
HAL Id: hal-03436816
https://hal.science/hal-03436816

Submitted on 1 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Finite element solver for data-driven finite strain
elasticity

Auriane Platzer, Adrien Leygue, Laurent Stainier, Michael Ortiz

To cite this version:
Auriane Platzer, Adrien Leygue, Laurent Stainier, Michael Ortiz. Finite element solver for data-
driven finite strain elasticity. Computer Methods in Applied Mechanics and Engineering, 2021, 379,
�10.1016/j.cma.2021.113756�. �hal-03436816�

https://hal.science/hal-03436816
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Finite element solver for data-driven finite strain elasticity

Auriane Platzera, Adrien Leyguea, Laurent Stainiera,∗, Michael Ortizb
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Abstract

A nominal finite element solver is proposed for data-driven finite strain elasticity. It bypasses
the need for a constitutive model by considering a database of deformation gradient/first
Piola-Kirchhoff stress tensors pairs. The boundary value problem is reformulated as the
constrained minimization problem of the distance between (i) the mechanical states, i.e.
strain-stress, in the body and (ii) the material states coming from the database. The cor-
responding constraints are of two types: kinematical, i.e. displacement-strain relation, and
mechanical, i.e. conservation linear and angular momenta. The solver uses alternated min-
imization: the material states are determined from a local search in the database using an
efficient tree-based nearest neighbor search algorithm, and the mechanical states result from
a standard constrained minimization addressed with an augmented Lagrangian approach.
The performance of the solver is demonstrated by means of 2D sanity check examples: the
data-driven solution converges to the classical finite element solution when the material
database increasingly approximates the constitutive model. In addition, we demonstrate
that the balance of angular momentum, which was classically not taken into account in
previous data-driven studies, must be enforced as a constraint to ensure the convergence of
the method.

Keywords: Data-driven computing; finite strain; model-free; optimization methods; data
science.

1. Introduction

Computational mechanics is a field in which a large amount of data is both consumed
and produced. On the one side, the recent developments of experimental measurements
techniques have provided rich databases for the identification process of constitutive models
[1, 2]. On the other side, heavy computations, such as multi-scale analyses, produce a huge
amount of discrete values of kinematical and stress quantities, which can be used in the end
to extract knowledge on the overall material behavior. A typical entry-point for Data Science
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in the field of computational mechanics is then material modeling. For instance, artificial
neural networks [3, 4, 5], applied to computational homogenization of nonlinear elasticity at
small strain [6] and large strain [7], or manifold learning techniques [8] have been considered
to find underlying structure in the data. In these approaches however, some sort of material
modeling is still present, and the data is discarded at the end of the process. In contrast,
[9] recently introduced the data-driven computational mechanics (DDCM) paradigm, which
incorporates data directly into the computation. This pioneer work was consolidated by
the mathematical framework proposed in [10], demonstrating that DDCM encompasses the
classical definition of the boundary value problem (BVP) in solid mechanics.

1.1. State of the art

The DDCM approach relies on the fundamental separation between the characteriza-
tion of the material response and the satisfaction of essential constraints and conservation
laws: while the former is most likely to be approximately captured (e.g. due to noise in
the acquisition of experimental data), the latter ones must be exactly satisfied. In solid
mechanics, the typical constitutive variables involved are the strain and the stress. The
BVP is therefore reformulated as a minimization of a distance function between two types
of strain-stress fields: one, representing the material response, takes value in a database re-
sulting from experimental acquisition of material data points, and the other, verifying both
compatibility and equilibrium equations, represents the admissible mechanical state of the
body. The former strain-stress field is referred to as the material state and belongs to a
material data set, while the latter mechanical state belongs to a constraint set. Both sets
are subspaces of the phase space, which collects all possible strain-stress fields.

The DDCM paradigm was introduced prior to the actual availability of experimental
data points: if the strain tensor field can be obtained from full-field measurements, the
stress field is often only measured in specific one-dimensional experimental tests. Since
then, recent works have paved the way for the use of experimental databases in data-driven
engineering: initially formulated by [11] as a non-parametric inverse approach inspired by
DDCM, the so-called data-driven identification (DDI) technique identifies stress fields from
full-field measurements of strains and applied resultant forces, without any constitutive
equation. It has been shown to be of particular interest for supplying DDCM simulations
with importance sampled material data sets [12]. The inverse method was also developped
for elasto-plasticity by [13] and further explored in nonlinear elasticity, plasticity and elasto-
dynamics in [14]. It was also successfully extended to large strain and assessed with raw
experimental data in [15], which provides encouraging prospects. Alternatively, the DDCM
can also be employed with numerically generated databases from multiple simulations at
finer scales [16, 17]. Yet, in the current stages of development, including the present work,
the use of in silico data, generated by a sampling of a constitutive model later discarded in
the data-driven simulations, allows to assess the approach by comparing to standard finite
element (FE) analyses.

Recently, several authors contributed to improve the DDCM numerical scheme: the
entropy-maximizing solver developed in [18] is more robust to noisy material data sets with
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outliers; the issue of the high dimensionality of the phase space was addressed by [19] using
tensor voting, a machine learning technique; [20] showed that the data-driven BVP is a
well posed Mixed-Integer Quadratic Programming problem, allowing to reach the global
minimizer, through (very expensive) branch-and-bound solvers. Hybrid methods have also
been introduced to further improve the robustness of the data-driven approach: bridging
the gap between inverse manifold reconstruction techniques [8] and direct DDCM solvers,
several authors have incorporated the definition of a constitutive manifold into the data-
driven distance minimizing problem [21, 22, 23, 24]. For instance, [23, 24] formulated an
approximate nonlinear optimization problem and demonstrated its computational efficiency
in the static and dynamic cases for specific configurations spaces of nonlinear kinematics.
Finally, the DDCM has been extended to other classes of problem, such as elasto-dynamics
[25], diffusion problems [26], history-dependent behavior like visco-elasticity [27] or fracture
mechanics [28].

1.2. Aim of the present work

Extending the DDCM supposes to choose the relevant pair of constitutive variables to
work with, i.e. to define the appropriate phase space of the problem. An extension of
particular interest is finite strain elasticity, for which there exist several strain-stress work
conjugate pairs. To the best of our knowledge, this includes two contributions so far in solid
mechanics: the initial work of [29] proposed a phase-space of Green-Lagrange strain–second
Piola-Kirchhoff stress pairs, while [30] extended their small strain framework [10] using
deformation gradient–first Piola-Kirchhoff stress tensor pairs1. In the following, we refer
to the former as the Lagrangian formulation and to the latter as the nominal formulation.
In a previous work [31], we consolidated the finite element formulation of [29] and assessed
the approach with synthetic data. The work of [30] provides mathematical ground for
convergence of the data-driven solution towards the classical solution using the nominal
framework; we could not find however a similar analysis for the Lagrangian formulation in
the literature. To compare both formulations, the nominal continuum mechanics formulation
of [30] still needs to be implemented in a generic finite element setting. In addition, the
choice of phase space is crucial to deal with the conservation of angular momentum: in
the Lagrangian formulation, the symmetry of the phase space tensors readily ensured it; its
enforcement in the nominal formulation is a topic addressed in this paper.

The main objective of the present work is then two fold: (i) to provide a FE data-
driven solver for the nominal formulation, inspired by the Lagrangian FE solver presented
in [31]; (ii) to assess whether momentum balance should be encoded in the constraint set or
if verifying the principle in the material data set is enough. As a secondary contribution,
we also give some practical advice on the use of finite strain data-driven solvers. In this
paper, we deliberately detail the equations and algorithms as much as possible in a concern
of reproducible and open science.

1We distinguished these contributions from the Eulerian framework adopted for large strain DDI by [15]:
the logarithmic strain–Cauchy stress formulation used therein has not been used in a DDCM setting yet.
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The paper is organized as follows. In Section 2, we develop a finite element solver for the
nominal formulation of data-driven finite strain elasticity. The solver is further evaluated in
Section 3, with three different test cases, of increasing complexity. All are two-dimensional
problems, assuming plane stress conditions and incompressibility of the material. The data-
driven results are compared with the reference solution, obtained from classical FE analysis.
Finally, we summarize the key features of this work and discuss some of their implications
in Section 4.
2. Development of a nominal finite strain data-driven solver

The nominal formulation has first been introduced by [30] to extend the data-driven
framework defined in [10] to finite strain elasticity. The phase space consists of deformation
gradient–first Piola-Kirchhoff stress tensor fields (F ,P ). Hence, the local phase space can
no longer be reduced to Rn×n

sym × Rn×n
sym , which directly enforces material-frame indifference

and conservation of angular momentum in geometrically linear elasticity and Lagrangian
finite strain elasticity. In [30], the former is encoded in the material data set by using
an orbit representation: if a material data point (F ,P ) is in the database, then so is its
orbit (QF ,QP ), Q ∈ SO(n) under the left action of the Special Orthogonal group SO(n) ={
Q ∈ Rn×n | QTQ = QQT = I

}
. The latter can be treated as an additional constraint to

the minimization problem, as explored in the following.
This section is dedicated to recalling the continuum mechanics formulation as introduced

by [30] and developing a FE data-driven solver on that basis, analogous to the one derived
in [31] for the Lagrangian formulation.

