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Event-triggered observer design for linear systems

E. Petri, R. Postoyan, D. Astolfi, D. Nesi¢ and W.PM.H. Heemels

Abstract— We present an event-triggered observer design for
linear time-invariant systems, where the measured output is sent
to the observer only when a triggering condition is satisfied.
We proceed by emulation and we first construct a continuous-
time Luenberger observer. We then propose a dynamic rule to
trigger transmissions, which only depends on the plant output
and an auxiliary scalar state variable. The overall system is
modeled as a hybrid system, for which a jump corresponds to an
output transmission. We show that the proposed event-triggered
observer guarantees global practical asymptotic stability for the
estimation error dynamics. Moreover, under mild boundedness
conditions on the plant state and its input, we prove that
there exists a uniform strictly positive minimum inter-event
time between any two consecutive transmissions, guaranteeing
that the system does not exhibit Zeno solutions. Finally, the
proposed approach is applied to a numerical case study of a
lithium-ion battery.

I. INTRODUCTION

In many applications, the system state is not directly
accessible and needs to be estimated based on the plant input,
the measured output and a model of the dynamics using
an observer. When the sensors and the observer are not co-
located, output measurements may need to be transmitted to
the observer via a digital network. The transmission policy
then has an impact on the convergence speed, robustness of
the estimator, as well as on the amount of communication
resources required. An option is to generate transmissions
based on time, in which case we talk of time-triggered strate-
gies for which various results are available in the literature,
see, e.g., [1]-[4]. A possible drawback of this paradigm is
that the output measurements are sent over the network even
when these are not needed, which can lead to unnecessary
resources usage. To overcome this drawback, an alternative
is to use event-triggered transmissions. In this case, an event-
based triggering rule monitors the plant measurement and/or
the observer state and decides when an output transmission
is needed. In this way, it is possible to reduce the number
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of transmissions over the network, while still ensuring good
estimation performance.

Various works in the literature provide event-triggered
estimation schemes. Many papers propose triggering rules
to generate the transmission instants, which require a copy
of the observer to be implemented with the sensors, see
e.g., [5]-[9]. This may not be always feasible in applications
for which the sensors have limited computation capabilities.
An alternative is offered by self-triggering policies where
the observer decides when it needs to receive a new output
measurement, see e.g., [10], [11], and sends a request to
receive new output data. In this case, the plant output is
not continuously monitored. Another possible solution is to
follow the event-triggered approach, without using a local
observer and to implement a triggering rule where the sensor
decides when to transmit only based on the measured output
and its past transmitted value(s), see, e.g., [12]-[19].

In this paper, we adopt this last approach because it
keeps monitoring the plant output, which may lead to less
transmissions compared to a self-triggered approach, and it
does not require a copy of the observer, which simplifies its
implementation. The main novelty is a new triggering rule,
which involves an auxiliary scalar variable, that has several
benefits as explained in the sequel. In particular, we present
an event-triggered observer for deterministic linear time-
invariant continuous-time systems. We follow an emulation-
based design in the sense that we first design a Luenberger
observer for the continuous-time plant ignoring the packet
based nature of communication network. Secondly, we take
into account the latter and develop a triggering rule to ap-
proximately preserve the original properties of the observer.
As already stated, we desire the triggering rule not to rely
on a copy of the observer, which might be computational
prohibitive. Instead, we only require the sensors to have
enough computation resources to run a simple scalar linear
filter. To be precise, the proposed policy is inspired by
dynamic triggering rules used in the event-triggered control
literature [20]-[22] and in [11], where self-triggered interval
observers are designed. In particular, our strategy consists
in filtering an absolute threshold strategy, as opposed to the
relative threshold technique as done in the context of control
in [20]-[22]. Indeed, the latter cannot be implemented for
estimation, as we recall in Section IV-A, which motivates
our choice. Also, we cover the absolute threshold strategy
considered in [15]-[17] as a special case. We show on an
example that the addition of the scalar auxiliary variable can
significantly reduce the number of transmissions compared
to an absolute threshold rule, thereby providing a strong
motivation for its use.



