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Abstract: Perforations are one of the recognized geometrical features that contribute to liquid 

redistribution in corrugated sheet packings. Our experimental study focuses on a simplified but 

relevant configuration: a thin liquid film flowing on either side of a vertical plate with a circular 

perforation. 

We focus on the curtain mode when the liquid fills the perforation. Confocal chromatic imaging 

reveals a capillary ridge upstream of the perforation, an inertial ridge downstream and a 

varicose capillary wave standing on the liquid curtain. We show that the wavelength is selected 

such that the velocity of the wave both satisfies Taylor’s dispersion relation and matches the 

curtain local speed. 

We examine the effect of perforation size, supply conditions and liquid properties on the curtain 

transition. Lastly, we propose a simple model based on a momentum balance that describes the 

effect of these parameters on the Reynolds number at which curtain forms. 

Topical Heading: Transport Phenomena and Fluid Mechanics 

Key Words: Structured packing, perforated sheet, liquid curtain, film thickness, varicose 

waves 
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Introduction 

Corrugated sheet packings have been introduced in the 1970s and widely applied since then in 

distillation and absorption columns1. Such packings are composed of thin vertical crimped 

sheets stacked parallel to each other. In cryogenic air separation, the sheets are typically made 

of aluminum. These structured packings combine high packing void fraction and high 

interfacial area. This results in lower pressure drop, higher efficiency and higher capacity as 

compared to trays. The way the liquid distributes, spreads over the packing sheets and 

eventually forms a film impacts the liquid-vapor interfacial area, the mass-transfer and the 

subsequent separation efficiency of the column2. In a corrugated sheet packing, three kinds of 

geometrical features contribute to liquid distribution: the corrugations3, the perforations4 and 

optionally the microtexture whose characteristic length scale is typically one to several orders 

of magnitude lower than the corrugations. Perforations let the liquid flow from one side of 

corrugated sheet to the other side. As a consequence, they promote liquid exchange between 

the two sides of a same sheet and reduce the accumulation of liquid in the corrugation trough 

to avoid channel flow4. A common value of hole diameter is 4 mm and the standard opening 

rate of the sheets is 12.6%. Most of the corrugated sheet packing have perforations. 

Whereas the effect of the corrugations on liquid distribution3,  liquid film thickness5 6, liquid 

film stability7–10, waves formation11 and mass-transfer12,13 has been extensively investigated, 

there is very little published work on perforations and their impact on liquid film flow. 

Pavlenko et al.4 studied experimentally the effect of perforations on liquid distribution for a 

single vertical aluminum perforated-corrugated sheet (although the main subject of this paper 

is the effect of microtexture). Only one side (front) of the sheet was supplied with liquid (the 

rear side is irrigated by the holes). Two perforation diameters were investigated: 4 mm and 10 

mm. The liquid was liquid nitrogen. Pavlenko et al.4 distinguished different regimes depending 
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on the film Reynolds number (Re defined in the next section). For 100 ≤ Re ≤ 225, the entire 

surface of the sheet front side is wetted by liquid nitrogen, with no dry patch. 3D waves of high 

amplitude travel on the liquid free surface except in regions beneath the holes. These calm 

waveless zones become narrower and shorter as the flow rate increases. Droplets and jets 

detach periodically from the top edge of the 10 mm holes. For 50 ≤ Re ≤ 100, longer and 

wider waveless zones extend below the 4 mm holes. Non-wetted areas appear beneath the 10 

mm holes. For 10 ≤ Re ≤ 50, dry zones extend beneath the 4 mm and 10 mm holes. These 

patches become wider and longer as the liquid flow rate decreases. Detachment of droplets and 

jets from hole top edge ceases. Travelling waves become 2D. For the whole range (10 ≤ Re ≤

225), a significant flow of liquid though the holes (from the front side to the rear side) is 

observed.  

Xie et al.14 experimentally studied the film flow over a vertical aluminum plane plate with a 

single large perforation. Only one face of the plate was supplied with liquid. Six liquids were 

used with Kapitza number (Ka defined in the next section) from 52 up to 2930. The film 

Reynolds number was varied in the range 0-200. Xie et al.14 investigated different perforation 

geometries but most of the results concern centimetric rectangular perforations. These so-called 

“open windows” are actually novel elements for gas-liquid contact that show interesting mass 

transfer performances15,16. Xie et al.14 found a diversity of flow patterns. For Re < 14 (interval 

given for water), the liquid “passes around” the window forming a rim upstream, no liquid in 

the window and a dry patch downstream. For 14 ≤ Re < 125, droplets form periodically from 

the top edge of the window and spill on the bottom edge. As Re is increased, the liquid drops 

more and more frequently and turn to steady columns, which bridge the top edge to the bottom 

edge of the window. For Re > 125, the columns coalesce to form a pendant sheet. For even 

greater values of Re, a liquid curtain completely fills the window. This curtain exhibits a pattern 

of capillary waves. When liquid “passes through” the window (in the form of droplets, 
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columns, pendant sheet or curtain), a part of the liquid flows from the front side to the back 

side of the plate. Xie et al.14  also propose an empirical correlation for the film Reynolds 

number at liquid curtain transition. They note a hysteresis: the film Reynolds number for liquid 

curtain rupture is several times lower. In a second paper, Xie et al.17 further investigated the 

curtain regime using computational fluid dynamics (CFD). This regime is referred to as twin-

liquid films by these authors because of the coexistence of a supported film on the solid plate 

and a suspended liquid film in the open window. Simulations were performed with two side 

liquid inlets. The suspended liquid film exhibits stationary varicose capillary waves. The 

characteristics of the wave pattern agree well with the experimental observations (carried out 

with two face supply). Furthermore, the numerical simulations evidence strong vorticity 

generation both inside the wavy suspended film and on its free surface. These phenomena 

contribute to the mass transfer intensification observed for the plate with open window (as 

compared to the unperforated plate)16.  

The sequence of flow patterns observed for a large rectangular perforation is close to the 

sequence typically seen in horizontal-tube falling-film heat exchangers. Bundles of horizontal 

tubes are widely used in refrigeration, desalination and food industries for example. Hu & 

Jacobi18 distinguished three idealized modes, i.e. droplet, jet and sheet modes (classified by 

increasing Reynolds number) and, in between, mixed modes, i.e. combination of two idealized 

modes. For each mode transition, Hu & Jacobi18 propose an empirical correlation for the 

transitional Reynolds number as a function of the Galileo number (Ga = Ka!), for increasing 

and decreasing flow rate (since the transitions exhibit hysteresis). The correlation of Xie et al.14 

for rectangular perforation involves the same dimensionless numbers. 

The film flow over a perforation (through hole) has also some similarities with the flow over 

topographies such as step-in, step-out, trench or blind (non through) holes. There is an abundant 

literature on this subject19. It appears that a topography step is preceded by a standing capillary 
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wave: a capillary ridge before a step-in, a free surface depression before a step-out20,21. As the 

film Reynolds number increases, a so-called inertial ridge appears after a step-out22. The same 

features were observed by Xie et al.14,17 at the entrance and at the exit of a rectangular open 

window. 

To better understand the effect of perforations on liquid redistribution and potential mass 

transfer enhancement in corrugated sheet packings, we presently consider a thin liquid film 

flowing on a vertical plane plate with a circular perforation. We address the different flow 

patterns and focus on the curtain mode: we will carefully characterize the curtain transition and 

the curtain mode for a broad range of perforation diameters (including standard values 

encountered in industrial packings), several plate thickness, different flow conditions (one side 

and two side supply with independent and controlled liquid flow rates) and various liquids. In 

particular, the local deformation of the film around and within the perforation will be assessed 

using confocal chromatic imaging (CCI). 