2.1. Continuum mechanics

Let us consider an elastic body occupying a domain Ω0 ∈ Rn in the reference con-
figuration and Ω ∈ Rn under quasi-static loading, in dimension n. For now, the general
three-dimensional case n = 3 is considered only; specific assumptions allowing for the re-
duction to two-dimensional mechanics are discussed next. A material point has X and x as
initial and current coordinates, respectively. The deformation-stress state (F (X),P (X))
of a material point X is referred to as the local state of X. The local state function z is
then defined as the mapping between every material point X of the reference domain Ω0 to
its local state:

z : Ω0 7→ Zloc

X → z(X) = (F (X),P (X))
(1)

where the local phase space Zloc is Rn×n×Rn×n. The global phase space Z is the collection
of local state functions z : Ω0 → Zloc. As shown in [30], to ensure convergence properties,
the deformation gradient and the stress fields must each belong to a given Lp space, i.e. they
must be measurable functions for which the p−th power of the absolute value is Lesbegue
integrable. The global phase space is then defined as

Zp,q (Ω0) = Lp
(
Ω0,Rn×n

)
× Lq

(
Ω0,Rn×n

)
(2)
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with (p, q) ∈ (1,∞) such that 1/p + 1/q = 1. As aforementioned, the local phase space
no longer consists of symmetric tensors, as compared with the small strain or Lagrangian
finite strain settings. Material frame-indifference and conservation of angular momentum
constraints must then be enforced specifically.

The material data set D is defined by the collection of local state functions mapping to
nominal strain-stress pairs of a local material database Dloc:

D = {z ∈ Z | z(X) ∈ Dloc} , (3a)

with

Dloc = {(Fi,Pi) , i ∈ [1 . . m]} ⊂ Zloc, (3b)

with m the number of material data points.
The constraint set E consists of local state functions verifying mechanical admissibility.

It comprises three constraints, namely

(i) the kinematics constraints, defined as

F (X) = ∇0u(X) + I in Ω0, (4a)

u(X) = uD(X) on Γ0D , (4b)

(ii) the translational equilibrium, written as

DIVP (X) + f0(X) = 0 in Ω0, (5a)

P (X)N (X) = t0(X) on Γ0N , (5b)

(iii) the rotational equilibrium, written as

FP T = PF T , in Ω0, (6)

where uD is the prescribed displacement field on the Dirichlet boundary Γ0D ⊂ ∂Ω0, I is
the second order identity tensor, ∇0 = ∂/∂X and DIV denote the gradient and divergence
operators with respect to the initial coordinates, respectively, f0 are the body forces per
unit reference volume, and t0 is the traction vector per unit reference area, acting on the
Neumann reference boundary Γ0N with outer normal N . The set E then writes

E = {z ∈ Z | (4), (5) and (6)} . (7)

Note that the first two constraints (4) and (5) are linear in u and P respectively while the
rotational equilibrium (6) is a bi-linear constraint and more difficult to enforce in a discrete
setting. It can then be more convenient to work with the affine subspace E0 ⊂ E , defined as
the collection of local state functions verifying compatibility and translational equilibrium
(4) and (5) only.
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For later purposes, the translational equilibrium and attached Neumann conditions (5)
are reformulated in their weak form. The nominal formulation of the principle of virtual
work writes:

δW =

∫

Ω0

P : δF dX −
∫

Ω0

f0 · δϕ dX −
∫

∂Ω0

t0 · δϕ dA = 0, (8)

for any arbitrary kinematically admissible virtual displacement δϕ from the current position
of the body, where we used the notation δF = ∇0δϕ. In addition, the conservation of angular
momentum (6) is more conveniently expressed by the vector equation

ϵ :
(
F (X)P T (X)

)
= 0, ∀X ∈ Ω0, (9)

where ϵ denotes the Levi-Civita third-order tensor (ϵijk = 1 if {i, j, k} is an even permutation
of {1, 2, 3}, −1 if it is odd, and 0 if any indices are repeated). Note that (6) simply means
S = ST , with S = F−1P the second Piola-Kirchhoff stress tensor used in the Lagrangian
formulation, since ϵ : A = 0 enforces the symmetry condition on A.

The solution set S of the data-driven BVP corresponds to the set of local state functions
verifying mechanical admissibility meanwhile being closest to the material data set. It then
results from the double minimization problem

min
z∈E

min
z′∈D

d(z, z′) (10)

as
S = argmin

z∈E
min
z′∈D

d(z, z′), (11)

with d an appropriate deviation or distance function from the material data set. The devi-
ation function proposed by [30] is

d(z, z′) =

∫

Ω0

(V (F (X)− F ′(X)) + V ∗ (P (X)− P ′(X))) dX, (12)

∀(z : X 7→ (F ,P ), z′ : X 7→ (F ′,P ′)) ∈ Z × Z.

where V is a convex function, with convex conjugate V ∗. An appropriate choice for V and
V ∗ is [30, Assumption 2.15]:

V (F ) = Cp/2 1

p
|F |p = Cp/2

p

(
trF TF

)p/2
, (13a)

V ∗(P ) = C−q/2 1

q
|P |q = C−q/2

q

(
trP TP

)q/2
, (13b)

where C is a scaling parameter between deformation gradient and stress values which we
added to the original definitions of V and V ∗ in [30]. Herein, C is defined as a scalar, which
would correspond to the modulus of a fourth-order tensor.

The framework derived by [30], and recalled above, ensures the existence of so-called
classical solutions to the minimization problem, provided specific conditions are verified by
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the local material data set Dloc. A classical solution is met when the mechanical state field
z ∈ E and the material state field z′ ∈ D coincide such that the minimum of d (z, z′) is 0.
This typically arises in cases where the material data set is achieved from a hyperelastic
potential, but not exclusively. For more details on the conditions of existence of classical
solutions and examples of such material data sets, the reader is referred to [30].

2.2. Remark on two-dimensional problems

Before moving to the finite element discretization of the finite strain data-driven setting
presented above, we discuss the reduction to two-dimensional problems.

Two-dimensional problems typically arise under plane strain or plane stress conditions.
We show in this section that the local phase space Zloc is safely reduced to R2×2 × R2×2 in
both cases.

On the one hand, let us consider a BVP where a plane stress condition is verified along e3

and the material is incompressible. The former constraint enables the stress tensor P ∈ R3×3

to be reduced to its in-plane components P(2) ∈ R2×2 only, as

P =

(
P(2) 0
0 P33

)

(e1,e2,e3)

, (14)

with P33 = 0. Together with the plane stress condition Pe3 = 0, the latter constraint
enables to also only retain the in-plane components F(2) of the deformation gradient tensor
F ∈ R3×3, as J = detF = 1 and

F =

(
F(2) 0
0 F33

)

(e1,e2,e3)

, (15)

where the out-of-plane stretch ratio F33 = 1/ detF(2) can be determined a posteriori.
On the other hand, when plane strain conditions are assumed, F33 = 1 and F(2) suffices

to characterize the deformation state. However, the out-of-plane stress P33 can not be
determined in the data-driven approach, as no constitutive equation relates the two three-
dimensional tensors. The DD results of a plane strain problem will then be purely two-
dimensional.

In summary, provided that the material data set is constituted with two-dimensional
deformation gradient–first Piola-Kirchhoff stress tensors, the data-driven approach derived
above is unchanged whether n = 2 or n = 3. Note that a similar rationale allows for
the definition of data-driven one-dimensional settings, with applications to other types of
mechanical assumption (e.g. beam theory).

2.3. Finite element formulation

In [30], the existence of generalized data-driven solutions, with z ̸= z′, is not addressed.
These solutions are expected when the local material data set is discrete, i.e. contains a
finite number of material data points. As mentioned in the Introduction, such data sets can
arise from experiments (e.g. using the DDI technique), numerical simulations at finer scales
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or be generated synthetically by sampling of a hyperelastic constitutive model. In this work,
we used the latter method as a first assessment of the data-driven approach. To evaluate the
corresponding data-driven solutions, we derive in the following a finite element formulation
of the data-driven BVP formulated by [30]. We must emphasize that to date, and to the
best of our knowledge, such a derivation is not found in the literature.

2.3.1. Preliminary considerations

In principle, the values of (p, q) and C in the deviation functions (13) could be optimized
as well, as their optimal values depend on the BVP and the material data set (see examples
provided in [30]). In practice, taking C as the modulus of the linearized stiffness tensor of the
material (when F = I) was found to be a reasonable choice. As for the values of (p, q), note
that the functions V and V ∗ are not differentiable at 0 ∈ Rn×n, except when (p, q) = (2, 2).
In addition, we wanted to use the same tree-based algorithm as the one mentioned in [31]
to search the material database: our experience shows that these algorithms considerably
improve the computational cost of the search for optimal material states, as compared to
a linear search. However, we could not derive the required pre-processing of data points
for values other than (p, q) = (2, 2). The nominal finite element solver presented in the
following is then restricted to p = q = 2. Thus, the deviation functions used in the FE
implementation are

V (F ) =
1

2
C |F |2, and V ∗(P ) =

1

2
C−1 |P |2. (16)

More details on the tree-based search approach used herein are given in the next section.