To analyze the proposed event-triggered observer, the
overall plant-observer interconnection is modeled as a hybrid
system using the formalism of [23], [24], where a jump
corresponds to an output transmission. We show that the
estimation error system satisfies a global practical stability
property. The latter is not asymptotic in general mostly
because we do not implement a copy of the observer in the
triggering mechanism. Moreover, the existence of a strictly
positive minimum inter-event time is ensured under mild
boundedness conditions on the plant state and its input.
Finally, we apply the proposed approach in a numerical
case study of a lithium-ion battery as mentioned above,
for which the number of transmissions can be significantly
reduced compared to an absolute threshold strategy, while
still ensuring good estimation performance.

Various event-triggered observer-based control strategies
are available in the literature, such as e.g., [21], [25]-[27].
Nevertheless, these do not cover event-triggered estimation
as a particular case, as significant technical difficulties arise,
in particular in ruling out Zeno phenomenon, when the plant
state is not required to converge towards a given attractor.

The remainder of the paper is organized as follows.
Preliminaries are reported in Section II. The model and the
problem statement are presented in Section III. The proposed
triggering rule is given in Section IV, where we model the
system as a hybrid system. In Section V, we analyze the
obtained estimation error as well as the inter-event times.
The numerical case study is reported in Section VI. Finally,
Section VII concludes the paper.

II. PRELIMINARIES

The notation R stands for the set of real numbers and
R := [0, 0) is the set of positive real numbers. We use Z
to denote the set of integer numbers, Zso := {0,1,2,...}
and Z-o = {1,2,..}. For a vector z € R", |z| de-
notes its Euclidean norm. For a matrix A € R™*™ |4
stands for its 2-induced norm. Given a real, symmetric
matrix P, its maximum (minimum) eigenvalue is denoted
as Amax(P) (Amin(P)).

We consider hybrid systems in the formalism of [23], [24],

namely
) & = F(z,u), (z,u) €C,
o { zt = G(z,u), (z,u) € D, M

where C € R~ is the flow set, D < R"~ is the jump set, F' is
the flow map and G is the jump map. Solutions to system (1)
are defined on hybrid time domains. A set E < Ry x Zxg
is a compact hybrid time domain if E = U;];Ol([tj, tit1].J)
for some finite sequence of times 0 = ¢y < ; < ... <
ty and it is a hybrid time domain if for all (T,J) € E,

~([0,T]x{0,1,...,J}) is a compact hybrid time domain.
Given a hybrid time domain F, we define sup; £ := sup{j €
Zso : 3t € Ryq such that (t,5) € E}. A hybrid signal is a
function defined on a hybrid time domain. A hybrid signal
w : domu — R"™ is called a hybrid input if u(-,j) is
measurable and locally essentially bounded for each j. A
hybrid signal  : dom x — R" is called a hybrid arc if

x(+,7) is locally absolutely continuous for each j. A hybrid
arc x : dom x — R™ and a hybrid input v : dom v —
R™ form a solution pair (z,u) to H if dom x = dom w,
(2(0,0),u(0,0)) e C u D, and

« forall j € Z( and almost all ¢ such that (¢, j) € dom z,
(@(t,4), ult,j)) € C and & = F(x(t, ), u(t, j));

o for all (¢,j) € domz such that (¢,5 + 1) €
dom z, (z(t,j),u(t,j)) € D and z(t,j + 1) =
G(x(t,4), u(t, 7).

III. PROBLEM STATEMENT

Consider the linear system
T = Az + Bu

Y= Cu @

where z € R"» is the state, v € R™ is a known input, and
y € R™v is the measured output with n,, n, € Z- and n, €
Zso . The pair (A, C) is assumed to be detectable. Hence,
by letting L € R™**™ be any matrix such that A — LC' is
Hurwitz, we can design a Luenberger observer [28] of the
form .

=A%+ Bu+ L(y —9) 3)

y = Cz,
where Z € R"= is the state estimate. Observer (3), when it
has access to input « and measured output y continuously,
guarantees that we are able to asymptotically reconstruct the
state = of the plant, implying that tli}rg) (z(t) —z(t)) =0
for any initial condition to (2) and (3) and any input w.
In this work, we investigate the scenario where the plant
measurement y is transmitted to observer (3) via a digital
channel, see Fig. 1, and therefore only samples of y are
available to the observer. Moreover, since the output is
sent via a packet-based network, we want to sporadically
transmit it, while still achieving good estimation properties.
Therefore, our goal is to design a triggering rule to decide
when y needs to be transmitted to observer (3), with the
mentioned properties. We assume for this purpose that the
sensor is “smart” in the sense that it can run a local one-
dimensional dynamical system. We also adopt the following
assumption.

