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Distributed gradient methods to reach a Nash equilibrium in potential games

Vineeth S. Varma, Jomphop Veetaseveera, Romain Postoyan and Irinel-Constantin Morărescu

Abstract— We study multi-agent optimization problems de-
scribed by ordinal potential games. The objective is to reach
a Nash equilibrium (NE) in a distributed manner. It is well
known that an asynchronous best response dynamics (ABRD)
will always converge to a pure NE in this case. However,
computing the exact best response at every step of the algorithm
may be computationally heavy, if not impossible. Therefore,
instead of computing the exact best response, we propose an
algorithm that performs a “better response”, which decreases
the local cost rather than minimizing it. The agents perform a
distributed asynchronous gradient descent algorithm, in which
only a finite number of iterations of the gradient descent are
performed by each player. We prove that this algorithm always
converges to a NE and demonstrate via simulations that the
computational time to reach the NE can be much shorter than
with the classical ABRD. Taking into account the time required
for each agent to communicate, the proposed algorithm is shown
to also outperform a distributed synchronous gradient descent
in simulations.

I. INTRODUCTION

Game theory has been widely applied in various fields
like economics [1], wireless communication [2] and auto-
matic control [3]. A special class of games called potential
games was introduced and studied by Monderer in [4], and
several conditions guaranteeing the existence of a pure Nash
equilibrium (NE) were provided. Potential games find many
applications, e.g., in traffic management, wireless design,
model predictive control, see [5].

In [6], it was shown that in potential games, the asyn-
chronous best response dynamics (ABRD), always converges
to a pure NE. Recall that the ABRD involves players
updating their actions to be one that minimizes their local
cost asynchronously, while the other player actions are
fixed. However, in many situations, the exact best responses
which are obtained by minimizing a certain cost are hard
or impossible to compute, and instead, algorithms may
be used to find approximate best responses. Recent works
have studied the convergence of approximate best response
dynamics for special applications. In [7], a framework for
iterative approximate best response algorithms is provided
for distributed constraint optimization problems. In [8], the
authors focus on approximate best response dynamics in
interference games, which are a special class of games often
studied in wireless communication. On the other hand, [9]
looks at stochastic algorithms which are used to approximate
the NE. Finally, in [10], the authors show that better reply

The authors are with Université de Lor-
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dynamics can converge to a NE in aggregative games.
However, these results do not study the best responses
approximated by gradient methods. Gradient-based methods
are extremely popular in a variety of multi-agent settings due
to their ease of implementation, versatility, and dependence
on purely local information. Using gradient methods, even
when computing the exact best response as required in [6] is
feasible, it may take a very large number of steps, resulting
in poor computational performance. Thus, the development
of distributed gradient-based algorithms to reach the NE is
of great interest to various fields and applications [2], [5].

Distributed gradient descent (DGD) methods were intro-
duced in [11] and have been well studied in the literature.
This involves a multi-objective optimization problem in
which the optimization variable is shared across all agents
and a consensus type dynamic is proposed in order to achieve
a common solution, see also [12]. These algorithms have
been used to solve various optimization problems such as
large-scale matrix factorization [13] and linear programs
[14]. Recently, distributed synchronous gradient-based meth-
ods and convergence properties to differential NE were
studied in [15], [16]. These results focus on convergence
to differential NE, which are typically easier to reach by
gradient methods, and do not always correspond to a pure
NE. The authors also look at the standard gradient descent,
which may not be suitable for optimization problems with
constraints. Finally, they apply a synchronous algorithm,
which might result in a shorter computation time, as all
agents compute local solutions in parallel, but will require
more frequent communications as agents must share infor-
mation after each step of the gradient descent. When all the
agents share a communication medium, this requirement can
lead to poor communication performance and consequently,
slower updates in the algorithm. These issues motivate the
development of an asynchronous algorithm applying pro-
jected gradient descent.