2.3.2. Discretization of local state fields

To transition from continuum mechanics equations to a FE setting similar to the La-
grangian formulation presented in [31], we explicitly derive the interpolation functions for
the deformation gradient field and the integration rule on a FE mesh.

To this end, let us consider a FE mesh of the body in Ω0, consisting of N nodes, labeled
a ∈ [1 . . N ]. The elements are equipped with a quadrature rule such that every integral of a
function f over Ω0 is evaluated as the weighted sum of the function values at the integration
points: ∫

Ω0

f(X) dX =
M∑

e=1

wef(Xe), (17)

where M is the total number of integration points in the mesh, labeled e ∈ [1 . . M ],
and we is the weight associated to the integration point of coordinate Xe in the reference
configuration Ω0. In addition, let α ∈ [1 . . N × n] label the degrees of freedom; note that
here2

α = α(a, i) = a× (n− 1) + i (18)

2as one possibility among others.
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with i ∈ [1 . . n] the direction. The displacement field is interpolated in Ω0 in terms of nodal
values u = {ua}Na=1 and nodal shape functions {Na}Na=1 as

u(X) =
N∑

a=1

Na(X) ua, ∀X ∈ Ω0. (19)

From (4a), the approximate deformation gradient then writes

F (X) = ∇0u (X) + I, with ∇0u (X) =
N∑

a=1

(ua ⊗∇0Na(X)) , ∀X ∈ Ω0. (20)

In the standard FE method, the approximation of the stress field readily results from the
approximation of the displacement field, via the compatibility and the constitutive equations.
In the data-driven approach however, the mechanical stress field P verifying equilibrium (8)
and (9) is no longer directly related to the displacement field. The definition of the functional
space for the FE stress field in the data-driven setting is out of the scope of the present work.
Instead, the stresses are merely evaluated at the integration points, using (17), as

∫

Ω0

P (X) dX =
M∑

e=1

wePe (21)

where Pe = P (Xe), with Xe the coordinate of integration point e in Ω0.

2.3.3. Phase space and subspaces in the finite element setting

We can now formulate the data-driven BVP in the FE setting. First, we derive the FE
definitions of the global phase space Z and deviation function d. Second, the material data
set D is defined as the corresponding discrete subset of Z. Third, we inject the evaluation
of the deformation gradient and stress fields into the kinematics and equilibrium constraints
(4), (8) and (9) in order to express the constraint set E .

1. The FE local state function ze maps integration point e in the reference configuration
to the corresponding local state pair:

ze : Ω0 → Ze
loc = Rn×n × Rn×n

Xe 7→ (Fe,Pe) = (F (Xe),P (Xe)) ,
(22)

The global phase space being the product set Z = Z1
loc × · · · × ZM

loc, a global point z
in Z is the collection of M local state functions: z = {ze}Me=1. The global deviation
function (12) is then evaluated on the discrete mesh as

d(z, z′) =
M∑

e=1

we (V (Fe − F ′
e) + V ∗ (Pe − P ′

e)) ,

∀
(
z = {ze = (Fe,Pe)}Me=1 , z

′ = {z′e = (F ′
e,P

′
e)}Me=1

)
∈ Z × Z, (23)

with V and V ∗ as in (16).
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2. The material data set D ⊂ Z for the finite element problem is easily derived. For each
integration point e, a local material data set De

loc comprises me deformation gradient-
stress pairs and the global material data set is the collection of local state functions
mapping every integration point to a material data point in De

loc:

D = {z ∈ Z | ∀e ∈ [1 . . M ], ze(Xe) ∈ De
loc} , (24a)

with

De
loc = {(Fi,Pi) | i ∈ [1 . . me]} ⊂ Ze

loc. (24b)

This formulation allows for taking into account various materials in the structure. In
the rest of the paper, the terms material database are used to refer to local material
data sets De

loc, whereas the material data set refers to the functional set D.
3. The Dirichlet boundary conditions are encoded in an array uD of nD scalar prescribed

displacements uD =
{
uD
α

}
α∈D with D = {α1, · · · , αnD

}, such that αk ∈ [1 . . Nn], ∀k ∈
[1 . . nD]. The kinematic constraints (4) now write as the discrete form of the boundary
conditions, together with the interpolation of the deformation gradient field (20):

Fe = ∇e
0 u+ I, ∀e ∈ [1 . . M ], (25a)

ua · ei = uD
α , ∀(a, i) : α(a, i) ∈ D, (25b)

with ∇e
0 u = ∇0u(Xe) from (20). Using the same interpolation for δϕ as for the

displacement field (19), and the integration rule (17), the discrete form of (8) writes

δϕa ·
(

M∑

e=1

wePeBea − T ext
a

)
= 0, ∀a ∈ [1 . . N ], (26)

with the vector Bea = ∇0Na(Xe) and T ext
a the external force vector defined as

T ext
a =

∫

Ω0

Naf0 dX +

∫

∂Ω0

Nat0 dA. (27)

The discrete form of the translational equilibrium is then defined as the nullity of the
discretized residual force vector R = {Ra}Na=1 on the degrees of freedom α ̸∈ D:

Ra · ei = 0, ∀(a, i) : α(a, i) ̸∈ D, (28a)

with

Ra =
M∑

e=1

wePeBea − T ext
a , ∀a ∈ [1 . . N ]. (28b)

As for the conservation of angular momentum, (9) holds at every integration point.
Thus, the third mechanical constraint simply writes

re = ϵ :
(
FeP

T
e

)
= 0, ∀e ∈ [1 . . M ]. (29)

The set of mechanically admissible FE local state functions is then

E = {z ∈ Z | (25), (28) and(29) } . (30)
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Finally, from (11) and (23), the FE nominal data-driven BVP is also expressed as a
double minimization problem

S = argmin
z∈E

min
z′∈D

M∑

e=1

we de(ze, z
′
e) (31)

where de denotes the local deviation function in Ze
loc ×De

loc, defined as

de (ze, zi) = V (Fe − Fi) + V ∗ (Pe − Pi) ,

∀e ∈ [1 . . M ], ∀ze = (Fe,Pe) ∈ Ze
loc, ∀zi = (Fi,Pi) ∈ De

loc, (32)

with V and V ∗ as in (16).

2.4. Alternated minimization

As the other data-driven systems that have been developed so far, the nominal formu-
lation yields a minimization problem coupled with a combinatorial optimization. For the
sake of simplicity, our first attempt for a nominal finite strain data-driven solver also makes
use of the alternated minimization introduced by [9], and used in [29, 31]. The data-driven
problem (31) is then split into two distinct problems:

• Let us first consider the stage where the mechanical state z = {ze = (Fe,Pe)}Me=1 ∈ E
is fixed. The material solution set Smat is then determined from (31) as

Smat = argmin
z′∈D

M∑

e=1

we de(ze, z
′
e). (33)

Note that D = D1
loc×· · ·×DM

loc is a product set of very high dimension (
∑M

e=1 me) which
makes the minimization problem (33) a priori intractable. However, as all terms in
the summation are independent from one another, the minimization can be conducted
in each material database De

loc separately. The material solution set Smat then results
from M searches for nearest neighbors in local phase space:

Smat(z) =

{
arg min

zi∈De
loc

de (ze, zi) | ∀e ∈ [1 . . M ]

}
. (34)

We refer to z∗ie = (F ∗
ie,P

∗
ie) as the material state associated to e, defined as the material

data point closest to the current local mechanical state ze = (Fe,Pe):

de (ze, z
∗
ie) ≤ de (ze, zi) , ∀e ∈ [1 . . M ], ∀zi ∈ De

loc. (35)

The integer index ie is then the actual optimization variable. It maps the eth integration
point to the optimal ith state pair in De

loc.
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• Let us now consider the stage where the material state z∗ = {z∗ie = (F ∗
ie,P

∗
ie)}Me=1 ∈ D

is determined. (31) can then be expressed as a constrained minimization problem.
The solution set Smec of mechanical states is then given as

Smec(z∗) = argmin
z∈Z

M∑

e=1

we de(ze, z
∗
ie) (36a)

subject to

Fe = ∇e
0 u+ I, ∀e ∈ [1 . . M ], (36b)

ua · ei − uD
α = 0, ∀(a, i) : α(a, i) ∈ D, (36c)

M∑

e=1

we P
e
iJ Bea

J − T ext
a · ei = 0, ∀(a, i), α(a, i) ̸∈ D, (36d)

re = ϵ :
(
FeP

T
e

)
= 0, ∀e ∈ [1 . . M ], (36e)

where, in (36d), the Einstein summation convention on repeated indices has been used.

