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Data-based derivation of material response
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Verron

GeM - Research Institute of Civil Engineering and Mechanics, UMR 6183, CNRS - Ecole
Centrale de Nantes, Université de Nantes, 1, rue de la Noé, 44321 Nantes, France

Abstract

This paper proposes a method to identify the strain-stress relation of non-
linear elastic materials, without any underlying constitutive equation. The
approach is based on the concept of Data Driven Computational Mechan-
ics recently introduced by Kirchdoerfer and Ortiz (Kirchdoerfer and Ortiz,
CMAME,304:81-101 (2016)). From a collection of non-homogeneous strain
fields, for example measured through Digital Image Correlation, the algo-
rithm builds a database of strain-stress couples that sample the mechanical
response of the material for the range of measured strains. The method
is first derived for truss structures and then extended to the case of small-
strain elasticity. The method accuracy, sensitivity to measurement noise and
parameters are discussed using manufactured data.

Keywords: Data Driven Computational Mechanics, Digital Image
Correlation, Constitutive Equation, Material response, Machine Learning

1. Introduction

Constitutive equations constitute a key concept in mechanical engineer-
ing as they relate strain and stress for a given material. The parameters
of a constitutive equation are usually adjusted considering a sufficient set
of experimental data and appropriate fitting procedures. Beyond the mere
description of the mechanical response, a constitutive equation has several
purposes:
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• it provides a smooth strain-stress relation in which experimental noise
has been smeared out,

• for given loading conditions, e.g. uniaxial extension, it both interpo-
lates between individual measurements and extrapolates the material
response,

• its tensorial nature naturally extends the stress-strain relation to mul-
tiaxial loading conditions that are difficult to attain experimentally.

Recently, Kirchdoerfer and Ortiz [1, 2] have introduced the concept of
Data-Driven Computational Mechanics (DDCM in the following) for elastic
materials, in which the constitutive equation vanishes and is replaced by a
database of strain-stress couples (called states) which sample the mechanical
response of the material. In this approach, regularization/smoothing/interpolation
of experimental data are carried out during the computation of the numer-
ical solution of the boundary value problem. The results presented by the
authors are encouraging and open the door to many perspectives from the
modeling point of view, since the necessity of an explicit or implicit strain-
stress relationship is relaxed. In the wake of these contributions, Ibañez et
al. [3] investigate the possible use of manifold learning techniques applied to
the material database.

Let us briefly recall the method of Kirchdoerfer and Ortiz for data-driven
simulation in the particular case of truss structures [1]. It seeks to assign to
each truss element e a mechanical state and a material state, a state being
a strain-stress couple. Considering both mechanical equilibrium (involving
stress) and compatibility conditions (involving strain) as non-questionable,
the mechanical state of element e consists of a strain-stress pair (εe, σe) that
exactly satisfies the above equations which can be considered as constraints.
The second state associated to e, denoted (ε∗ie, σ

∗
ie), is called the material

state and is extracted from a collection of admissible material states for
the material: (ε∗i , σ

∗
i ), where i ∈ 1 : N∗. The index ie ∈ 1 : N∗ specifies

the material state of element e. It should be interpreted as a pointer that
assigns to each element a specific material state in the material database.
Figure 1 illustrates the main ideas behind the method. The proposed solver
seeks, for every element simultaneously, a mechanical and a material state as
close to each other as possible and such that the former satisfies mechanical
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Figure 1: The two states (εe, σe) and(ε∗ie, σ
∗
ie) associated to a truss element e. The dashed

line represents the energetic mismatch between the two states. On the left we see that the
mapping ie between elements and material states can assign the same particular material
state to two different elements.

equilibrium and compatibility conditions. This is formally expressed as:

solution = arg min
εe,σe,ie

1

2

∑
e

we||(εe − ε∗ie, σe − σ∗ie)||2C , (1)

subject to ∑
e

weBejσe = fj , (2)

and
εe =

∑
j

Bejuj . (3)

In the above equations, ||(ε, σ)||C is an energetic norm, the matrix Bej en-
codes the connectivity and geometry of the truss, and we denotes the volume
of the truss element e. Furthermore, uj and fj represent respectively the
displacement and the force applied to truss nodes. For the particular choice

||(εe, σe)||2C= (Cε2e +
1

C
σ2
e) , (4)

the authors propose an efficient algorithm to solve this problem of combina-
torial complexity. The constant parameter (possibly defined element-wise)
C is the only parameter of the method and can be interpreted as a modulus
associated to the mismatch of mechanical and material states. This mismtch
is represented by the dashed lines in Figure 1.