In this context, we provide a distributed asynchronous
gradient descent (DAGD) algorithm, in which each player
iteratively and asynchronously applies an arbitrary number
of tunable steps of the local projected gradient descent algo-
rithm. The DAGD only requires one agent to communicate
per iteration and allows to tune the gradient method in
order to reduce the total running time of the algorithm. We
consider ordinal potential games in which the cost function
of each player is convex. In this framework, we prove the
convergence of the DAGD to a NE, and when the potential
function is convex, we also prove uniform global asymptotic
stability of the NE set. Later, we demonstrate via simulations
that the proposed algorithm has an shorter overall running



time when compared to existing algorithms while accounting
for the communication time.

The rest of the paper is organized in the following manner.
In Section II, we describe the game and provide the essential
notions used to develop our algorithm. In Section III, we
provide the DAGD algorithm and analyze it. In Section IV,
we recall some of the state-of-the-art algorithms used to
reach the NE, which we then compare with the DAGD,
in terms of the computational and communication load on
numerical simulations.

Notations. We use R,R≥0,R>0 for the set of real num-
bers, non-negative real numbers and positive real numbers
respectively. The notation Z≥0,Z>0 respectively stands for
the set of non-negative and positive integers respectively. We
use || · ||2 to denote the induced 2-norm of a real matrix
and |x|S := inf{|x − y| : y ∈ S} to denote the distance
of a point to a non-empty set S. Next, for a compact and
convex set S, we denote the projection of a point x on S as
PS(x) := arg miny∈S{|x− y|}, which is unique for convex
S. We say a continuous function β : R≥0 × R≥0 → R≥0
is of class KL if i) β(·, s) is of class K for any fixed
s ∈ R≥0, i.e., it is strictly increasing and β(0, s) = 0, and
ii) β(r, s) is decreasing in s for fixed r ∈ R≥0 such that
lims→∞ β(r, s) = 0.

II. PROBLEM STATEMENT

A. Game model

We consider a game expressed in strategic form as G :=
{N , {Xi}i∈N , {Ji}i∈N }, where
• N := {1, . . . , N} is the set of players with N ∈ Z>0

players,
• the actions of all players are given by xi ∈ Xi ⊂ RMi ,

with Mi ∈ Z>0, Xi being compact for i ∈ N ,
• Ji : Xi → R≥0 is the cost function of player i ∈ N .
We use x := (x1, . . . , xN ) ∈ X to denote the ac-

tion profile of all agents and, for any i ∈ N , x−i :=
(x1, . . . , xi−1, xi+1, . . . , xN ) ∈ X−i to denote the actions of
all agents excluding agent i, where X−i := X1× . . .Xi−1×
Xi+1 · · · × XN . We recall below the definition of ordinal
potential games.

Definition 1 (Ordinal potential game): G is an ordinal
potential game if there exists a potential function φ :
X → R>0 such that for all i ∈ N , x ∈ X , and x′i ∈
Xi Ji(xi, x−i) − Ji(x

′
i, x−i) < 0 ⇐⇒ φ(xi, x−i) −

φ(x′i, x−i) < 0. �
Ordinal potential games cover both exact and weighted

potential games as special cases [4]. For the remainder of
the paper, we make the next assumption.

Assumption 1: Game G is an ordinal potential game with
a continuous potential function φ. �

In game theory, the notion of pure NE plays a heavy role
and is defined as follows [17].

Definition 2 (Pure NE): A strategy x∗ ∈ X is said to be
a pure NE if and only if

Ji(x
∗
i , x
∗
−i) ≤ Ji(xi, x∗−i) (1)

for all xi ∈ Xi and all i ∈ N . �
In a pure NE, assuming that each player has knowledge

of the actions played by the other players, no player has
anything to gain by changing only their own action. Since G
is an ordinal potential game, G admits at least one pure NE
[4].

B. Best and better responses

As explained in the introduction, best response dynamics
are often used to reach the pure NE. For any i ∈ N , we use
fi : X−i → P(Xi) to denote the best response of player i to
the actions of the other players x−i, i.e.

fi(x−i) := arg min
xi∈Xi

Ji(xi, x−i) (2)

for any x−i ∈ X−i, where P is the power set function, i.e.,
P(S) is the set of all subsets of S, including the empty set
and S itself.