As compared to the Lagrangian (small strain) formulation of [29] ([9]), the first mini-
mization problem (34) is unchanged, except for the different local phase space, thanks to the
quadratic deviation functions (16): the Green-Lagrange (linearized) strain tensor is merely
replaced by the deformation gradient tensor, while the second Piola-Kirchhoff (Cauchy)
stress tensor is substituted with the first Piola-Kirchhoff stress tensor. The second mini-
mization problem (36) however differs from its Lagrangian counterpart in two ways: (i) the
compatibility constraint (36b) is linear with respect to u, and (ii) the conservation of angu-
lar momentum (36e) constitutes an additional constraint to the minimization problem, at
integration points. The former feature is very advantageous but the latter one is difficult to
implement.

On the one hand, the optimization of the material states is addressed with a tree-based
nearest neighbor search algorithm, taking advantage of the quadratic deviation functions
(16). As aforementioned, this approach drastically diminishes the computational cost of
this part of the data-driven solver (DD solver). Indeed, the local phase space Rn×n × Rn×n

consisting of pairs of non-symmetric tensors in dimension n, it can be recast into the standard
Euclidean space R2n2

, using the Mandel vector representation of the deformation gradient
and stress tensors [32]. In that case, the search for nearest neighbor is to be performed M
times (for every integration point) in a database of m samples of dimension 2n2. Using a
brute-force search algorithm, this task grows as O[Mm]. With a tree-based data structure,
the computational cost can be reduced to O[M logm] [33]. In practical DDCM applications,
m≫M and the same material database is used for all integration points in the mesh (when
a single material is considered); the tree-based data structure can be initialized once and
for all at the beginning of the simulation. This approach thus provides a substantial gain
in computation time. The interface that we used in [31] and herein, developed by [34],
requires the data to be transformed so that the data-driven distance in local phase space

12



Rn×n×Rn×n is equivalent to the Euclidean distance in R2n2
. We refer to this transformation

as the Euclidean mapping, which is detailed in Appendix B.
On the other hand, we could not address the constrained minimization of the mechan-

ical state with the same approach as in [9, 29, 31]: the bi-linearity and local nature of the
rotational equilibrium prevented us from using the method of Lagrange multipliers. Such
an approach would add many unknowns to the numerical system as one would need an
additional Lagrange multiplier vector attached to the integration points. Moreover, the in-
jection of the stress correction equation as in [31] into the stationary equations would yield
intractable residual vectors. As the addition of unknowns is not favorable, we turned to
penalty methods. We elaborated an augmented Lagrangian approach, which offers more ro-
bustness than the quadratic penalty function method [35]. The details of the implementation
are given next.

2.5. Augmented Lagrangian approach

The compatibility constraint (36b) is directly enforced by replacing the deformation
gradient with its relationship to the displacement field. The unknowns in (36) then become
the displacement field u(X) and the stress field P (X). Thanks to the FE discretization,
the actual unknowns are the nodal displacements {ua}Na=1 and the values of the stress tensor

at the integration points {Pe}Me=1. These are recast into arrays u and P , of shape Nn × 1
and Mn2 × 1 respectively, as

u = [u1,1, u1,2, u1,3, . . . , ua,1, ua,2, ua,3, . . . , uN,1, uN,2, uN,n]
T (37a)

P =
[
P 1
11, P

1
12, P

1
13, P

1
21, P

1
22, . . . P

1
33, . . . , (37b)

P e
11, P

e
12, P

e
13, P

e
21, P

e
22, . . . P

e
33, . . . , (37c)

PM
11 , P

M
12 , P

M
13 , P

M
21 , P

M
22 , . . . P

M
33

]T
, (37d)

where ua,i is the displacement of node a in direction i and P e
ij is the (i, j)-th component of

the stress tensor Pe. The unknown array x is the concatenation of u and P

x =

(
u
P

)
. (38)

For a two-dimensional problem (n = 2), the array x is obviously reduced accordingly. In
general, the total number of independent variables to determine in the minimization is then
(Nn)× (Mn2). The objective function of the minimization problem is denoted f(u, P ) and
writes

f(u, P ) =
M∑

e=1

we de (V (Fe(u)− F ∗
ie) + V (Pe − P ∗

ie)) . (39)

The remaining minimization constraints to enforce are (i) the Dirichlet conditions (36c), (ii)
the translational equilibrium (36d) and (iii) the conservation of angular momentum (36e).
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In like manner, we store these constraints in dedicated arrays, defined respectively as

hD = Su− uD (40a)

hteq = B̄TWP − T̄ ext (40b)

hreq = [r1,1, · · · , re,i, · · · , rM,nr ]
T , (40c)

where S is a nD×(Nn) selection matrix of 0 and 1 (Skα = 1 if α = αk ∈ D and 0 otherwise),
the matrix B collects the vectorsBea and encodes the geometry and connectivity of the mesh,
W is the diagonal matrix of weights we such that WP =

∑M
e=1 weP

e
ij, and T ext is the array

of nodal external applied forces, flattened in like manner as u. The bar symbol ·̄ over B and
T ext means that they have been reduced to the degrees of freedom only. Finally, nr is the
dimension of the vector re measuring the conservation of angular momentum (see (36e)). In
short, nr = 1 for a two-dimensional problem and nr = 3 for a three-dimensional problem.
Then, hD is an array of shape (nD × 1), hteq is an array of shape (ndof × 1) and hreq is an
array of shape ((Mnr) × 1), with ndof the total number of degrees of freedom (note that
ndof+nD = Nn). With each type of constraints, we associate a dedicated penalty parameter
and a Lagrange multiplier vector of appropriate shape, as summarized in Table 1.

Table 1: Penalty parameters and Lagrange multipliers associated with the optimization constraints of the
nominal formulation.
Constraint Penalty parameter Lagrange multiplier
Dirichlet conditions
hD = Su− uD

cD λ, shape (nD × 1)

Translational equilibrium
hteq = B̄TWP − T̄ ext

cteq η, shape (ndof × 1)

Angular momentum
hreq = [[re]i]

creq µ, shape (Mnr × 1)

The constrained minimization problem (36) is then conveniently re-written as

minimize f(u, P ) subject to h =




hD

hteq

hreq


 = 0. (41)

The corresponding augmented Lagrangian function is

L(cD,cteq,creq)(x, (λ, η, µ)) = f(u, P ) +
1

2
cD|hD(x)|2 + 1

2
cteq|hteq(x)|2 + 1

2
creq|hreq(x)|2

− λThD(x)− ηThteq(x)− µThreq(x). (42)
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A typical iteration of the approach then writes3

λj+1 = λj − cDj h
D(xj), cDj+1 = βcDj (43a)

ηj+1 = ηj − cteqj hteq(xj), cteqj+1 = βcteqj (43b)

µj+1 = µj − creqj hreq(xj), creqj+1 = βcreqj (43c)

with xj the solution of the unconstrained minimization of L(cDj ,cteqj ,creqj )(x, (λj, ηj, µj)). The

iterations (43) stop when the Karush-Kuhn-Tucker (KKT) conditions are satisfied within a
given tolerance:

(
∇uf
∇Pf

)
(x)− (∇h(x))T



λ
η
µ


 < tol. (44)

The unconstrained minimization of the augmented Lagrangian function (42) is performed
with a Newton-Raphson (NR) scheme, considering that the gradient and Hessian matrix
can be explicitly derived and rather easily implemented. A typical NR iteration writes:

x(j+1) = x(j) + δx(j), (45a)

with

(
∇uL
∇PL

)
+

(
∇2
u L ∇P∇uL

∇u∇PL ∇2
PL

)(
x(j)
)
δx(j) = 0, (45b)

where the expressions of the gradient vectors ∇uL and ∇PL and Hessian matrices ∇2
u L,

∇P∇uL, ∇u∇PL, and ∇2
PL are given in Appendix A. Note that this approach requires to

build and solve a (n × N + nstates) × (n × N + nstates) linear system of algebraic equations
at every iteration of the NR scheme, every step of the augmented Lagrangian process, every
iteration of the data-driven alternated minimization, where nstates = n2 ×M is the number
of stress unknowns (n2 independent components in the stress tensor of all M integration
points).

2.6. Linear solver

A simpler version of the solver consists in enforcing the compatibility and translational
equilibrium only, i.e. minimizing the mechanical states in E0 instead of E . In that case, the
augmented Lagrangian function is reduced to

L(cD,cteq)(x, (λ, η)) = f(u, P ) +
1

2
cD|hD(x)|2 + 1

2
cteq|hteq(x)|2 − λThD(x)− ηThteq(x). (46)

3To be consistent with the physical interpretation of the Lagrange multiplier η derived in the small strain
or Lagrangian formulations, we chose to use “negative” Lagrange multipliers. The updating rule is modified
in consequence, without loss of consistency with the original method of [35]. The nodal vectors ηa are then
again interpreted as virtual displacements which, associated to a stiffness C, generate stresses that correct
the out-of-balance gap between the material stresses and the external nodal forces.
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The stationary equations yield two independent linear systems

∇uL = ∇uf + cD(∇uhD)T hD − (∇uhD)T λ = 0, (47a)

∇PL = ∇Pf + cteq(∇Phteq)T hteq − (∇Phteq)T η = 0. (47b)

The pseudo-stiffness matrix of the two systems are respectively of size Nn × Nn and
nstates × nstates. This is computationally more advantageous than the complete nominal
solver derived above. However, we need to assess whether the conservation of angular mo-
mentum is sufficiently enforced in the material data set D rather than in the constraint
set E . Indeed, the constraint of rotational equilibrium re = 0 is purely local. It could then
be verified at each integration point in the mesh thanks to the associated material state
instead of enforced in the minimization of the mechanical state.