Assumption 1. The observer has access to the input u
continuously. O

Assumption 1 is a reasonable assumption in many control
applications, such as, for example, when the control input
is generated on the observer side. The relaxation of this
assumption is left for future work.

In this setting, the observer does not know y but only its
sampled version g, which is generated with a zero-order-hold
device between two successive transmission instants, i.e., in
terms of the hybrid systems notation of Section II

y=0 “

and, when a transmission occurs the output is sampled,
considering an ideal sampler,

gt =y. 5)
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Fig. 1. Block diagram representing the system architecture
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The observer equations in (3) are then modified to become where o :— min (@) (1—¢)>0,7:= |PL| ~ 0 and
)\max(P) CAmin (Q)

&= A%+ Bu+ L7 — )

7=C% ©

Defining the sampling-induced error e := §y — y, we obtain
i=A2+Bu+Lly—j+e). 7

The sampling-induced error e dynamics between two suc-
cessive transmission instants is

é=j—j=—y=-Ci=—CAx—CBu, (8

and, at each transmission instant we have e™ = 0, in view
of (5). Let £ := x — 2 € R™ be the state estimation error. Its
dynamics is, between two successive transmission instants,
in view of (2) and (7),

£= (A~ LC) — Le ©)

and, at each transmission instant, £+ = €.

Our objective is to define a triggering rule, which ensures
global practical asymptotic stability of estimation error dy-
namics and guarantees the existence of a positive minimum
inter-event time between two consecutive transmissions.

Remark 1. When the system output is of the form y =
Cx+ Du+d, where d is a known constant, we can generate
a new output z = Cx by using the knowledge of d, the
measured output y and the input u, which is available thanks
to Assumption 1. The system then becomes of the form of
(2) again. We will exploit this observation in the example of
Section VI. O

IV. TRIGGERING RULE AND HYBRID MODEL
A. Relative threshold is not suitable for estimation

We first note that the general event-triggered control
solutions for stabilization may not be (directly) used for
the estimation problem at hand. We illustrate this with the
relative threshold technique developed for control in [22] to
define the triggering rule. To see this, note that since A—LC
is Hurwitz, we can define V : £ — ¢ P¢ on R™, where
P e R™*" js symmetric, positive definite and verifies
(A—LC)"P+ P(A— LC) = —Q for some @ € R"=*"=
symmetric and positive definite. Then, for any £ € R™¢ and
e R",

(VV(€), (A= LC) — Ley < —aV(§) +1lel*,  (10)

c € (0,1) a design parameter. We might then be tempted,
in line with the design philosophy of [22], to define the
triggering rule as

Ylel* < caV(€), (11)

with ¢ € (0, 1), which implies (VV (§), (A — LC)& — Le)y <
—(1 — ¢)aV (&) and thus that V strictly decreases along
the solutions to (9). However, (11) cannot be implemented
because the estimation error £ is not available for the
triggering rule, as it depends on x and Z.

B. Dynamic triggering rule

To overcome the issue presented in Section IV-A, we
introduce a scalar auxiliary variable 7, whose equations
during flows and jumps are

7.7 =—cn+ 62‘6|27

77+ = (37,

12)

where ¢; > 0, ¢ > 0 and c3 € [0, 1] are design parameters,
that will be selected later according to Theorem 1.

Remark 2. The choice of the dynamics (12) is inspired by
norm-estimators [29]. Indeed, if c1 and co are selected such
that ¢ = « and co = 7, n in (12) is a norm-estimator,
according to [29, Definition 2.4], but this particular choice
of ¢1 and cy is not necessary for the proposed triggering

rule. Ol
By collecting all the equations, we obtain the hybrid model
= Ax + Bu
= (A—-LO) — L
S EOE el temu e
é =—CAzx — CBu
N =—c1n + cale|?
. (13)
£r=¢
€+:0 (‘r7€7evn7u)epv
nt=can

for which a jump corresponds to a transmission of the current
value of y to the observer. The triggering rule is implemented



through the flow and jump sets, C and D, which are defined

as!