Best response dynamics are often used to find the NE of
a game [18] and it can be verified by looking at (1)-(2) that
any equilibrium point of this dynamics corresponds to a NE.
However, in many practical situations, computing the exact
best response as in (2) may be challenging or computation-
ally heavy, see examples in [2], [3], [5]. To overcome this
issue, we may resort to applying better responses, like in
[10], which are defined as follows.

Definition 3 (Better response): We say that Fi : X → Xi
is a better response by agent i ∈ N if

Ji(Fi(x), x−i) < Ji(x) (3)

for all x such that xi /∈ fi(x−i). �
A better response by player i to actions x−i, given a previous
action xi, is an action which will strictly decrease its cost,
unless xi is already the best response.

Our objective is to propose a distributed asynchronous
algorithm, which applies better responses rather than the true
best response and is guaranteed to converge to a NE for
ordinal potential games.

III. MAIN RESULTS

In this section, we present the distributed asynchronous
gradient descent (DAGD) which we introduce and then
analyze. As we focus on gradient-based methods, we make
the following assumption on the cost functions.

Assumption 2: The action space X is convex, and for all
i ∈ N , the cost functions Ji : Xi × X−i → R≥0 are twice
differentiable and convex with respect to xi ∈ Xi. �

We use ∇iJi(xi;x−i) to denote the partial gradient of Ji
with respect to the i-th player action evaluated at xi, for
a given x−i, which exists in view of Assumption 2. This
gradient can be evaluated at any xi ∈ Xi for any i ∈ Xi, and
is also differentiable. Moreover, as Xi is compact, we can
define

Li := sup
x∈X
||∇2

iJi(xi, x−i)||2, (4)

which is finite. The algorithm we present in the following
requires the knowledge of Li by each player, see also Remark
1.



Assumption 3: Each player i ∈ N knows Li. �
Assumption 2 allows for the best response in (2) to be a

single valued set (rather than a general set) and be computed
using a projected gradient descent algorithm. We denote one
step of the projected gradient descent by f̂i : X×R>0 → Xi,
which is given by

f̂i(x−i, xi, γi) := PXi (xi − γi∇iJi(xi, x−i)) , (5)

where γi ∈ (0, L−1i ] is the chosen step size, which each
player can select in view of Assumption 3. In contrast to
the standard ABRD, which requires each agent to compute
the best response, in the DAGD, each player i only applies
a finite tunable number Mi of iterations of the gradient
descent as described in Algorithm 1. This algorithm takes
the initialization xi of player i, actions of the other players
x−i, and i,Mi as inputs, and returns the new action of player
i.

Algorithm 1: The M -step gradient descent

Data: Given γi ∈ (0, L−1i ] and J .
GD(x(k), i,Mi)
x+i = xi;
if |f̂i(x−i(k), xi(k), γi)− xi(k)| > 0 then

for Mi iterations do
x+i ← f̂i(x−i, x

+
i , γi);

end
end
return x+i ;

In Algorithm 1, if f̂i(x−i(k), xi(k), γi) = xi(k) then
the gradient is 0 or the algorithm has converged to the
boundary of Xi and can therefore be stopped. However, as
long as f̂i(x−i(k), xi(k), γi) 6= xi(k), the cost function can
be strictly decreased due to the convexity of Ji imposed by
Assumption 2.

Remark 1: Even if Li is unknown, i.e., Assumption 3
does not hold, a suitable γi may be found such that the
local cost Ji is decreased by iteratively searching for a step
size in {γi, 12γi, . . . }. We do not treat this case for ease of
presentation. �

Remark 2: Although we describe the M -step gradient
descent in terms of the full state x, each player i only
needs to know partial information x which affects its cost.
For example, if the agents interact over a graph and only
the neighbors of an agent affect its cost function, then only
neighbors need to exchange information. We write everything
in terms of x for ease of notation and presentation. �

We describe the output of Algorithm 1 with the function
Fmi (xi, x−i) where xi is the initialization of the gradient
descent, defined as

