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Abstract 16 

The Bolivian tin belt is a metallogenic province in the Eastern Cordillera of the Andes known for its Sn, W, Ag 17 

and base metal deposits. Cassiterite, which is a major constituent in many magmatic-hydrothermal ore deposits 18 

from the Bolivian tin belt, can incorporate dozens of elements within its crystal lattice, making it a useful 19 

geological tracer mineral, and also a potential host of critical elements. New U-Pb dating of cassiterite yields Late 20 

Triassic (Kellhuani deposit) and Late Oligocene to earliest Miocene (Viloco, Huanuni and Llallagua deposits) 21 

ages. These ages confirm that Sn mineralization in the Bolivian tin belt occurred at least in two separate events 22 

during two major magmatic episodes apparently triggered by mantle upwelling, decompression melting and basalt 23 
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production promoting high heat flow into the overlying crust. The composition of studied hydrothermal cassiterite 24 

yields some geochemical trends that are attributed to its distance to the causative intrusion and/or level of 25 

emplacement. For example, cassiterite is generally enriched in Nb and Ta and yields higher Ti/Zr and Ti/Sc ratios 26 

in samples from xenothermal ore deposits located adjacent to intrusive complexes relative to shallow xenothermal 27 

and epithermal ore deposits. Therefore, these geochemical trends in cassiterite are useful tracers pointing to 28 

magmatic-hydrothermal centers. REE distribution in cassiterite was likely influenced by boiling processes, which 29 

resulted in tetrad-type irregularities. Cassiterite from the Bolivian tin belt is unattractive as a source for Nb 30 

(interquartile range [IQR] 4.84-0.037 ppm), Ta (IQR 0.0924-0.0126 ppm) and Ge (IQR 3.92-0.776 ppm). Some 31 

deposits, however, contain cassiterite relatively enriched in In (IQR 96.9-9.78 ppm, up to 1414 ppm) and Ga (IQR 32 

92.1-3.03, up to 7437 ppm), that could constitute an attractive supplementary source for these elements in addition 33 

to sulfide minerals in the same deposits. 34 

Keywords: Central Andes, geochemical composition, high-tech metals, critical elements, U-Pb geochronology 35 

Introduction 36 

Cassiterite, a tin oxide mineral (SnO2) of the rutile group and the primary Sn ore mineral, can incorporate a wealth 37 

of elements in minor and trace concentrations within its structure. Typical elements that are present in significant, 38 

although variable, amounts within its crystal lattice include Fe, Ti, Mn, Al, Nb, Ta and U, which substitute for Sn 39 

cations. Innovation in analytical chemistry (i.e., ICP-MS and micro-PIXE; e.g., Plimer et al. 1991; Serranti et al. 40 

2002) further allows the determination of other elements found in trace amounts in cassiterite such as those of the 41 

rare earth elements (REE), Be and In amongst others. Some of these elements (e.g., Nb, Ta, W, REE, Be and In) 42 

are considered high-tech metals critical to the global economy (Skirrow et al. 2013; European Commission 2017; 43 

Schulz et al. 2017). 44 

The broad range of P-T-X conditions in which cassiterite forms, its strong physical and chemical resistance and its 45 

plethora of chemical constituents including both compatible and incompatible elements makes this mineral useful 46 

as a petrogenetic indicator (Murciego et al. 1977; Plimer et al. 1991; Serranti et al. 2002; Jiang et al. 2004; Chen et 47 

al. 2019). Furthermore, the moderate U4+ and low Pb2+ contents and high Pb isotope closure temperature (up to 48 

860ºC; Zhang et al. 2011) in cassiterite makes it suitable for U-Pb dating (e.g., Zhang et al. 2017, 2019; Guo et al. 49 

2018; Neymark et al. 2018; Chen et al. 2019; Cheng et al. 2019; Kendall-Langley et al. 2019; Moscati and 50 

Neymark 2019; Zhao et al. 2019; Legros et al. 2020; Lehmann et al. 2020; Mao et al. 2020). 51 
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The Bolivian tin belt, in the Central Andes, is one of the largest tin metallogenic belts worldwide and in 2019 52 

accounted for about 6% of the global tin production; in addition, it produced about 5% of silver and 1.5% of 53 

tungsten globally (U.S. Geological Survey 2020). Despite massive tin production since early 1900s, by when most 54 

Bolivian great tin deposits had been discovered, Bolivia is estimated to contain > 8% of the world’s tin reserves 55 

(Arce-Burgoa and Goldfarb 2009; U.S. Geological Survey 2020). However, a detailed survey on the geochemical 56 

composition of cassiterite from this metalliferous belt has never been conducted. Furthermore, the age of the 57 

magmatism along the Bolivian tin belt is relatively well constrained through U-Pb zircon dating, but dispersion of 58 

K-Ar and Ar-Ar mica and feldspar dates reveals a complex thermal history (Ahfeld 1967; Clark and Farrar 1973; 59 

Evernden et al. 1977; Grant et al. 1979; McBride et al. 1983; Clark et al. 1990; Sugaki et al. 2003; Gillis et al. 60 

2006; Cordani et al. 2019). This is especially the case in the northern segment of the Bolivian tin belt, where 61 

plutons of Triassic age cluster. As previous geochronological studies on tin deposits were mainly based on K-Ar 62 

and Ar-Ar dating of hydrothermal mica, some questions remain in respect of their reliability. In this study we 63 

determine the geochemical composition and U-Pb dates of cassiterite grains from nine deposits/districts of the 64 

Bolivian tin belt with a threefold aim: i) to refine the geochronology of tin mineralization in this region, ii) to 65 

constrain the mechanisms that control minor and trace element concentrations in cassiterite crystallized at 66 

contrasting conditions within the xenothermal (i.e., polymetallic high-temperature [~300-500ºC] vein-type 67 

deposits emplaced in the sub-epithermal environment; Buddington 1935, Imai et al. 1975, Heuschmidt et al. 2002) 68 

and epithermal environments, and iii) to assess their potential as source of high-tech byproducts. 69 

Geological setting 70 

Geological setting of the Bolivian Andes 71 

The ore deposits dated in this paper are located in the northern and central segments of the Bolivian Eastern 72 

Cordillera. These segments are parts of the northwest limb of the Bolivian Orocline (Isacks 1988), and, more 73 

precisely, of its southernmost portion, i.e. close to the oroclinal “core hinge”. This broad region therefore shares 74 

many geological characteristics with adjacent Peru, and the descriptions and comments in this section are often 75 

envisioned from this point of view. 76 

The Bolivian Andes present a marked morphotectonic partition that reflects differences in geological history, 77 

paleostructural domains and current crustal structure. These domains are, from west to east, the Western 78 

Cordillera, the Altiplano and the Eastern Cordillera. Furthermore, a deformed “Subandean Belt” serves as a 79 
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tectonic transition between the Eastern Cordillera and the nearly undeformed Amazonian Lowlands to the 80 

northeast and east. 81 

The Western Cordillera corresponds to the present-day location of the main magmatic arc related to subduction 82 

processes. It is characterized by a ~100 km-wide belt of volcanoes sitting on a high-altitude surface, which reflects 83 

a considerable crustal thickness beneath (e.g., James 1971a,b; Isacks 1988; Kono et al. 1989; Lamb and Hoke 84 

1997). At the latitudes of Bolivia, the Western Cordillera however extends also in adjacent Northern Chile. It is 85 

mostly composed of Late Miocene to recent intermediate to felsic igneous rocks that intruded in and extruded over 86 

Jurassic and Cretaceous sedimentary and volcanic rocks. The igneous rocks from the Western Cordillera belong to 87 

the magnetite series and record a high contribution of a mantle component (Ishihara 1981; Sugaki et al. 1988a). 88 

The upper crustal structure of the Altiplano varies significantly. It seems likely that its lower crust has been 89 

thickened through ductile flow from the overthickened crust along both the Western and Eastern cordilleras 90 

(Husson and Sempere 2003). Much of the current Altiplano surface is covered by recent sedimentary and volcanic 91 

deposits; it is strongly suspected that its eastern fringe corresponds to the buried western fringe of the Eastern 92 

Cordillera, and thus constitutes a transitional strip between the two domains. In particular, this transition is 93 

confirmed by the observation that many magmatic phenomena that affected the Altiplano also affected the crust of 94 

the western Eastern Cordillera, along which products of coeval and related magmatism are commonly observed 95 

(see below). 96 

The scope of this paper is focused on the Eastern Cordillera since it hosts the Bolivian tin belt. The Eastern 97 

Cordillera was formed by inversion and substantial shortening of a Triassic rift system (Sempere 2000; Sempere et 98 

al. 2002). This protracted compressional to transpressional deformation has developed since the Eocene and/or 99 

Oligocene in relation to the formation of the Bolivian Orocline (e.g., Farrar et al. 1988; Sempere et al. 1990; 100 

Roperch et al. 2006), and the ensuing erosion has resulted in the exposure of mainly Ordovician and Silurian 101 

strata, which as a whole may be over ~10 km thick. 102 

The almost exclusively marine stratigraphic set formed by the Ordovician to Devonian strata is so thick that it 103 

raises the question of the geotectonic context in which this succession accumulated, and, indirectly, that of the 104 

time at which subduction was initiated at the latitude of Bolivia and Peru. Both present-day territories were part of 105 

supercontinents Rodinia and Pannotia; Laurentia separated from the latter at the latitudes of Peru and Bolivia 106 

through the opening of the Iapetus Ocean during the latest Neoproterozoic (Scotese 2009), which implies that what 107 
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was to become the Central Andean margin is very likely to have been passive at least in the earliest Paleozoic. A 108 

subduction-arc geochemical signature is however unambiguously noted in Carboniferous plutons of Peru 109 

(Mišković et al. 2009), which provides a minimum age for the onset of subduction at these latitudes. 110 

The overall geological evolution of Bolivia has been summarized by Sempere (1995), who divided the 111 

stratigraphic record into a number of supersequences that reflect major changes in tectonic context. This 112 

preliminary understanding has been refined since that time, in particular thanks to new data from Bolivia and 113 

especially Peru. The Carboniferous arc orogeny that developed along at least the Eastern Cordillera of Peru was 114 

followed in the Permian by the extensional collapse of the resulting overthickened crust (Mišković et al. 2009). 115 

Extensional conditions considerably increased in the Middle to Late Triassic, and resulted in the development of a 116 

major back-arc rift system (Sempere et al. 2002; Spikings et al. 2016). During the “Mitu time interval” (~240–220 117 

Ma), such an intense extension and associated mantle-derived mafic magmatism are likely to have generated an 118 

anomalously high heat flow. Late Triassic crustal anatexis is documented in several areas of contiguous E and SE 119 

Peru (see Kontak et al. 1990); in the NW-trending segment of the Eastern Cordillera of Bolivia, anatexis is 120 

recorded by the Zongo-Yani batholith (Fig. 1A), which consists of two-mica granite plutons that are commonly 121 

foliated; the peraluminous composition points to an anatectic origin, and the foliation indicates extensional 122 

shearing conditions during magma emplacement. In the Cuticucho-Samaini area, which is located ~25 km north of 123 

the Milluni Sn-Zn deposit (Fig. 1A), the Zongo-Yani batholith locally displays facies that range from pervasively 124 

foliated to weakly foliated, whereas its composition varies from monzogranite to syenogranite (Farrar et al. 1990). 125 

U-Pb zircon dating yielded dates of 222.2 –9.1/+7.7 and 225.1 –4.4/+4.1 Ma on the pervasively and weakly 126 

foliated facies, respectively (the weighted mean of these dates is 224.5 –4.0/+3.6 Ma). The U-Pb work confirmed 127 

that zircons from this pluton had been recycled by anatexis, and these dates are based on lower intercepts in the 128 

respective concordia diagrams (Farrar et al. 1990); all zircons that Gillis et al. (2006) attempted to date by the U-129 

Pb method were also found to be discordant and gave 206Pb/238U dates between 263 and 226 Ma for the Zongo 130 

pluton. 131 

The Triassic rifting led to the subsequent accumulation of a stratigraphic succession that ranges well into the 132 

Jurassic (Sempere et al. 2002). After an apparently long sedimentation hiatus, deposition resumed at ~100 Ma; a 133 

significant increase in subsidence took place at ~90 Ma, reflecting the coeval growth of the main magmatic arc 134 

(Sempere 1994; Demouy et al. 2012). The latest Cretaceous to Eocene stratigraphic record mainly consists of red 135 
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beds forming a monotonous succession that may be several km thick (Sempere et al. 1997; Horton 2001), 136 

interpreted as a classical foreland basin (e.g., DeCelles and Horton 2003). 137 

Arc migration is best recorded in southern Peru. Mamani et al. (2010) and Demouy et al. (2012) showed that in 138 

this large region the arc, from a position currently offshore, migrated northwards between ~130 and ~45 Ma to 139 

occupy a position that coincides with the Andahuaylas-Yauri batholith south of Cuzco; the arc has migrated 140 