2.7. Algorithms and summary

The complete augmented Lagrangian scheme is listed in Algorithm 1. It fits in stage 2
of the alternated minimization listed in Algorithm 2. Note that the DD solver Algorithm 2
is embedded in an incremental loading loop, not shown.

Along with its Lagrangian counterpart[31], the finite strain data-driven solver in the
nominal formulation presents two main features:

• the computation of the mechanical states in two steps, namely

– the resolution of the constrained minimization problem (41) with an augmented
Lagrangian method inspired from [35], which uses a NR scheme for the minimiza-
tion of the augmented Lagrangian function,

– the computation of the local deformation gradients only, via the compatibility
(25a), the stress being up-to-date as unknowns of the above minimization;

• the nearest-neighbor search for the optimal states in the material database from (35),
using a tree-based search algorithm.

3. Numerical results

This section discusses some of the practical aspects in using finite strain data-driven
solvers. To this end, we build artificial material databases from a constitutive relation and
compare the data-driven results to classical finite element analysis achieved from the same
model. It is then expected that the data-driven solution recovers or at least converges to the
classical solution, which we take as a reference solution. To reduce the dimensionality of the
phase space, we only consider two-dimensional problems, assuming plane stress conditions
and incompressibility of the material. In the following, all tensors are then two-dimensional.

To generate the standard FE response, we use the standard neo-Hookean model. As
shown in Appendix C, under plane stress and incompressibility constraints, the in-plane
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Algorithm 1 Augmented Lagrangian solver for the nominal formulation of the data-driven
constrained minimization problem.

INPUT: Results from the (k − 1)-th iteration of the data-driven solver.
OUTPUT: Displacement and stress fields satisfying mechanically admissibility.
Require: Initial penalty parameters c0D, c

teq
0 , creq0 , initial Lagrange multipliers λ0, η0, µ0, tol-

erance parameter rtol > 0, maximum number of iterations jmax.
1: j ← 0
2: xj=0 ← u(k−1), P (k−1) ▶ start from the results of the previous data-driven iteration
3: cDj=0, c

teq
j=0, c

req
j=0 ← cD0 , c

teq
0 , creq0

4: λj=0, ηj=0, µj=0 ← λ0, η0, µ0

5: KKTj=0 ← ∥∇f(x0)− [λT
0 , η

T
0 , µ

T
0 ]∇h(x0)∥2 ▶ initialize KKT conditions

6: for j = 1 . . jmax do ▶ Augmented Lagrangian iterations
7: xj ← minimize LcDj ,cteqj ,creqj

(x, (λj, ηj, µj)) ▶ NR (45) with initial guess xj−1

8: KKTj ← ∥∇f(xj)− [λT
j , η

T
j , µ

T
j ]∇h(xj)∥2 ▶ update KKT conditions

9: if KKTj ≤ rtolKKT0 or KKTj > KKTj−1 then
10: return xj

11: else
update Lagrange multipliers

12: λj+1 ← λj − cDj h
D(xj)

13: ηj+1 ← ηj − cteqj hteq(xj)
14: µj+1 ← µj − creqj hreq(xj)

update penalty parameters [35]
15: if ∥h(xj)∥2 > γ∥h(xj−1)∥2 then
16: cj+1 ← βcj
17: else
18: cj+1 ← cj
19: end if
20: end if
21: end for
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Algorithm 2 Data-driven solver - nominal formulation.

INPUT: A mesh of M integration points and N nodes, boundary and loading conditions,
material data set D.

OUTPUT: mechanical response (displacements {ua}Na=1, mechanical states {(Fe,Pe)}Me=1),

material states {(F ∗
ie,P

∗
ie)}Me=1.

Require: maximum number of iterations kmax.

1) Initialize all material states and mapping
1: k ← 0
2: for e = 1 . . M do
3: ie(0) ← i, i ∈ [1 . . me]
4: end for

5: u(k=0) ← 0 and P (k=0) ← 0
6: for k = 1 . . kmax do

2) Compute mechanical states
2)a. Minimize (41)

7: (u(k), P (k))← x from Algorithm 1
2)b. Update mechanical states

8: for e = 1 . . M do
9: P

(k)
e ← P (k)

10: F
(k)
e ←∇e

0 u
(k) + I

11: end for
3) Update material states and mapping

12: for e = 1 . . M do
13: ie(k) ←

(
F ∗

ie(k)
,P ∗

ie(k)

)
from (35)

14: end for
4) Test convergence

15: if ie(k) = ie(k−1) for all e = 1 . . M then
16: u← u(k)

17: (Fe,Pe)← (F
(k)
e ,P

(k)
e ) for all e = 1 . . M

18: exit.
19: else
20: ie(k+1) ← ie(k) for all e = 1 . . M
21: end if
22: end for
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second Piola-Kirchhoff stress tensor S ∈ R2×2
sym is expressed as a function of the in-plane right

Cauchy-Green stretch tensor C = F TF ∈ R2×2
sym by

S = µ
(
I − (detC)−1C−1

)
, (48)

where µ = 1.2MPa is the shear modulus.
We investigate three 2D test cases: (i) uniaxial tension of a thin membrane, (ii) uniaxial

tension of a thin membrane with the bottom clamped, and (iii) more complex loading
(simultaneous tension and shear) of a thin membrane with a hole.

3.1. Validation: uniaxial tension

The first test case is used to validate the nominal DD solver in the simplest solicita-
tion possible: a uniaxial tensile test of a thin hyperelastic membrane. It also enables the
visualization of the phase space in two dimensions and an easy synthetic generation of the
database. Indeed, the stress tensors only have one non-zero component and the deformation-
gradient tensors are entirely characterized by two inter-dependent quantities (longitudinal
and transversal stretch ratios).

3.1.1. Computational problem

We consider a rectangular thin membrane of dimensions l × h = 5 × 10mm2, under
plane stress conditions. The problem is then reduced to two dimensions. The geometry
and mesh of the sample are shown in Fig. 1. The mesh comprises N = 36 nodes and 23

Figure 1: Geometry, boundary conditions and mesh for the uniaxial tensile test.

bi-linear quadrangular elements with 4 integration points each, which amounts to M = 92
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integration points. The boundary conditions are also represented in Fig. 1 and write

ua · eY = 0, ∀a ∈ [1 . . N ] : Xa = (Xa, 0) (49a)

ua · eX = 0, ∀a ∈ [1 . . N ] : Xa = (0, Ya) (49b)

ua · eY = uD, ∀a ∈ [1 . . N ] : Xa = (Xa, h) (49c)

with uD = 5mm which corresponds to a stretch λref
Y = 1.5.

The material database is generated by a sampling of the standard uniaxial stretch-stress
curve of the neo-Hookean model. From (48) and the relation P = FS, it writes

P (λY ) = µ
(
λY − λ−2

Y

)
eY ⊗ eY , (50)

with
F (λY ) = λX eX ⊗ eX + λY eY ⊗ eY . (51)

where λY and λX = 1/
√
λY are the longitudinal and transversal stretch ratios respectively.

All integration points in the mesh share the same local material data set Dloc, thus defined
as

Dloc = {(F ,P ) | F = F (λY ) from (51), P = P (λY ) from (50)} . (52)

The material database Dm
loc results from a sampling of m points in Dloc, i.e. a sampling of m

longitudinal stretch ratios λY , evenly spaced in the interval [0.9, 2]. We generate two types
of databases:

1. A first database D100
loc , which contains the reference solution at λref

Y = 1.5 together with
99 other material data points.

2. A second family of database, which does not contain the reference solution and consists
of several samplings of increasing density: m ∈ {11, 51, 101, 1001, 10 001, 100 001}.

Finally, the parameters of the DD solver are as follows:

• The amplitude of the scaling parameter C is set to the linearized Young’s modulus of
the model: C = 3µ.