F 0
i (x) := xi (6)

and then for m ∈ Z>0, we recursively define

Fmi (x) := f̂i
(
x−i, F

m−1
i (x), γi

)
. (7)

Next, we show that Fmi is a better response as in Definition

3.
Lemma 1: Under Assumption 2, given γi ∈ (0, L−1i ], Fmi

is a better response for any m ∈ Z>0. �
Proof: From Theorem 10.6 in [19], we know that for

any x ∈ X , i ∈ N , and γi ≤ L−1i ,

Ji(x)− Ji(f̂i(x−i, xi, γi), x−i) ≥
1

2γi
|xi − f̂i(x−i, xi, γi)|2.

(8)

This means that there are the following two possibilities:
1) f̂i(x−i, xi, γi) 6= xi. In this case, the cost is strictly

smaller after one step of the projected gradient descent.
2) Otherwise, f̂i(x−i, xi, γi) = xi which means that xi is

the minimum of Ji for the given x−i due to Ji being
convex in xi according to Assumption 2.

First of all, we note that in both cases,
Ji(f̂i(x−i, xi, γi), x−i) ≤ Ji(x). Therefore (for any
m ∈ Z>0) if we have case 1) applied at least once in the
recursion (7), Ji(Fmi (x), x−i) < Ji(x) making Fmi a better
response. If case 1) is never applied, then Fmi (x) = xi and
f̂i(x−i, xi, γi) = xi which means that xi is the minimum
of Ji for the given x−i. Hence, xi ∈ fi(x−i), which still
satisfies Definition 3. This concludes the proof that Fmi is
a better response for any m ∈ Z>0.

We next present the DAGD in Algorithm 2, in which,
each agent i applies Mi ∈ Z>0 steps of the gradient descent
described in Algorithm 1 iteratively in an asynchronous
manner, where Mi is a tunable parameter. Note that the
ABRD is recovered as a special case of the DAGD by setting
Mi →∞ for all i ∈ N .

Algorithm 2: The DAGD
Data: Given θ(·), x(0) ∈ X , M ∈ ZN>0.
Initialize flagi = 1 for all i ∈ N and k = 1;
do

i← θ(k + 1) ;
flagi ← 1 ;
xi(k + 1)← GD(x(k), i,Mi) ;
x−i(k + 1)← x−i(k) ;
if xi(k + 1) = xi(k) then

flagi ← 0
end
Communicate xi(k + 1) to neighbors;
k ← k + 1 ;

while
∑
i flagi 6= 0;

In contrast with the standard ABRD, where at each iter-
ation, the active player i must find its best response, which
requires the player to seek the asymptotic value of a projected
gradient, the proposed DAGD algorithm just requires the
active player i to perform Mi steps of the projected gradient
descent at each iteration with M = (M1, . . . ,MN ) ∈ ZN>0.
When an agent i has no change in its action after applying
their projected gradient descent, we set its flag to 0, and this
means that xi(k) is the best response to x−i(k). When all the
flags are 0 simultaneously, we stop the algorithm, and x(k)
is a NE as will be proven in Theorem 1. We impose the next



assumption on the update order θ(·) to ensure convergence
of the DAGD.

Assumption 4: There exists K ∈ Z>0 with N ≤ K <∞
such that

K⋃
`=1

{θ(k + `)} = N (9)

for any k ∈ Z>0. �
Assumption 4 implies that the DAGD applies the gradient

descent for all players at least once during a period of K
steps. A simple example of a θ satisfying this assumption
would be a round-robin scheduler. Note that once the se-
quence θ is fixed, this process is fully distributed as at each
step k, the agent θ(k) updates its action by using gradient
descent. In practice, implementing the DAGD would require
all agents to agree on the update order θ before starting the
algorithm, or a centralized scheduler informs each player
when to update. The DAGD resulting from Algorithm 2 can
be written as follows, for any k ∈ Z≥0,

xθ(k)(k + 1) = F
Mθ(k)

θ(k) (x(k))

x−θ(k)(k + 1) = x−θ(k)(k),
(10)

with Mi ∈ Z>0 for all i ∈ N and

θ(k + 1) ∈ N , (11)

respecting Assumption 4. Next, we present Theorem 1 which
ensures the convergence of (10) to a pure NE.