Although there is no need for a constitutive equation, the database of ma-
terial states is a mandatory pre-requisite of the method before starting the
simulation. Building this database computationally, for example through
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micro-macro approaches such as FE2 [4, 5] is expensive and might require ef-
ficient model order reduction and high dimensional interpolation techniques.
From an experimental point of view however it is far from trivial to be able
to, somehow, measure strain and stress over a wide range of strains. Ex-
perimentally, except in the case of homogeneous strain/stress configuration,
it is not possible to access the stress field. Constitutive law identification
from heterogeneous stress field configurations thus relies on inverse parame-
ter identification methodologies. Digital Image Correlation [6] has allowed for
significant progress in the field as the result of the numerical simulation of the
experiments can be compared to rich data fields (displacement and strain).
Such approaches are based on the minimization of a cost function measuring
the distance between the numerical and the experimental response. In [7],
this cost function is written in terms of strain instead of displacement, be-
cause the boundary conditions applied in numerical simulations are usually
idealized ones and matching the displacement field may induce artifacts in
the identification. An alternative approach is to apply the measured dis-
placement field directly in the numerical simulation. This strategy became a
straightforward route as DIC was formulated using finite element shape func-
tions [8]. This allows for measuring displacement fields experimentally with
the same kinematic description as for the numerical simulation. Constitutive
law parameters identification benefited from this advantage in [9]. In [10], a
strategy that is shown to be optimal in terms of noise robustness is elaborated
and then developed in [11] for elasto-plastic constitutive laws in combination
with 3D finite element simulations. Huang and co-workers [12] have applied
the Modified Constitutive Relation Error (M-CRE) introduced by Ladevèze
et al. [13] to identify material parameters using a framework that shows
some similarity with the starting hypothesis of DDCM: the inviolability of
the compatibility and equilibrium equations.

Despite the success of these model-based identification methods, they
are all a priori constrained by the choice of a constitutive model and are
therefore not suited to the DDCM framework. Here we propose a model-
free procedure, based on some inversion of the data-driven solver, to extract
strain-stress couples that sample the mechanical response of an elastic mate-
rial. The method uses a collection of displacement and (non homogeneous)
strain fields acquired, for example, using Digital Image Correlation tech-
niques. It identifies simultaneously the stress component of the mechanical
state for each loading condition and the full material states database, which
is common to all loading conditions. The proposed method is first developed
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for truss structures. The convergence, the influence of measurement noise
and parameters are discussed. It is then generalized to a more general small
strain elastic problem. In both cases the method is validated considering
manufactured data.

2. Data-Driven Identification for truss structures

In this section we propose a method, derived from the data-driven solver
of Kirchdoerfer and Ortiz [1], to build the material database by identifying
strain-stress couples from experimental measurements.

2.1. Data-Driven Identification (DDI)
Consider a large database of measurements made on real truss structures

subject to different loading conditions; all truss elements being of the same
material. For each loading condition, or data item, indexed by X, the fol-
lowing quantities are available:

• nodal displacements uXj ,

• truss geometry and connectivity, encoded through the matrix BX
ej. The

mechanical strains are computed as εXe =
∑

j B
X
eju

X
j ,

• applied forces fXj ,

• prescribed nodal displacements.