“back” southwards since ~31–30 Ma (Mamani et al. 2010). Because the position of the arc is largely controlled by 141 

the dip angle of the subducted slab, the latter back-migration must have implied a widening of the asthenospheric 142 

wedge, which in turn involved mantle upwelling and thus decompression melting, and therefore the production of 143 

large amounts of basaltic magma (Mamani et al. 2010). This logical chain is confirmed by the widespread 144 

existence of basaltic magmatism of alkaline to shoshonitic composition centered over most of the Altiplano of 145 

southern Peru and Bolivia, between ~31 and ~22 Ma in southern Peru (Kontak et al. 1996; Sandeman et al. 1995), 146 

and between ~28 and ~21 Ma across the Bolivian Altiplano (Soler and Jiménez 1993); Fornari et al. (2002) 147 

detected a diachronic onset of mafic volcanism from ~29 Ma in the southern Peruvian Altiplano to ~21-20 Ma in 148 

the southernmost Bolivian Altiplano. The cumulated thickness of basaltic flows may locally be >2 km (Baldellón 149 

et al. 1994), which eloquently illustrates the magnitude of the related mantle upwelling and thus anomalous heat 150 

flow. The available dataset concerning this segment of the Bolivian Orocline suggests that mafic magmatism 151 

extended beneath the entire Altiplano of southern Peru and Bolivia as well as adjacent areas, and that it has 152 

continued through the Neogene and Quaternary, at least episodically at the surface. 153 

In the Bolivian Altiplano, these mafic lavas occur as flows, sills, dikes and small intrusive stocks; thick and 154 

extended flow breccias are common and suggest that many volcanic centers were active at that time (Fornari et al. 155 

2002). Near the triple junction of Bolivia, Peru and Chile, the mafic Abaroa Formation yielded whole-rock 40Ar-156 

39Ar dates comprised between 28.0 ± 0.1 and 27.3 ± 0.1 Ma (Fornari et al. 2002). 157 

In the central Bolivian Altiplano, basaltic sills yielded whole-rock 40Ar-39Ar plateau dates of 24.2 ± 0.4 and 23.8 ± 158 

0.1 Ma; the latter date was obtained on a >100 m-thick mafic sill characterized by plagioclase phenocrysts up to 3 159 

cm in size (Fornari et al. 2002). About 75 km to the SSE, a ~1-km-thick section of red beds includes >15 basalt 160 

levels; lava flows near the base and top of the section yielded whole-rock 40Ar-39Ar dates of 23.5 ± 0.1 and 23.6 ± 161 

0.1 Ma, respectively, whereas a mafic dyke cutting several flows and sills yielded a plateau date of 23.5 ± 0.1 Ma; 162 

these coinciding dates over a stratigraphic thickness of ~1 km indicate, again, that the corresponding mafic 163 
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magmatism was extremely productive at that time (~23.5 Ma in this case), and thus involved considerable mantle 164 

upwelling, resulting decompression melting and a very high heat flow into the overlying crust. 165 

Crustal thickening in the NW-trending region of the Bolivian Orocline has developed since ~30 Ma (Picard et al. 166 

2008; Sempere et al. 2008 and references therein). The onset of crustal thickening thus coincided with the 167 

widespread development of mafic magmatism during the Late Oligocene and earliest Miocene. 168 

Unlike igneous rocks from the Western Cordillera, silicic intrusive and volcanic rocks from the Eastern Cordillera 169 

of both Mesozoic (mostly ca. 225-200 Ma) and Tertiary (ca. 45-12.0 Ma) ages belong to the S-type, ilmenite series 170 

and resulted from sediment melting in a thickened continental crust with up to 30% of mantle component (Sugaki 171 

et al. 1981; Morgan et al. 1998; Lehmann et al. 2000; Mlynarczyk and Williams-Jones 2005; Maffione et al. 172 

2009). 173 

The morphotectonic provinces are juxtaposed by a succession of parallel, north to south trending mineralized belts 174 

of Paleogene and Neogene ages. The Western Cordillera mostly comprises porphyry-type Cu-Mo-Au-Fe deposits, 175 

the Altiplano, polymetallic vein- and replacement-type Cu-Pb-Zn-Ag deposits and sedimentary Cu deposits, and 176 

the Eastern Cordillera, porphyry-type Sn-W-Ag deposits and associated polymetallic mineralization (Petersen 177 

1970; Sillitoe 1972, 1976; Clark et al. 1990; Mlynarczyk and Williams-Jones 2005; Fontboté 2018). The existence 178 

of metallogenic provinces (clusters of ore deposits with similar characteristics) in the Central Andes suggests 179 

control by regional or large scale geologic environments or processes, which in the region were governed by the 180 

quasi-continuous subduction along the western margin of the South American plate over the last ca. 300 My 181 

(Clark et al. 1976, 1990; Sillitoe 1976; Lehmann et al. 1990; Mlynarczyk and Williams-Jones 2005; Wörner et al. 182 

2018a,b; Fontboté 2018). In this convergent tectonic scenario, shortening, thickening and uplift favored the 183 

accumulation of magma in the upper crust, which was responsible for the magmatic-hydrothermal activity that 184 

formed the metalliferous deposits along metallogenic provinces (Fontboté 2018). This W to E zonation reflects the 185 

constraining character of the source regions and the decrease in the role of subduction-related processes evidenced 186 

by difference in granitoid type and series (Mlynarczyk and Williams-Jones 2005). 187 

Geological setting of the Bolivian Tin Belt 188 

The deposits selected for this study are distributed along the Bolivian segment of the Bolivian tin belt. The 189 

Bolivian tin belt is restricted to the Eastern Cordillera and stretches for about 900 km from ~150 km NNW of Lake 190 

Titicaca in Peru (e.g., the San Rafael world-class Sn deposit) through Bolivia to NW Argentina (e.g., the Pirquitas 191 
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Ag-Zn-Pb-Sn deposit; Fig. 1A). It has an arc shape with contrasting orientations in its northern half (running NW-192 

SE) and southern half (running N-S), both segments connecting in the so-called “elbow of the Andes”, Bolivian 193 

orocline or Arica deflection (Ahlfeld 1967; Maffione et al. 2009). 194 

The Bolivian tin belt is genetically connected to two major periods of magmatism related to the Andean orogeny: 195 

the first is linked to intrusions of granitic plutons of Triassic to Jurassic ages and the second is related to plutonic, 196 

sub-volcanic and volcanic eruptive complexes of Oligocene to Miocene ages (Turneaure 1971; Sillitoe et al. 1975; 197 

Evernden et al. 1977; Lancelot et al. 1978; Grant et al. 1979; Clark et al., 1983, 1990, 2000; McBride et al. 1983; 198 

Kontak et al. 1987, 1990; Mlynarczyk and Williams-Jones 2005; Maffione et al. 2009; Mišković et al. 2009; 199 

Reitsma 2012; Betkowski et al. 2017; Cordani et al. 2019). The Triassic granite intrusions were interpreted as 200 

typical of rift-related magmatism in a back-arc setting (McBride et al. 1983; Kontak et al. 1984, 1990; Lehmann et 201 

al. 1990; Miskovic et al. 2009; Reitsma 2012). The now-inverted rift system had an axis coinciding with the axis 202 

of the current Eastern Cordillera (Sempere et al. 2002). In the Cordillera Real, at the core of the Eastern Cordillera 203 

and the northern portion of the Bolivian tin belt, the oldest dated granitoids belong the Huato, Illampu, Yani, 204 

Huayna Potosí, Zongo and Taquesi plutons (ca. 280-200 Ma) and the youngest, to the Illimani, Quimsa Cruz and 205 

Santa Vera Cruz plutons (ca. 26-23 Ma; Fig. 1A). In the Peruvian segment of the Bolivian tin belt, known as the 206 

Cordillera de Carabaya, the oldest granitoids (San Gabán, Coasa, Limbani and Aricoma plutons; Fig. 1A) have a 207 

Triassic age (ca. 240-190 Ma). At the northern end of the Bolivian tin belt, the Nevado de Allincapac peralkaline 208 

volcano-plutonic complex comprises gabbros, diorites and nepheline syenites dated between 175 and 181 Ma 209 

(Stewart et al. 1974; Kontak et al. 1990), and the youngest dated granitoids (San Rafael and Santo Domingo 210 

plutons) and their volcaniclastic equivalents of the Picotani Group (Sandeman et al. 1997) are of Late Oligocene 211 

age. South of the Cordillera Real, caldera complexes and huge volumes of Late Pliocene and Miocene (and up to 212 

recent) ignimbrite deposits of dacite and rhyolite composition formed as a result of changes in mantle melt 213 

productivity induced by the south-migrating subduction of the aseismic Juan Fernández Ridge and sporadic lower-214 

crust and subcontinental lithospheric mantle delamination (de Silva and Kay 2018 and references therein). 215 

Compared to the Chilean and NW-Argentinian part of the Central Andes, rock suites in the Bolivian tin belt 216 

present higher abundance of Sn and sustained enrichment trends controlled by fractional crystallization (Lehmann 217 

et al. 1990). Despite being distinctly enriched in Sn, igneous rocks of Miocene porphyry systems in the Bolivian 218 

tin belt show concentrations of Ta, Zr and TiO2 comparable to average upper crust and overall moderately 219 

fractionated rhyodacite and dacite bulk composition. In stark contrast, quartz-hosted melt inclusions in these rocks 220 
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yield highly fractionated rhyolitic compositions and enrichment in incompatible elements such as Ta, B, Cs, Li and 221 

Sn at concentrations comparable to those of tin granite systems worldwide (Dietrich et al. 2000; Lehmann et al. 222 

2000). These authors propose that highly fractionated melts, chemically linked to the tin mineralization, mixed 223 

with primitive melts within magma chambers previous to shallow emplacement as sub-volcanic intrusions or 224 

volcanic eruption. Mio-Pliocene lithophile-rich obsidian glasses in felsic peraluminous tuffs in the Macusani area, 225 

in the Carabaya Cordillera in SE Peru, are representative of these highly evolved igneous rocks portions 226 

(Pichavant et al. 1987, 1988a,b; Cheilletz et al. 1990; Poupeau et al. 1993; Sandeman et al. 1997; Nupen 2019). 227 

Subsequent hydrothermal redistribution of Sn from igneous rocks magmatically enriched in this element led to 228 

enhancement of Sn concentrations. In this model, Sn inheritance from source and host rocks is discarded. 229 

Nevertheless, source sedimentary sequences played an important role in magma evolution by providing B and Corg 230 

that depressed the solidus temperature of fractionating melts and induced a low oxidation state necessary for 231 

magmatic enrichment and hydrothermal redistribution of tin, respectively (Lehmann et al. 1990, 2000; Dietrich et 232 

al. 2000). In addition, the high concentration of B and other volatile elements in melt inclusions in tin porphyries 233 

from the Bolivian tin belt led Lehmann et al. (2000) to conclude that the most likely crustal source was the Lower 234 

Paleozoic meta-sedimentary sequences. 235 

Mineral deposits from the northern and southern halves of the Bolivian tin belt show contrasting ages and levels of 236 

emplacement (Kelly and Turneaure 1970; Sillitoe et al. 1975; Clark et al. 1976; Lehmann et al. 1990; Heuschmidt 237 

et al. 2002; Kontak and Clark 2002; Slater et al. 2020). In the northernmost part, the ore deposits are mainly of Sn-238 

W vein- and “manto”- (stratabound mineralization) type related to batholiths of Triassic and Oligocene age, whilst 239 

in the southernmost segment of the belt, mineralization is Miocene, usually shallower and appears as Sn, Sn-W 240 

and Sn-polymetallic veins formed in the epithermal and xenothermal environments (Fig. 1). The mineralized 241 

stocks and adjacent wall rocks usually present vertically and laterally zoned hydrothermal alteration, with 242 

abundant quartz - tourmaline - muscovite assemblages at high-temperature mineralization centers grading outward 243 

to phyllic, propylitic and, occasionally, silicified, advanced argillic lithocaps (Sillitoe et al. 1975, 1998; Harlaux et 244 

al. 2020; Lehmann et al. 2000). Lithocaps are only found in the southern part of the Bolivian tin belt, where 245 

volcanic domes genetically linked to the mineralization are only shallowly eroded (Sillitoe et al. 1998). Detailed 246 

descriptions of deposits from the Bolivian tin belt are given by Ahlfeld and Schneider-Scherbina (1964), Kelly and 247 

Turneaure (1970), Heuschmidt et al. (2002) and Arce-Burgoa (2009). 248 
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Methodology 249 

Studied samples and their localities 250 

The studied cassiterite crystals belong to nine ore deposits/districts distributed along the Bolivian segment of the 251 

Bolivian tin belt (Fig. 1A-B). 252 

Milluni-Kellhuani district 253 

The Milluni-Kellhuani Zn-Cu-W-Bi district is located in the northernmost part of the La Paz department and sits at 254 

the northern part of the Cordillera Real, ~ 5 km south of the Triassic Huayna-Potosí granite (Gillis et al. 2006; 255 

Cordani et al. 2019). Vein and stratabound mineralization are hosted in Silurian quartzites of the Catavi Formation. 256 