Theorem 1: Under Assumptions 1-3, for any x(0) ∈ X ,
M = (M1, . . . ,MN ) ∈ ZN>0 and sequence θ(·) ensuring
Assumption 4, the DAGD described by (10) will converge
to a pure NE given in Definition 2. �

Proof: For a given initial state x(0) ∈ X , after k ∈ Z>0

steps of the DAGD (10), let the action profile be given by
x(k). We use i = θ(k) to denote the player active at step
k, m = Mi the number of GD steps applied by it. From
Lemma 1, we have that Fmi is a better response. Therefore,
by construction of the algorithm, we have either

1) Ji(xi(k+ 1), x−i(k+ 1)) < Ji(xi(k), x−i(k)). In this
case, using the definition of a potential game, we have
φ(x(k + 1)) < φ(x(k)).

2) Ji(xi(k + 1), x−i(k + 1)) = Ji(xi(k), x−i(k)). Simi-
larly, using the definition of a potential game, we have
φ(x(k + 1)) = φ(x(k)).

By construction of the algorithm, we have xi(k + 1) =
xi(k), only when f̂i(x−i(k), xi(k), γi(k−1)) = xi(k). Since
Ji(xi, x−i) is convex in xi for any i, the projected gradient
descent is stationary if and only if Ji(xi(k), x−i(k)) =
minxi{Ji(xi, x−i(k))}. Note that if this holds true for all
i, x(k) is a NE by definition.

Recall that within K steps of the DAGD, all players
are visited at least once. Therefore, during K iterations,
as long as x /∈ X ∗, we have at least one j ∈ N , such
that φ(F

Mj

j (x−j), x−j) − φ(x) < 0. Therefore, as long as
x(k) 6= x∗, we will have φ(x(k +K))− φ(x(k)) < 0. This
ensures that φ is strictly decreasing over K steps as long as
x /∈ X ∗. Therefore φ(x(k)) will asymptotically reach a NE

or its minimum in X . Note that any x minimizing φ, i.e.,
x such that φ(x) = minx′∈X {φ(x′)} is also a NE [4]. We
have thus proven convergence to a NE.

When multiple NE exist, the DAGD may not converge
to the same NE as the ABRD even when using the same
sequence θ(·) and initial condition x(0). In general, varying
M , θ(·) or x(0) may result in convergence to a different
NE. On the other hand, when φ is strictly convex, the NE is
unique [4] and therefore all algorithms will converge to the
unique NE.

When φ is convex, we are able to show that the set of
pure NE is also uniformly globally asymptotically stable
(UGAS) under (10)-(11), as formalized below. This case of
great interest in the framework of distributed optimization as
a pure NE in a convex potential game minimizes the potential
function [4]. We introduce the attractor set A := {(x, θ) :
x ∈ X ∗, θ ∈ N} for this purpose.

Theorem 2: Consider the dynamical system described by
(10)-(11), and suppose Assumptions 1-4 hold with φ convex.
Then, for any M = (M1, . . . ,Mn) ∈ ZN>0, A is UGAS,
i.e., for any M ∈ ZN>0 there exists βM ∈ KL such
that any solution (x(k), θ(k)) verifies |(x(k), θ(k))|A ≤
βM (|(x(0), θ(0))|A, k) for any k ∈ Z>0.

Proof: Since φ in Assumption 1 is convex and X is
compact, it admits at least one minimum value on X , which
we denote φ∗, i.e. φ∗ := minx∈X {φ(x)}. Moreover, the set
X ∗ of pure NE is {x ∈ X : φ(x) = φ∗} as φ is convex [4].