In the first part of the paper, we briefly address the physics of the problem and identify the 

main dimensionless numbers that control the curtain transition. In the second part, we describe 

our original experimental setup and the measurement methods used to characterize the thin 

liquid film. In the third part, the different patterns of a liquid film flowing over a perforation 

are presented as a function of hole diameter and flow rate conditions. In the fourth part, we 

study in-depth the effect of hole parameters, plate supply conditions and liquid physical 

properties on the curtain transition threshold. In the fifth part, dedicated to the discussion, we 

propose a simple momentum balance to account for the curtain transition and give a physical 

picture of the curtain behavior.  

Problem description 

Liquid flows within industrial corrugated-perforated packing are very difficult to observe 

directly since the stacked sheets are opaque and the geometry is very intricate. In order to 
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experimentally investigate the hydrodynamics of the thin liquid film flowing in and around the 

perforations of a sheet, we simplify the structure of a packing and consider a single perforation 

on a vertical flat plate (see Figures 1 and 2). 𝑥 denotes the streamwise direction, 𝑦 the spanwise 

direction and 𝑧 the direction in the depth of the liquid film. In this simple geometry, upstream 

conditions can be carefully monitored and the effect of perforation on the film hydrodynamics 

is isolated from other topography effects such as corrugations. The perforation is characterized 

by its diameter (𝑑) and the plate by its thickness (𝑡). The front side and the back side of the 

plate are indexed by 𝑖 = 1 and 2, respectively. 

We consider a Newtonian liquid with constant density (𝜌), dynamic viscosity (𝜇) and surface 

tension (𝜎). We suppose that the equilibrium contact angle (𝜃") of the liquid on the plate is 

significantly lower than 𝜋 2⁄ . Then, wetting is favorable. Each side (𝑖) of the plate is supplied 

with liquid at a volume flow rate per unit width (𝑄#) with 𝑄$ ≤ 𝑄%. Two limiting cases are 

considered, i.e. 𝑄$ = 0 corresponding to one face supply and 𝑄% = 𝑄$ corresponding to two 

face supply with equal flow rates. When a face is supplied with a non-zero volume flow rate, 

we suppose that this volume flow rate is high enough to completely wet the solid face. We 

assume that the film flows are steady and laminar and that the perforation is placed in the fully 

developed region. We are aware that a liquid film falling on a vertical flat plate is 

unconditionally unstable. However, we suppose that the amplitude of the waves travelling on 

the free surface remains much lower than the film thickness. Under these assumptions, in the 

established regime and in absence of perforation, the liquid film has a uniform thickness and 

the velocity profile is semi-parabolic as found by Nusselt23. The film thickness on the 𝑖 side is 

then given by 𝛿&'(𝑄#) = (3𝜈𝑄# 𝑔⁄ )%/! for a vertical plate, where 𝜈 denotes the liquid 

kinematic viscosity. This thickness is called the Nusselt thickness of the falling film. Two other 

characteristic lengths can be defined, i.e. the capillary length 𝑙) 	= (𝜎 𝜌𝑔⁄ )% $⁄  by balancing the 
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surface tension forces with gravity and the visco-gravitational length 𝑙+ = 𝜈$ !⁄ 𝑔% !⁄⁄  by 

balancing the viscous forces with gravity23. 

Let us assume that the perforation diameter is large, i.e. greater than the plate thickness and the 

capillary length of the liquid. 

When the volume flow rate is low, the film flows around the perforation without filling it. On 

the contrary, when the volume flow rate is high, a liquid curtain closes the perforation (see the 

photographs displayed later in the paper). The transition between these two modes is expected 

to occur when the inertia of the film balances the surface tension forces, i.e. when the Weber 

number of the film is of the order of 124. For two face supply with equal flow rates, this reads 

𝜌 (𝑄),)$ (𝛿&'(𝑄),)𝜎) ≈ 1⁄  where 𝑄), is the flow rate per unit width on one side of the plate 

at the curtain transition. In other words, curtain transition occurs when the liquid mean velocity 

𝑄), 𝛿&'(𝑄),)⁄  is of the order of the Culick25 retraction velocity of the curtain 

E𝜎 E𝜌	𝛿&'(𝑄),)F⁄ F% $⁄ . This relation can be recast in the following scaling law 

Re), ≈ Ka! -⁄  (1) 

Re), is the Reynolds number of the film flow at the curtain transition. For the sake of brevity, 

we will later refer to it as the curtain Reynolds number. Re compares the inertial forces with 

the viscous forces acting on the film flowing on the front side (𝑖 = 1) of the plate. It is given 

by Re = 	𝑄% 𝜈⁄ = !
"
(𝛿&'(𝑄%) 𝑙+⁄ )!. Ka is the Kapitza number. It compares the effects of surface 

tension to the viscous and gravitational effects, i.e. Ka = (𝑙) 𝑙+⁄ )$ = 𝜎 E𝜌𝑔% !⁄ 𝜈. !⁄ F⁄ . Ka only 

depends on the physical properties of the liquid.  

In the general case, the problem is governed by 8 parameters, i.e. 𝜌, 𝜈, 𝜎, 𝑔, 𝑄%, 𝑄$, 𝑑 and 𝑡, 

that can be expressed in terms of 3 independent dimensions. According to the Vaschy-

Buckingham theorem, the problem can be fully described by 5 dimensionless parameters. From 

the above analysis, we choose the next set of independent dimensionless parameters: Re, 
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𝑄$ 𝑄%⁄ , Ka, 𝑑 𝑙)⁄  and 𝑡 𝑑⁄ . Then, the Reynolds number of the film flow at the curtain transition 

reads Re), = 𝑓(Ka, 𝑄$ 𝑄%⁄ , 𝑑 𝑙)⁄ , 𝑡 𝑑⁄ ).  

In the following, the dimensionless parameters are varied in order to investigate the flow modes 

of the film falling on the front side of the perforated plate and determine the Reynolds number 

at the curtain transition.	 

Experimental setup 

Materials 

The test plates are cut from aluminum sheets. The plate length in the streamwise direction is 

𝐿 = 200 mm and the plate width in the spanwise direction is 𝐵 = 150 mm (see Figure 1). 

Three different plate thickness are studied: 𝑡	 = 0.5, 1 and 1.5 mm. The perforation is made by 

drilling for 𝑡 = 	1 and 1.5 mm and by laser cutting for 𝑡 = 0.5 mm. Special care is taken when 

machining in order to maintain the flatness of the sheet and ensure that the edge of the 

perforation is sharp and perpendicular to the plate face. The center of the perforation is located 

on the midline of the plate, at 60 mm from the top edge. Eight perforation diameters are studied: 

𝑑 = 2, 4, 6, 8, 10, 12, 14 and 16 mm. The test plates are slightly polished with abrasive (grit 

size P1200) to get a matt rendering thus reducing the impact of parasitic reflections on optical 

based measurements. The resulting roughness parameter (Ra, arithmetical average of the 

roughness profile) of the plate is measured by confocal chromatic imaging (3D Measuring 

Station with CHR 150-N sensor, STIL). Measurements are performed in two orthogonal 

directions, streamwise (𝑥) and spanwise (𝑦), in the proximity of the perforation and far from 

the perforation. Ra ranges from 0.2 to 0.5 µm.  

Four liquids are used in the experiments: pure propan-2-ol, 55 wt% glycerin aqueous solution, 

25 wt% glycerin aqueous solution and pure water. Pure propan-2-ol has been purchased from 

VWR Chemicals (GPR Rectapurâ >99.0%). Pure water is delivered by a Millipore Milli-Q 
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purification system. Glycerin solutions are prepared from pure glycerin (Rotipuranâ >99.5%, 

p.a., anhydrous, Carl Roth) and pure water: after weighing the components, the mixture is 

stirred until a homogeneous and perfectly clear solution is obtained. The final density of the 

solution is adjusted to the tabulated value28 by a small addition of glycerin. Since liquid 

properties may alter over time (due to contamination, development of microorganisms and/or 

biochemical degradation), glycerin solutions are used within 36h after making. Milli-Q water 

is used the day of the delivery. Propan-2-ol is used in the week. The physical properties of the 

working liquids are reported in Table 1. We choose these liquids to cover a wide range of 

Kapitza numbers, i.e. more than one order of magnitude. Furthermore, the wetting of the 

aluminum sheets is favorable for the four liquids (equilibrium contact angle 𝜃" < 90°). 