Identifying the material response of truss elements reduces to the determina-
tion of a finite number N∗ of material states (ε∗i , σ∗i ) with i ∈ 1 : N∗, common
to all the data items (thus independent of X), and such that:

1. for each data item X, the mechanical stress σXe satisfies mechanical
equilibrium for X,

2. for each data item X, a material state (ε∗ieX , σ
∗
ieX ) is assigned to each

element e, such that it is close to the mechanical state (εXe , σ
X
e ) of this

element according to a given energetic norm.

It is formulated as follows

solution = arg min
σX
e ,ε

∗
i ,σ

∗
i ,ie

X
E(σXe , ε∗i , σ∗i , ieX), (5)
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with,

E(σXe , ε∗i , σ∗i , ieX) =
1

2

∑
X

∑
e

wXe ||(εXe − ε∗ieX , σ
X
e − σ∗ieX )||

2
C , (6)

and subject to ∑
e

wXe B
X
ejσ

X
e = fXj ∀X, j . (7)

Unlike the data-driven solver of Kirchdoerfer and Ortiz, the mechanical strain
εXe is not an unknown of the problem since it can be computed as εXe =∑

j B
X
eju

X
j .

At first glance, this problem seems to be quite difficult to solve, but we
will show that it can be simplified a great deal. Let us first substitute the
expression of the energetic norm Eq. (4) in Eqs. (5-6) and introduce a
set of Lagrange multipliers ηXj to enforce the equilibrium constraint Eq.
(7). Assuming that the material state mapping ieX is known, we obtain the
following stationarity problem

δ

(∑
X

∑
e

(
wXe C

2
(εXe − ε∗ieX )

2 +
wXe
2C

(σXe − σ∗ieX )
2 −

∑
j

(wXe B
X
ejσ

X
e − fXj ) · ηXj

))
= 0 .

(8)
Taking all possible variations yields the following set of equations

δε∗i ⇒
∑
X

∑
e|ieX=i

wXe C(ε
X
e − ε∗ieX ) = 0 ∀i , (9)

δσ∗i ⇒
∑
X

∑
e|ieX=i

wXe
1

C
(σXe − σ∗ieX ) = 0 ∀i , (10)

δσXe ⇒ wXe
1

C
(σXe − σ∗ieX )−

∑
j

wXe B
X
ejη

X
j = 0 ∀e,X , (11)

δηXj ⇒
∑
e

(wXe B
X
ejσ

X
e − fXj ) = 0 ∀j,X . (12)

In the above equations,
∑

e|ieX=i stands for the sum over all elements e such
that ieX = i. Eq. (9) simply states that each material strain ε∗i is a weighted
average of the mechanical strains in elements assigned to this specific material
strain. Similarly Eq. (10) states that each material stress σ∗i is a weighted
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average of the mechanical stresses in elements assigned to this specific mate-
rial stress. The above equations can be simplified and re-interpreted through
some simple manipulations. First, the combination of Eqs. (11) and (12)
yields ∑

k

∑
e

wXe CB
X
ejB

X
ekη

X
k +

∑
e

wXe B
X
ejσ
∗
ieX = fXj ∀j,X. (13)

This equation simply states that for any loading case X, the mechanical
imbalance between applied forces fXj and material stresses σ∗ieX is balanced
by virtual nodal displacements ηXj considering the pseudo-stiffness C for the
truss elements. Second, the combination of Eqs. (10) and (11) yields:∑

e|ieX=i

∑
X

∑
j

wXe B
X
ejη

X
j = 0 ∀i, (14)

which merely states that the strains originating from all the virtual dis-
placements ηXj and associated to a particular material state i have a zero
wXe -weighted mean. The combination of Eqs. (13) and (14) is a symmetric
linear system.

2.2. Solution procedure
To solve the previous set of equations Eqs. (9),(11),(13-14) and the ma-

terial state mapping, we consider the following decoupled algorithm, similar
to the one of Kirchdoerfer and Ortiz [1]:

Step 1. Initialize ieX ,

Step 2. compute ε∗i from Eq. (9),

Step 3. simultaneously compute σ∗i and ηXj from Eqs. (13) and (14),

Step 4. update the value of σXe using Eq. (11),

Step 5. compute a new state mapping ieX with:

ieX = argmin
ieX

∑
X

∑
e

wXe ||(εXe − ε∗ieX , σ
X
e − σ∗ieX )||

2
C , (15)

Step 6. iterate Steps 2-5 until convergence of ieX .