To prove the desired result, we apply [20, Theorem 1],
which applies to system (10) as it is a particular case of [20,
(1)] with empty set C. We consider the Lyapunov function
candidate

V (x, θ) := φ(x)− φ∗, (12)

for any x ∈ X and θ ∈ N . The continuity of φ on X under
Assumption 1 implies that V (x, θ) is also continuous. Since
φ∗ is the minimum value that φ can take on X , we have
φ(x) > φ(x∗) for any x /∈ X ∗, and V (x, θ) = 0 if and
only if (x, θ) ∈ A. Therefore, V is positive definite with
respect to the compact set A. Moreover, it is trivially radially
unbounded as we work on the compact set X . Hence, items
1) and 2) in [20] hold; recall that C = ∅ in our case.

Let M = (M1, . . . ,MN ) ∈ ZN>0, x ∈ X and θ ∈ N , and
denote x+ = (x1, . . . , F

Mθ

θ (x), . . . , xN ) and θ+ ∈ N . We
have shown in Theorem 1 that φ(x+) ≤ φ(x) for all x ∈ X ,
and so we have V (x+, θ+) ≤ V (x, θ) proving that [20, ( 3)]
holds.

We now proceed by contradiction and suppose that there
is a (complete) solution (x, θ) to (10)-(11) which keeps V
constant and non-zero. Hence, there exists c > 0 such that
for all k ∈ {k′, k′ + 1, . . . }, V (x(k), θ(k)) = c. Since V
is positive definite with respect to A, as established above,
this means that x(k) /∈ X ∗ in view of the definition of A.
Now, we have shown in Theorem 1 that x(k) /∈ X ∗ implies
φ(x(k + K) < φ(x(k)). Therefore, V (x(k), θ(k)) cannot
be equal to c for all {k′, k′ + 1, . . . }: we have attained a
contradiction. Consequently, no (complete) solution keeps V
constant and non-zero. We then apply [20, Theorem 1] to



conclude that A is UGAS for system (10)-(11).

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed
DAGD algorithm in terms of the computational and com-
munication loads, we compare it with two other algorithms
found in the literature: the classical asynchronous best re-
sponse dynamics (ABRD) used in game theory literature [18]
and the distributed synchronous gradient descent (DSGD)
recently studied in [15]. In this section, we briefly recall
these two algorithms and the assumptions required for their
convergence to a pure NE, and then provide simulations
to compare the computational and communication costs
associated with each of them.

A. The ABRD and DSGD

Recall from [18], that the ABRD is given by, for any k ∈
Z>0,

xθ(k)(k + 1) ∈ fθ(k)(x−θ(k)(k))
x−θ(k)(k + 1) = x−θ(k)(k)

(13)

where θ(k) ∈ N denotes the agent updating its action at time
step k. It is shown in [21] that the ABRD always converges
to a pure NE x∗ ∈ X ∗ under Assumptions 1-4.

The asynchronous nature of the best response dynamics is
necessary for convergence to the NE in general. However,
while applying a single step of the gradient descent, it
has been shown in [15] that even a synchronous algorithm
applying the basic gradient descent can converge under
appropriate assumptions to a (differential) NE. On the other
hand, we are interested in applying the projected gradient
descent and in convergence to pure NE. Therefore, in this
subsection, we propose a modified version of the algorithm
presented in [15], which converges to a pure NE under the
following assumption.

Assumption 5: We consider
1) G is a weighted potential game with weights wi ∈ R>0,

i.e., there exists φ : X → R≥0 such that

wi(Ji(xi, x−i)−Ji(x′i, x−i)) = φ(xi, x−i)−φ(x′i, x−i)
(14)

for any xi, x′i ∈ Xi, x−i ∈ X−i.
2) the potential function φ is convex and twice differen-

tiable. We define L := supx{||∇2φ(x)||2} and assume
that this is known to all players. �

In item 1) of Assumption 5, we require that G is a
weighted potential game, which is a stronger version of
Assumption 1 as weighted potential games are a special
case of ordinal potential games. Item 2) of Assumption 5
requires φ to be convex and L to be known to all players,
which is a stronger version of Assumptions 2-3. In Algorithm
3, we describe the DSGD which is a modification of the
algorithm presented in [15]. Specifically, we work with the
projected gradient descent which is more general than the
basic gradient descent.