Mineralization consists primarily of early quartz, tourmaline and cassiterite (Sn-W stage) and later sulfides such as 257 

chalcopyrite, sphalerite, pyrrhotite and pyrite (sulfide stage; Lehmann et al. 1985). Fluid inclusions in cassiterite 258 

from the Milluni mine yielded trapping temperatures of 410-500ºC (corrected for depositional pressures of 0.5-1 259 

kbar) and salinities of 5-25 wt% NaCl equiv. (Kelly and Turneaure 1970). 260 

In the central part of the district, the Chacaltaya granite porphyry stock, which shows extreme hydrothermal 261 

alteration (greisenization), intruded the Paleozoic metasedimentary rocks (Lehmann 1985). Mineralization in the 262 

greisen is mostly composed of cassiterite accompanied by fine- and medium-grained quartz, muscovite, 263 

tourmaline, fluorite and siderite. K-Ar dating of greisen muscovite yielded a date of 210 ± 6 Ma (McBride et al. 264 

1983).  265 

The analyzed cassiterite crystals belong to two samples of quartz-cassiterite veins from the Kellhuani deposit (Kell 266 

A and Kell B) about 3 km east of the granite porphyry. Crystals are dark red in color, euhedral and subhedral and 267 

have sizes typically larger than 500 μm and exceptionally up to 5 mm across (Fig. 2A); some contain inclusions of 268 

pyrrhotite and are intergrown with quartz and tourmaline. 269 

Viloco – Rosario de Araca district 270 

The Viloco – Rosario de Araca district is located in the La Paz department, 70 km SE of La Paz, on the 271 

southwestern flank of the Quimsa Cruz Cordillera in the southern segment of the Cordillera Real. NE-trending 272 

peribatholitic veins are hosted by Ordovician quartzites of the Amutara Formation close to their contact with the 273 

Oligocene Quimsa Cruz granodiorite and porphyritic monzogranite batholith (Everden et al. 1977; Gillis et al. 274 
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2006; Artiaga et al. 2013). K-Ar dating of igneous biotite and muscovite from the Quimsa Cruz batholith yielded 275 

dates between 23 and 26 Ma (Ahlfeld and Branisa 1960; Cordani 1967 in Clark and Farrar 1973; Evernden et al. 276 

1977; McBride et al. 1983; Gillis et al. 2006). U-Pb zircon dates in the Quimsa Cruz batholith at Mina Argentina 277 

and Mina Viloco are 25.65 ± 0.41 and 26.02 ± 0.41 Ma, respectively (Gillis et al. 2006).  278 

Vein mineralogy comprises early high-temperature cassiterite, wolframite, löllingite and pyrrhotite associated with 279 

quartz-tourmaline gangue and a second lower temperature sulfide stage with arsenopyrite, sphalerite, galena, 280 

chalcopyrite and stannite in association with sulfosalts and carbonate gangue minerals (Sugaki et al. 1985; Artiaga 281 

et al. 2013). Fluid inclusions in cassiterite crystals from the Araca deposit yielded salinities of 23-35 wt% NaCl 282 

equiv. and homogenization temperatures (Th) of 340-489ºC (Kelly and Turneaure 1970). Cassiterite from this 283 

district is world renowned for its large, highly lustrous, black to caramel-color, twinned and euhedral crystals of 284 

gem quality. 285 

Cassiterite crystals studied from this district belong to seven samples collected from the Viloco deposit (Vil 1-286 

540d, Vil-2-sn-a, Vil2-453-2b, Vil2-453-2c, Vil4-453-2b, Vil41-xa and Vil5e). In the studied samples, cassiterite 287 

is the dominant phase and appears as dark euhedral and subhedral fractured crystals more than 500 μm and up to 5 288 

cm across (Fig. 2B). Twining is a common feature of most cassiterite grains. Crystals present sharp edges in 289 

contact with an assemblage of quartz and corroded pyrite-marcasite after pyrrhotite (Fig. 2C). Small sulfide 290 

veinlets, less than 200 μm in width and containing chalcopyrite and arsenopyrite, cut cassiterite grains. 291 

San José – Itos district (Oruro city) 292 

The San José and Itos mines are located on the western side of the city of Oruro, 200 km SE of La Paz, and sit 293 

close to the contact between the Altiplano and the Eastern Cordillera. Metallic mineralization is genetically 294 

associated to a Miocene dome and volcanic complex intruding into and extruding over Paleozoic shales and 295 

sandstones (Chace 1948a,b; Redwood and Macintyre 1989; Sugaki et al. 2003). K-Ar dating of biotite, sericite and 296 

K-feldspar in rhyodacite domes yielded dates between 15 and 19 Ma (McBride et al. 1983; Redwood and 297 

Macintyre 1989). Mineralization appears as Ag-Sn-rich veins and disseminations hosted by domes of 16.1 Ma 298 

(Redwood and Macintyre 1989) and hydrothermal breccias of the homonymous San José and Itos stocks (Sillitoe 299 

et al. 1975; Sugaki et al. 1990). 300 

Mineralization occurred in three stages. The first stage is Sn-rich and composed of euhedral quartz, As-rich pyrite, 301 

cassiterite and arsenopyrite. The second stage is sulfosalt-rich and comprises franckeite and cylindrite coatings 302 
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over previous assemblages. The third stage is composed of sphalerite and stannite-group minerals partially 303 

replaced by franckeite and Ag-rich sulfosalts (stephanite, andorite), acanthite and galena as open-space infilling 304 

and associated to kaolinite, dickite and alunite (Sillitoe et al. 1975; Pastor et al. 2015). Bismuth-rich andorite and 305 

ramdohrite and Sb-rich bismuthinite are also found in the San José mine (Keutsch and De Brodtkorb 2008). Fluid 306 

inclusions in cassiterite from the Oruro district yielded Th of 389-474ºC and salinities of 8.9 to 26.3 wt% NaCl 307 

equiv. (Kelly and Turneaure 1970). 308 

Here studied cassiterite crystals are from six samples collected from the Itos (It-180b, It-250b and It-250d) and 309 

San José (1233, 1241 and 1433) mines. Cassiterite forms massive aggregates of crystals ranging in size from a few 310 

tens of microns up to 500 μm. Most aggregates are highly corroded and show abundant porosity that draws 311 

secondary spongy textures (Fig. 2D). Cassiterite aggregates occur usually assembled with quartz, pyrite-marcasite, 312 

arsenopyrite and late sulfosalts such as jamesonite that replaced the previous sulfide assemblage. Locally, euhedral 313 

cassiterite crystals are intergrown with quartz (Fig. 2E). 314 

Poopó district 315 

The Poopó deposit is located 48 km S of Oruro and 240 km SE of La Paz, near the border between the Altiplano 316 

and the Eastern Cordillera delineated by the NNW–SSE striking Poopó regional fault. The Sn-Ag low-sulfidation 317 

epithermal mineralization consists of a vein system extending along the N-S striking Poopó-Uyuni fault system. 318 

Veins are hosted by Silurian black shales and sandstones of the Llallagua, Uncía and Belén Formations that were 319 

intruded by Miocene dacite porphyry stocks and covered by associated ignimbrite deposits (Heuschmidt et al. 320 

2002). Conspicuous cataclastic textures and occurrence of several stages of breccia cementation by hydrothermal 321 

minerals suggest that ore mineralization was coeval with the tectonic activity of the Poopó-Uyuni fault (Torres et 322 

al. 2019). 323 

The mineralogy of the deposit consists primarily of quartz, sulfides (sphalerite, wurtzite, pyrite and marcasite), 324 

cassiterite, which locally amounts to about 10% of the vein assemblage, and a plethora of Ag-Pb-Cu sulfosalts 325 

(Torres et al. 2019). Cassiterite crystallized at two stages during the formation of the deposit: the first one, with 326 

quartz and sphalerite-pyrite (Zn-Sn stage) and the second one, along with tin sulfides and sulfosalts (Sn stage). 327 

Analyzed cassiterite grains are from sample Poo-St-1c, which was collected from the Santo Toribio vein system, 328 

and belong to the first generation crystallized during the Zn-Sn stage. In the studied samples, cassiterite appears as 329 

small aggregates of crystals with sizes between a few tens of microns and 1 mm. Cassiterite is often intergrown 330 
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with pyrrhotite that has been pervasively replaced by an assemblage of pyrite and marcasite along with siderite 331 

(Fig. 2F). 332 

Huanuni district 333 

The Huanuni Sn-W-Pb-Ag-Zn world-class district, located in the homonymous city in the Oruro department, 275 334 

km SE of La Paz, is the largest tin producer in Bolivia and in 2018 its production accounted for over half the total 335 

tin production of the country. This deposit is considered to be mesothermal or xenothermal (Cacho et al. 2019). 336 

Mineralization is mostly hosted by Silurian quartzites, shales and siltstones of the Llallagua, Uncía and Cancañiri 337 

Formations, which are discordantly overlain by pyroclastic series of the Miocene Morococala Formation (Koeppen 338 

et al. 1987). Paleozoic rocks were intruded by Miocene porphyric dikes peripheral to the mineralized area, which 339 

are thought to be genetically connected to the hydrothermal mineralization (Redwood 1993; Heuschmidt et al. 340 

2002; Cacho et al. 2019). Cassiterite-rich veins are restricted to the central area of the deposit, in the Pozokoni hill, 341 

and tin concentration decreases towards the periphery in the Zn-Pb-Ag La Suerte and Bonanza mines, which are 342 

rich in sphalerite, galena and sulfosalts. 343 

Hypogene mineralization in the Pozokoni area comprises three stages. The first stage consists of quartz, base-344 

metal sulfides and cassiterite. The second stage records abundant crystallization of schorl and, akin the first stage, 345 

is also rich in base-metal sulfides as well as Co-Ni minerals, late chamosite and siderite followed by native 346 

bismuth, wolframite and cassiterite. The third stage is characterized by stannite and sphalerite. There was, in 347 

addition, ample crystallization of supergene minerals dominated by phosphates, sulfates and carbonates rich in Fe, 348 

Cu and Pb (Cacho et al. 2019). Fluid inclusions in quartz from quartz-cassiterite veins yielded Th up to 425ºC and 349 

salinities up to 26 wt% NaCl equiv. (Sugaki et al. 1988b; Müller et al. 2001; Arce-Burgoa 2009). 350 

Studied cassiterite grains belong to six samples collected from the Pozokoni hill mine area (Hua240, Hua240-1a, 351 

Hua240-1b, Hua240-3c, Hua-MU-7b and Hua-MU-8). Cassiterite is the most abundant phase in the studied 352 

samples and appears as large (>1 to 5 mm) subhedral and anhedral crystals often forming centimetric aggregates 353 

with abundant porosity (Fig. 2G). Twinning is a common feature of Huanuni cassiterite. The edges of the 354 

cassiterite crystals are usually sharp in contact with quartz and irregular in contact with marcasite-pyrite and 355 

pyrrhotite. In addition, cassiterite crystals are wrapped by stannite, which also lines fractures and voids within 356 

cassiterite. 357 
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Llallagua district 358 

The Llallagua district is located next to the homonymous city, 300 km SE of La Paz and 80 km SE of Oruro. It is 359 

one of the world’s largest porphyry-tin deposits with a historical production exceeding 500,000 t of tin (Ahlfeld 360 

and Schneider-Scherbina 1964). The deposit lies in the hydrothermally altered La Salvadora stock, which is 361 

composed mostly of porphyry breccias. The stock is pervasively altered to tourmaline in the central areas and at 362 

depth grading upwards and outwards to intense sericitization and finally to chloritization and argilitization 363 

(Betkowski et al. 2017). The stock is cut by igneous and hydrothermal breccias. Tin mineralization appears 364 

disseminated and in quartz-cassiterite-sulfide veins restricted to early, high-temperature stages (Kelly and 365 

Turneaure 1970). In veins, cassiterite is assembled with pyrrhotite and apatite (Turneaure 1935; Gordon 1944; 366 

Kempe et al. 2008). Fluid inclusions in cassiterite and quartz yielded salinities up to 8.2 and 26 wt% NaCl equiv., 367 

respectively, and Th up to 593ºC (Kelly and Turneaure 1970). 368 

Reported radiometric dates are 43.8 Ma (Sm-Nd fluorapatite age; Rakovan et al. 1997), 42.4 Ma (Pb-Pb zircon 369 

evaporation geochronology; Kempe et al. 2008), 23.4 and 19.0 Ma (U-Pb monazite; Kempe et al. 2008 - SHRIMP 370 

and Kohn and Vervoort 2008 - LA-ICP-MS, respectively). Recent U-Pb cassiterite dating by Neymark et al. 371 

(2018) yielded a date of 20.0 ± 2.5 Ma. 372 

Analyzed cassiterite grains are from sample LL-4, which was collected from the Siglo XX mine. In the studied 373 

sample, cassiterite occurs as anhedral, fractured and corroded relatively large crystals, with sizes in the range 374 

between 200 and 500 μm, often showing simple twinning (Fig. 2H). Cassiterite grains are intergrown with quartz, 375 

tourmaline and small pyrite crystals with cores replaced by marcasite. 376 

Colquechaca deposit 377 

The Ag-(Zn-Sn-Pb) Colquechaca deposit is located in the Hermoso hill in Colquechaca, northern Potosí 378 

department, 465 km SW of La Paz and 96 km N of Potosí. Mineralized veins are hosted by the Miocene 379 

