg(νA) + ψdeg(νA)−1X
deg(νA)−1 + · · ·+ ψ1X −

deg(νA)∑
l=1

ψl(A
l)11,

where (ψk)
k=deg(νA)
k=1 ⊂ Dd∆x are the coefficients of a MPAMFR νA of A being νA =

∑k=deg(νA)
k=0 ψkX

k,
is the MPAFR ν̃A of A.

Proof. We are only left to check Equation (27) for j = 1.

So in order to reduce the lattice Boltzmann scheme to a Finite Difference scheme using the new
strategy, considering a MPAMFR or the MPAFR is exactly the same thing. Moreover, the MPAFR
(but not the more general MPAMFR) can be linked to the minimal/characteristic polynomial.14

Lemma 16. Let µA ∈ Dd∆x[X] be the minimal polynomial of A, then ν̃A exists and divides the
minimal polynomial µA. Moreover deg(ν̃A) = deg(νA) ≤ deg(µA).

Proof. The proof goes like the standard one of Lemma 7. Consider µA = Xdeg(µA)+ωdeg(µA)−1X
deg(µA)−1+

· · · + ω1X + ω0. Consider the Euclidian division between µA and ν̃A: there exist Q,R ∈ Dd∆x[X]
such that

µA = ν̃AQ+R,

with either 0 < deg(R) < deg(ν̃A) or deg(R) = 0 (constant reminder polynomial). Let us indeed
write

Q = qdeg(µA)−deg(ν̃A)X
deg(µA)−deg(ν̃A) + · · ·+ q1X + q0,

R = rdeg(R)X
deg(R) + · · ·+ r1X + r0,

Suppose that R 6≡ 0, then we have for every j ∈ J1, qK

=0︷ ︸︸ ︷
(Adeg(µA))1j + ωdeg(µA)−1(Adeg(µA)−1)1j + · · ·+ ω1(A)1j + ω0δ1j

= rdeg(R)(A
deg(R)1j + · · ·+ r1(A)1j + r0δ1j+(

(Adeg(ν̃A))1j + ψdeg(ν̃A)−1(Adeg(ν̃A)−1)1j + · · ·+ ψ1(A)1j + ψ0δ1j

)
︸ ︷︷ ︸

=0

×
(
qdeg(µA)−deg(νA)(A

deg(µA)−deg(νA))1j + · · ·+ q1(A)1j + q0δ1j

)
,

thus
rdeg(R)(A

deg(R)1j + · · ·+ r1(A)1j + r0δ1j = 0, j ∈ J1, qK,

with 0 < deg(R) < deg(ν̃A), which contradicts the minimality of ν̃A. Thus necessarily deg(R) = 0
so the polynomial is constant, but to have the previous property, the constant must be zero, thus
R ≡ 0.

Additional examples

In this section, we gather more examples concerning the application of our theory to lattice Boltz-
mann schemes which can be found in the literature.

14The principle is the same than the one linking the characteristic and the minimal polynomial through divisibility.
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D1Q2 with one conservation law

Consider the scheme by [11, 24] taking d = 1, q = 2 and N = 1 with c1 = 1 and c2 = −1 and

M =

(
1 1
λ −λ

)
, and S = diag(0, s2), with s2 ∈]0, 2]. (28)

We recall that meq
2 : R → R is a given function of m1. The scheme can be used to simulate a

non-linear scalar conservation law such as Equation (7) using an acoustic scaling and a non-linear
diffusion equation with a parabolic scaling, namely when λ ∝ 1/∆x. However, the scheme is not
rich enough to simulate more complex equations. As already pointed out in the introduction, the
Finite Difference equivalent of this scheme has already been studied by [11] in the case where the
equilibria are linear functions. It can be easily seen, even by hand since dealing with a 2× 2 matrix,
that

χA = X2 − 1

2
(2− s2)(x + x)X + (1− s2).

The minimal polynomial coincides with the characteristic polynomial. This can be seen, as usual,
by trying to consider α0 and α1 such that

α0I + α1A =

(
α0 + (x+x)

2 α1
(1−s2)(x−x)

2λ α1
λ(x−x)

2 α1 α0 + (1−s2)(x+x)
2 α1

)
=

(
0 0
0 0

)
.