Corollary 1: Under Assumption 5, Algorithm 3 converges
to a NE for any x(0) ∈ X .

Algorithm 3: The DSGD applied by player i

Given γ ∈ (0, L−1];
k ← 1;
do

Communicate xi(k) and receive x−i(k);
xi(k + 1)← f̂i(x(k), wiγ) ;
k ← k + 1;

while x(k) 6= x(k − 1);

Proof: This result is a refinement of Theorem 4.1
in [15] for convex potential games and projected gradient
descent. Given x(0), at any step k ∈ Z≥0, we have

xi(k + 1) = f̂i(x(k), wiγ) (15)

for all i ∈ N and thus

x(k + 1) = PX (x(k)− γ∇xφ(x(k)) (16)

from item 2) of Assumption 5. This is simply a projected
gradient descent of φ on the full state space X . Since, we
take γ ≤ L and φ is assumed to be convex, convergence to
the global minimum is ensured [19].

B. Stopping criteria and running time

In practice, as the algorithms may take an infinite time to
converge to a NE x∗, we stop Algortithms 2 and 3 when
the better responses do not improve the costs more than a
certain threshold. For the purpose of performance evaluation,
we look at a convex φ and we stop the algorithm at some
iteration k∗ such that

φ(x(k∗))− φ∗ ≤ ε, (17)

where ε ∈ R>0 is taken to be sufficiently small and φ∗ is
the smallest value taken by φ as in the proof of Theorem 2.
As we have proven that the DAGD is UGAS in Theorem 2,
we have k∗ finite for any ε > 0. We call the total number of
iterations before (17) is met as k∗A for the DAGD described
in Algorithm 2 and k∗S for DSGD described in Algorithm 3,
for a given common initialization x(0) .

One of the main features of the proposed algorithm is to
evaluate and tune the algorithm parameters such that the total
running time can be reduced with respect to the ABRD. We
denote by τP ∈ R>0, the time required by the processor
to compute one step of the gradient descent. We say that it
takes τC ∈ R>0 units of time for one agent to communicate
its actions to all of its neighbors.

In asynchronous algorithms, we count the total number of
gradient descent steps applied to evaluate the total compu-
tational time per iteration. We fix Mi = M1 ∈ Z>0 for
all i ∈ N . Then, we evaluate the total running time as
T = k∗A(M1τP + τC).

On the other hand, in synchronous algorithms, the com-
putations by each agent are done in parallel and so each
iteration of the synchronous algorithm will take τP com-
putation time. However, as all agents must communicate at
each iteration, this results in a total communication time



per iteration of NτC assuming that the agents can not
communicate simultaneously. This results in a total running
time of T = k∗S(τP +NτC).

C. Numerical example
We apply the results of Section III to the distributed

formation planning of N agents, with each agent i ∈ N
representing a mobile planar system. The initial position of
each agent is given by si ∈ [−10, 10]2. An agent updates its
position based on local information obtained by communicat-
ing with its neighbors which belong to the set Ni. Each agent
shares its target position xi ∈ Xi, Xi := [−10, 10]2 with all
the neighboring agents in Ni. We consider an undirected
graph, i.e., if j ∈ Ni then i ∈ Nj for any i, j ∈ N . The
agents want to make a formation such that xi − xj is dij
with dji = −dij and dij ∈ Xi for all j ∈ Ni and all
i ∈ N . However, each agent also wants to minimize the
energy consumed by moving from si to xi. The cost function
of each agent is taken as

Ji(x) = ri(xi − si)2 +
∑
j∈Ni

(xi − xj − dij)2. (18)

The first term can be seen as the control effort or energy
term, with ri ≥ 0 being the weight allocated to this effort.
The second term is the cost associated with consensus and
this term becomes 0 when agent i is in perfect formation
with its neighbors. Now, we look at the game G formed by
the N agents, with xi as actions and Ji as cost.