• The material states are initialized to zero deformation state (see Line 3 in Algorithm 2):
(F ∗

ie,P
∗
ie) = (I,0), ∀e ∈ [1 . . M ],

• The initial penalty parameters cD0 , c
t
0, c

m
0 are respectively set to 1 × 103C, 1 × 103C,

C. The initial Lagrange multipliers λ0, η0, µ0 are all set to zero (see Lines 3 and 4 in
Algorithm 1).

3.1.2. Results

First, we demonstrate in Fig. 2 that the reference solution is recovered for the material
database D100

loc , which contains the reference solution. The DD solver converged within only
k = 5 iterations of the alternated minimization. In addition, the mechanical states (rev
circles) always remain on the constraint set throughout the iterations, while the material
states are successively selected as the closest data points. This is illustrated by the projection
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PD and PE on the material data set and on the constraint set (dotted and solid gray lines)
respectively. On the one hand, the slope of the projection PD is controlled by the C-
parameter. On the other hand, the slope of the projection PE reveals that the computation
of the mechanical states for this displacement-controlled problem boils down to a correction
of the stretch ratio λY . In Fig. 2, we also illustrate the deformation of the mesh throughout
the iterations (purple lines). We can see that, in that case, the first iteration consists
in enforcing the boundary conditions (semi-transparent purple lines at the furthest right
delimits the deformed mesh at the end of the first iteration k = 1).

After this sanity check with D100
loc , we proceed to show the results obtained from material

data sets which do not contain the reference solution. In Fig. 3, we plot the root-mean-
square (RMS) percent errors in strain and stress against the size of the material database,
re-defined as

F(%RMS) =

(∑M
e=1weV

(
Fe − F ref

e

)
∑M

e=1 weV (F ref
e )

) 1
2

(53a)

P(%RMS) =

(∑M
e=1weV

∗ (Pe − P ref
e

)
∑M

e=1weV ∗ (P ref
e )

) 1
2

, (53b)

with V and V ∗ as in (16). As expected, both errors converge to zero with increasing number
of material data points4.

This very simple example has already shown interesting features of the finite strain data-
driven solver:

• when the reference solution is in the data set, the DD solver is able to recover it;

• when the intersection between the constraint set and the material data set is empty,
the data-driven solution improves with the number of material data points, as the best
material data point gets increasingly closer to the reference solution.

3.2. Non homogeneous case: clamped tension

Let us now consider a slightly more complex problem. We perform data-driven simula-
tions of a thin membrane in tension, which is clamped at the bottom. The mechanical fields
should then be homogeneous in most of the structure, except near the clamped edge.

3.2.1. Computational problem

The problem is again two dimensional, as we make the assumption of plane stress con-
ditions. The geometry, mesh and loading of the sample are given in Fig. 4. The mesh
comprises N = 340 nodes and 378 bi-linear quadrangular elements with 4 integration points

4Note that, in the pre-asymptotic regime, the simulations can lead to the same solution depending on
the value of C, as can be seen from the results corresponding to D51

loc and D101
loc in Fig. 3. Such numerical

artifacts are not relevant to the convergence of the method and were thus ignored to fit the convergence
slope (solid line in Fig. 3).
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Figure 2: Physical space vs phase space representation of the data-driven results. Uniaxial tensile test,
obtained for the data set D100

loc , which contains the reference solution. In phase space, we only plot the
mechanical and material state of the corresponding rev colored element in physical space. The results from
previous iterations are semi-transparent. The blue diamond indicates the initial material state. Note that,
here, the represented constraint set is a projection of it in the (λY , PyY ) plane. It is actually much more
complex.
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Figure 3: Convergence of the RMS percent errors in strain and stress with respect to the size of the database,
for the uniaxial tensile test.

each, which amounts to M = 1512 integration points. The boundary conditions are also
represented in Fig. 4 and write

ua = 0, ∀a ∈ [1 . . N ] : Xa = (Xa, 0); (54)

ua · eY = uD, ∀a ∈ [1 . . N ] : Xa = (Xa, h). (55)

with uD = 5mm. In that case, the simulation is performed incrementally: the displacements
are gradually prescribed in 10 regular steps.

The material database is only constituted with the reference FE solution of the problem,
obtained with the incompressible neoHookean model (48). For all 10 load steps, we concate-
nate the reference deformation gradient-stress state of all integration points into the local
material data set as

Dloc =
{{(

F ref,t
e ,P ref,t

e

)}M
e=1

}10

t=1
(56)

Note that the database then comprises 15 120 material data points.
The DD solution is achieved with the following parameters:

• Different initialization methods for the material states are evaluated:

“zero” all material states are initialized to the zero-deformation state:
(F ∗

ie,P
∗
ie) = (I,0), ∀e.

“random” all material states are initialized to the same random data point:
(F ∗

ie,P
∗
ie) = (F ′

ir ,P
′
ir), ∀e, with ir a random integer in [1 . . m].

“random point-wise” each material state is initialized to a different random data
point: (F ∗

ie,P
∗
ie) = (F ′

er ,P
′
er), ∀e, with er a different random integer in [1 . . m]

for each e.
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Figure 4: Geometry, boundary conditions and mesh for the clamped tensile test.

“reference” each material state is initialized to the corresponding reference solution:
(F ∗

ie,P
∗
ie) = (F ref

e ,P ref
e ), ∀e.

Note that this initialization holds for the first loading step only; afterwards, the initial
material state is set to the converged material state of the previous loading step:(
F

∗,(0)
ie ,P

∗,(0)
ie

)(t)
=
(
F

∗,(kmax)
ie ,P

∗,(kmax)
ie

)(t−1)

.

• The initial penalty parameters cD0 , c
t
0, c

m
0 are respectively set to 1 × 103C, 1 × 103C,

C. The initial Lagrange multipliers λ0, η0, µ0 are all set to zero, as previously.

• All simulations are performed on a laptop with the following specifications: processor
Intel Core i5-6200U CPU @ 2.30GHz × 4, with 15.5Gio of RAM.

With these settings, two kinds of data-driven simulations are performed: (i) using the nom-
inal solver, (ii) using the so-called “linear” solver, where the conservation of angular mo-
mentum is not enforced (see Section 2.6). The latter test is aimed at assessing whether this
condition must be enforced in the constraint set when it is already satisfied by the material
data set (see [30, Theorem 3.5]).

3.2.2. Results and discussion

We first consider the results obtained with the “zero” initialization method. Contrary
to the previous example, the reference solution is not recovered in that case: the value of
the objective function at convergence is not a numerical zero, as listed in Table 2. However,
the solution is satisfactory enough, as shown in Fig. 5, by the maps of the Von Mises norm
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Table 2: Value of the objective function at convergence, for the last load step of the clamped tensile test.
The iterations correspond to the total number of local data assignment iterations throughout all 10 load
steps.

Formulation Objective function Iterations Computation time
Nominal 1.74× 10−3MPamm2 256 94min
“Linear” nominal 3.75× 10−3MPamm2 175 19min

of the Cauchy stress tensors (a good indicator of both strain and stress prediction since
σ = J−1PF T ).

When comparing all initialization methods in Fig. 6, we demonstrate that the alternated
minimization can diverge if the initial guess is too far from the solution. On the left-hand
bottom corner of Fig. 6, we can see that, as expected, the “reference” initialization converged
within one iteration and provides the global minimum of the objective function, which is a
numerical zero. On the upper part of Fig. 6, we show the convergence of 8 and 10 different
“random” and “random point-wise” initializations respectively. The initial value of the
objective function (at k = 1) in these cases is already very high (about 1 × 105MPamm2)
and most of the simulations diverged (as indicated by a cross at the end of a line)5. The
most robust and accurate choice is “zero”, as can be seen from the center part of Fig. 6:
the objective function smoothly decays from 2.24× 10−1MPamm2 to 2.00× 10−4MPamm2

within k = 19 iterations. The advantage of the “zero” method was expected, as we also
set the initial guess for the displacements u and mechanical stress P to zero (see Line 5 in
Algorithm 2). This choice was motivated by the fact that the DD solver is embedded in an
incremental loading loop, as standard FE nonlinear solvers. In addition, we can show that
such an initialization method corresponds to a linear elastic first estimate of the mechanical
states, derived from the boundary and loading conditions only. Conversely, non-zero material
states act as pre-strain and pre-stress conditions on the structure. Their values should then
be consistent with the external loading. In an incremental loading procedure, it thus makes
sense to set them to zero, as the first loading conditions will be low. This analysis only
aims at showing that the “zero” initialization method is a safer practice than the “random”
initialization suggested in previous studies, when using the alternated minimization. Indeed,
the database used herein is very sparse and the alternated minimization is crude; with the
development of more robust DD solvers and databases of infinite size and richness, the initial
guess should not impact the results in the future.

We now evaluate the need to enforce the conservation of angular momentum in the
constraint set E . We refer to the vector r = ϵ :

(
FP T

)
in (9) as the rotational residual.