Experimental setup 

The setup itself (Figure 1) comprises three parts: the frame that holds the perforated plate, the 

liquid circuit and the instrumentation dedicated to liquid film observation and measurement. 

The perforated plate is inserted in a rigid frame to ensure its flatness. The frame is held 

vertically. It is decoupled from the other parts of the device and mounted on an anti-vibration 

table to damp the parasitic vibrations that may affect the fluid film flowing on the plate. Each 

face of the plate is supplied with liquid by a distributor. The liquid circulates thanks to a magnet 

gear pump (MDG-M15T3B, Iwaki). The volumetric flow rate delivered by each distributor is 

independently set by a needle control valve and monitored by an oval gear volumetric flow 

meter (MX06, MacNaught). The liquid flowing from the bottom of the plate comes into a 

collector and then returns to the feeding tank. 

The centerpieces of the liquid circuit are the two distributors. They have been carefully 

designed (over approximately ten iterations) in order to uniformly distribute the liquid in the 

spanwise direction of the plate. They are made in the shape of a diffuser and mounted with an 

inclination of 10° with respect to the horizontal. Because of this slope, the liquid ascends in the 
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distributors. Entry of air is then avoided and the distributors remain filled with liquid even at 

low liquid flow rates. Liquid inside the distributors is guided through a set of square blocks 

which spreads the flow in the spanwise direction and also breaks down the large eddies. Finally, 

the flow comes out laminar through 30 horizontally and equally spaced circular nozzles of 2 

mm in diameter. 

The liquid flow pattern is observed and recorded using a CMOS high-speed camera (v310, 

Phantom) mounted with a macro lens (AF Zoom-Micro Nikkor 70-180mm f/4.5-5.6D ED, 

Nikon). Images are captured with a resolution of 1200×800 px² and with an acquisition 

frequency of 1.8 kHz. For shadowgraph imaging of the suspended film, the back side of the 

plate is illuminated with a LED panel. When looking at the supported film free surface, the 

front side is lit by a cold light illuminator (KL 2500 LCD, Schott).  

The instantaneous local thickness of the liquid film is measured using confocal chromatic 

imaging (sensor CL4, STIL). This technique has already been implemented to measure the 

thickness of films flowing on a flat surface30 31. Since the sensor is capable of detecting multiple 

interfaces such as solid-liquid, liquid-liquid and liquid-gas, the plate-supported film and the 

suspended film that bridges the perforation can be both characterized. Film thickness is 

measured with a precision better than 0.5 µm at acquisition frequency of 5 kHz. 

Experimental protocol 

First, the test plate is cleaned with a surfactant solution (3 vol%, Mucasol, Merz), thoroughly 

rinsed with distilled water and dried with compressed air. Then, it is inserted and fixed in the 

vertical frame. The outlet of the distributors is positioned on the front side and on the back side 

of the plate, about two millimeters below the top edge of the plate. The distance (in 𝑧 direction) 

and parallelism between the nozzles and the plate is carefully adjusted in order to obtain later 

on a liquid film with a uniform thickness in the spanwise (𝑦) direction. Since the outlet is 

located 58 mm upstream of the perforation, the film flow is fully developed at the location of 
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the perforation. We also rigorously checked that the amplitude of the waves travelling on the 

liquid film upstream of the perforation remains small compared to the film thickness (see annex 

A1 in Supplementary Material). 

Both faces of the plate are fed with the highest flow rate, i.e. 65 L.h-1, such that the liquid is 

forced to wet the whole usable width of the plate, i.e. 𝑤	 = 	90 mm. Then, the liquid flowrate 

can be reduced down to 5 L.h-1 and the region upstream of the perforation remains totally 

covered by the liquid film. 

For the supply condition 𝑄%/𝑄$ 	≠ 	1 (𝑄$ < 𝑄%), the flowrate that supplies the back side of the 

plate (𝑄$) is first fixed at its target value. Then, the flowrate of the plate front side (𝑄%) is 

progressively increased, in increments of 1 L.h-1, in order to explore the different regimes of 

the film flow around and over the perforation. We determine the flow rate per unit width at the 

curtain transition (𝑄),) as follows: 𝑄), is associated with the smallest flow value for which 

there is a stable curtain that entirely closes the perforation. For the supply condition 𝑄%/𝑄$ 	=

	1, the flowrates are identically initialized and increased simultaneously with the same 

increments. The transitions of the film flow are observed by shadowgraph imaging. Optionally, 

the topography of the liquid film near the perforation is investigated point-by-point by CCI. 

For each set of parameter values, experiments were performed at least in triplicate. Details 

about calibration and reliability tests are given in annex A1 (see Supplementary Material). 

Flow modes over a perforation 

Far below the curtain transition 

We presently report experiments carried out with propan-2-ol at low values of the Reynolds 

number. We find that the liquid film flow is deflected by the perforation and does not fill it (see 

the photograph of Figure 3). We observe an arch-shaped stationary capillary ridge: its apex is 

located upstream of the perforation close to the stagnation point and the legs of the arch extend 

downstream. The ridge flattens and widens far from the perforation. It divides the downstream 
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region of the flow in an outer region and an inner region, the film thickness in the outer (resp. 

inner) region being generally larger (resp. lower) than the Nusselt thickness of the film far 

upstream. In the outer region, the liquid film thickness decays in an oscillatory manner and 

tends towards the Nusselt thickness far from the ridge (see Figure 3).  

In the inner region, (just downstream of the perforation), the liquid film is very thin or even 

missing when 𝑄$ 𝑄%⁄ = 0. When 𝑄$ 𝑄%⁄ = 1 (we remind that 𝑄% ≥ 5 L.h-1), the liquid also 

flows along the inner surface of the perforation from both sides of the plate and a thin liquid 

film forms downstream of the perforation. When 𝑄$ 𝑄%⁄ = 0, the contact line is pinned at the 

inner surface of the perforation, there is a dry patch downstream of the perforation and there is 

no fluid transfer from the front side to the back side of the plate. This dry region expands 

downstream as the perforation diameter increases. The presence of a dry zone beneath the holes 

at low flow rates was also observed by Pavlenko et al.4 on corrugated-perforated sheets and by 

Xie et al.14. behind centimetric rectangular perforations. 

The graph of Figure 3 focuses on the free surface profile in the 𝑦 = 0 plane near the perforation. 

CCI film thickness measurements are reported for 𝑄$ 𝑄%⁄ = 1 and 𝑄$ 𝑄%⁄ = 0. Data are 

missing close to the top and bottom edges of the perforation: CCI fails to capture the film 

thickness because the local slope of the free surface is too steep with respect to the vertical 

plate. Figure 3 shows that the height of the capillary ridge for one face supply is significantly 

greater than for two face supply with equal volumetric flow rate. Indeed, in case of a liquid 

film flowing over a step-in or trench, it is well known that the ridge height increases with the 

depth of that topography21,32. In two (resp. one) face supply, the depth of the topography seen 

by the liquid film is the plate half-thickness (resp. entire thickness). Thus, the capillary over-

pressure and the ridge height required to push the liquid inside the perforation are greater for 

one face supply. 
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Lastly, we also observe 2D horizontal waves traveling in the streamwise direction downstream 

of the perforation (see Figure 3). The wavelength is estimated at about 10 mm, i.e. one order 

of magnitude greater than the film thickness. These are Kapitza waves33. 