C:={(q,u) eR™ x R™ : yle|* < ocin+e,n >0} (14)
= { g,u) € R" xR™ : vle \2 ocinte,n = ()}, (15)
where ¢ is the overall state, defined as ¢ := (z,&,e,n) €

R™ = R" x R™ x R™ x R, with ng := 2n, +n, + 1.
Constant « in (14)-(15) comes from (10), o > 0 is a design
parameter and € is a strictly positive constant needed to
avoid the Zeno phenomenon. Indeed, we will prove in the
sequel that there exists a minimum inter-event time between
two consecutive jumps under mild extra conditions whenever
€ > 0. Sets C and D in (14)-(15) essentially mean that a
transmission is triggered whenever v|e|> > ocin + ¢, see
Fig. 1. The condition that n > 0 in (14)-(15) never generates
a transmission as it is always true whenever 7 is initialized
with a non-negative value. It is thus only specified in (14)-
(15) to emphasize that n only takes non-negative values. It is
worth noting that, when o = 0, the triggering rule proposed
in (14)-(15) corresponds to an absolute threshold triggering
rule, as in, e.g., [15]-[17].

For the sake of convenience we write system (13)-(15) as

(¢q,u)eC
(q,u) € D.

We are ready to proceed with the analysis of (16).

q= flq,u),

16
* — (). (10

V. MAIN RESULT
A. Stability

The next theorem explains how to select the design param-
eters c1, co, c3 and o in (16) in order to guarantee that the
observer (3) is able to globally practically estimate the state
x of system (2) in the configuration explained in Section III,
in which the measured outputs are not available at all times
but only when the triggering rule enables transmissions.

Theorem 1. Consider system (16), any & € (0, ], where «

comes from (10), and any v > 0, select ¢y, c2, c3, 0 and ¢

as follows.

(i) c2 €[0,ck] and o € [0,0*], where ¢ > 0 and o* > 0
are such that o*c <y, where v comes from (10).

gFeFy —1
(ii) c¢1 = cf, where ¢ > 0 is such that ¢§ > a(lf 2) .
Y
(iii) c3 € [0,1].
(iv) € € (0,e*], where e* = vay(y + cid)™" with d :=

*C* a —1
a*(l—a—Q—c—*) > 0.
Y 1

Then for any solution pair (q,u) and any (t,j) € domg,

V(&(t.5)) +dn(t, ) < e (V(£(0,0)) + dn(0,0)) + v
(17)
U

'We make the sets C and D depending on (g, u), even if here it could
be only ¢ € C and g € D. This choice is convenient for the analysis of the
inter-event times that will be presented in Section V-B.

Proof: Let all conditions of Theorem 1 hold. We consider
the Lyapunov function candidate

Ulg) = V(&) + dn,

for any ¢ € R™, where d is defined in item (iv) of
Theorem 1; note that d > 0 in view of items (i) and (ii)
of Theorem 1.

Let (g, u) € C, in view of (10) and (13),

(VU(q), fg;u))

(VV(€), (A~ LO)E — Ley + d(—c1n + czlel?)
—aV (&) +9le]* + d(—c1n + eale[?)

—aV (&) — crdn + (v + cad)|e]?.

(18)

N

(19)
Since (¢,u) € C, we have 7le|*> < ocin + &, which is
. ac
equivalent to |e|? < Z2ly 4+ 2 as v > 0. Hence, the next
Y

inequalities hold

(VU(q), f(g,u))

< —aV(§) —adn+ (v + c2d) (%

=—aV () —cdn+ (v + czd)TC (7 + cod)e

——aV(©) —ci(1-5 - 2ez)dn % + czd)

< —min {a,cl (1 -9- %62)} v+ cad)e.
(20)

Due to the choice of parameters c;, co and o, we have that
(20) implies
(VU(q), f(g,u)) < —aU(q) +

1(7 +ode 21
v

Indeed, when min {a c1 (1 — ch

N—

} = «, then

—mm{a c1 (1 - g — 702) < —a. Conversely,

when min {oz,cl (1—5—302 =0 1—3—%62),which
is strictly positive due to the definition of d in item (iv) of