Colquechaca volcanic complex in which a stratovolcano of andesitic to dacitic composition was intruded by a 380 

series of porphyritic rhyodacitic and quartz-latite domes. The volcanic complex is emplaced over metasedimentary 381 

Ordovician (Amutara Formation) and Silurian (Cancañiri and Uncía Formations) series and the discordantly 382 

overlying Jurassic (Ravelo Formation), Jurassic-Cretaceous (Kondo and Kosmina Formations) and Cretaceous 383 

(Tarapaya Formation) sedimentary series (Martínez and Vargas 1990; Claure et al. 1996; Díaz 1997; Heuschmidt 384 
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et al. 2002). K-Ar dating of igneous biotite, K-feldspar and plagioclase yielded dates in the range between 19.8 385 

and 22.6 Ma (Ahlfeld and Schneider-Scherbina 1964; Thormann 1966; Evernden et al. 1977; Grant et al. 1979). 386 

Xenothermal vein mineralization hosts a cassiterite- and stannite-rich zone along with tourmalinization in the 387 

innermost part of the deposit, which grades outwards to a sulfide- and Ag-sulfosalt-rich domain with phyllic 388 

alteration (Grant et al. 1979; Heuschmidt et al. 2002). 389 

Analyzed cassiterite grains are from two samples collected from the Hilarion vein in the Cerro Ánimas area 390 

(Colq6a and 1353). Cassiterite grains form mostly anhedral crystals of approximately 400 μm across (Fig. 2I). The 391 

edges of these crystals are sharp in contact with quartz and tourmaline and more irregular in contact with sulfides 392 

(pyrite, sphalerite and galena). Local leather-shaped radial aggregates of cassiterite appear in contact with most 393 

massive, anhedral cassiterite crystals (Fig. 2J). 394 

Huari Huari district 395 

The Huari Huari xenothermal vein deposit is located 25 km NE of Potosí in the Potosí department, 400 km SW of 396 

La Paz. Vein and much restricted stratabound metallic mineralizations are hosted by slates and quartzites of the 397 

Ordovician San Benito and Silurian Cancañiri and Uncía Formations, which are unconformably overlain by 398 

Cretaceous sandstones of the La Puerta Formation. The sedimentary sequence was intruded by small dacite domes 399 

and stocks of alleged Miocene age (Sugaki et al. 1983; Torró et al. 2019a). 400 

Polymetallic veins are mostly of the fissure-filling type and NNE-oriented. Vein mineralogy consists primarily of 401 

an early assemblage of quartz, cassiterite and pyrrhotite followed by an assemblage dominated by base-metal 402 

sulfides (sphalerite, galena) and pyrite and a final stage dominated by Ag-Pb sulfosalts (Torró et al. 2019a). 403 

Analyzed cassiterite grains belong to three samples collected from the Antón Bravo vein (2018hh15, 2018hh2b 404 

and 2018hh3a). In the studied samples, cassiterite is rare and mostly of the “needle tin” variety (i.e., small 405 

micrometric acicular crystals) forming radial aggregates up to 500 μm in size. Nevertheless, in the deepest parts of 406 

the Antón Bravo vein, cassiterite appears as subhedral crystals in assemblage with quartz and a complex 407 

paragenesis of sulfides and sulfosalts (Fig. 2K). 408 
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Ánimas – Chocaya – Siete Suyos district 409 

The Ánimas - Chocaya - Siete Suyos district is located about 150 km S of Potosí in the Potosí department, 520 km 410 

SW of La Paz. This district sits in the western flank of the Eastern Cordillera, close to the triple junction that is 411 

drawn by the Eastern Cordillera, the Western Cordillera and the Altiplano. Mineralization is genetically associated 412 

with the Miocene Chocaya volcanic caldera complex, which is 9 km in diameter and conformed of a pile of lava 413 

and pyroclastic deposits of dacitic composition intruded by a central dome of the same composition. The volcanic 414 

complex is hosted by Ordovician sandstones and slates unconformably overlain by Oligocene-Miocene sandstones 415 

and tuffs of the Quehua Formation (Ahlfeld and Schneider-Scherbina 1964; Grant et al. 1979; Arce-Burgoa 2009; 416 

Torró et al. 2019b). Reported K-Ar dates in the area are of 13.8 ± 0.2 Ma (unweighted mean value) for biotite from 417 

unaltered volcanic rocks, and of 12.5 ± 0.2 Ma for a sericitized sample (whole-rock age; Grant et al. 1979). 418 

Mineralization in the district occurs as banded and massive oxide and sulfide ore vein infillings (Sugaki et al. 419 

1983). Torró et al. (2019b) determined a three-stage paragenetic sequence including an early low-sulfidation stage 420 

dominated by cassiterite, pyrrhotite, arsenopyrite and high-Fe sphalerite, a second intermediate-sulfidation stage 421 

dominated by pyrite, marcasite, sphalerite and stannite and a late intermediate-sulfidation stage dominated by 422 

galena and Ag-Pb-Sn sulfosalts. Cassiterite is much abundant in the Siete Suyos deposit and less common in the 423 

Ánimas deposit. In the Chocaya deposit, cassiterite is virtually absent (Torró et al. 2019b). 424 

Analyzed cassiterite grains are from the 10 vein in the Siete Suyos mine (2018-7S2 and 1380) and from the 425 

Colorada vein in the Ánimas mine (2018-An12 and Ani5c). The studied grains are subhedral and anhedral and 426 

range in size from 100 to 600 μm. Often, small crystals of cassiterite form aggregates up to 1 mm across. These 427 

aggregates are intergrown with quartz, sulfides and sulfosalts in hexagonal arrangements (Fig. 2L) after hexagonal 428 

pyrrhotite (see Torró et al. 2019b). 429 

Analytical methods 430 

A total of 32 thick sections belonging to nine deposits from the Bolivian tin belt were selected: two for Kellhuani, 431 

seven for Viloco, six for San José-Itos (Oruro), one for Poopó, six for Huanuni, one for Llallagua, two for 432 

Colquechaca, three for Huari Huari and five for Ánimas - Chocaya - Siete Suyos. 433 
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Petrography (optical microscope, SEM and SEM-CL) 434 

Mineralogy and textures in thick polished sections were studied by optical microscopy using reflected light in 435 

order to select the optimal cassiterite specimens for subsequent geochemical analysis. A selection of the polished 436 

sections was also examined with an environmental scanning electron microscope (SEM) Quanta 200 FEI, an XTE 437 

325/D8395 (Thermo Fisher Scientific, Waltham, MA, USA) equipped with an INCA Energy 250 EDS 438 

microanalysis system at the Centres Científics i Tecnològics of the University of Barcelona (CCiT-UB). Operating 439 

conditions were 20 keV accelerating voltage and 5 nA in backscattered electron (BSE) mode. 440 

Electron probe microanalysis (EPMA) 441 

A total of 268 analyses of cassiterite (major and minor elements) were carried out using a five-channel JEOL JXA-442 

8230 electron probe microanalyzer (EPMA; Jeol Ltd., Tokyo, Japan) at the CCiT-UB, operated at 20 kV 443 

acceleration voltage, 20 nA beam current, and with a beam diameter of 5 μm. Analytical standards and lines used 444 

for analyses were: ZrO2 (Zr, Lα), Nb2O5 (Nb, Lα), SnO2 (cassiterite, Lα), FeO (Fe, Kα), Ta2O5 (Ta, Lα), MnO 445 

(rhodonite, Kα), TiO2 (rutile, Kα). The EPMA data are reported in Supplementary Table S1. 446 

Laser ablation – inductively coupled plasma – sector field – mass spectrometry (LA-ICP-SF-MS) 447 

A total of 330 analyses of cassiterite trace element concentrations and U-Pb isotopic compositions were carried out 448 

at ETH Zürich, Switzerland, by laser ablation – inductively coupled plasma – sector field – mass spectrometry 449 

(LA-ICP-SF-MS) using a RESOlution S-155 (ASI/Applied Spectra) 193 nm ArF excimer laser system attached to 450 

an Element XR (Thermo) sector-field ICP-MS. We have used a laser repetition rate of 3 Hz, a spot diameter of 43 451 

μm and a laser energy density on sample of about 3.5 J·cm–2. The sample surface was cleaned before each analysis 452 

by three pre-ablation pulses. Ablation was performed in a dual-volume, fast-washout S-155 ablation cell (Laurin 453 

Technic) fluxed with carrier gas consisting of about 0.5 L·min–1 He and make-up gas consisting of about 1 L·min–1 454 

Ar and 2 mL·min–1 N2. The ablated aerosol was homogenized via flushing through a squid device before being 455 

introduced in the plasma. 456 

The ICP-MS instrument is equipped with a high capacity (80 m3·h–1) interface pump to achieve, in combination 457 

with jet sampler and normal H-skimmer cones, a detection efficiency (based on U in NIST SRM612 glass) in the 458 

range of 2% (Guillong et al. 2020). The instrument was optimized for maximum sensitivity on the entire mass 459 

range while keeping the production of oxides low (248ThO+/232Th+ ≤0.15%) and the U/Th ratio at about 1 (on 460 
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NIST SRM612 glass). The list of analyzed isotopes and corresponding dwell times is provided in Supplementary 461 

Table S2. A total of 40 mass scans (~1.04 s sweep time each) were acquired over 40 s measurement (20 s of 462 

background measurement followed by 20 s of sample ablation). 463 

For trace element quantification, the resulting intensities were subsequently processed offline with the standalone 464 

version 1.3.2 of the SILLS program (Guillong et al. 2008). The USGS GSD-1G glass (Guillong et al. 2005) was 465 

used as the primary reference material for trace element quantification and instrumental drift correction using 466 

conventional standard-sample bracketing. The Fe concentrations obtained by electron microprobe were used as 467 

internal standards for relative sensitivity corrections. The analyzed In intensities on masses 113 and 115 were 468 

corrected for interferences by subtracting the contribution of 113Cd and 115Sn, respectively, based on the measured 469 

111Cd and 118Sn intensities and using natural isotope ratios for Cd and Sn recommended by IUPAC. Because of the 470 

very high 118Sn signal in cassiterite (>5,109 cps) and resulting elevated gas blanks on masses 115 and 118, the 471 

extent of the correction is much higher in the case of 115In than in the case of 113In, especially since the analyzed 472 

cassiterite crystals all show very low Cd concentrations (<1 ppm). Therefore, we only considered the 473 

concentrations based on the interference-corrected 113In intensities. The data are reported in Supplementary Table 474 

S3. The analytical reproducibility and accuracy were checked by repeated measurements of the homogeneous 475 

NIST SRM610 glass (Jochum et al. 2011) reference material. Reproducibility ranges from 10 to 15% (2σ) relative 476 

for most elements. The quoted uncertainties for each individual analysis correspond to the internal (2σ) statistical 477 

error and analytical reproducibility propagated by quadratic addition. The results are accurate within these 478 

calculated uncertainties (Supplementary Table S3). 479 

For U-Pb dating, the measured intensities were subsequently processed offline with the Igor Pro Iolite v2.5 480 

software (Hellstrom et al. 2008), using the VizualAge data reduction scheme (Petrus and Kamber 2012). 481 

Background-subtracted intensities were used to calculate isotope ratios, which were corrected for laser-induced 482 

Pb/U fractionation (after Paton et al. 2010), instrumental mass discrimination and drift by conventional standard-483 

sample bracketing, against rutile reference material R10 (using isotope ratios from Luvizotto et al. 2009). No 484 

common Pb correction was carried out. U-Pb age calculations and data plotting were performed using the IsoplotR 485 

toolkit (Vermeesch 2018). The lack of matrix-matched primary reference material most certainly makes the 486 

obtained dates inaccurate. Nevertheless, in another session using exactly the same analytical parameters as here 487 

(including the use of R10 rutile as primary reference material), we have measured three cassiterite samples of 488 

known age from the San Rafael granite, Peru (ca. 24 Ma, samples and unpublished dates courtesy of K. 489 
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Kouzmanov, University of Geneva, 2020) and obtained a systematic offset of ca. 8% relative on lower intercept 490 

dates. This offset is in any case smaller than the relative uncertainty obtained on the cassiterite dates obtained here 491 

(13-53% relative), except for samples Kell-A and Kell-B (3-6% relative). For these two samples, a relative 492 

uncertainty of 8% was therefore propagated in the uncertainty of the dates by quadratic addition to account for the 493 

matrix effects. The data from unknowns and rutile reference material are provided in Supplementary Table S4. 494 