Prior to the curtain transition 

As the liquid flow rate increases, the train of upstream capillary ridges shifts toward the 

perforation. Ultimately, the leading ridge may go down into the perforation and form a rim 

within the perforation. This phenomenon occurs at Re = 23 for propan-2-ol and one face 

supply. It coincides with the onset of liquid transfer from the front side to the back side of the 

plate. On the backside, the liquid climbs over the top edge of the perforation and makes an 

arch-shaped capillary ridge whose legs extend in the form of two parallel rivulets. The rivulets 

widen and flatten downstream. 

Depending on perforation diameter and 𝑄$ 𝑄%⁄ , different rim dynamics and transitions to the 

curtain mode are observed. We report thereafter a diversity of flow patterns (see Figure 4). We 

emphasize that this diversity cannot be seen sequentially for a same perforation when 

increasing the film Reynolds number (as for a large rectangular perforation for example14). The 

transition from the “pass around” mode to the curtain mode occurs generally through one 

intermediate mode that depends on the perforation diameter 

Hereafter are reported the transitions observed for propan-2-ol. Unless otherwise specified, the 

same modes are observed for water and glycerin mixtures. 

Oscillating rim 

For small perforation diameters (𝑑 = 2 − 8	mm), irrespective of plate thickness and liquid 

properties, an oscillating liquid rim is observed in the perforation as shown in Figure 4a-b. The 

hole (in the liquid film) that the rim surrounds is circular for 𝑑 = 2 mm or 𝑑 = 4 mm and 

deforms to become bean-shaped for 𝑑 = 8 mm. A sequence of images showing the rim 
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dynamics for 𝑑 = 8 mm is reported in Figure S2 (see Supplementary Material). We measured 

the oscillation frequencies of the rim for the different diameters by image processing using Fast 

Fourier Transform. At the same time, for the same volume flow rate, the frequency of the waves 

travelling in the downstream direction was determined by measuring the variations of the film 

thickness using CCI at a point far upstream of the perforation. For 𝑄$ 𝑄%⁄ = 0, the dominant 

oscillation frequency of the rim (mode of highest energy) coincides with the frequency of the 

Kapitza waves travelling in the upstream region. The rim oscillation frequency is equal to 29 

Hz for 𝑑 = 4 mm, 𝑡 = 1 mm, Ka = 348 and Re	 = 31. For 𝑄$ 𝑄%⁄ = 1, the frequencies are of 

the same order but do not coincide.  

It should be noted that the general wave pattern may be complicated by waves travelling in the 

upstream direction: as the rim bounces back in the upstream direction and impinges the 

perforation edge, it creates a train of circular waves (similarly to the waves generated by a drop 

impacting on a liquid surface) that propagate in the opposite direction of the flow and decay 

due to viscous effects. 

We also studied the effect of plate thickness at fixed perforation diameter (see Figure S3 of the 

Supplementary Material): as the plate thickness is increased, the amount of liquid flowing 

along the inner surface of the perforation increases, the quantity of liquid discharged at the 

bottom edge of the perforation increases and the film thickness in the wake of the perforation 

is greater. 

Drops and liquid columns 

For large perforation diameters (𝑑 = 	10 − 16 mm) with one face supply, the suspended liquid 

rim destabilizes and forms drops or liquid columns (or jets). This mode is not observed with 

55wt% glycerin solution. Similar flow patterns have been reported for film flow on corrugated 

sheet with 10 mm perforations4, for film flow on a plane plate with a large rectangular 

window14 and for flow between horizontal circular tube18. The rim destabilization is attributed 
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to Rayleigh-Taylor instability34,35. The so-called critical Taylor wavelength is given by 𝜆 =

2𝜋(𝜎 𝜌𝑔⁄ )% $⁄ . 𝜆 is equal to 10 mm for propan-2-ol and drops/columns are actually observed 

for perforation diameter 𝑑	 ≥ 	10 mm. For the present perforation diameter range (𝑑 = 10 −

16 mm), there is only one drop departure-site. Dripping proceeds as follows: a drop grows 

from the rim, elongates due to the gravity and contacts the bottom edge of the perforation 

(Figure 4c). At the same time, a liquid neck forms between the drop and the suspended rim. 

The drop drains on the bottom edge of the perforation. The neck shrinks until pinch-off and the 

detached drop leaves behind a liquid thread that recedes to the rim.  

Dripping is not periodic. The intermittency is explained by the curvature of the perforation (as 

compared to a rectangular window14): the liquid tends to drain around the perforation instead 

of flowing straight down, the volume flow rate entering the pendant drop, is therefore irregular 

and the departure-site moves on the rim. For the same reason, for the largest diameters, the rim 

forms intermittently drops and liquid columns. When the volume flow entering the 

drop/column is lower, gravity and capillary effects dominate, and dripping is promoted. When 

the volume flow and the associated momentum flux are higher, inertia competes with gravity 

and capillary effects, and liquid jetting is promoted34. 

Pendant sheet 

For large perforation diameters (𝑑 = 	10 − 16 mm) with two face supply and equal flow rates, 

the curtain mode is preceded by the formation of a stable liquid sheet that partially close the 

perforation. This mode is also observed for one-face supply with 55wt% glycerin mixture. 

(instead of the drop/column mode). The bottom of the sheet is bounded by a cylindrical-shaped 

rim (see Figure 4d), which oscillates slightly in the vertical direction. The oscillation frequency 

is equal to 14 Hz for the conditions of Figure 4d. For the greatest perforation diameters, the 

rim undergoes the Plateau-Rayleigh instability and appears wavy (see the bead-on-a-string 

structure in Figure 4d). We also detect stationary capillary waves on the pendant sheet. Similar 
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waves are observed just beyond the curtain transition. In the latter case, the waves are more 

visible: they are characterized in the discussion section for the curtain mode. 

Curtain transition and just beyond 

With further increase in flow rate, the fluid film fills entirely the perforation forming a thin 

liquid curtain, as shown in Figure 5.  For one face supply, we clearly observe the transfer of 

liquid from the frontside to the backside of the plate. However, the flow pattern on the rear side 

differs from that before the curtain transition: the liquid now leaks from the bottom edge of the 

perforation in the form of a single rivulet. 

The liquid curtain exhibits a stationary field of 2D capillary waves (see Figure 5bcd). The 

waves appear in the form of dark and bright horizontal stripes by shadowgraphy. The stripes 

are straight for 𝑑 = 2 − 8 mm. Transverse (y-direction) distortions of the 2D waves arise for 

𝑑 = 10 − 16 mm. 

Figure 6 presents the free surface profile of the liquid film along 𝑦 = 0 for 𝑄$ 𝑄% = 1⁄  and 

𝑑 = 8 mm, as deduced from film thickness measurements. Measurements were performed 

upstream of the perforation (supported film), within the perforation (suspended) and 

downstream of the perforation (supported). The free surface profile upstream and downstream 

of the perforation are measured only on one face and duplicated for clarity on the other side of 

the plate assuming symmetry. As already observed below the curtain transition, the perforation 

is topped with a stationary capillary ridge. The curtain free surface profile (within the 

perforation) exhibits standing waves. According to the literature36,37, two kinds of waves can 

propagate on a curtain: varicose waves (symmetric mode) corresponding to thickness 

modulation and sinuous waves (antisymmetric mode) corresponding to modulation in z-

direction of the curtain median position38. Figure 6 shows that the standing waves on the curtain 

are varicose. A curtain of viscous liquid is actually expected to be stable with respect to 

temporally as well as spatially changing varicose disturbances37.  
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Since the pattern appears immobile in the laboratory’s reference frame, it means that the wave 

speed is opposite to the local curtain speed. On the curtain, the wave amplitude decreases 

rapidly with distance from the bottom edge of the perforation (in the upstream direction). This 

trend is consistent with the exponential decrease due to viscous damping established by Lin37. 