Proposition 1: The game G is an exact potential game and
the associated potential function φ is twice differentiable and
convex. �

Proof: We define, for any x ∈ X and any given
si, dij ∈ R2 for all i, j ∈ N ,

φ(x) :=

N∑
i=1

r(xi − si)2 +
1

2

∑
j∈Ni

(xi − xj − dij)2
 .

(19)
We observe that φ is an exact potential function, i.e., for any
x ∈ X , x′i ∈ Xi,

φ(xi, x−i)− φ(x′i, x−i) = r(xi − si)2 − r(x′i − si)2

+
∑
j∈Ni

(xi−xj−dij)2−(x′
i−xj−dij)

2

2

+
∑
j∈Ni

(xj−xi−dji)2−(xj−x′
i−dji)

2

2 .
(20)

This holds as all the terms without xi get cancelled since
i ∈ Nj iff j ∈ Ni. Additionally, since dij = −dji, we have
(xi − xj − dij)2 = (xj − xi − dji)2 and so

φ(xi, x−i)− φ(x′i, x−i) = Ji(xi, x−i)− Ji(x′i, x−i). (21)

Note that all the terms are quadratic in x and so φ is convex
in x and Ji is convex with respect to xi.

Thus, we have ensured that Assumptions 1-2 hold. We
pick γi = 0.1 for all i ∈ N and θ(k) := 1 + (k mod N)
satisfying Assumptions 3-4. Next, we fix τP = 0.001
seconds, ε = 0.001 and take two cases corresponding to
slow and fast communications, Case A: τC = 0.01 and Case
B: τC = 0.0001 seconds. In practice, this could correspond

to the agents being connected over a wireless network or
wired network respectively. We plot the running time T of
the DAGD vs various values of M1 for the two cases in
Figure 1. When the communication time is high, picking a
larger M1 results in a smaller running time as each iteration
costs more time (recall that we fix Mi = M1 for all i ∈ N ).

We next compare the performance of the DAGD with the
ABRD and the DSGD in Table I by fixing M1 = 6 for
the DAGD. The ABRD is implemented by selecting a large
enough number of steps of the gradient descent, specifically
M1 = 20. Since the ABRD is a special case of the DAGD,
a suitable choice of M will always outperform or match
the ABRD in terms of the running time T . On the other
hand, the DSGD outperforms the DAGD in terms of the
computational steps (due to parallel computing) but takes
more communication steps. Consequently, in Case A, we
notice that the running time T of the DSGD is 5.8 times
that of the DAGD. We also see that the DAGD is always
faster than the ABRD.
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Fig. 1: Running time for the DAGD algorithm

Algorithm: DAGD DSGD ABRD

Iterations k∗ 127 193 109
Computation steps 762 193 2180
Communication count 127 1158 109
Running time T , Case A 2.03 11.77 3.27
Running time T , Case B 0.77 0.3 2.19

TABLE I: Comparison of DAGD using M1 = 6 with the
ABRD and DSGD.

V. CONCLUSION

In this work, we have presented a distributed asynchronous
gradient descent (DAGD) algorithm in which each agent
applies an arbitrary number of steps of the gradient descent
algorithm with respect to a local cost function. We demon-
strate convergence of this algorithm to a pure NE for ordinal
potential games when the cost functions of each agent are
quasi-convex with respect to its action. When the number of
steps applied per iteration approaches infinity, this algorithm



corresponds to the asynchronous best response dynamics
(ABRD) which is often applied in game theory. In our numer-
ical simulations, we compare the performance, characterized
by overall computation time and communication instants, of
the proposed algorithm with the ABRD and a synchronous
scheme (the DSGD) based on a recent publication [15]. We
demonstrate that picking a suitable number of iterations can
result in a suitable trade-off between the total computation
steps and the number of communications required. This
results in a smaller running time of the proposed algorithm
when the communication network is slow.

REFERENCES

[1] R.S. Gibbons. Game theory for applied economists. Princeton
University Press, 1992.

[2] S. Lasaulce and H. Tembine. Game Theory and Learning for Wireless
Networks : Fundamentals and Applications. Academic Press, 2011.
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