The only way of annihilating the first entry is to take α0 = α1 = 0, which is trivial. Thus the
minimal polynomial is of degree two and then coincides with the characteristic polynomial. The
equivalent Finite Difference scheme is

mn+1
1 =

1

2
(2− s2)(x + x)mn

1 − (1− s2)mn−1
1 +

s(x− x)

2λ
meq

2 |n.

This scheme is a linear combination of the Lax-Friedrichs scheme (for s2 = 1) with weight 2 − s2

and the leap-frog scheme (for s2 = 2) with weight −(1 − s2). It is a θ-scheme between them with
θ = 2− s2 as long as s2 ∈ [1, 2].

D1Q3 MRT for one conservation law

Consider the D1Q3 MRT scheme by [22], which reads with our notations d = 1, q = 3 and N = 1
with c1 = 0, c2 = 1 and c3 = −1 and

M =

1 1 1
0 λ −λ
0 λ2 λ2

 , and S = diag(0, s2, s3), with s2, s3 ∈]0, 2],

and meq
2 ,m

eq
3 : R→ R being given functions of m1. The characteristic polynomial, corresponding to

the minimal polynomial is

χA = X3 + (−1 + (x + x)(s2/2 + s3/2− 1))X2

+ (1 + s2s3 − s2 − s3 + (1− s2/2− s3/2)(x + x))X − (1− s2)(1− s3).

Then the corresponding Finite Difference scheme is

mn+1
1 = (1− s2/2− s3/2)(x + x)mn

1 +mn
1 − (1− s2/2− s3/2)(x + x)mn−1

1

− (1− s2 − s3 + s2s3)mn−1
1 + (1− s2)(1− s3)mn−2

1

+
s2(x− x)

2λ
meq

2 |n −
s2(1− s3)(x− x)

2λ
meq

2 |n−1

+
s3(x− 2 + x)

2λ2
meq

3 |n +
s3(1− s2)(x− 2 + x)

2λ2
meq

3 |n−1,

This coincides with the one found by [22]. The SRT version comes by considering s2 = s3, thus
having

mn+1
1 = (1− s2)(x + x)mn

1 +mn
1 − (1− s2)(x + x)mn−1

1 − (1− s2)2mn−1
1

+ (1− s2)2mn−2
1 +

s2(x− x)

2λ
meq

2 |n −
s2(1− s2)(x− x)

2λ
meq

2 |n−1

+
s2(x− 2 + x)

2λ2
meq

3 |n +
s2(1− s2)(x− 2 + x)

2λ2
meq

3 |n−1,

coinciding with the one found by [22] and by [40].
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D2Q4 for one conservation law

Consider d = 2, q = 4 and N = 1 with c1 = (1, 0)ᵀ, c2 = (0, 1)ᵀ, c3 = (−1, 0)ᵀ and c4 = (0,−1)ᵀ

and

M =


1 1 1 1
λ 0 −λ 0
0 λ 0 −λ
λ2 −λ2 λ2 −λ2

 , and S = diag(0, s2, s2, 1), with s2 ∈]0, 2]. (29)

We have decided to set s3 = s2 not to favor one particular direction between x and y and s4 = 1
to keep the scheme simpler. Moreover, we take meq

4 ≡ 0 for simplicity and meq
2 ,m

eq
3 : R → R are

given functions of m1. This can be used, for example, coupled with other schemes of the same nature
(building what we call a “vectorial scheme” [16]) to easily simulate systems of non-linear conservation
laws for d = 2, see [2], under acoustic scaling. After some computation, the characteristic polynomial
of A reads

χA =X3 + (2s2 − 3)
(x + x + y + y)

4
X2 + (1− s2)

(
(2− s2)

(xy + xy + xy + xy)

4
+ 1

)
X

− (1− s2)2 (x + x + y + y)

4
.

One can check as usual that it coincides with the minimal polynomial. The equivalent Finite Dif-
ference scheme is

mn+1
1 =− (2s2 − 3)Aam

n
1 − (1− s2)mn−1

1 − (1− s2)(2− s2)Adm
n−1
1 + (1− s2)2Aam

n−2
1

+
s2

2λ
(x− x)meq

2 |n +
s

2λ
(y − y)meq

3 |n

− s2(1− s2)

λ

1

2

(
y

(x− x)

2
+ y

(x− x)

2

)
meq

2 |n−1 − s2(1− s2)

λ

1

2

(
x

(y − y)

2
+ x

(y − y)

2

)
meq

3 |n−1,

where we have introduced the short-hands Aa := (x + x + y + y)/4 ∈ Dd∆x and Ad := (xy + xy +
xy + xy)/4 ∈ Dd∆x, yielding respectively the average between neighbors along the axis and along the
diagonals. It is interesting to observe how the scheme computes the first-order derivatives in space
of meq

2 and meq
3 at time tn−1.