Results 495 

Major- and minor-element composition 496 

The EPMA data of cassiterite grains from the studied Bolivian deposits show a generally restricted range in 497 

composition, with SnO2 > 97.7 wt%. Of the other elements, only Fe yields concentrations that are generally above 498 

its lower limit of detection (L.O.D.) with maximum concentrations of 2.34 wt%. Iron is particularly high in 499 

cassiterite from the Colquechaca deposit, with concentrations systematically higher than 0.5 wt%. The rest of the 500 

elements yields values mostly below the respective L.O.D. with some anomalous values for TiO2 (up to 0.92 wt% 501 

in a sample from Kellhuani) and Nb2O5 (up to 0.25 wt% in samples from Viloco and Huanuni). 502 

Trace-element composition 503 

Significant effort was made to report only the concentration of elements whose variations respond to solid 504 

solutions and not to mixed mineral analyses by analyzing mineral volumes free of obvious inclusions and by 505 

selecting only stable signal intervals in LA-ICP-MS spectra (Supplementary Fig. S1). A complete set of box plots 506 

showing the concentration of all elements analyzed by LA-ICP-MS is available in Supplementary Figure S2, and a 507 

selection of them is shown in Fig. 3. Concentration values will be hereinafter reported as the interquartile range 508 

(IQR) unless otherwise specified. 509 

Cassiterite from the Bolivian tin belt shows a relatively wide trace element compositional spectrum, mainly 510 

subordinated to W (1987-53.7 ppm) and Ti (918-27.8 ppm) contents. The concentration of high-field-strength 511 

elements (HFSE) is relatively low, including Zr (17.0-0.528 ppm), Hf (0.293-0.0455 ppm), Nb (4.84-0.037 ppm) 512 

and Ta (0.0924-0.0126 ppm). The highest concentrations of Nb and Ta are found in cassiterite samples from the 513 

Kellhuani (60.8-2.26 ppm Nb and 0.639-0.0403 ppm Ta), Llallagua (18.5-0.989 ppm Nb and 0.185-0.0143 ppm 514 

Ta) and Viloco (6.19-0.0515 ppm Nb and 0.135-0.0138 ppm Ta) deposits, and the lowest, in cassiterite samples 515 

from the Poopó (0.027-0.0126 ppm Nb and 0.0196-0.0133 ppm Ta) and Ánimas - Chocaya - Siete Suyos (0.059-516 
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0.00971 ppm Nb and 0.0165-0.00873 ppm Ta) deposits. Manganese concentrations (9.36-1.61 ppm) are 517 

consistently lower than Fe concentrations. Maximum Mn concentrations are recorded in samples from the 518 

Colquechaca (40.4-3.28 ppm) and Poopó (17.5-8.38 ppm) deposits, and the lowest concentrations, in samples from 519 

the Llallagua deposit (<L.O.D.). Most analyzed cassiterite samples from the Bolivian tin belt yield 520 

(Fe+Mn)/(Nb+Ta) >> 1 at relatively constant Mn (and Fe+Mn) and variable Nb+Ta (Fig. 4A-B; see also 521 

Supplementary Fig. S3). In the Nb vs Ta plot (Fig. 4C), cassiterite samples from the Bolivian tin belt plot mostly 522 

around the Nb:Ta = 2:1 ratio line, Nb concentrations being by up to four orders of magnitude higher than Ta 523 

concentrations. 524 

Concentrations of Zr and Hf are highest in samples from the Kellhuani (28.5-3.24 ppm Nb and 0.965-0.141 ppm 525 

Ta), Huanuni (17.5-1.89 ppm Nb and 0.432-0.0731 ppm Ta) and Llallagua (16.5-3.92 ppm Nb and 0.387-0.0955 526 

ppm Ta) deposits, and lowest in samples from the Ánimas - Chocaya - Siete Suyos (0.059-0.00971 ppm Nb and 527 

0.0165-0.00873 ppm Ta) and Poopó (0.027-0.0126 ppm Nb and 0.0196-0.0133 ppm Ta) deposits. The 528 

concentration of both elements yields a relatively good positive correlation mostly at Zr/Hf > 1, Zr concentrations 529 

being by up to one order of magnitude higher than Hf concentrations (Fig. 4D). Concentrations of Ti are highest in 530 

cassiterite samples from Kellhuani (3065-561 ppm), Huari Huari (1391-383 ppm) and Llallagua (1303-382 ppm) 531 

and lowest in samples from Ánimas - Chocaya - Siete Suyos (19.1-4.65 ppm) and Poopó (4.38-2.02 ppm). There is 532 

a fairly positive correlation between Ti and Zr at Ti/Zr > 1, similar to most cassiterite worldwide (Fig. 4E). In 533 

contrast, Ti does not show clear correlation with U, and Ti/U ratios are normally higher than 1, with a composition 534 

similar to global cassiterite in terms of both elements (Fig. 4F). Titanium shows fairly positive correlation with Sc 535 

for most samples plotting between the lines defined by Sc:Ti 1:1 and 1:2 ratios in Fig. 4G. Nevertheless, cassiterite 536 

compositions for some of the studied deposits align preferably along one or the other, with most samples from the 537 

Kellhuani and Viloco deposits lying along the Sc:Ti = 1:2 ratio line and most samples from the Ánimas - Chocaya 538 

- Siete Suyos and Poopó deposits lying around the 1:1 ratio line. Finally, there is a strong positive correlation 539 

between V and Sc (Fig. 4H). 540 

As for the concentrations of critical metals others than the aforementioned ones (European Commission 2017), In 541 

(96.9-9.78 ppm), Ga (92.1-3.03 ppm) and Ge (3.92-0.776 ppm) vary by orders of magnitude in crystals from 542 

individual deposits/districts and from deposit to deposit. Gallium and In are distinctively concentrated in cassiterite 543 

from the Oruro (801-31.8 ppm In and 377-71 ppm Ga), Huari Huari (889-96.9 ppm In and 438-53.5 ppm Ga) and 544 

Ánimas - Chocaya - Siete Suyos (582-174 ppm In and 292-53.1 ppm Ga) deposits. Gallium is also relatively high 545 
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in the Colquechaca deposit (438-53.5 ppm). The concentrations of In and Ga are consistently very low in the 546 

Viloco (63.4-10.0 ppm In and 5.43-1.59 ppm Ga), Kellhuani (30.9-2.15 ppm In and 3.11-0.932 ppm Ga), 547 

Llallagua (25-6.5 ppm In and 53.1-23.0 ppm Ga) and Poopó (4.7-3 ppm In and 43.3-27.3 ppm Ga; Fig. 3) 548 

deposits. 549 

REE values show a relative wide dispersion in grains analyzed within individual deposits/districts (Figs. 3 and 5, 550 

Table 1). Cassiterite samples from Kellhuani (IQR[∑REE] = 6.18-2.19 ppm) yield the highest REE 551 

concentrations, and samples from the Ánimas - Chocaya - Siete Suyos district (IQR[∑REE] = 2.12-1.44 ppm), the 552 

lowest REE concentrations. In chondrite-normalized (CN) spider plots (Fig. 5), studied cassiterite grains show 553 

rather parallel patterns with irregular tetrad distribution, general negative Ce and positive Gd and Tb anomalies 554 

and enrichment in MREE relative to LREE and HREE ([∑LREE/∑MREE]CN between 0.4 and 0.3, 555 

[∑LREE/∑HREE]CN between 1.6 and 0.6, and [∑MREE/∑HREE]CN between 4.5 and 1.7). 556 

U-Pb cassiterite geochronology 557 

U-Pb isotopic analyses of cassiterite grains from the Kellhuani, Viloco, Huanuni and Llallagua deposits are 558 

presented in Supplementary Table S4 and illustrated in Fig. 6. Spot analyses from the four deposits form Tera-559 

Wasserburg (T-W) isochrons defining lower-intercept dates of 218.3 ± 5.5 Ma (Kellhuani), 24.4 ± 0.4 Ma 560 

(Viloco), 24.0 ± 2.4 Ma (Huanuni) and 24.0 ± 5.1 Ma (Llallagua); concordant data is absent. U-Pb isotopic 561 

analyses on cassiterite grains from the other studied Bolivian deposits were inconclusive due to too low U contents 562 

and/or too high initial Pb. 563 

Discussion 564 

Timing of Sn mineralization in the Bolivian tin belt 565 

Punctuated magmatism and petrogenetically related hydrothermal tin mineralization in the Bolivian tin belt 566 

occurred in the Late Triassic, Late Oligocene and Miocene (Ahfeld 1967; Turneaure 1971; Clark and Farrar 1973; 567 

Evernden et al. 1977; Grant et al. 1979; McBride et al. 1983; Clark et al. 1990; Lehmann et al. 1990; Sugaki et al. 568 

2003; Gillis et al. 2006; Neymark et al. 2018). Accordingly, the metallogeny of the Bolivian tin belt results from 569 

multiple, discrete events that lead to similar anomalous Sn enrichment in a series of mineral deposits of different 570 

affiliation within the magmatic-hydrothermal family. 571 
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To contextualize our U-Pb cassiterite ages in the framework of the magmatic and metallogenic evolution of the 572 

Bolivian tin belt, a geochronologic chart with all available radiometric dates (excluding dates related to 573 

exhumation - thermochronology oriented studies, e.g., (U-Th-Sm)/He, fission track) has been produced (Fig. 7). 574 

For some of the studied deposits (Kellhuani, Viloco and Huanuni), our U-Pb cassiterite dates are the first 575 

geochronologic data based on ore minerals rather than hydrothermal and/or magmatic mineral phases. This 576 

observation is particularly important in the case of the Milluni – Kellhuani district and other tin deposits in 577 

neighboring areas of the Cordillera Real (Fig. 1A). In the Yani, Sorata, Zongo and Huayna Potosí plutons, there is 578 

a large dispersion of radiometric dates (mostly K/Ar and Ar/Ar silicate mineral dates; Fig. 7) from Late Triassic 579 

(i.e., the accepted age of host rock crystallization, constrained by U-Pb zircon dating) to dates as young as ca. 35 580 

Ma. This dispersion in radiometric dates probably represents protracted isotopic resetting during the complex 581 

thermal history undergone by these rocks (cf. Farrar et al. 1988; Kontak et al. 1990; Schildgen and Hoke 2018) but 582 

also opens the door to overprinting hydrothermal events connected to mineralization. 583 

Our U-Pb cassiterite date for Kellhuani (218.3 ± 5.5 Ma) agrees, within the limits of the analytical error, with the 584 

K/Ar muscovite date at 210 ± 6 Ma reported by McBride et al. (1983) for the greisen at the Chacaltaya porphyry 585 

stock, which is genetically connected to the mineralization in the Milluni-Kellhuani district (Lehmann 1985). In 586 

addition, this date agrees with the U-Pb zircon concordia dates of 222.3 ± 2.4 and 220.8 ± 1.9 Ma reported by 587 

Cordani et al. (2019) for two granite samples from the neighboring Huayna Potosí pluton. 588 

In the Viloco deposit, our U-Pb cassiterite date (24.4 ± 0.4 Ma) agrees, within error, with felsic magmatism in the 589 

Tres Cruces batholith dated at ca. 22-26 Ma via K/Ar analysis of igneous biotite and muscovite (Ahlfeld and 590 

Branisa 1960; Cordani 1967 in Clark and Farrar 1973; Evernden et al. 1977; McBride et al. 1983; Gillis et al. 591 

2006). Gillis et al. (2006) performed U-Pb dating of zircons from the Quimsa Cruz batholith in the Argentina and 592 

Viloco mines and obtained dates of 26.2 ± 0.2 and 25.4 ± 0.2 Ma, respectively. 593 

As far as we know, there are no geochronological studies in the Huanuni deposit area. The mineralization has been 594 

suggested to be of Late Oligocene - Early Miocene age by analogy with other neighboring mining districts (e.g., 595 

San Pablo stock - Japo - Santa Fe, El Poder and Llallagua; Fig. 1A) for which igneous activity connected to tin 596 

mineralization has been dated in the range between ca. 25 and 20 Ma (K/Ar mineral and whole rock dates; 597 

Everden et al. 1961; Grant et al. 1979; Sugaki et al. 2003). This age bracket encompasses our 24.0 ± 2.4 Ma U-Pb 598 

cassiterite date in the Huanuni deposit. The nearby Mororocala ignimbrites (Fig. 1A), in contrast, are much 599 

younger according to Ar/Ar dates of ca. 8-6 Ma provided by Koeppen et al. (1987) (see also Morgan et al. 1998). 600 
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The age of the mineralization in the Llallagua deposit has long been a topic of discussion. Reported radiometric 601 

dating includes dates as disparate as 43.8 ± 4.7 Ma (Sm/Nd early fluorapatite vein assemblages, Rakovan et al. 602 

1997), 42.2 ± 4 Ma (Pb/Pb evaporation age in zircon; Kempe et al. 2008), 23.4 ± 2.2 and 19.0 ± 1.6 Ma (U-Pb 603 

monazite, Kempe et al. 2008; Kohn and Vervoort 2008) and 20.9 ± 0.4 Ma (K/Ar geochronology of the 604 

hydrothermally altered porphyry, Grant et al. 1979). U-Pb dating on cassiterite by Neymark et al. (2018) yielded a 605 

date of 20.0 ± 2.5 Ma, which overlaps within error with our 24.0 ± 5.1 Ma U/Pb cassiterite date thus constraining 606 

the tin mineralization event in this deposit to the Early Miocene. 607 

The new geochronologic data presented here, hence, conform to the idea that tin mineralization events in the 608 