Then, the transition from the suspended film to the supported film results in an abrupt increase 

in the film thickness downstream of the perforation bottom edge. Superimposed to this 

phenomenon, there is a ridge right downstream of the perforation. This feature, called inertial 

ridge, is also observed right downstream of a step-out or trench22. The present experimental 

results exhibit the same features (ridges upstream and downstream of the perforation, standing 

varicose waves on the curtain) as the simulation results reported by Xie et al.17 for liquid films 

flowing over a rectangular open window with two face supply (𝑄$ 𝑄%⁄ = 1).  

Hysteresis 

When the volume flow rate is decreased from 𝑄%),, the film flow remains in the curtain mode 

for values of 𝑄% much lower than 𝑄%),:  the curtain transition is thus hysteretic as already noted 

by Hu & Jacobi18 and by Xie et al.14.  

We further investigate this phenomenon with propan-2-ol for 𝑄$ 𝑄%⁄ = 1 and 𝑄$ 𝑄%⁄ = 0. In 

order to determine the width of the hysteresis, the volume flow rate is first increased up to 𝑄%), 

to reach the curtain mode and then gradually reduced until the break up of the curtain is 

observed. It should be noted that right before the rupture, the curtain is affected by vibrations 

in z-direction: they are probably associated with the antisymmetrical mode of the curtain 

(sinuous waves). 

It appears that for perforation diameter 𝑑 = 6 − 16 mm and plate thickness 𝑡 = 1 − 1.5 mm, 

the Reynolds number of the film flow at the curtain rupture is equal to about 6 for 𝑄$ 𝑄%⁄ = 1 

and lies between 5 and 11 for 𝑄$ 𝑄%⁄ = 0. This is significantly lower than the Reynolds number 

at the curtain transition which ranges typically between 20 and 50 for propan-2-ol. Moreover, 
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for 𝑑 = 2 − 4 mm and 𝑡 = 1 − 1.5 mm, the curtain maintains even when the volume flow rate 

vanishes. 

Last, we observed that for a given flow rate (lower than 𝑄%),), the height of the capillary ridge 

upstream of the perforation is lower in the curtain mode than when the film flows around the 

perforation without filling it. As an example, for 𝑡 = 1 mm, 𝑑 = 4 mm, one face supply and 

Re = 18, we found that the ridge height in the curtain mode is 24% lower. 

Parametric study 

Since the curtain transition is associated with profound modifications of the flow pattern on the 

front side and backside of the plate, we expect that the same phenomenon, when occurring in 

an actual distillation column, should significantly affect the liquid redistribution, the pressure 

drop and the mass transfer. To trigger the curtain mode or, on the contrary, to avoid it, it is 

helpful to know the Reynolds number at the curtain transition (Re),). We set up a parametric 

study to examine the effect of perforation dimensions, flow rate ratio, and liquid type on Re),.  

Influence of perforation dimensions 

We examine the effect of perforation diameter (𝑑) and plate thickness (𝑡) on Re), for one face 

supply (𝑄$/𝑄% 	= 	0) and for two face supply with equal volume flow rates (𝑄%/𝑄$ 	= 	1). 

Experiments are carried out with propan-2-ol. It should be noted that for 𝑑 = 2 mm and 𝑡 =

1.5 mm, the curtain transition is very sensitive to parasitic vibrations and the determination of 

Re), requires a lot of care. 

Figure 7 presents the variations of Re), as a function of the perforation diameter rescaled by 

the capillary length (𝑑 𝑙)⁄ ). For both supply conditions, Re), increases with 𝑑 as long as 𝑑 ≤ 6 

mm. For 𝑡 = 1 mm and 𝑡 = 1.5 mm, Re), is more or less on a plateau for 𝑑 ≥ 6 mm. For 𝑡 =

0.5 mm, Re), significantly decreases from its maximum value reached at 𝑑 ≅ 6 mm, before 

arriving at a plateau. This decrease is attributed to the formation of liquid columns or pendant 
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sheets (observed prior to the curtain transition for large perforation diameters) that helps to 

transit to curtain. 

The increasing trend found at small perforation diameters is in line with the data reported by 

Xie et al.14 for rectangular open windows with streamwise length ranging from 5 mm to 7 mm 

and fixed spanwise width of 28 mm. Unfortunately, Xie et al.14 do not report Re), data for 

windows of greater streamwise length. The presence of a plateau at large perforation diameters 

is consistent with Eq. (1) established in the problem description. 

At fixed perforation diameter, Re), is significantly greater for 𝑄$/𝑄% 	= 	0 than for 𝑄%/𝑄$ 	=

	1. In both cases, the film inertia required to overcome the surface tension forces and generate 

the curtain is roughly the same. However, in the former case, the momentum is solely brought 

by 𝑄%. In the latter, momentum is provided equally by 𝑄% and 𝑄$. 

For 𝑄$/𝑄% 	= 	0, at given value of 𝑑, Re), increases significantly with the plate thickness. This 

phenomenon can be explained with one of the mechanisms responsible for the so-called teapot 

effect39. At the top edge of the perforation (corresponding to the lip of the plate in Kistler & 

Scriven’s analysis39), the liquid flow is deflected from vertical direction toward the horizontal 

direction (parallel to the inner surface of the perforation). Since the liquid wets the inner surface 

of the perforation, this deflection increases with the plate thickness and “delay” the curtain 

transition: higher inertia forces are required for the fluid film to form a curtain. The effect of 

𝑡	on the plateau value is less pronounced for 𝑄%/𝑄$ 	= 	1. Indeed, on each face, the film flow 

experienced only half of the plate thickness. Furthermore, the symmetry of the system prevents 

the liquid to flow from one face to the other. 

Influence of the flow rate ratio 𝑸𝟐/𝑸𝟏  

The flow rate ratio in a real corrugated sheet packing lies typically between the two limiting 

cases Q$/Q% 	= 	0 and Q$/Q% 	= 	1 (with 𝑄$ ≤ 𝑄%). We thus examine the effect of the fluid 

flow ratio on the curtain Reynolds number. Two different values of the perforation diameter 
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are investigated, i.e. 𝑑 = 	4	mm and 𝑑 = 8 mm. The plate thickness is equal to 𝑡 = 1 mm in 

both cases. The tested liquid is propan-2-ol.  

The variations of Re), are represented as a function of 𝑄% 𝑄$⁄  instead of 𝑄$ 𝑄%⁄  for a better 

rendering (see Figure 8). It appears that the curves associated with 𝑑 = 	4	mm and 𝑑 = 8 mm 

look the same except that the latter is shifted away from the former toward higher Reynolds 

number values. Irrespective of the perforation diameter, we observe that Re), grows 

significantly in the range 1 ≤ 𝑄% 𝑄$⁄ ≤ 3 , and stabilizes to a plateau when 𝑄% 𝑄$⁄ ≥ 3.  

Influence of liquid type 

We examine the effect of the liquid type on the curtain Reynolds number. Experiments are 

carried out with four different liquids covering a large range of Kapitza numbers, i.e. propan-

2-ol (Ka = 348), 55 wt% glycerin aqueous solution (Ka = 245), 25 wt% glycerin aqueous 

solution (Ka = 1470) and pure water (Ka = 3920). 

Figure 9 presents the variations of Re), as a function of the perforation diameter rescaled by 

the capillary length, for one face supply and for two face supply with equal volume flow rates. 

Regardless of the Kapitza number value, the shape of the curve Re), versus 𝑑 𝑙)⁄  is essentially 

the same: Re), first increases with 𝑑, reaches a maximum, then eventually decreases (for Ka =

1470 and Ka = 3920) and finally stabilizes to a plateau. The greater the Kapitza number, the 

greater the width of the increasing phase and the steepest the slope of the curve in this phase. 