Remarks

7



• In Step 1, since the material states are a priori unknown, ieX is merely
a pointer to an empty value that will be computed later. The initial-
ization provides an initial clustering of the mechanical states that will
be improved in Step 5.

The simplest initialization is to assign to each ieX a random integer
between 1 and N∗, yielding a random clustering of the mechanical
states.

Since all the mechanical strains εXe are known, a very good initialization
of ieX (or equivalently a clustering of the mechanical states) can be
computed through some kmeans-like algorithm [14, 15] applied to εXe .
In this work, we have used the default Matlab R© implementation of the
Statistics and Machine Learning toolbox.

• Step 2 is relatively inexpensive from a computational point of view as
it simply computes the material strains as a weighted average of the
mechanical strains.

• Step 3 entails the solution of a large linear system with the following
structure: 

K1 S1

K2 S1

. . . ...
KNX SNX

ST1 ST2 · · · STNX 0

 ·


η1

η2
...

ηNX

σ∗

 =


f1
f1
...

fNX

0

 ,

where each line corresponds to the assembly of Eq. (13) for a given
value of X excepted for the last line which corresponds to the assem-
bly of Eq. (14). All diagonal blocks of the left hand side are constant
pseudo-stiffness matrices, while off-diagonal blocks need to be recom-
puted at each iteration as they depend on ie. This specificity opens
the door to efficient resolution schemes that would re-use the initial
Cholesky factorization of the diagonal blocks. For example we have
observed that an iterative block-Jacobi solver is very efficient.

• Step 4 is computationally inexpensive as it reduces to a matrix vector
product.
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• In Step 5, to update the state mapping ieX , we assign to each element
eX the material state that is closest (with respect to ||·||C ). This is
relatively expensive as it requires, for each mechanical state, to com-
pute its distance to all material states in the material database. High
dimensional generalization of quad-tree algorithms or neighbour lists
methods similar to those used in molecular dynamics simulation codes
might improve the efficiency of this step.

• Similarly to the data driven solver, the DDI method proposed here
entails only few parameters: the number N∗ of material states to be
identified and the pseudo-stiffness C. It should be noted that C is not
necessarily the same for all truss elements and data items, and can
therefore depend on both e and X: CX

e . This provides some additional
flexibility in the method and is a tool to weight the data according to
some a priori confidence level.

• Even for non-linear material response, the identification procedure only
requires the solution of linear systems and simple database searches.

• The success of the proposed method relies on several ingredients. First,
the richness of the experimental data over all data items X, i.e. the
extent of uXj and fXj ensures the identification of the material behavior
over a wide range of strains ε∗i . Second the richness of the individual
data items, i.e. the range of εXi for a given X, which couples different
material and mechanical states through mechanical equilibrium.

2.3. Numerical results
In this section, the DDI method is applied to the identification of the

mechanical response of truss elements exhibiting a non linear strain-stress
relation. We use a synthetic data set generated by applying different loading
conditions to the 2D truss structure depicted in Figure 2. This structure
is made of 249 nodes and 657 bar elements with a nonlinear strain-stress
behavior of the form: σ = K(ε + ε3), K being set to 5. NX = 50 different
loading scenarios involving uniaxial tension and compression, and simple
shear have been simulated. Some representative deformed configurations are
depicted in Figure 3. The single parameter C is set to 10 as we do not assume
any noise on the mechanical strains εXe and therefore wish to put more weight
on the strain part of the energetic norm (see Eq. (4)).
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Figure 2: Undeformed truss structure used for the generation of manufactured data. The
structure comprises 249 nodes and 657 nonlinear bar elements.