Bolivian tin belt occurred at least in two separate epochs during the Late Triassic (Norian; Milluni-Kellhuani 609 

district) and the Late Oligocene (Chattian) - Early Miocene (Aquitanian; Viloco, Huanuni and Llallagua deposits). 610 

Unpublished cassiterite U-Pb analyses in samples from the San Rafael deposit in Peru yield dates of ca. 24 Ma 611 

(pers. comm. M. Harlaux), similar to the Viloco, Huanuni and Llallagua deposits. These ages coincide with major 612 

episodes of mantle upwelling, decompression melting and basalt production, and related high heat flow into the 613 

overlying crust (see above). Unfortunately, U-Pb measurements of cassiterite grains from deposits located in the 614 

southernmost part of the Bolivian tin belt were inconclusive, although previous geochronological data would point 615 

to younger mineralization ages of ca. 15-13 Ma (Fig. 7; see also Slater et al. 2020 for a discussion on the age of the 616 

Pirquitas deposit in Argentina based on field relationships). Progressively younger tin-polymetallic mineralization 617 

towards the south of the Bolivian tin belt during the Pliocene and Miocene might be related to the southward 618 

passage of the subducting Juan Fernández aseismic ridge and associated migrating magmatic flare-up (de Silva 619 

and Kay 2018); the latter might however have resulted from the southward migration of the onset of Late 620 

Oligocene–earliest Miocene major mafic magmatism detected by Fornari et al. (2002), possibly as a consequence 621 

of the reconstructed migration of this ridge. Separate tectonic events leading to i) crustal melting of volatile-rich, 622 

carbonaceous sediments and ii) enhanced magmatic differentiation and sustained heat production enabled by long 623 

crustal residence of mantle-derived melts in a thickened crust converged to form one of the largest Sn 624 

accumulations on Earth (Dietrich et al. 2000; Lehmann et al. 2000). 625 

Controls on minor- and trace-element variations in cassiterite 626 

Due to the tetragonal structure of cassiterite and according to charge, radii and coordination of ions compared with 627 

Sn4+ the following elements are considered to be compatible with cassiterite: Al3+, Fe3+, Ga3+, V3+, Cr3+, Sc3+, Sb3+, 628 

W4+, U4+, Zr4+, Hf 4+, Ti4+, Nb5+ and Ta5+ (Cheng et al. 2019; Mao et al. 2020). Of these elements, the 4+ charged 629 
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cations (Zr, Hf, Ti, U and W) can directly substitute for Sn4+ (without readjustments of charge balance) while 630 

coupled substitution mechanisms are required for differently-charged cations (e.g., Fe, Mn, Nb, Ta and In; Cheng 631 

et al. 2019). 632 

Zirconium and Hf have similar geochemical behavior, so they usually maintain a near chondritic Zr/Hf ratio of 35-633 

40 (Hoskin and Schaltegger 2003). However, in hydrothermal environments and in highly differentiated igneous 634 

rocks, deviations from this ratio (i.e., element pair decoupling) can occur (Bau 1996). Processes such as 635 

metasomatism, crystal fractionation in the presence of zircon, hydrothermal alteration or preferential mobilization 636 

of Zr in B- and F-rich fluids have been proposed to cause fractionation of Zr over Hf (Cheng et al. 2019). The fact 637 

that the studied cassiterite samples yielded Zr/Hf up to 90 agrees with the high activity of B and F during the 638 

formation of the mineralization along the Bolivian tin belt, as seen in abundant tourmaline plus fluorite. 639 

Even though Nb and Ta are considered to have similar geochemical behavior, large variations in their 640 

concentration and ratio occur in cassiterite. Cheng et al. (2019) attribute these variations to processes involving 641 

element fractionation during mineral growth due to fluid disequilibrium. However, variations in the concentration 642 

of Nb and Ta may also be related to the physical-chemical characteristics of the hydrothermal fluids (Zhao et al. 643 

2019; Lerouge et al. 2017). Zhang et al. (2017) noted that cassiterite from high-temperature systems related to 644 

highly fractionated Li-F granites and pegmatites has high Nb, Ta and Zr contents (with low Zr/Hf ratios) but low 645 

Fe and Mn contents, contrary to cassiterite from low-temperature hydrothermal deposits. On the other hand, 646 

isomorphous replacement of Sn3O6 by (Fe,Mn)(Nb,Ta)2O6 is typical of cassiterite in hydrothermal cassiterite-647 

quartz veins and greisen deposits (e.g., Möller et al. 1988; Murciego et al. 1997; Abdalla et al. 2008), whereas 648 

isomorphic replacement of 3Sn4+ by 2(Nb,Ta)5+ + (Fe,Mn)2+ is typical of magmatic cassiterite from rare-element 649 

granites and pegmatites (e.g., Tindle and Breaks 1998). 650 

Cassiterite grains from the Bolivian tin belt are low in Nb+Ta relative to most cassiterite compiled from the 651 

literature, particularly to magmatic cassiterite (Fig. 4A-C, Table 2). Iron and Mn concentrations in cassiterite 652 

samples from the Bolivian tin belt fit the composition of most cassiterite described in the literature, with the 653 

exception of magmatic cassiterite and cassiterite in greisen mineralizations, which are significantly enriched in 654 

Mn. In terms of Fe+Mn and Nb+Ta, cassiterite from the Bolivian tin belt shows limited dispersion without any 655 

correlation between the concentrations of Fe+Mn and Nb+Ta (Figs. 4A-B); these observations suggest that neither 656 

of the aforementioned substitution mechanisms was significant in the composition of the studied grains. Regarding 657 

Nb and Ta systematics, the compositions of cassiterite samples from the Bolivian tin belt lie largely along the 658 
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Nb:Ta = 2:1 ratio line similar to most cassiterite in hydrothermal occurrences worldwide, whereas most magmatic 659 

cassiterite and cassiterite from greisen mineralizations lie rather along the 1:1 ratio line (Fig. 4C). Niobium and Ta 660 

are enriched in cassiterite grains from the sediment-hosted Kellhuani and Viloco xenothermal deposits, which 661 

formed adjacent to causative intrusive complexes, and the stock-hosted Llallagua xenothermal deposit (Fig. 1B) 662 

relative to epithermal and shallow xenothermal deposits formed at lower temperatures and depths (Figs. 1, 3). 663 

A decrease in Ti and Ti/Zr in cassiterite grains has been linked to transition from proximal (higher temperature) to 664 

distal (lower temperature) locations in intrusion-centered hydrothermal systems (Taylor 1979; Cheng et al. 2019), 665 

which coincides with a higher solubility of Zr in hydrothermal fluids compared to Ti (see also Kessel et al. 2005). 666 

On the other hand, Sc is said to be transported as F complexes in post-magmatic fluids (Plimer et al. 1991). Our 667 

samples describe Ti/Zr variations by up to two orders of magnitude and systematically plot above the 1:1 ratio line 668 

in Fig. 4E similar to reference data for xenothermal and epithermal deposits. In general, cassiterite samples from 669 

the intrusion-proximal Kellhuani and Viloco deposits show higher Ti/Zr and Ti/Sc than samples from the 670 

intrusion-distal Ánimas - Chocaya - Siete Suyos and Poopó deposits (Figs. 1B, 4E,G). Accordingly, our dataset 671 

agrees with a progressive depletion of Ti relative to Zr and Sc in hydrothermal fluids as they evolved or migrated 672 

away from the causative intrusive bodies and hence the Ti/Zr and Ti/Sc ratios can be used as tracers to magmatic-673 

hydrothermal centers. 674 

Cassiterite samples from the Bolivian tin belt yield a fair positive correlation between V and Sc, which has been 675 

used to propose a Sc3++V5+ ⇔ 2Sn4+ coupled substitution in tin-granite-, greisen-, skarn- and vein-type ores by 676 

Cheng et al. (2019). The behavior in hydrothermal systems of elements such as V, In, Ge and Ga regarding 677 

cassiterite is poorly understood. Plimer et al. (1991) related the In composition of cassiterite directly to the 678 

concentration of this element in the hydrothermal ore-forming fluids. The highest average concentrations of In in 679 

cassiterite samples from the Bolivian tin belt are found indeed in Huari Huari and Ánimas - Chocaya - Siete Suyos 680 

districts, which are well known for their high concentrations of In (Schwarz-Schampera and Herzig 2002; Torró et 681 

al. 2019a,b; Pring et al. 2020; Tables 2 and 3) thus supporting this idea. Lerouge et al. (2019) found that sulfides 682 

(such as stannite and sphalerite) and rutile associated with In-poor cassiterite contain high amounts of In thus 683 

highlighting that In tends to preferentially partition in sulfides rather than cassiterite. This would be also the case 684 

in the deposits from the Bolivian tin belt (Jiménez-Franco et al. 2018; Cacho et al. 2019; Torres et al. 2019; Torró 685 

et al. 2019a,b). 686 
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The studied cassiterite samples from the Bolivian tin belt show average REE concentrations similar to those of 687 

reference data for cassiterite in granite, granite-cupola and greisen mineralizations (Table 1; Fig. 5). Similar to 688 

cassiterite from the Bolivian tin belt, cassiterite from granites and granite-cupolas also show positive anomalies in 689 

MREE in chondrite-normalized diagrams, particularly Tb (see Zoheir et al. 2019). It is noteworthy that, unlike 690 

cassiterite from the Bolivian tin belt, cassiterite compositions reported in the literature normally lack negative Ce 691 

anomalies. Broken, “unusual” REE patterns combining concave and convex tetrads are acknowledged in tin-692 

bearing magmatic-hydrothermal systems probably connected to liquid-vapor REE fractionation (Monecke et al. 693 

2011). Following Monecke et al. (2011), the irregular REE tetrad partition in cassiterite samples from the Bolivian 694 

tin belt would reflect generalized fluid immiscibility during the early stages of evolution of the studied deposits 695 

concomitant with the crystallization of cassiterite. Kelly and Turneaure (1970) proposed that boiling of the early 696 

tin-bearing fluid was an important mechanism for the precipitation of early quartz and cassiterite in Llallagua, and 697 

may have played an important role in the location of high grade ore in some shallow deposits of central and 698 

southern Bolivia (as also suggested by Chace 1948a,b for the Oruro deposits). These authors suggest that the 699 

upward vertical zoning of high grade cassiterite to low grade sulfide-rich tin ore may mark levels of local boiling. 700 

Other plausible mechanisms that might have controlled REE fractionation during the crystallization of 701 

hydrothermal cassiterite in Bolivian deposits include i) mixing between magmatic and meteoric waters (as 702 

proposed for the San Rafael deposit; Kontak and Clark 2002, Harlaux et al. 2020) leading to destabilization of 703 

REE chloride and fluoride complexes, which are more stable with increasing atomic number (Migdisov et al. 704 

2016); and ii) partitioning of REE between co-crystallizing phases (e.g., monazite and tourmaline; Jolliff et al. 705 

1987; Harlaux et al. 2020; Sciuba et al. 2020). Nevertheless, these alternative or complimentary mechanisms 706 

leading to REE fractionation would not reproduce the broken, highly irregular chondrite-normalized REE patterns 707 

described here for cassiterite samples from the Bolivian tin belt and therefore we surmise that their impact, if any, 708 

was subordinate to that of fluid immiscibility. 709 

Potential of cassiterite from the Bolivian tin belt as a source of critical elements as byproducts 710 

Previous studies on the concentration of high-tech metals in deposits from the Bolivian tin belt have focused 711 

mostly on the sulfide mineralization (Schwarz-Schampera and Herzig 2002; Ishihara et al. 2011; Artiaga et al. 712 

2013; Murakami and Ishihara 2013; Jiménez-Franco et al. 2018; Cacho et al. 2019; Torres et al. 2019; Torró et al. 713 

2019a,b; Pring et al. 2020; summary of reported maximum concentrations of In, Ge and Ga shown in Table 3). In 714 
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the following lines we assess the potential of cassiterite from the Bolivian tin belt as a source of high-tech, critical 715 

elements, chiefly Nb, Ta, In, Ge and Ga, by comparing our results with bibliographic values. 716 