Theorem 1, o and ¢y, we have

g o o g
_Cl(l — E — ;Cg) < —CT(l - E - ;CQ)

22)
O.* 0.* (
(-5 %)
G d C2
o ~ 1
and since d = o™ <1 _ra %) we obtain
v (&)

* *

—c1(1—%—%@) < —c (1—%—%@) - —a. (23)

Hence, (21) holds and since ¢ < £* = vay(y + cid)~* and
ca < 3,

(VU(q), (g, u)) < ~al(g) + %w T eod)e

< —aU(q) + %('y + chd)e™ @4
= —aU(q) + av.
Let (g, u) in D, in view of (13) and since ¢z € [0, 1],
Ug(q)) = V(&) +desn < V(&) +dn=U(q). (25



We now follow similar steps as in [23, proof of Theorem
3.18] to show that (17) holds. Let (¢, u) be a solution pair to
system (16). Pick any (¢,j) € domgq and let 0 = tg < #; <

< tjp1 = t satisfy domg n ([0,¢] x {0,1,...,4}) =

J
U[ti,tiﬂ] x {i}. For each ¢ € {0,...,5} and almost all

=0
s € [ti, tit1], (q(s,4),u(s,4)) € C. Then, (24) implies that,
for each i € {0, ..., } and for almost all s € [t;,t;11].

%U(q(s,i)) < —aU(qg(s,1)) + av.

Applying the comparison principle [30, Lemma 3.4], we
obtain, for all (s,i) € domg,

(26)

Ulq(s,i)) < e 71U (q(t;, 1)) + an e =Ty

ti

_ 1 B
= e I (g(ty,4)) + av—[1 — e,
(0%

@7
Thus,
U(q(tiz,i) < e*d(tiJrl*ti)U(q(ti,i)) + v — pe—Mtit1—t:)
(28)
for all ¢ € {0,...,j}. Similarly, for each ¢ € {1,...,j},
q(t;,i — 1) € D. From (25), we obtain
Ula(t, ) = Ulgltii—1)) <0 Vie{l,....j}. (29

From (27), (28) and (29), we can deduce that for any (¢, j) €
dom g,

Ulg(t.) < € U(g(0,0) + v —ve™
< e ™U(q(0,0) + .
On the other hand, from (18), we have
Ulq(t,5)) < e *U(q(0,0)) +
(qt,5)) < e=*U(q(0,0)) + v .

= e”[V(£(0,0)) +dn(0,0))] + v,

which concludes the proof as U(q(t,j)) = V(£(¢, 7)) +
dn(t, 7). [ ]

It is important to note that, in absence of a digital network
between the plant and the observer (i.e., when e = 0), we
have from (10) that for any solution & to £ = (A — LC)¢,
V(E®) < eV (£(0)) for all ¢ > 0. In view of (17),
and as d > 0, for any solution pair (g, u) to (16), since 7
takes non-negative values in view of (14)-(15), V(£(¢, 7)) <
e~ (V(£(0,0)) + dn(0,0)) + v. Hence, we guarantee a
convergence rate @ € (0,a] of V along the &-component
of the solution to (16), which can be equal to a. We also
have v in (17), which is an ultimate bound of the estimation
error, that is tuneable and can thus be made arbitrarily small
(by selecting € small mainly) irrespective of the chosen
convergence rate at the price of more frequent transmissions
in general. Property (17) also ensures that the auxiliary
variable 7 is bounded and converges to a neighborhood of
0.

In Theorem 1, we first fix a convergence rate & and a
guaranteed ultimate bound v for V(§) + dn, and then we
explain how to select the design parameters to accomplish
this. It is worth noting that the conditions of Theorem 1 can

be always ensured. Indeed, we just have to select o* and
¢4 sufficiently small such that o*cy < ~, which is always
possible, and all the other parameters can be always selected
such that items (ii)-(iv) of Theorem 1 are verified as well.
Another way to use the result of Theorem 1 is to select o and
¢g such that oo < v holds. Then, by selecting ¢3 € [0, 1] and
any strictly positive value for ¢; and €, (17) holds for some
strictly positive & and v. This is how we select parameters
in the example in Section VL