Furthermore, the plateau value (reached at large values of 𝑑 𝑙)⁄ ) increases with the Kapitza 

number. This trend is consistent with the scaling law of Eq. (1) established in the problem 

description. 
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Discussion 

Model for curtain transition 

We compared our experimental results with the empirical correlations of Hu & Jacobi18 and 

Xie et al.14 mentioned in the introduction. It appears that these correlations only provide a 

rough estimate of the curtain transition (see annex A4 in Supplementary Material). Indeed, they 

are specific to the system with which they have been established (large rectangular window 

with one face supply14 or spaced horizontal tubes18), and they do not explain the physics of the 

phenomena.  

We propose to establish a criterion for the curtain formation from a macroscopic momentum 

balance on the upstream portion of the rim, near the stagnation point. The details of the 

derivation are given in annex A5 (see Supplementary Material).  

This approach revisits a model first proposed by Hartley and Murgatroyd40 for the break-up of 

thin liquid films flowing over solid surfaces (criterion for the formation of dry patches). At the 

onset of curtain formation in a perforation of large diameter, we expect that the rim is 

essentially subjected to two forces: the surface tension force that resists curtain formation and 

the fluid inertia that drives this transition. In order to express the surface tension force, we 

idealize the film profile as follows: we consider that the film profile is flat on both sides of the 

plate and axisymmetric with respect to the perforation axis (see Figure 10).  

We denote 𝑅	the radius of the hole surrounded by the rim. The surface tension force per unit 

circumference of the rim acting in the radial direction (𝑓1) is given by: 

𝑓1 = 𝜎 [1 −
𝑡
𝑅 −

𝛿&'(𝑄%)
𝑅 −

𝛿&'(𝑄$)
𝑅 \ (2) 

𝑓1 is an increasing function of 𝑅 and is maximal when 𝑅 = 𝑑 2⁄ . As a first approximation, let 

us consider that 𝑓1 = 𝑓1(𝑅 2⁄ ) at the curtain transition. We keep in mind that this assumption 
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tends to overestimate the capillary force. Therefore, the inertial force required to drive the 

curtain transition should be overrated as well.  

𝑓1 cancels for 𝑑 = 𝑡 + 𝛿&'(𝑄%) + 𝛿&'(𝑄$) and spontaneous curtain formation (due to 

capillary action only) is expected for perforation diameter 𝑑 ≤ 𝑡 + 𝛿&'(𝑄%) + 𝛿&'(𝑄$). 𝑓1 

opposes the formation of the liquid curtain for 𝑑 ≥ 𝑡 + 𝛿&'(𝑄%) + 𝛿&'(𝑄$). 

The x-component of the momentum net flux entering the rim close to the stagnation point reads 

(per unit length of rim): 

𝑓' = ^ 𝜌𝑢2$(𝑦)𝑑𝑦	

3#$(5!)

7

+ ^ 𝜌𝑢2$(𝑦)𝑑𝑦	

3#$(5%)

7

 

where 𝑢2(𝑦) is the Nusselt velocity profile. After substitution and integration, we find: 

𝑓' =
2
15 ×

𝜌𝑔$

𝜈$ aE𝛿&'
(𝑄%)F

- + E𝛿&'(𝑄$)F
-b (3) 

The curtain forms when the momentum flux balances the maximal surface tension force. When 

expressed with the dimensionless parameters determined in the problem description, the 

criterion for the curtain formation reads 

Re), =
1
3

⎝

⎜
⎛ 15	Ka
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- !⁄ f1 −

𝑡
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𝑙)
h
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% !⁄ [1 + g

𝑄$
𝑄%
h
% !⁄

\i

⎠

⎟
⎞

! -⁄

 (4) 

Figure 11 shows that Eq. (4) is in good agreement with the experimental data obtained for two 

face supply of equal flow rates. We emphasize that the present model does not involve any ad 

hoc adjustable parameter. It can be seen that the model overestimates the curtain Reynolds 

number for one face supply. Eq. (4) predicts that the plateau value for the supply condition 

Q$ Q%⁄ = 0 is E2! -⁄ − 1F ≅ 50% higher than that for Q$ Q%⁄ = 1. This difference is 

significantly greater than the 25% found experimentally. We expect that gravity effects (not 

accounted for by our simple model) promote the curtain transition and thus reduce the 
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momentum flux otherwise required. For two face supply, the liquid rim on the inner surface of 

the perforation is drained by the film flow on both side of the plate. On the contrary, for one 

face supply, the rim is only drained on the front side. Subsequently, liquid tends to accumulate 

on the inner surface, close to the back side of the plate. Since the rim is thicker, gravity effects 

are enhanced. If we assume that the liquid rim has a size (𝑑 2⁄ − 𝑅) of the order of the plate 

thickness, we find that the Bond number (which compares gravity to interfacial tension forces) 

is slightly lower than 1.  

The present model also predicts that for sufficiently small values of the perforation diameter 

(compared to the plate thickness, i.e. 𝑑 ≤ 𝑡), the hole within the liquid film is not 

thermodynamically stable. Consequently, the liquid should spontaneously fill the perforation 

by capillarity and the curtain Reynolds number should vanish. However, since the equilibrium 

contact angle is not zero, a minimum volume flow rate per unit width is practically required 

otherwise the contact line remains pinned on the edge of the perforation. We experimentally 

investigated the case 𝑑 = 𝑡 = 1 mm with propan-2-ol for one face and two face supply. We 

found that the curtain Reynolds number is equal to Re), = 14 and Re), = 8, respectively. But, 

when the curtain is formed, it maintains even when the volume flow rate vanishes. 

We also compared our model to the experimental data obtained with various liquids for the 

supply condition 𝑄$ 𝑄%⁄ = 1 (see annex A6 in Supplementary Material). It can be seen that the 

variations of Re), as a function of 𝑑 𝑙)⁄  are well represented for the liquids characterized by a 

low Kapitza number. The agreement is less satisfactory for liquids with high Ka. However, it 

gives a good estimate of the plateau value reached at high perforation diameters.  

Last, we used Eq. (4) to predict the curtain transition for a flat plate with 54° inclination to 

horizontal fed with liquid nitrogen (Ka = 4690 for 54° inclination), details are given in annex 

A7 (see Supplementary Material). We found that Re), = 170 for two face supply. This result 

gives a first estimate of the curtain threshold in a 500Y (gravity angle of 54°) type structured 
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packing operating with liquid nitrogen. In these conditions, the liquid load would be of the 

order of 60 m3.m-2.h-1 and the holdup of 6%. These results have to be validated on a real 

perforated corrugated sheet packing. We emphasize that the present work has been carried out 

on flat plates with a single perforation. Further comprehensive studies are needed to examine 

the effects of corrugations, location of the perforations (with respect to the crest of the 

corrugations) and optionally sheet microtexture on the curtain transition. 

Liquid behavior within and around the perforation in curtain mode 

Let us recall the main features of the liquid film free surface observed in the curtain mode (see 

Figure 6). Right upstream of the perforation, the supported liquid film exhibits a stationary 

capillary ridge. This ridge produces the capillary over-pressure required to push the liquid 

inside the perforation since the gravity that drives the film flow on the plate acts 

perpendicularly to the perforation inner surface21,32. Right downstream of the perforation, there 

is an inertial ridge, caused by an overshoot of the liquid film as it is deflected in the vertical 

direction by the step25. Within the perforation, the curtain free surface profile results from two 

superimposed phenomena, i.e. the stretching of the curtain due to the acceleration of the gravity 

and the excitation of varicose capillary waves that propagate upstream (in the liquid’s reference 

frame). The capillary waves are excited by the impact of the liquid curtain on the bottom edge 

of the perforation. The pattern appears immobile in the laboratory’s reference frame, indicating 

that the wave speed is opposite to the local curtain speed. Similar phenomena have already 

been reported by Ruschak41 for liquid films or jets entering a relatively large pool and more 

recently by Hancock and Bush for a laminar liquid jet impinging on a deep liquid reservoir42. 