Cassiterite samples from the Bolivian tin belt yielded much lower Nb concentrations than cassiterite from granite-717 

hosted, granite cupola, greisen and pegmatite mineralizations worldwide (Table 2). Cassiterite from xenothermal 718 

and epithermal mineralizations reported in the literature is also enriched in Nb relative to our values. Likewise, 719 

cassiterite from the Bolivian tin belt is strongly depleted in Ta relative to most cassiterite compositions reported in 720 

the literature (Table 2). According to our results, cassiterite from the Bolivian tin belt is not likely to make a good 721 

resource for these two metals. 722 

Indium concentrations in cassiterite from the Bolivian tin belt are consistent with, and often higher than, 723 

previously reported concentrations worldwide. However, it is noteworthy that in most of the studied Bolivian 724 

deposits, sulfide minerals, namely sphalerite and stannite, are the main In hosts, often with concentrations at the 725 

wt% level (Table 3). On the other hand, there is a close correlation between In enrichment in cassiterite and sulfide 726 

minerals in deposits along the Bolivian tin belt (Table 3). Therefore, in some deposits, cassiterite might represent a 727 

potential, additional source of In. The metallurgical recovery of In from cassiterite is, as far as we know, poorly 728 

developed. Preconcentration of In in slag during the smelting process to obtain tin metal from cassiterite could be 729 

expected, just as for Nb and Ta (Gupta and Suri 1994), In being separated afterwards by a multistep operation 730 

involving sulfuric acid leach of ferrite slag (Tshijik Karumb 2016). 731 

Gallium contents in cassiterite samples from the Bolivian tin belt are also consistent with and often higher than 732 

concentrations reported in the literature (Table 2). Germanium concentrations in the studied samples of cassiterite 733 

are systematically very low, particularly if compared to Ge concentrations reported for cassiterite from pegmatites. 734 

With data in hand, cassiterite from the Bolivian tin belt is probably unattractive as source of Ge. 735 

Conclusions 736 

Tin mineralization has been dated directly by U-Pb geochronology on cassiterite samples from the Kellhuani 737 

(218.3 ± 5.5 Ma), Viloco (24.4 ± 0.4 Ma), Huanuni (24.0 ± 2.4 Ma) and Llallagua (24.0 ± 5.1 Ma) deposits. The 738 

dates are in good agreement with published ages for igneous rocks within the respective districts and confirm that 739 

hydrothermal tin mineralization in the Bolivian tin belt occurred mostly in two periods: Late Triassic and Late 740 

Oligocene –Miocene. 741 
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Our new ages closely coincide with two major magmatic episodes that were apparently triggered by mantle 742 

upwelling, decompression melting and basalt production, and related high heat flow into the overlying crust. The 743 

age obtained for Kellhuani coincides with the culmination of the Mitu rifting episode (~240–220 Ma; Spikings et 744 

al. 2016). The dates obtained for Viloco, Huanuni and Llallagua have mean values at 24.0 Ma, which overlap with 745 

the timing of major and widespread basaltic magmatism in the central Altiplano and probably adjacent regions. 746 

The convergence of highly evolved, peraluminous silicic melts derived in part from the melting of volatile-rich 747 

sedimentary series and a sustained heat and fluid contribution from primitive melts stored at intermediate and 748 

upper levels of a thickened continental crust enhanced the formation of large tin deposits along the Bolivian tin 749 

belt. 750 

The composition of the studied cassiterite samples is relatively homogeneous at the metalliferous belt scale. 751 

Nevertheless, nuances in trace element contents in mineralizations emplaced at different levels within the 752 

xenothermal and epithermal environments allow for the identification of some compositional trends. Some 753 

deposits formed adjacent to causative intrusive complexes such as Kellhuani, Viloco and Llallagua are typically 754 

enriched in Nb and Ta relative to epithermal and shallow xenothermal deposits. In addition, Ti/Zr and Ti/Sc ratios 755 

decrease from intrusive-proximal to intrusive-distal locations and therefore can be used to vectorize toward 756 

magmatic-hydrothermal centers. 757 

REE abundances are elevated in cassiterite from intrusive-proximal (e.g., Kellhuani, Llallagua) relative to 758 

intrusive-distal mineralizations. There is a general, pronounced enrichment in MREE relative to LREE and HREE 759 

in chondrite-normalized patterns. REE distribution patterns are likely influenced by boiling processes, which yield 760 

characteristic broken REE patterns combining concave and convex tetrads. 761 

The hydrothermal cassiterite from the Bolivian tin belt has low Nb and Ta compared with magmatic cassiterite in 762 

rare-metal granites and pegmatites. The concentration of Ge is systematically very low in the studied cassiterite 763 

samples. However, some cassiterite samples have relatively high concentrations of In and Ga. Interestingly, the 764 

highest In concentrations in cassiterite from the Bolivian tin belt are found in samples from deposits with 765 

documented high concentration of this element in sulfide minerals, suggesting that the concentration of In in 766 

cassiterite is primarily controlled by its availability in the hydrothermal fluid. In these particular deposits, 767 

cassiterite could represent an additional economic source of In. 768 
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Fig. 2. Photomicrographs of representative cassiterite grains for each of the studied Bolivian deposits (reflected light, 1254 

PPL). (A) Subhedral cassiterite crystals in association with siderite, quartz and basal sections of tourmaline 1255 

[Kellhuani]. (B) Twinned and fractured euhedral cassiterite crystal in contact with quartz [Viloco]. (C) Fractured 1256 

subhedral cassiterite crystals with corroded outlines in contact with stannite, sphalerite and pyrrhotite [Viloco]. (D) 1257 

Massive cassiterite aggregates with abundant secondary porosity in an assemblage of quartz-marcasite [Oruro]. (E) 1258 

Breccia texture containing small subhedral and anhedral cassiterite grains and pyrite in a micrometric gangue matrix 1259 

[Oruro]. (F) Subhedral to anhedral cassiterite grains in contact with sphalerite and pyrite-marcasite after pyrrhotite 1260 

showing “bird’s eye” textures [Poopó]. (G) Massive euhedral to subhedral fractured cassiterite grains [Huanuni]. 1261 

(H) Massive, twinned cassiterite crystals in an assemblage of quartz and tourmaline [Llallagua]. (I) Breccia-type 1262 

mineralization with subhedral cassiterite grains along with quartz, pyrite, galena, sphalerite and late siderite 1263 

[Colquechaca]. (J) Leather-shaped radial aggregates of cassiterite surrounded by massive sphalerite [Colquechaca]. 1264 

(K) Complex sulfide and sulfosalt assemblage along with corroded and twinned cassiterite crystals [Huari Huari]. 1265 

(L) Garland-like arrangement of cassiterite, sulfides and sulfosalts wrapping a euhedral hexagonal quartz crystal 1266 

[Ánimas - Chocaya - Siete Suyos]. Abbreviations: Ara = aramayoite; Cst = cassiterite; Cpy = chalcopyrite; Gn = 1267 

galena; Mcs = marcasite; Mia = miargyrite; Osc = oscarkempffite; Pyr = pyrargyrite; Po = pyrrhotite; Py = pyrite; 1268 

Qz = quartz; Sid = siderite; Sl = sphalerite; Stn = stannite; Ttd = tetrahedrite-group; Turm = tourmaline. 1269 

Fig. 3. Selected box plots showing element concentrations in cassiterite from the Bolivian Tin Belt (LA-ICP-SF-MS 1270 

data). 1271 

Fig. 4. Correlation binary plots for cassiterite from the Bolivian tin belt. Bibliographic data is shown for comparison. 1272 

Granite-hosted and granite cupolas: Moore and Howie (1979), Lentz and McAllister (1990), Plimer et al. (1991), 1273 

Murciego et al. (1997), Gorelikova et al. (2004, 2006), Abdalla et al. (2008), Neiva (2008), Pavlova et al. (2015), 1274 

Lerouge et al. (2017), Nascimento and Souza (2017), Zhang et al. (2017), Chen et al. (2019), Cheng et al. (2019), 1275 

Fuchsloch et al. (2019), Zoheir et al. (2019), Mao et al. (2020). Greisen-type: Plimer et al. (1991), Pavlova et al. 1276 

(2015), Chen et al. (2019), Cheng et al. (2019), Fuchsloch et al. (2019), Hulsbosch and Muchez (2019). Migmatitic-1277 

related: Murciego et al. (1997), Jiang et al. (2004). Pegmatite: Murciego et al. (1997), Plimer et al. (1991), Wise and 1278 

Brown. (2011), Hulsbosch and Muchez (2019), Kendall-Langley et al. (2019). Xenothermal and epithermal 1279 

environment: Murciego et al. (1997), Pavlova et al. (2015), Guo et al. (2018), Cheng et al. (2019), Zhao et al. (2019). 1280 

Skarn: Cheng et al. (2019). VMS: Serranti et al. (2002). 1281 
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Fig. 5. Chondrite-normalized REE spider diagrams for Bolivian Tin Belt cassiterite represented as individual 1282 

analyses (A) and as average values for each deposit/district (B). Bibliographic data are shown for comparison. 1283 

Granite-hosted and granite cupolas: Plimer et al. (1991), Zoheir et al. (2019). Greisen-type: Plimer et al. (1991). 1284 

Migmatitic-related: Jiang et al. (2004). 1285 

Fig. 6. Tera-Wasserburg U-Pb concordia plots for cassiterite from the Kellhuani, Viloco, Huanuni and Llallagua 1286 

deposits. 1287 

Fig. 7. Triassic to recent geochronologic chart of the Bolivian Tin Belt, including the new U-Pb cassiterite data 1288 

presented here. Data are ordered from north to south of the Bolivian Tin Belt. Circled numbers correspond to the 1289 

following references: 1) Ahfeld and Brainsa (1960); 2) Ahfeld and Schneider-Scherbina (1964); 3) Clark and Farrar 1290 

(1973); 4) Clark et al. (1983); 5) Clark et al. (2000); 6) Cordani (1967); 7) Cordani et al. (2019); 8) Cunningham et 1291 

al. (1996); 9) Everden (1961); 10) Everden et al. (1997); 11) Gillis et al. (2006); 12) Grant et al. (1979); 13) Kempe 1292 

et al. (2008); 14) Kontak and Clark (2002); 15) Kontak et al. (1987); 16) McBride et al. (1983); 17) Redwood and 1293 

Macintyre (1989); 18) Revollo (1967); 19) Rivas and Carrasco (1968); 20) Thormann (1966); 21) Farrar et al. (1990). 1294 

Table captions 1295 

Table 1. Average REE concentrations for Bolivian Tin Belt cassiterite and bibliographic data: Granite-hosted and 1296 

granite cupolas: Plimer et al. (1991), Zoheir et al. (2019). Greisen-type: Plimer et al. (1991). Migmatitic-related: 1297 

Jiang et al. (2004). REE division after Samson and Wood (2004); LREE: La-Sm; MREE: Eu-Dy; HREE: Ho-Lu. 1298 

Table 2. Summary of the concentrations of Nb, Ta, In, Ge and Ga in cassiterite grains from the Bolivian tin belt. 1299 

Bibliographic data are shown for comparison (references as in Fig. 4). 1300 

Table 3. Maximum reported concentrations of In, Ge, Ga, Nb and Ta in ore minerals and concentrates from deposits 1301 

in the Bolivian Tin Belt. 1302 

Supplementary material 1303 

Supplementary Table S1. EPMA data for spot analyses of cassiterite grains from the Bolivian Tin Belt. 1304 

Supplementary Table S2. LA-ICP-MS combined trace element and U-Pb isotopic analyses on cassiterite - Metadata. 1305 
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Supplementary Table S3. Trace-element LA-ICP-MS data for spot analyses of cassiterite grains from the Bolivian 1306 

Tin Belt. 1307 

Supplementary Table S4. U-Pb LA-ICP-MS data for spot analyses of cassiterite grains from the Bolivian Tin Belt. 1308 

Supplementary Figure S1. Representative downhole LA-ICP-MS spectra for elements at concentrations >L.O.D. in 1309 

studied cassiterite from the Bolivian tin belt. 1310 

Supplementary Figure S2. Box plots showing element concentrations in cassiterite from the Bolivian Tin Belt (LA-1311 