B. Properties of the Inter-Event Times

In this section we provide properties of the inter-event
times. In particular, we first show the existence of a strictly
positive minimum inter-event time between two consecutive
transmissions under mild boundedness conditions on plant
(2). This corresponds to the existence of a dwell-time for
the solutions to (16), as defined in [23], see, e.g., [31], [32].
From the definitions of C and D in (14) and (15), the inter-
event time is lower bounded by the time that it takes for |e|?
to grow from 0, that is the e value after a jump according to
(13), to % A proof that this time is bounded from below by

a positive constant can be obtained by establishing that the
time-derivative of |e|? is bounded. For this purpose, recalling
that, from (13) we have ¢ = —C' Ax — C Bu, we define the
following set

Su = {(¢q,u) e R" x R™ : |CAz + CBu| < M}, (32)

where M is an arbitrarily large positive constant. We restrict
the flow and the jump sets of system (16) so that

(j = f(Q7u)7
a" =g(q),

(g,u) el :=Cn Sy

33
(¢,u) e D' :=D Sy ©3)

By doing so, we therefore only consider solutions to (16)
such that the derivative of e is bounded. Hence, (17) still
applies. Note that (32) is verified for all hybrid times when
the state x and the input w are known to lie in a compact
set for all positive times and the constant M is selected
sufficiently large for instance. It is important to notice that
the constraint (32) does not need to be implemented in the
triggering rule: it is only used here for analysis purposes.

In the next theorem we prove that there exists a positive
minimum inter-event time between any two consecutive
transmissions for solutions to system (33).

Theorem 2. Consider system (33), then any solution pair

€
(q,w) has a dwell-time T := 2\ 5 i.e., for any
%s,i%(t,j) € domq with s +1i1 < t+ j, we have j — i <
—s
+ 1. O
-

Proof: Let (¢,u) be a solution pair to system (33). Pick
any (t,7) € domq and let 0 = ¢, < ¢ < ---
J

g1 = UL tia]

i=0
{i}. For each ¢ € {0,...,;j} and almost all 'se [tistit1]s

<ty =

t satisfy domg n ([0,¢] x {0,1,...



(g(s,4),u(s,i)) € C'. Then, from (13) for all s € [t;,t;11],

di\e\Q = i(eTe) =(Te+e’e)
s s
= (—CAz —CBu)Te+e" (-CAz — CBu)  (34)
= —2¢" (CAz + CBu)
< 2le||CAx + CBul.
Since (q(s,4),u(s,i)) € C' =C n Sy, in view of (32),
d, 2
o5 lel” < 2lelM (35)

Let ¢} := inf {t >t le(t,i)] = E}, hence ¢} < ;41 in
v

view of (15). For almost all s € [¢;, t}], from (35), we have

L < \f M.

Integrating this equation and applying the comparison prin-
ciple [30, Lemma 3.4], we obtain, for all s € [¢;,t}]

(36)

le(s,3)|* < |e(t,q)]? + 2\/?M(s — ;). (37)

vy

Moreover, since e(t;,7) = 0, we obtain
sz)|2<2\[Ms—t) Vse[titl].  (38)

In view of (38), s — 2 EM(s — t;) upper bounds
Y

s — |e(s,i)|* on [t;,t}]. Hence, the time it takes for

52 EM(s —t;) to grow from 0 to £ is a lower bound
Y

on t) —t; < t;41 — t;. Therefore, the solution (g,u) has a

1 €
dwell-ti = —,/—. |
well-time 7 5]

From Theorem 2, we see that the guaranteed minimum
inter-event time 7 grows when M decreases or when ¢
increases, which corresponds to an increase of the ultimate
bound v, as shown in Theorem 1. Note that, because of (17),
the 77 and the £ components of the solutions to system (33)
cannot blow up in finite continuous time. In addition, if the
constraint on the state x and the input v in (32) is satisfied
for all continuous time ¢ > 0, then we can ensure the t-
completeness of maximal solutions to system (33), see [23,
Definition 2.5]. As the conditions on x and v are assumptions
on the original system (2), and not part of our design, we can
indeed establish that {-completeness of maximal solutions
to (33) is guaranteed, under appropriate assumptions on the
initial states of 1 and &, and thus a positive lower bounded
on the inter-event times is guaranteed. Although this already
sketches the main arguments, a complete and formal proof
will be given in future work.