According to Xie et al.17 , the varicose waves induce strong generation of vorticity which is 

expected to enhance mass transfer. 
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Let us further analyze the curtain behavior for 𝑄$ 𝑄%⁄ = 1. We first omit the standing varicose 

waves and describe the variations of the curtain half-thickness (ℎ) by a simple free fall model. 

Expressing the mass conservation of the free-falling liquid between 𝑥9 and 𝑥, we get 

ℎ(𝑥) ≅
𝑄%9

aE𝑄%9 ℎ⁄ (𝑥7)F + 2𝑔(𝑥 − 𝑥7)b
% $⁄  (5) 

for 𝑥 ≥ 𝑥9. 𝑄%9 is the volume flow rate per unit width at location 𝑥9. 

Eq. (5) is fitted to the experimental curtain profile of Figure 6, by adjusting the volume flow 

rate per unit width to an effective value 𝑄%9 = 0.65 × 𝑄%. 𝑥9 is presently the highest measuring 

point within the perforation. Results are displayed in Figure 12a. We also fitted the 

experimental data obtained for a greater perforation diameter 𝑑 = 12 mm (see Figure S6 in 

Supplementary Material) and found 𝑄%9 = 0.75 × 𝑄%. The difference between 𝑄%9 and 𝑄% is 

attributed to the significant deviation of the flow around the perforation that persists at the 

curtain transition. We expect that downstream of 𝑥9, viscous effects negligibly affect the 

stretching of the curtain and cannot be responsible for the difference above mentioned. Indeed, 

in Figure 6, 𝑥9 is located 1.1 mm away from the perforation top edge (2.3 mm for 𝑑 = 12 mm 

in Figure S6), this distance is slightly greater that the “entrance” length24 of the order of  

10 × 𝑙+ ≅ 0.9	mm. 

The velocity (𝑐:;,) of the varicose waves propagating on a curtain of uniform thickness (2ℎ) 

has been established by Taylor36 in the limit of small disturbance of the free surface and inviscid 

ambient gas: 

𝑐:;,$ = g
𝜎
𝜌ℎh

(𝑘ℎ tanh(𝑘ℎ)) (6) 

where 𝑘 is the wave number. Since the waves appear presently immobile in the laboratory’s 

reference frame, the wave velocity should match the curtain local speed, i.e.  

𝑐:;, =
𝑄%9

ℎ  (7) 
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Then, the wavelength (𝜆) of the wave that stands on the curtain with given local thickness (2ℎ) 

can be deduced from Eq. (6-7). By solving Eq. (5-7), we obtain the theoretical wavelength (𝜆) 

of the standing wave at a given position (𝑥) on the curtain. The wavelength varies along the 

curtain since the curtain thickness (2ℎ) decreases as 𝑥 increases.  

To validate these findings, let us return to the data of Figure 6. The standing varicose wave can 

be isolated by subtracting the pure stretching curve to the experimental curtain profile (see 

Figure S7 in Supplementary Material). The local wavelength of the varicose wave is measured 

between successive peaks along the curtain. These values are reported in Figure 12b where 𝑥 

corresponds to the midpoint between successive peaks used to estimate the local wavelength. 

It can be seen that there is a very good agreement between the theoretical and the experimental 

values. This validates the matching assumption Eq. (7) and the picture to explain the curtain 

behavior. 

Incidentally, we can estimate the damping length of the varicose wave for the conditions of 

Figure 6, i.e. 𝑐:;, (8𝜋$𝜈 𝜆$⁄ )⁄ ≅ 2	mm where the denominator is the damping rate established 

by Lin37. This estimate is consistent with the observations. 

We also deduce from Figure 12ab that the adjustment of 𝑄%9 is relevant and should provide a 

good estimate of the real volume flow rate over the perforation. From this estimate and from 

the measured thickness profile (Figure 6), we can determine the variations of the local Weber 

number We = 𝜌(𝑄%9)$ (ℎ𝜎)⁄  along the curtain. We find that We ranges between 0.4 at 𝑥9 and 

0.8 close to the bottom edge of the perforation. According to Brown24 and Lin37, a curtain that 

includes a domain with We < 1 is unstable with respect to spatially growing sinuous 

disturbances propagating upstream. It appears that the curtain seems not affected by sinuous 

waves beyond the curtain transition. However, in the hysteresis loop, when the curtain still 

stands although the volume flow rate is significantly lower than the curtain flow rate (𝑄),), the 

curtain is thinner and its rupture (when observed) seems to be triggered by growing sinuous 
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waves. Indeed, at given wavelength, as the curtain thickness decreases, the velocity of the 

varicose waves becomes much smaller than the velocity of the sinuous waves. Subsequently, 

sinuous waves are expected to dominate. 

Conclusion 

We experimentally studied the local hydrodynamics of a liquid film flowing over a round hole 

perforation. Such topographies are typically found in the corrugated sheet packings used in 

distillation columns. Perforations are known to contribute to liquid phase redistribution and 

mass-transfer enhancement. 

We first characterized the different flow patterns occurring on a singly perforated plate as a 

function of the Reynolds number of the film, for one face supply and two face supply with 

equal volume flow rates. At low values of the Reynolds number, the liquid film flow is 

deflected by the perforation and the liquid does not fill the perforation. An arch-shaped 

stationary capillary ridge forms at the (upstream) stagnation point and extends downstream of 

the perforation. As the Reynolds number increases, the apex of the capillary ridge shifts toward 

the perforation and a liquid rim grows within the perforation. Beyond a critical value of the 

Reynolds number, referred to as the curtain Reynolds number (Re),), the liquid entirely fills 

the perforation and forms a liquid curtain. The curtain exhibits stationary varicose capillary 

waves. The curtain transition is preceded by specific patterns that depend on the perforation 

diameter, i.e. oscillating rim, dripping drops and liquid columns, or pendant sheet (for 

increasing perforation diameter, respectively). The curtain transition is highly hysteretic: when 

Re is decreased from Re),, the liquid curtain may persist within the perforation for Reynolds 

numbers well below Re),.  

We emphasize that the curtain transition occurs well above the onset of liquid transfer from the 

front side to the back side of the plate. The transfer starts with the formation of the liquid rim 
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within the perforation. For one face supply, liquid transfer is clearly observed until and above 

the curtain transition. 

We carefully examined the influence of perforation diameter, plate thickness, liquid type and 

volume flow rate ratio on the curtain Reynolds number. We found that (i) Re), increases with 

the perforation diameter, possibly goes through a maximum, and reaches a plateau for higher 

diameter values; (ii) Re), increases with the plate thickness as a consequence of the so-called 

teapot effect, this increase is more pronounced for one face supply; (iii) Re), increases with 

the Kapitza number (Ka) of the liquid and the plateau value of the curtain Reynolds number 

scales as Ka! -⁄ ; (iv) Re), (defined with the volume flow rate on the front side of the plate) 

decreases as the volume flow rate on the back side increases. 

We propose a new criterion for the curtain formation. This criterion was derived from a 

macroscopic momentum balance on the rim near the stagnation point. We considered that the 

rim is essentially subjected to two forces: the surface tension force that resists the curtain 

formation and the fluid inertia that drive the transition. This model adequately describes the 

effect of perforation diameter, Kapitza number and flow rate ratio on the curtain Reynolds 

number.  