Figure 3: Three deformed configurations representative of the DDI data-set: traction,
shear and compression.
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Figure 4 shows, for N∗ = 41, the computed material and mechanical
states together with the "true" constitutive relation used to generate the
input data. On top we observe that the N∗ = 41 identified material states
closely match the constitutive relation and that their density is higher for
small strains as there are more data points. At the bottom, we observe
that all the NX × 657 mechanical states are distributed close to the material
states. The quantization of the material states can be observed through the
clustering of the mechanical states around their corresponding material state,
for example at large strains or in the inset. Figure 5 presents, for two different
initializations of the state mapping ie, the convergence of the iterative process
with respect to the minimized quantity E(σXe , ε∗i , σ∗i , ieX). The initialization
of ieX and σ∗i with a simple kmeans algorithm is so good that the first
iteration already outperforms the converged result for a random initialization.
All subsequent results are therefore computed with this efficient initialization.

Next, we investigate the influence of noisy input data. Considering that
the manufactured data was gathered through Digital Image Correlation with
a 1000 by 1000 pixels grid, we add to the displacement fields uXj a zero-
mean uniform noise δuXj with a one pixel amplitude (hence corresponding
to a standard deviation of 1

2
√
3
≈ 0.29 pixel). This noise model leads to a

greater relative influence on small displacements and mechanical strains. It
is expected that the addition of noise has the following influence:

• If noise does not perturb the state mapping ieX , it only influences the
determination of the material strains ε∗i because Eq. (9) becomes:∑

X

∑
e|ieX=i

wXe C(ε
X
e + δεXe − ε∗ieX ) = 0 ∀i.

As δεXe = BX
ejδu

X
j has zero mean, it does not introduce any systematic

bias in the value of ε∗i . Furthermore, the effect of noisy data is mitigated
for large databases of experimental measurements.

• If the amount of noise if sufficient to perturb the state mapping, it also
affects the computed values of material σ∗i and mechanical stress σXe ,
thereby reducing the quality of results.

In order to mitigate the influence of noisy mechanical strains on the state
mapping, we see from Eqs. (4) and (15) that a simple possibility is to reduce
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Figure 4: Material (top) and mechanical (bottom) states computed for N∗ = 41. There
are N∗ = 41material states and NX×657 = 32850mechanical states. The inset illustrates
the clustering of the mechanical states around their assigned material states.
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Figure 5: Comparison of the convergence for two different initialization of ie for N∗ = 41.

the value of C. In Figure 6 some material states computed for C = 10 and
C = 0.1 are shown. As expected large strain values are less perturbed by
noise, and reducing the value of C improves results quality.

3. Data-Driven Identification for elastic materials

In this section we extend the method developed in Section 2 to the more
general case of linear elasticity, in the limit of small strains. The major
change is that the phase space of material and mechanical states is of much
higher dimensionality: a state (mechanical or material) now consists in a
linear strain tensor ε and a Cauchy stress tensor σ, each belonging in a
6-dimensional space (after accounting for their symmetry).

3.1. Data-Driven Identification
Again, we assume the existence of a large database of measurements,

obtained by Digital Image Correlation or any related technique. Furthermore
we consider a linearized kinematics discretized by a finite element mesh in
which each quadrature point e admits an integration weight we. For each
data item X (or snapshot), the following quantities are available:

• nodal displacements uXj ,
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Figure 6: Influence of C with noisy data.

• finite element geometry and connectivity, encoded through a matrix
BX
ej, which compute the mechanical strain εXe =

∑
j B

X
ej · uXj ,

• applied nodal forces fXj ,

• prescribed nodal displacements.

The aim of the DDI method is to compute a number N∗ of material states
(ε∗i ,σ

∗
i ) such that:

• for each snapshot X and quadrature point e, it is possible to compute
the mechanical state σX

e that satisfies mechanical equilibrium,

• for each snapshot, a material state (ε∗ie,σ∗ie) is assigned to each quadra-
ture point e which is the closest to the mechanical state according to a
given energetic norm ||·||2C.