An additional feature of the proposed triggering rule is
that it stops transmitting when the sampling-induced error
le| becomes small enough, as formalized in the next lemma.

Lemma 1. Consider system (16), given a solution pair

(g, w), if there exists (t, j) € dom q such that |e(t', j')| <

forall (t', ') € domq with t' +j" > t+ j, then sup; dom q =
j < oo O

Proof: The condition |e(t', j/)| < \/? for all (¥',5’) € domg
Y

with ¢/ + ' >t + j implies v|e(t', j/)|?
for all (¢, j') = (¢, 7). Thus, the triggering condition is never
triggered after (¢,7), hence no jumps occur after (¢,7) and
j' = j consequently. Therefore sup; domgq = j' < oo, which
concludes the proof. |

The condition on |e| in Lemma 1 occurs when the
plant output y remains for all positive times in a small
neighborhood of a constant for instance. Indeed, when the

€
<”y; <ocin+te

1
output to plant (2) satisfies |y(t) — y*| < 5 € for all
v

t > T for some T" > 0 and some constant y* € R"v,
we have for any solution pair (q,u) to system (33), for
any (t;,7),(t,j) € domg with (¢;,7 — 1) € domg and
t; = T, t > t; and le(t. )| = ly(t;,5) — y(t,5)| =
ly(ty, 3)—y* +y* —y(t, )] < ly(t;, 5)—y*|+1y* —y(t, 5)| <
25 £ and the condition of Lemma 1 holds. Moreover, it

automatically starts transmitting again if that condition is no
longer verified. This is a clear advantage over time-triggered
strategies, where the measured output is always transmitted,
which may be important in practical applications. The above
condition of y of Lemma 1 is verified, for example, when
the plant is asymptotically stable and the input w is constant,
see also the example in the next section. Note that Lemma 1
applies to system (16), and not only to system (33).

VI. NUMERICAL CASE STUDY

We apply the proposed event-triggered observer to a
lithium-ion battery example [33]. This can be relevant when
the battery management system is not co-located with the
battery and communicates with it via a digital network. The
considered electrical equivalent circuit of the battery cell is
shown in Fig. 2. From the circuit, the following system model

is derived
. 1 1.
Urc = ——Ugrc + Sivat
T C

) 1.
SOC = ~ gt (39
Voat = —Urc + afSOC+ /Bf — R

intbat -

The states Ugc € R and SOC € R are the voltage on the RC
circuit and the battery state of charge, respectively. The input
ipat € R is the battery current and the output Vi,; € R is the
battery voltage. Considering the temperature to be constant
and equal to 25 °C, the following values are taken 7 = 7 s,
C=233-10"F Q =25 Ah, R,y = 4mQ, ay = 0.6
and By = 3.4, which have been derived from experimental
data. We design observer (3) with L = [10.64,2.33]. As a

. 1.57-10 —3.39-103
result, (10) holds with P = [3'39.103 1.29 - 10 ]

100 0 B B o
Q= [ 0 10()0],@_0.003 and = 1.104 - 10°.
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Fig. 2. Equivalent electrical circuit of a single battery cell

From (39), we see that the system output has a feedthrough
term, indeed, the output equation has the following structure
y = Cx+Du~+By. However, since the observer has access to
the input u = 4p,¢ continuously thanks to Assumption 1 and
By is known, we can rewrite the output equation as z = C'z,
as explained in Remark 1.

We have first simulated the event-triggered observer with
o =500, cp =1, ca =50, c3 =1, ¢ = 1. With this
choice of parameters, the condition oce < 7y is satisfied.
The input is given by a plug-in hybrid electric vehicle
(PHEV) current profile, shown in Fig. 3, for which the
solutions to (39) remains in a compact set, so that |C Az +
CBu| < M for M large enough along the solutions like
in (32) and Theorem 2 applies. Fig. 3 also provides the
plots of the corresponding output, state estimation error
and inter-transmission times obtained with the following
initial conditions: Ugc(0,0) = 1 V, SOC(0,0) = 100%,
EUrc(0,0) = 0V, £50¢(0,0) = 75%, e(0,0) = 0 and
n(0,0) = 105 The minimum-inter event time seen in
simulation is 0.227s. It is clear that both state estimation
errors practically converge to zero. Moreover, the proposed
scheme stops the transmissions whenever voltage V3, tends
to a constant, like in [720's,900s] and [1260 s, 1500 s], where
the inter-transmission time keeps growing, which is again a
clear advantage over time-triggered policies. Indeed, when
the input 73,; = 0, the output Vj,; tends to constant and no
data are transmitted, as explained in Lemma 1. Moreover, the
transmissions start again when the input becomes different
from 0.