Finally, we showed that the dynamics of a curtain within a perforation results from two 

superimposed phenomena: the stretching of the curtain due to the acceleration of the gravity 

and the excitation of varicose waves consequently to the impact of the curtain on the bottom 

edge of the perforation. The stretching is well described by a simple free fall model. We found 

that the wavelength of the varicose wave is selected such that the velocity of the waves both 

satisfies Taylor’s dispersion relation and matches the curtain local speed. As a consequence, 

the varicose wave appears immobile in the plate reference frame. The varicose waves are 

expected to enhance mass-transfer through the liquid curtain. 
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In the future, we plan to further investigate the curtain mode, i.e. by quantifying the fluid flow 

rate transferred through a perforation from one side of the plate to the other, by performing 

velocimetry to determine the velocity and vorticity fields within the supported and the 

suspended liquid film.  
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Table 1 

 

Liquid 𝝆 
(kg.m-3) 

𝝁 
(mPa.s) 

𝝈 
(mN.m-1) 

𝜽 
(°) Ka Re range 

Propan-2-ol 786a 2.05b 21c 11-17a 348 6 - 80 

55wt% glycerin 1134a 7.05d 68d 22-30a 245 2 - 35 

25wt% glycerin 1056a 1.87d 71d 23-35a 1470 9 - 115 

Pure water 997a 0.891e 72c 40-65a 3920 15 - 225 
ameasured, bfrom26, cfrom27, dlinearly interpolated from28, efrom29 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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List of figure captions 

 

 

Table 1. Physical properties (at 25°C) of the liquids used in the experiments and range of 

Reynolds number investigated. The bounds of the contact angle (𝜃) interval correspond to the 

receding contact angle and to the advancing contact angle, respectively. The equilibrium 

contact angle (𝜃") lies in-between. 

 

Figure 1. (a) Schematic representation of the experimental setup. (b) CAD (Computer Aided 

Design) model of the distributor. (c) Photograph of the setup. 1. Test plate 2. LED panel 3. 

High speed camera 4. Volumetric flow meters 5. Needle control valve 6. Spillway 7. Gear 

pump 8. Reservoir 9. CCI sensor 10. Distributor 11. Liquid Collector 12. Anti-vibration mount 

13. Frame that holds the plate. 

 

Figure 2. Perforated plate front view and cross-section along x-z plane: (a) dimensions, 

coordinate system and definitions of perforation top edge, bottom edge and inner surface, (b) 

One face supply (𝑄$ 𝑄%⁄ = 0), (c) two face supply with equal flow rates (𝑄$ 𝑄%⁄ = 1). Arrows 

indicate the flow path followed by the fluid film before the curtain transition. 

 

Figure 3. Film thickness profile in the 𝑦 = 0 plane far below the curtain transition: CCI 

measurements for perforation diameter 𝑑	 = 8 mm, plate thickness 𝑡	 = 	1 mm, propan-2-ol, 

Ka	 = 348, Re	 = 23, supply conditions 𝑄$ 𝑄%⁄ = 0 and 𝑄$ 𝑄%⁄ = 1. The thick black segments 

on the 𝑥-axis correspond to the plate surface and the gap between them to the perforation. The 

origin of the coordinate frame coincides with the center of the perforation. The streamwise 

direction (𝑥) is rescaled by the capillary length (𝑙)), and the current film thickness (𝛿) by the 
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Nusselt flat film thickness (𝛿&') measured far upstream of the perforation. Insert: Image of the 

flow pattern far below the curtain transition, same experimental conditions, 𝑄$ 𝑄%⁄ = 1. 

 

Figure 4. Rim dynamics and transition to the curtain mode as a function of perforation diameter 

and 𝑄$ 𝑄%⁄ : observations for plate thickness 𝑡 = 1 mm, propan-2-ol, Ka	 = 348. Re values are 

different since Re), depends on 𝑑. (a) Oscillating rim with circular hole (𝑑	 = 	4 mm, 𝑄$ 𝑄%⁄ =

1, Re = 28) ; (b) Oscillating rim with bean-shaped hole (𝑑	 = 8 mm, 𝑄$ 𝑄% = 1⁄ , Re = 34) ; 

(c) Drops or liquid columns (𝑑	 = 	12 mm, 𝑄$ 𝑄%⁄ = 0, Re = 29) ; (d) Pendant sheet (𝑑	 = 	12 

mm, 𝑄$ 𝑄%⁄ = 1, Re = 32).  

 

Figure 5. Curtain images just beyond the transition: 𝑡 = 1 mm, 𝑄$ 𝑄%⁄ = 1 ; (a) 𝑑 = 4 mm, 

propan-2-ol (Ka = 348), Re), = 31 ; (b) 𝑑 = 8 mm, propan-2-ol, Re), = 37 ; (c) 𝑑 = 12 mm, 

propan-2-ol, Re), = 35 ; (d) 𝑑 = 12 mm, pure water (Ka	 = 	3920), Re), = 125. The curtain 

exhibits parallel stationary waves in (b) and a rugged wave pattern in (c) and (d). 

 

Figure 6. Free surface profile in the 𝑦 = 0 plane (stream wise direction) just beyond the curtain 

transition: CCI measurements (circles) for perforation diameter 𝑑	 = 8 mm, plate thickness 

𝑡	 = 	1 mm, propan-2-ol, Ka	 = 348, Re	 = 36, 𝑄$ 𝑄%⁄ = 1. The thick black segments 

correspond to the plate surface. The origin of the coordinate frame coincides with the 

perforation center. The thin grey dotted lines are drawn to indicate the probable shape taken by 

the free surface of the film (data are missing because the local slope of the free surface is too 

steep for the CCI to capture the film thickness). 

 

Figure 7. Variations of the curtain Reynolds number as a function of the perforation diameter 

rescaled by the capillary length (𝑑 𝑙)⁄ ) for three plate thickness values (𝑡	 = 	0.5, 1, 1.5 mm). 
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The tested liquid is propan-2-ol (Ka	 = 	348). (a) One face supply. (b) Two face supply with 

equal volume flow rates.  

 

Figure 8. Variations of the curtain Reynolds number as a function of 𝑄% 𝑄$⁄  for two different 

values of the perforation diameter (𝑑 = 4	mm and 𝑑 = 8 mm). The plate thickness is equal to 

𝑡 = 1 mm. The tested liquid is propan-2-ol. 𝑅𝑒), is calculated from 𝑄%),, the volume flow rate 

on the front side that induces curtain transition at given 𝑄$. 

 

Figure 9. Variations of the curtain Reynolds number as a function of the perforation diameter 

rescaled by the capillary length for four different liquids, i.e. propan-2-ol (Ka = 348), 55 wt% 

glycerin aqueous solution (Ka = 245), 25 wt% glycerin aqueous solution (Ka = 1470) and 

pure water (Ka = 3920). The plate thickness is equal to 𝑡 = 1 mm. (a) One face supply. (b) 

Two face supply with equal volume flow rates. 

 

Figure 10. Section along the plane 𝑦 = 0: idealized flat film profile on the perforated plate 

before the curtain transition. The red dotted lines represent the idealized curtain free surface. 

 

Figure 11. Comparison between prediction of Eq. (4) (solid lines) and the experimental results 

(points) obtained with propan-2-ol (Ka = 348) and perforated plates of thickness 𝑡 = 1 mm. 

(a) variations of Re), as a function of the perforation diameter rescaled by the capillary length 

for 𝑄$ 𝑄%⁄ = 0 and 𝑄$ 𝑄%⁄ = 1. (b) variation of Re), as a function of the ratio 𝑄% 𝑄$⁄  for 

perforation diameter 𝑑 = 4 mm. 

 

Figure 12. (a) Measured half thickness profile of the curtain (squares) and calculated profile 

assuming free fall and omitting varicose waves (red solid line). (b) Predicted wavelength values 
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along the liquid curtain (dashed line) and wavelength values measured on the waves that stand 

on the real curtain (crosses), same experimental conditions as Figure 6.  

 

 

 