Following Kirchdoerfer and Ortiz , we consider

||(εe,σe)||2C=
1

2
(εe : C : εe + σe : C−1 : σe) , (16)

where C is a (symmetric positive definite) fourth order stiffness tensor. Like
in the truss case, the global minimization problem is:

solution = arg min
σX

e ,ε
∗
i ,σ

∗
i ,ie

X
E(σX

e , ε
∗
i ,σ

∗
i , ie

X), (17)
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with

E(σX
e , ε

∗
i ,σ

∗
i , ie

X) =
∑
X

∑
e

wXe ||(εXe − ε∗ieX ,σ
X
e − σ∗ieX )||

2
C , (18)

and subject to the global equilibrium equations:∑
e

wXe B
X
ej

T · σX
e = fXj ∀X, j . (19)

All unknowns are real valued except the state mapping ieX which is dis-
crete. For an arbitrary state mapping, the equilibrium constraints Eq. (19)
are enforced by means of Lagrange multipliers ηXj , leading to the following
problem:

(20)

δ

(∑
X

∑
e

(
wXe (ε

X
e − ε∗ieX ) : C : (εXe − ε∗ieX )

+ wXe (σ
X
e − σ∗ieX ) : C

−1 : (σX
e − σ∗ieX )−∑

j

(wXe B
X
ej

T · σX
e − fXj ) · ηXj

))
= 0 .

Taking all possible variations yields the following set of equations:

δε∗i ⇒
∑
X

∑
e|ieX=i

wXe C : (εXe − ε∗ieX ) = 0 ∀i (21)

δσ∗i ⇒
∑
X

∑
e|ieX=i

wXe C−1 : (σX
e − σ∗ieX ) = 0 ∀i (22)

δσX
e ⇒ wXe C−1 : (σX

e − σ∗ieX )−
∑
j

wXe B
X
ej · ηXj = 0 ∀e,X (23)

δηXj ⇒
∑
e

(wXe B
X
ej

T · σX
e − fXj ) = 0 ∀j,X (24)

The interpretation of these equations is similar to the interpretation of Eqs
(9-12) in Section 2. Combining Eqs (22), (23) and (24) yields the following
linear system, solved to simultaneously determine σ∗i and σX

e (through ηXj ):∑
k

∑
e

wXe B
X
ej

T
: C : BX

ekη
X
k +

∑
e

wXe B
X
ej

T
σ∗ieX = fXj ∀j,X , (25)
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and ∑
e|ieX=i

∑
X

∑
j

wXe B
X
ejη

X
j = 0 ∀i . (26)

We suggest the following algorithm for computing ε∗i ,σ∗i ,σX
e and ie:

1. simultaneously initialize ε∗i and ie by a kmeans algorithm on εXe ,

2. simultaneously compute σ∗i and ηXj from Eqs. (25-26),

3. update the value of σX
e using Eq. (23),

4. compute a new state mapping ieX with:

ieX = argmin
ieX

∑
X

∑
e

wXe ||(εXe − ε∗ieX ,σ
X
e − σ∗ieX )||

2
C , (27)

5. update ε∗i from Eq. (21),

6. iterate steps 2-5 until convergence of ieX .

Remarks

• The proposed algorithm is very similar to the one proposed in Section
2, the only difference is the default initialization with the kmeans.

• The most numerically expensive part are steps 2 and 4 which involve
the solution of a large linear system and a database search respectively.

3.2. Results and discussion
The method proposed in the previous section is applied to manufactured

data. The problem consists in the identification of the mechanical response of
a non-linear incompressible material on a bi-dimensional problem, with the
plane stress assumption. We consider a 2D finite element mesh with 1340
nodes and 2416 triangular elements, depicted in Figure 9, and subjected to
NX = 40 different loading conditions. Representative deformed configura-
tions are similar to the ones in Fig. 3 in which the bars are now the edges of
triangular elements. The constitutive equation used in the FE simulations is
of the form:

σ = G(ε+ αε3)− pI , (28)
p = −(εxx + εyy)− α(εxx + εyy)