ICP-SF-MS data). 1312 

Supplementary Figure S3. Ternary diagrams representing cassiterite analyses from Bolivian Tin Belt and 1313 

bibliographic data. The centered ternary plot (C) is used to accentuate compositional variation in unbalanced 1314 

compositional data by centering the data-set on its average and visualizing the transformed data with a standard 1315 

ternary balance scheme. References given in Fig. 4 caption. 1316 



ppm ∑REE ∑LREE ∑MREE ∑HREE ∑LREE/MREECN ∑LREE/HREECN ∑MREE/HREECN

Max. 38.3 13.2 21.3 3.79 0.4 1.6 4.5
Min. 0.513 0.168 0.266 0.046 0.3 0.6 1.7
IQR 6.18-2.19 2.28-0.766 3.32-1.14 0.706-0.216 0.4-0.3 1.4-1.0 4.1-2.7
Max. 35.5 13.5 19.6 2.71 0.4 1.9 5.0
Min. 0.351 0.124 0.190 0.0367 0.3 0.3 0.8
IQR 4.42-1.61 1.55-0.562 2.21-0.865 0.483-0.181 0.4-0.4 1.5-1.0 4.2-2.7
Max. 13.9 5.28 7.41 1.18 0.6 2.4 5.3
Min. 0.498 0.182 0.218 0.0375 0.4 0.9 2.6
IQR 3.58-1.55 1.30-0.621 1.96-0.825 0.315-0.137 0.4-0.4 1.7-1.5 4.5-4.0
Max. 5.50 2.00 3.04 0.467 0.4 1.7 4.7
Min. 0.384 0.142 0.209 0.0326 0.3 1.4 4.1
IQR 3.26-1.98 1.16-0.711 1.83-1.10 0.272-0.178 0.4-0.4 1.6-1.5 4.6-4.4
Max. 14.6 5.30 8.12 1.21 0.4 1.9 5.1
Min. 0.214 0.0791 0.117 0.0184 0.3 1.5 3.9
IQR 2.58-1.90 0.977-0.698 1.41-1.04 0.216-0.153 0.4-0.4 1.7-1.6 4.7-4.4
Max. 11.7 4.03 6.65 0.991 0.4 1.7 4.8
Min. 0.452 0.164 0.251 0.0368 0.3 1.2 3.3
IQR 3.99-2.30 1.41-0.832 2.21-1.24 0.373-0.198 0.4-0.3 1.6-1.5 4.4-4.2
Max. 2.57 0.984 1.36 0.253 0.4 1.8 4.5
Min. 1.73 0.661 0.921 0.144 0.4 1.5 3.6
IQR 2.47-2.12 0.907-0.784 1.33-1.14 0.203-0.197 0.4-0.4 1.7-1.5 4.5-3.9
Max. 21.3 8.01 11.5 1.73 0.4 1.9 5.0
Min. 1.74 0.644 0.954 0.145 0.3 1.3 3.9
IQR 3.76-1.99 1.38-0.715 2.06-1.10 0.317-0.186 0.4-0.4 1.6-1.5 4.6-4.0
Max. 4.66 1.68 2.56 0.421 0.4 1.6 4.8
Min. 0.0636 0.0234 0.0342 0.00590 0.3 1.5 4.1
IQR 2.12-1.44 0.784-0.543 1.14-0.769 0.197-0.125 0.4-0.4 1.6-1.5 4.4-4.2
Max. 447 356 48.0 42.8 7.9 80.9 10.5
Min. 0.658 0.0930 0.0850 0.260 0.1 0.02 0.1
IQR 164-1.37 144-0.187 11.2-0.132 5.27-0.817 3.9-0.3 3.0-0.05 0.8-0.1
Max. 12.8 10.2 1.10 1.54 4.4 1.7 0.4
Min. 2.19 0.490 0.710 0.990 0.4 0.1 0.4

1.83 1.10 0.350 0.380 1.3 0.7 0.5

Kellhuani (n=30)

Viloco (n=81)

San José - Itos (Oruro) 
(n=22)

Poopó (n=9)

Huanuni (n=59)

Greisen-type (n=2)

Migmatitic-related (n=1)

Llallagua (n=13)

Colquechaca (n=5)

Huari Huari (n=9)

Ánimas - Chocaya - 
Siete Suyos (n=17)

Granite hosted and 
granite cupolas (n=28)

Table 1



Nb (ppm) Ta (ppm) In (ppm) Ge (ppm) Ga (ppm)
Max. 2008 2.29 95.7 2.25 20.4
Min. 0.0626 0.00324 0.700 B.D.L. 0.400
IQR 60.8-2.26 0.639-0.0403 30.9-2.15 1.25-0.499 3.11-0.932
Max. 1011 114 268 13.5 42.5
Min. B.D.L. 0.00285 0.500 B.D.L. 0.422
IQR 6.19-0.0515 0.135-0.0138 63.4-10.0 1.85-0.499 5.43-1.59
Max. 11.3 0.575 1414 21.9 1314
Min. 0.0605 0.00806 7.70 0.573 13.2
IQR 3.76-0.417 0.075-0.0259 801-31.8 10.1-1.58 377-71
Max. 0.0370 0.0411 8.30 10.6 49.7
Min. 0.00649 0.00254 1.60 0.715 18.3
IQR 0.027-0.0126 0.0196-0.0133 4.7-3 6.45-2.97 43.3-27.3
Max. 43.0 0.929 260 6.36 396
Min. B.D.L. 0.00139 1.40 0.107 8.87
IQR 0.488-0.0377 0.025-0.011 122-20.3 3.79-1.47 217-52.9
Max. 63.8 1.06 44.2 3.93 78.6
Min. 0.0167 0.0106 1.60 0.508 7.01
IQR 18.5-0.989 0.185-0.0143 25-6.5 3.48-2.2 53.1-23.0
Max. 1.06 0.0294 104 7.34 503
Min. 0.0194 0.0162 1.70 2.23 23.4
IQR 0.611-0.022 0.0289-0.0226 95.2-1.7 6.37-2.78 438-53.5
Max. 6.05 0.253 1041 8.32 916
Min. 0.00684 0.0113 11.3 0.913 105
IQR 2.58-0.034 0.0872-0.0267 889-96.9 4.79-2.89 690-150
Max. 0.689 0.0299 996 33.6 7437
Min. B.D.L. 0.000390 56.7 0.219 2.31
IQR 0.059-0.00971 0.0165-0.00873 582-174 7.81-3.23 292-53.1
Max. 26800 306700 800 1.17 400
Min. B.D.L. B.D.L. B.D.L. 0.03 B.D.L.
IQR 3389-100 5078-100 304-2.50 0.59-0.263 19.9-5.00
Max. 26800 103300 160 - 22.9
Min. 0.07 B.D.L. 0.02 - 0.68
IQR 2400-308 6311-170 2.30-0.195 - 9.00-2.74
Max. 6400 100 - - -
Min. 0.17 0.07 - - -
IQR 2225-150 100-25.1 - - -
Max. 28500 32000 0.02 24997 4580
Min. B.D.L. B.D.L. 0.02 B.D.L. B.D.L.
IQR 2780-175 4088-0.55 - 361-13.0 593-115
Max. 626 248 - - 27.5
Min. 5.51 0.05 - - 1
IQR 146-25.4 12.9-1.42 - - 8.74-1.78
Max. - 53 309 - -
Min. - 45 284 - -
IQR - 51.0-47.0 303-290 - -
Max. 13316 3760 1508 - 149
Min. B.D.L. B.D.L. 3.88 - 0.22
IQR 172-0.12 31.5-0.01 358-5.00 - 21.3-2.06

Xenothermal and epithermal 
environment (n=48)

Kellhuani
(n=30)

Viloco
(n=81)

San José - Itos (Oruro)
(n=22)

Poopó
(n=9)

Huanuni
(n=59)

Llallagua
(n=13)

Colquechaca
(n=5)

Huari Huari
(n=9)

Ánimas - Chocaya - Siete 
Suyos
(n=17)

Granite-hosted and granite 
cupolas (n=392)

Greisen-type
(n=103)

Migmatitic-related
(n=6)

Pegmatite
(n=177)

Skarn
(n=21)

VMS
(n=2)

Table 2



Reference Deposit Method Sample type In (ppm) Ge (ppm) Ga (ppm)
Ishihara et al. (2011) Cerro Rico de Potosí ICP-MS Sphalerite 5740 69
Ishihara et al. (2011) Pailaviri ICP-MS Composite ore 43 28
Ishihara et al. (2011) San Jacinto ICP-MS Composite ore 292 24
Ishihara et al. (2011) Huari Huari ICP-MS Composite ores 3080 148
Ishihara et al. (2011) Reserva ICP-MS Zn concentrate 553 14
Ishihara et al. (2011) San Lorenzo ICP-MS Zn concentrate 1080 9
Ishihara et al. (2011) Tuntoco ICP-MS Composite ore 100 125
Ishihara et al. (2011) Porco ICP-MS Sphalerite 821 138
Ishihara et al. (2011) Bolívar ICP-MS Breccia Ore 2730 284
Ishihara et al. (2011) Colquiri ICP-MS Ore 393 88
Ishihara et al. (2011) Siete Suyos - Ánimas ICP-MS Composite Ore 2240 312
Ishihara et al. (2011) Ánimas ICP-MS Composite Ore 2510 210
Ishihara et al. (2011) Chorolque ICP-MS Composite Ore 1 32
Ishihara et al. (2011) Tatasi ICP-MS Composite Ore 630 24
Ishihara et al. (2011) San Vicente ICP-MS Sphalerite ore 1290 133
Ishihara et al. (2011) Pirquitas (Argentina) ICP-MS Composite ore 1160 567
Ishihara et al. (2011) San Cristóbal ICP-MS Zn concentrate 11 17
Ishihara et al. (2011) Cerro Rico de Potosí EPMA Sphalerite 12700
Ishihara et al. (2011) Cerro Rico de Potosí EPMA Petrukite 48600
Ishihara et al. (2011) Bolívar ICP-MS Zn concentrate 584
Ishihara et al. (2011) Colquiri ICP-MS Zn concentrate 213
Ishihara et al. (2011) Porco ICP-MS Zn concentrate 499
Ishihara et al. (2011) Huari Huari ICP-MS Zn concentrate 3080
Ishihara et al. (2011) Cerro Rico de Potosí ICP-MS Zn concentrate 1199
Ishihara et al. (2011) San Lorenzo ICP-MS Zn concentrate 1080
Ishihara et al. (2011) Bolívar ICP-MS Zn concentrate 584
Ishihara et al. (2011) Reserva ICP-MS Zn concentrate 553
Ishihara et al. (2011) Porco ICP-MS Zn concentrate 499
Ishihara et al. (2011) Colquiri ICP-MS Zn concentrate 213
Ishihara et al. (2011b) San Cristóbal ICP-MS Zn concentrate 10.7
Artiaga et al. (2013) Viloco EPMA Stannite 20400
Artiaga et al. (2013) Viloco EPMA Sphalerite 2000
Murakami and Ishihara (2013) Cerro Rico de Potosí EPMA Sphalerite 95900
Murakami and Ishihara (2013) Huari Huari EPMA Sphalerite 182200
Murakami and Ishihara (2013) Bolívar EPMA Sphalerite 6900
Murakami and Ishihara (2013) Porco EPMA Sphalerite 3900
Murakami and Ishihara (2013) Cerro Rico de Potosí fsLA-ICPMS Sphalerite 430
Murakami and Ishihara (2013) Huari Huari fsLA-ICPMS Sphalerite 3450 116
Murakami and Ishihara (2013) Bolívar fsLA-ICPMS Sphalerite 2290 249
Murakami and Ishihara (2013) Porco fsLA-ICPMS Sphalerite 20 35
Murakami and Ishihara (2013) Cerro Rico de Potosí fsLA-ICPMS Miargyrite 4 not detected
Murakami and Ishihara (2013) Huari Huari fsLA-ICPMS Jamesonite 624 not detected
Jiménez-Franco et al. (2018) Santa Fe ICP-MS Porphyry stock 2.5 47
Jiménez-Franco et al. (2018) Santa Fe ICP-MS Dome 1.6 5
Jiménez-Franco et al. (2018) Santa Fe ICP-MS Dike 2.2 9
Jiménez-Franco et al. (2018) Santa Fe ICP-MS Host rock 1 15
Jiménez-Franco et al. (2018) Morococala (Santa Fe) ICP-MS Concentrate 200 35
Jiménez-Franco et al. (2018) Japo (Santa Fe) ICP-MS Concentrate 200 21
Jiménez-Franco et al. (2018) Santa Fe EPMA Sphalerite 300
Jiménez-Franco et al. (2018) Morococala (Santa Fe) EPMA Sphalerite 1700
Jiménez-Franco et al. (2018) Japo (Santa Fe) EPMA Stannite 2000
Jiménez-Franco et al. (2018) Morococala (Santa Fe) EPMA Stannite 4500
Jiménez-Franco et al. (2018) Japo (Santa Fe) EPMA Sakuraiite 1400
Jiménez-Franco et al. (2018) Morococala (Santa Fe) EPMA Sakuraiite 16800
Jiménez-Franco et al. (2018) Japo (Santa Fe) EPMA Kërsterite 1400
Cacho et al. (2019) Huanuni EPMA Sphalerite 8800
Cacho et al. (2019) Huanuni EPMA + LA-ICPMS Stannite 3300 1300 123
Torres et al. (2019) Poopó EPMA + LA-ICPMS Sphalerite 10500 1360
Torres et al. (2019) Poopó EPMA + LA-ICPMS Stannite 11100 199
Torres et al. (2019) Poopó EPMA + LA-ICPMS Rhodostannite 6070 2100 441
Torres et al. (2019) Poopó EPMA + LA-ICPMS Teallite 10800 108
Torres et al. (2019) Poopó EPMA Franckeite 1600
Torró et al. (2019a) Huari Huari EPMA Sphalerite 34900 800 6400
Torró et al. (2019a) Huari Huari EPMA Stannite 26400 not detected 1400
Torró et al. (2019a) Huari Huari EPMA Jamesonite 1400 100
Torró et al. (2019b) Ánimas - Chocaya - Siete Suyos EPMA Sphalerite 96600 700
Torró et al. (2019b) Ánimas - Chocaya - Siete Suyos EPMA Stannite 41100 1400
Pring et al. (2020) Ánimas - Chocaya LA-ICP-MS Wurtzite 150
Pring et al. (2020) Ánimas - Chocaya LA-ICP-MS Sphalerite 600

Table 3
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