We have also analyzed the impact of the design param-
eters, in particular we focus on the effect of o, ¢; and
. For this purpose, we have simulated the corresponding
system (16) with different parameters configurations and
100 different initial conditions each time, which were se-
lected randomly in the interval (0,3)V for Urc(0,0) and
€Ure(0,0) and in the interval (0,100)% for SOC(0,0)
and £50¢(0,0). The scalar variable 1 and the sampling
induced error were always initialized as 7(0,0) = 10°
and ¢(0,0) = 0. For each choice of parameters, we have
evaluated how many transmissions occur in the time interval
[0s,15005s] on average as well the maximum absolute value
of the state estimation errors |y, (¢, )| and |£soc (¢, 7)]
with ¢ € [10005s, 1500s] averaged over all simulations. The
data collected are shown in Table I.

Tat [A]
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vbat
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Fig. 3. Input dpqq, output Vpee, state estimation error §y, . and soc,
and inter-transmissions time, with o = 500, ¢; = 1, c2 = 50, ¢35 = 1,
e =1

TABLE I
Average number of transmissions in the time interval [0s, 1500s],

maximum absolute value of the state estimation errors |y, (Z,7)| and
[€soc(t, j)| for t € [1000s,1500s] with different choices for o, c1, .

o c1 e | Transmissions €y, | [Vl |€soc|%
500 1 1| 390 0.0019 0.0074
500 1 0.1 1301 0.0006 0.0025
500 1 10 102 0.0067 0.0251
500 1 100 19 0.0163 0.0754
500 0.01 1 10 0.0171 0.0653
500 0.1 1 340 0.0019 0.0069
500 10 1 681 0.0021 0.0077
1000 1 1 364 0.0021 0.0082

0 1 1 886 0.0018 0.0069

Table I shows that, in all considered configurations, the
estimation error is small. Moreover, the data suggest that
there is a trade-off between the number of transmissions and
the estimation accuracy, as already indicated in Section V.
In particular, when ¢ is small, we have more transmissions,
but the error is smaller. Conversely, when ¢ is large, the
number of transmissions is reduced, but the estimation error
increases, even if it is still reasonably small in view of
the application. Moreover, Table I shows that the larger c;,
the higher the number of transmissions required, without a
big impact on the accuracy of the estimation error, except
from the case when c¢; = 0.01 which produces only 10



transmissions, but the estimation error is higher. Furthermore,
there is a trade-off also on the choice of . Indeed, the larger
o, the smaller the number of transmissions, but the larger the
error. It is important to note that the last parameters choice
in Table I, with o = 0, corresponds to an absolute threshold
triggering rule and leads to many transmissions.

VII. CONCLUSIONS

We have presented an event-triggered observer design for
linear time-invariant systems. In order to reduce the number
of transmissions over a network while still ensuring good
estimation performance, we have proposed a dynamic trig-
gering rule, implemented by a smart sensor, which decides
when the measured output needs to be transmitted to the
observer. Compared with other works in the literature, we
do not need a copy of the observer in the sensor, but only
a first order filter of the sampling-induced error, which may
allow to significantly reduce the number of transmissions
compared to an absolute threshold policy, while being easily
implementable.

We have modeled the system as a hybrid system and we
have shown that the estimation error system satisfies a global
practical stability property. Moreover, under mild boundeness
conditions on the plant state and its input, we have proved
that the system does not exhibit the Zeno phenomenon and
even has a positive lower bound on the inter-event times.

In future work, we plan to extend the results to nonlinear
systems assuming the estimation error system satisfies an
input-to-state stability property, see, for instance, [34]. We
will also include measurement noise and disturbances in the
system model. Moreover, we will investigate the relaxation
of Assumption 1 and prove that maximal solutions are
complete.
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