In addition, we define the rotational residual percent error ϵ(%rot) as the ratio between the

5In fact, the initial material state is so far from the solution that the Newton-Raphson diverges right
away. However, we let the simulation go on a bit to see if the alternated minimization can recover the path
towards the solution, before stopping the simulation. This explains why the value of the objective function
is increasing in some cases. Note that this issue is not possible in small strain as the minimization problem
is quadratic with linear constraints.
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Figure 5: Von Mises norm of the Cauchy stress tensor, plotted on the deformed configuration. Only 18 filled-
isovalues are shown. (a) FE reference solution. (b) Nominal solver solution. (c) “Linear” solver solution.
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Figure 6: Results are given for the first load step only. Convergence of the data-driven finite strain nominal
solver for the clamped tensile test. Comparison of different initialization methods: “zero” initialization is
in solid line, “random” initializations are in dashed lines and “random point-wise” in dotted lines. A dot
(respectively a cross) at the end of a line indicates that the solver did (respectively did not) converge.

rotational residual and a reference strain energy density:

ϵ(%rot) =
∥ϵ :

(
FP T

)
∥2

F : P
. (57)

Note that, in two-dimensional problems, the rotational residual is a one-dimensional vector,
i.e. a scalar; specifically,

∥ϵ :
(
FP T

)
∥2 = |F e

11P
e
21 + F e

12P
e
22 − (F e

21P
e
11 + F e

22P
e
12) |. (58)

The rotational residual percent error is computed for both DD solutions, obtained from the
nominal and “linear” solvers respectively. The results are given in Fig. 7, together with the
rotational residual of the “linear” solver solution. As can be seen from Fig. 7(b), the “linear”
solver does not recover the conservation of angular momentum. However, the error does not
exceed 10% of the stored strain energy density F : P . Let recall that in the present case,
the material database satisfies moment equilibrium since it was obtained from standard FE
computations.

3.3. More complex case: membrane with a hole

In the previous example, the strain and stress fields were homogeneous in most of the
structure, which could explain the relatively low impact of ignoring the rotational equilibrium
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Figure 7: Conservation of angular momentum in the data-driven results for the clamped tensile test. (a)
and (b) Rotational residual percent error. (a) Nominal solver solution. (b) “Linear” solver solution. The
color map is in log scale. (c) Rotation residual (one-dimensional vector plotted as a scalar) for the “linear”
solver.

constraint. We thus evaluate the solver with a more heterogeneous case.

3.3.1. Computational problem

The geometry, mesh and loading of the sample are given in Fig. 8. The mesh com-
prises N = 1092 nodes and 1015 bi-linear quadrangular elements with 4 integration points
each, which amounts to M = 4060 integration points. The boundary conditions are also
represented in Fig. 8 and write

ua = 0, ∀a ∈ [1 . . N ] : Xa = (Xa, 0); (59)

ua = uD
XeX + uY

DeY , ∀a ∈ [1 . . N ] : Xa = (Xa, h); (60)

with uD
X = 30mm and uD

Y = 5mm. The simulation is again performed incrementally: the
displacements are gradually prescribed in 40 regular steps.
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Figure 8: Geometry, boundary conditions and mesh for the membrane with a hole.

As previously, the material database is only constituted with the FE reference solution
of the problem, obtained with the incompressible neoHookean model (48). For all 40 load
steps, we concatenate the reference deformation gradient-stress state of all integration points
into the local material data set as

Dloc =
{{(

F ref,t
e ,P ref,t

e

)}M
e=1

}40

t=1
(61)

Note that the database then comprises 162 400 material data points.
Based on the preceding analysis, the solution is achieved from the “zero” initialization

method only. All other parameters of the simulations are unchanged from the previous
example.

3.3.2. Results and discussion

Again the global minimum of the problem is not found by the alternated minimization,
as shown by the values of the objective function listed in Table 3. Note that the computation
time was divided by a factor 2 with the “linear” solver.

We again measure the rotational residual percent error in Fig. 9. In this more complex
case, the error made by the “linear” solver is higher: it is mostly comprised between 1%
and 10% but it can reach over 100% around the holes.

The local error at integration points also has an impact on the global response of the
structure, as measured by the loading curve of the simulation. We compare in Fig. 10
the displacement-force response of the clampled tensile test with the one of the complex
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Figure 9: Conservation of angular momentum in the data-driven results for the membrane with a hole. (a)
and (b) Rotational residual percent error. (a) Nominal solver solution. (b) “Linear” solver solution. The
color map is in log scale. (c) Rotation residual (one-dimensional vector plotted as a scalar) for the “linear”
solver.
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Table 3: Value of the objective function at convergence, for the last load step of the complex loading case.
The iterations correspond to the total number of local data assignment iterations throughout all of the 40
load steps.

Formulation Objective function Iterations Computation time
Nominal 2.46× 10−1MPamm2 962 20.22 h
“Linear” nominal 3.98× 10−1MPamm2 1191 12.1 h

case for both solvers. In the clamped tensile test where most of the structure is subject

Figure 10: Loading curves for the clamped tensile test (a) and the complex case (b). In the legend, “nom”
designates the nominal solver, “lin” designates the “linear” nominal solver and “ref” corresponds to the FE
reference solution.

to uniaxial tension only, the impact of the error in rotational equilibrium on the reaction
forces is invisible. Conversely, the local error made in the membrane with a hole weakens
the accuracy of the reaction forces at the grip.

Finally, we recall that the conservation of angular momentum is, in theory, equivalent
to the principle of material-frame indifference. Hence, it could be enforced in the material
data set, rather than in the constraint set, by enriching the database with the orbits of every
material data points. That is, the local material data set is now:

Dloc =
{{

(QF ref
e ,QP ref

e )
}M
e=1

}40

t=1
, (62)

with Q ∈ SO(2). A discretization of SO(2) is easily parameterized by one angle θ ∈ [0, 180).
We compare the results obtained with three databases of increasing fidelity to material frame-
indifference, generated via regular samplings of θ of decreasing step ∆θ ∈ {15°; 10°; 5°}. In
particular, we analyze in Fig. 11 the statistics of the rotational residual for each database.
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As can be seen from the figure, the results are not improved with this method (in particular,
median and mean values are almost unchanged).

−0.2 −0.1 0.0 0.1

Rotational residual E :
(
FPT

)
(MPa)

∆θ = 5◦

∆θ = 10◦

∆θ = 15◦

No orbit

10%

10%

10%

10%

(a)

−0.2 −0.1 0.0 0.1

Rotational residual E :
(
FPT

)
(MPa)

(b)

Figure 11: Rotational residual at every integration point. The databases are obtained with different angular
discretizations ∆θ of the orbit Q ∈ SO(2). (a) Histogram of the data, in percent of number of integration
points. At the furthest left, a bar corresponding to 10% of occurrence is given for scale. (b) The box extends
from the 25th and 75th percentile of the data, with a line at the median. The rev circle stands for the mean
value. The whiskers show the 1th and 99th percentiles. Small purple dots represent data points out of that
range (fliers).

4. Final remarks

The data-driven computing paradigm of [9] has been extended to finite strain elasticity by
means of two competing formulations: (i) the so-called Lagrangian approach of [29] consists
in minimizing a quadratic distance between Green-Lagrange strain–second Piola-Kirchhoff
stress tensor pairs (E,S) in phase space, subject to nonlinear mechanical constraints; (ii)
the so-called nominal definition of [30] minimizes a more general (p, q)−distance between de-
formation gradient–first Piola-Kirchhoff stress tensor pairs (F ,P ), under linear constraints
of compatibility and translational equilibrium, and bi-linear constraint of momentum bal-
ance. In the present work, we developed a finite element solver for the latter, inspired by our
revisiting of the former in [31]. The nominal solver, as its Lagrangian counterpart, relies on
the alternated minimization introduced in the original DDCM [9]. The optimization of the
material states is conducted with an efficient tree-based nearest neighbor search algorithm,
while the constrained minimization of the mechanical states is achieved from an augmented
Lagrangian approach. We successfully assessed our solver with the aid of three sanity check
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examples, in two dimensions. In addition, we demonstrated that the initialization of the
iterative process is better set to the zero deformation-stress state, as it is equivalent to
computing a first linear elastic estimate of stiffness C of the solution to the BVP.

Along with the complete nominal formulation, we investigated the possibility to relax
the enforcement of conservation of angular momentum, as it constitutes the only nonlinear
constraint to the minimization problem. The solver is then simplified into a so-called “lin-
ear” solver, which provides a substantial gain in computational cost. Notwithstanding, its
systematic use is subject to the upcoming proof that the consequent error in moment balance
is bounded. For example, it should be compared with the error made when the data set is
noisy. In this work, we explored a workaround which consists in encoding material-frame
indifference in the material data set instead: we enriched material data points with their
orbits in SO(2), in an off-line stage. This method did not lower the error in conservation of
angular momentum as expected. Another possibility could be to minimize the orbit of the
material data points in-line, in the search for the optimal material states, in like manner
as the approach presented for geometrically linear elasticity in [9]. Until future investiga-
tion completely elucidates this question, we recommend enforcing conservation of angular
momentum as a constraint, to avoid misleading results.

The nominal formulation (using ((F ,P )) allows for mathematical proofs of convergence,
as opposed to the Lagrangian formulation (using (E,S)). However, numerical restrictions
employed here (p = q = 2) prevented us from evaluating the constitutive models suggested
in [30]. Future work should then focus on assessing the solver with general values of p and q.

Future work could also help improving computational performance, as the current nomi-
nal solver is more costly than the Lagrangian solver presented in [31]. We verified this claim
by conducting equivalent Lagrangian simulations to the examples given in Section 3. The
computational time is then much lower (approximately 13 times lower, data not shown).
Both approaches require a nonlinear system of algebraic equations to be solved. Yet the size
of the nominal system is larger than that of the Lagrangian formulation, as the stress un-
knowns are more numerous and lie at integration points. In addition, the Dirichlet boundary
conditions could be enforced by direct substitution instead of the Lagrange multiplier and
penalty term used herein.