D2Q5 for one conservation law

In this example, we consider the scheme taken from [19]. Let d = 2, q = 5 and N = 1 with
c1 = (0, 0)ᵀ, c2 = (1, 0)ᵀ, c3 = (0, 1)ᵀ, c4 = (−1, 0)ᵀ and c5 = (0,−1)ᵀ and

M =


1 1 1 1 1
0 λ 0 −λ 0
0 0 λ 0 −λ
−4λ2 λ2 λ2 λ2 λ2

0 λ2 −λ2 λ2 −λ2

 , S = diag(0, s2, s3, s4, s5), with s2, s3, s4, s5 ∈]0, 2].

One does not favor the x direction compared to the y direction, see [19], thus we set s2 = s3.
Moreover, the assumptions on the moments at equilibrium are meq

2 ≡ m
eq
3 ≡ m

eq
5 ≡ 0. The only one

which does not vanish is meq
4 : R → R. The scheme can be used to solve thermic problems. Then,

the characteristic polynomial of A is given by

χA = X5 + γ4X
4 + γ3X

3 + γ2X
2 + γ1X + γ0,

where the coefficients are given by

γ4 =
s4

5
(4 + Aa) + s5Aa + 2s2Aa − 1− 4Aa.

γ3 =
s4s5

5
(4Aa + Ad) +

s2s4

5
(1 + 8Aa + Ad)− s4

5
(1 + 17Aa + 2Ad) + s2s5(1 + Ad)

− s5(1 + Aa + 2Ad) + s2
2Ad − 2s2(1 + 1Aa + 2Ad) + 2 + 4Aa + 4Ad.

γ2 =
2s2s4s5

5
(2 + Aa + 2Ad)− s4s5

5
(4 + 2Aa + 9Ad) +

s2
2s4

5
(Aa + 4Ad)− s2s4

5
(9 + 4Aa + 17Ad)

+
3s4

5
(3 + Aa + 6Ad) + s2

2s5Aa − s2s5(1 + 4Aa + Ad) + s5(1 + 3Aa + 2Ad)

− s2
2(2Aa + Ad) + 2s2(1 + 3Aa + 2Ad)− 2− 4Aa − 4Ad.
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γ1 =
(s2 − 1)

20

(
4s2s4s5(1 + 4Aa)− 4s4s5(1 + 14Aa)− 4s2s4(1 + 9Aa) + 4s4(1 + 19Aa)

− 20s2s5(1 + Aa) + 20s5(1 + 3Aa) + 20s2(1 + 2Aa)− 20(1 + 4Aa)
)
,

and finally
γ0 = −(s2 − 1)2(s4 − 1)(s5 − 1).

Therefore, the corresponding Finite Difference scheme on the conserved variable m1 reads

mn+1
1 = −

4∑
k=0

γ4−km
n−k
1 +

3∑
k=0

υ4−km
eq
4 |n−k,

where the operators applied on the equilibrium meq
4 are given by

υ4 =
s4

5λ2
(−1 + Aa).

υ3 =
s4s5

5λ2
(−Aa + Ad) +

s2s4

5λ2
(1− 2Aa + Ad)− s4

5λ2
(1− 3Aa + 2Ad).

υ2 = −s2s4s5

5λ2
(1− 2Aa + Ad) +

s4s5

5λ2
(1− 2Aa + Ad)− s2

2s4

5λ2
(−Aa + Ad)

+
s2s4

5λ2
(1− 4Aa + 3Ad)− s4

5λ2
(1− 3Aa + 2Ad),

and finally

υ1 = −s
2
2s4s5

5λ2
(−1 + Aa) +

2s2s4s5

5λ2
(−1 + Aa)− s4s5

5λ2
(−1 + Aa) +

s2
2s4

5λ2
(−1 + Aa)

− 2s2s4

5λ2
(−1 + Aa) +

s4

5λ2
(−1 + Aa).

This example shows that for large lattice Boltzmann schemes, the corresponding Finite Differ-
ence scheme can be rather complicated and not simple to analyze, especially for large Q.
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