3 . (29)
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where G and α are the material parameters chosen as G = 5 and α = 5. We
consider a tensor C corresponding to the linearization (i.e. α = 0) of the
above equation with G = 1. In this case, the kmeans initialization of ieX is
so efficient that only a few iterations are necessary to converge for N∗ = 500.
Since the "true" constitutive equation used to generate the data is isotropic,
we first investigate the isotropy of the identified material states. To this
end, we compute, for each material state (ε∗i ,σ

∗
i ), the angle θi between the

dominant eigenvectors of the strain and stress tensors respectively. The dis-
tribution of these misalignment angles is shown in Fig. 7. We observe that
for most of the states, the misalignment angle is less than 1◦. This means

Figure 7: Distribution of misalignment angle θ between ε∗ and σ∗.

that the computed material strains and stresses are essentially aligned along
the same principal directions, such that the material response can now be
examined through the principal strains and stresses. In Figure 8 we present
the first eigenvalue of the material stress tensor (σ∗I ) as a function of the
eigenvalues of the corresponding material strain (ε∗I , ε

∗
II). All points fall very

close to the surface that can be built from the constitutive equation used to
generate the input data:

σ∗I
G

= εI + αε3I + (εI + εII) + α(εI + εII)
3 . (30)

Computed material states therefore provide a discrete description of the
"true" material response in the strain range of input data. The observed
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distribution of material strain in the (ε∗I , ε
∗
II) plane provides an importance

sampling of the relevant strain states in the dataset. In particular one can
observe the lack data for equibiaxial strain (i.e. ε∗I = ε∗II). The identifica-
tion of such states might require carefully crafted experiments sampling these
states.

Figure 8: Largest eigenvalue of the material stress tensor as a function of the eigenvalues of
the material strain tensor. The symbols are computed from the identified material states
(ε∗,σ∗) and the surface from Eq. (30). The color denotes the vertical distance between
the symbols and the analytical surface.

We now turn to the analysis of the mechanical stress distributions pre-
dicted for all input snapshots. Figure 9 (top left) presents the predicted von
Mises stress for one of the snapshots, and Figure 9 (top right) shows the
relative error. The prediction is accurate to less than 10% in most of the
domain and reaches 50% in only a few of the 2416 elements, confirming the
accuracy of the DDI method. Figure 9 (bottom) depicts the distribution of
the relative error on the von Mises stress for all elements of the 40 snapshots.
The observed narrow distribution, with a mean of 8.5% and a median of 5.3%
further highlights that the computed mechanical stresses are quite close to
the actual ones. Finally, Figure 10 illustrates the convergence of the identi-
fied mechanical stress as a function of the number of material states N∗. We
observe a steady convergence of the average error in the von Misses stress

18



Figure 9: Top left: predicted von Mises stress field of a particular snapshot computed
from the identified mechanical stress. Top right: relative error on the von Mises stress
with respect to the true underlying model. Bottom: distribution of the relative error of
the von Mises stress for all elements across all snapshots.
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over a broad range of N∗. The observed slope is approximatively −2
3
. We

also see that a poor initialization lowers the results quality without changing
the convergence trend.

Figure 10: Convergence, as a function of the number of material states N∗, of the nor-
malized average quadratic error of the von Mises stress for different initializations of the
method.

4. Summary and concluding remarks

In this paper, we derive a Data Driven Identification (DDI) method that
computes admissible strain-stress couples from a set of experimental data,
based on the Data-Driven Computational Mechanics (DDCM) framework
recently proposed by Kirchdoerfer & Ortiz [1]. The method only requires
kinematics and applied forces, which are both accessible using Digital Image
Correlation. The computed strain-stress couples can then be used either as
constitutive law surrogate in DDCM, or to fit a classical constitutive model.
Stress fields of the experimental data are also obtained as a byproduct of the
algorithm.

The proposed method is for now applicable to non-linear elastic behaviors
only, where stress is uniquely determined by strain. Future developments will
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focus on more complex material responses such as viscoelasticity, plasticity
and damage which involve strain history.
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