To conclude, the present work was merely a proof of concept: we provided a valid FE
solver for data-driven computational mechanics in finite strain. Future work is focusing
on evaluating the solver with more complex material databases, as in [31], and in three-
dimensional problems. Indeed, we believe that this formulation is worth exploring further
as it paves the way for anelastic large strain formulations, which rely on the multiplicative
split of the deformation gradient tensor.
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Appendix A. Expressions of the gradient and Hessian matrix of the Augmented
Lagrangian function

Appendix A.1. Gradient

The gradient of the augmented Lagrangian function writes

∇L =

(
∇uL
∇PL

)
(A.1)

with

∇uL = ∇uf + cD(∇uhD)T hD + creq(∇uhreq)T hreq − (∇uhD)T λ− (∇uhreq)T µ (A.2a)

∇PL = ∇Pf + cteq(∇Phteq)T hteq + creq(∇Phreq)T hreq − (∇Phteq)T η − (∇Phreq)T µ (A.2b)

where the different terms are defined in what follows.

• The gradients ∇uf and ∇Pf of the objective function respectively write

[∇uf ]α =
∂f

∂ua,i

=
M∑

e=1

weC∆F e
iJ B

ea
J , ∀α(a, i) (A.3a)

[∇Pf ]ι =
∂f

∂P e
iJ

= weC
−1∆P e

iJ , ∀ι(e, i, J) (A.3b)

with ∆Fe = Fe −F ∗
ie and ∆Pe = Pe −P ∗

ie, and Bea
J =

∂Na

∂XJ

(Xe). The integer α is the

global numeration of the displacement array u and ι is the global numeration of the
stress array P , related to the local numerations as

α(a, i) = (a− 1)n+ i (A.4a)

ι(e, i, J) = (e− 1)n2 + (i− 1)n+ J (A.4b)

with a the node, i, J the directions, e the integration point and n the dimension of the
problem.

• The gradient ∇uhD of the Dirichlet boundary conditions write

∇uhD = S (A.5)

• The gradient ∇Phteq of the translational equilibrium constraint is defined as

∇Phteq = B̄TW (A.6)
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• To express the gradients of the rotational equilibrium constraint, it easier to resort to
indicial notation. The gradients ∇uhreq and ∇Phreq then write

[∇uhreq]c,α =
∂re,i
∂ua,j

= [ϵ]ijk P
e
kLB

ea
L = [ϵ · (PeBea)]ij , ∀c(e, i), α(a, j) (A.7a)

[∇Phreq]c,ι =
∂re,i
∂P e

kL

= [ϵ]ijk F
e
jL = [−ϵ · Fe]ikL , ∀c(e, i), ι(e, k, L) (A.7b)

where c is the global numeration of the conservation of angular momentum con-
straint hreq, related to the integration point e and the direction i ∈ [1 . . nr] as

c(e, i) = (e− 1)n2 + i. (A.8)

Appendix A.2. Hessian matrix
We proceed to give the expressions of each term in the Hessian matrix

∇2L =

(
∇2
u L ∇P∇uL

∇u∇PL ∇2
PL

)
(A.9)

of the NR iteration (45).

• The diagonal blocks respectively write

∇2
u L = ∇2

u f + cD(∇uhD)T ∇uhD + creq(∇uhreq)T ∇uhreq (A.10a)

∇2
PL = ∇2

P f + cteq(∇Phteq)T ∇Phteq + creq(∇Phreq)T ∇Phreq (A.10b)

where the hessian blocks of the objective function are defined as

[∇2
u f ]α1,α2 =

∂2f

∂ub,j∂ua,i

=
M∑

e=1

weC

(
n∑

K=1

Bea
K Beb

K

)
δij,

∀α1 = α(a, i), α2 = α(b, j) (A.11a)

[∇2
P f ]ι1,ι2 =

∂2f

∂P e
iJ∂P

e
kL

= weC
−1 δikδJL,

∀ι1 = ι(e, i, J), ι2 = ι(e, k, L) (A.11b)

whereMab is the number of integration points e ∋ a, b connected to both nodes a and b.

• The anti-diagonal blocks of the tangent matrix only involve the gradient and Hessian
of the bi-linear constraint hreq, as it is the only one coupling u and P . The two blocks
are symmetrical to one another such that

∇P∇uL = creq
(
(∇uhreq)T ∇Phreq +∇P∇u (hreq · hreq)

)
−∇P∇u (µ · hreq) (A.12a)

∇u∇PL = (∇P∇uL)T (A.12b)

where the Hessian term of the constraint hreq is defined, for any array y of the same
size, as

[∇P∇u (y · hreq)]α,ι =
nr∑

i=1

yi ϵijk B
ea
L , ∀α(a, j), ι(e, k, L) (A.13)
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Appendix B. Euclidean mapping

The tree-based search algorithm interface [34] requires the data set and the query points
to sit in a standard Euclidean space. The local states ze ∈ Ze

loc, which consist of pairs of
second order tensors, must then be recast into a single vector, such that the DD distance
between two points in local phase space is equivalent to the Euclidean distance between their
respective transformed vectors. In the following, we give the corresponding transformation
for the nominal formulation, which relies on the Mandel notation presented in [32]. To
reduce the amount of notation the subscript e is omitted in this section.

Appendix B.1. Mandel notation

Let consider a second order tensor A ∈ Rn×n, in dimension n. We denote Ā ∈ Rn2
the

corresponding vector in Mandel notation. For n = 3, the components of Ā are related to A
as follows [32]

Ā =
[
A11 A22 A33 A23 A31 A12 A32 A13 A21

]T
, (B.1a)

with

Aij =

√
2

2
(Aij + Aji) , (B.1b)

Aij =

√
2

2
(Aij − Aji) . (B.1c)

Note that when A is symmetrical, then Aij = 0, ∀(i, j) and the Mandel vector Ā can be

reduced to its upper part in Rn(n−1). In particular, when n = 2, the Mandel notation of
A(2) ∈ R2×2 writes

Ā(2) =

{
[A11 A22 A12]

T if AT = A,

[A11 A22 A12 A21]
T otherwise.

(B.2)

Appendix B.2. Euclidean mapping

Provided that the C-parameter in the nominal distance is a scalar, the nominal Euclidean
mapping M is easily derived. The deformation gradient and first Piola-Kirchhoff stress
tensors are simply recast into their factorized Mandel form by

M : Rn×n × Rn×n → R2n2

(B.3)

z = (F ,P ) 7→ z̄ =

(
1√
2
C1/2 F̄

1√
2
C−1/2 P̄

)
. (B.4)

Thus,
V (F ) + V ∗(P ) = z̄ · z̄, (B.5)

with V and V ∗ the quadratic functions defined in (16).
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Appendix C. neo-Hookean model for incompressible plane stress problems

The standard incompressible neo-Hookean hyperelastic potential Ψ(C) is given as

Ψ(C) =
1

2
µ (trC − 3) , (C.1)

where C = F TF ∈ R3×3
sym is the right Cauchy-Green stretch tensor and µ is the shear

modulus. The second Piola-Kirchhoff stress tensor S ∈ R3×3
sym is expressed as a function of

the unknown hydrostatic pressure p [36]:

S = µIII
−1/3
C

(
I − 1

3
ICC

−1

)
+ pJC−1, (C.2)

where IC = trC and IIIC = detC are the first and third invariants of C respectively,
and J = detF . When the material is incompressible, J = 1, and plane stress conditions
are assumed, the hydrostatic pressure can be determined and (C.2) is reduced to a two-
dimensional constitutive model.

Specifically, if e3 is the plane stress direction, Se3 = 0 and the right Cauchy-Green
tensor C writes

C =



C11 C12 0
C21 C22 0
0 0 C33


 , (C.3)

where, from the incompressibility constraint J =
√
IIIC = 1,

C33 =
(
detC(2)

)−1
(C.4)

with C(2) ∈ R2×2
sym the two-dimensional left upper part of C in (C.3). Together with the plane

stress condition S33 = 0, (C.4) enables the pressure p (C.2) to be explicitly evaluated as

p =
1

3
µ
(
trC(2) − 2

(
detC(2)

)−1
)
. (C.5)

The in-plane components of the second Piola-Kirchhoff stress tensor are then determined
directly by the two-dimensional expression of the neo-Hookean model in plane stress and
incompressible conditions as

S(2) = µ
(
I(2) −

(
detC(2)

)−1
C−1

(2)

)
, (C.6)

where the subscript (2) indicates the 2× 2 components of a tensor.
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[14] A. Leygue, R. Seghir, J. Réthoré, M. Coret, E. Verron, L. Stainier, Non-parametric material state
field extraction from full field measurements, Comput Mech 64 (2) (2019) 501–509. doi:10.1007/

s00466-019-01725-z.
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