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Explaining regional differences in mortality during the
first wave of Covid-19 in Italy

Ugofilippo Basellini 1,2 and Carlo Giovanni Camarda 2

1Max Planck Institute for Demographic Research, 2Institut national d’études démographiques

Italy was hit harshly by the Covid-19 pandemic, registering more than 35,000 Covid-19 deaths between

February and July 2020. During this first wave of the epidemic, the virus spread unequally across the

country, with northern regions witnessing more cases and deaths. We investigate demographic and socio-

economic factors contributing to the diverse regional impact of the virus during the first wave. Using

generalized additive mixed models, we find that Covid-19 mortality at regional level is negatively

associated with the degree of intergenerational co-residence, number of intensive care unit beds per

capita, and delay in the outbreak of the epidemic. Conversely, we do not find strong associations for

several variables highlighted in recent literature, such as population density or the share of the

population who are older or have at least one chronic disease. Our results underscore the importance of

context-specific analysis for the study of a pandemic.

Keywords: mortality modelling; SARS-CoV-2; Poisson regression; generalized additive mixed model;
smoothing; socio-economic determinants; demographic factors; regional differences
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Introduction

Coronavirus disease 2019 (Covid-19) is an infectious
disease that has spread rapidly around the globe
since the beginning of 2020. The disease is caused
by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), and it was first identified in the
city of Wuhan in December 2019 (Du et al. 2020).
Within a matter of weeks, the World Health Organ-
ization had declared the Covid-19 outbreak a public
health emergency of international concern (on 30
January 2020) and then a pandemic (on 11 March
2020) (World Health Organization 2020a).
The global number of reported cases of Covid-19

rose at a very fast pace during 2020, increasing
from about 10 thousand at the beginning of February
to more than 17 million at the beginning of August.
Similarly, the number of deaths attributed to the
disease increased from around 250 to more than
675 thousand during the same period (Johns
Hopkins University CSSE 2020; World Health
Organization 2020b).
In Italy, the first case of Covid-19 was confirmed

on 20 February 2020, although the virus had
already been present in the country since January

(Cereda et al. 2020). Since the identification of
‘patient one’, the country has been hit harshly by
the spread of the virus, with regard to both infections
and deaths. The number of reported cases exceeded
that of China onMarch 27, totalling almost 250 thou-
sand cases by the end of July. In addition, Italy regis-
tered more Covid-19 deaths than any other country
between 19 March and 7 April, surpassing 35 thou-
sand deaths at the beginning of August (data from
Johns Hopkins University CSSE 2020).
In response to the rapid spread of the virus, the

Italian government adopted a series of measures to
slow down its transmission. On 23 February 2020,
11 municipalities in the north of Italy were identified
as the main cluster of the epidemic and put under
quarantine. Simultaneously, out of the 21 NUTS-2
regions, six—all in northern Italy—implemented
different restrictions, ranging from school closures
to cancellations of public, religious, or sporting
events. On 1 March, the Council of Ministers
divided the country into three areas of risk: a red
zone comprising the 11 municipalities in quarantine;
a yellow zone comprising the regions of Lombardia,
Veneto, and Emilia-Romagna, where public and
sporting events were suspended and schools closed;
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and the rest of the country, with less restrictive safety
and preventive measures. Schools were then closed
nationwide on 4 March, the entire country was put
into lockdown on 9 March, and non-essential activi-
ties were suspended on 23 March. From 4 May
onwards, restrictions were gradually eased, and
freedom of movement across regions and other
European countries was restored on 3 June (Minis-
tero Della Giustizia 2021). Unfortunately, all these
measures only partially mitigated the diffusion of
the virus.
Since the early phases of the Italian outbreak,

regional differences have emerged in terms of
timing and magnitude of the virus’s diffusion.
Initially, the virus spread in the north of Italy:
the regions in the yellow zone (Lombardia,
Veneto, and Emilia-Romagna) were the first to
confirm more than 200 cumulative infections at
the start of March 2020. Southern regions, which
were originally rather unaffected, witnessed
increasing rates of contagion throughout the
months of March and April. In terms of Covid-
19 deaths, similar regional differences occurred,
with northern regions generally more affected
than southern ones.
Ongoing economic and demographic differences

across Italian regions have been the subject of a
vast body of literature (see e.g. Helliwell and
Putnam 1995; Billari and Ongaro 1998; Di Giulio
and Rosina 2007; Kertzer et al. 2009). However,
little is known about the effects of such determinants
in shaping Covid-19 mortality across Italy. Mean-
while, a fast-growing literature has highlighted the
relationships between Covid-19 mortality and a
large number of variables. The role of population
age structure has been suggested as one explanation
of the higher number of Covid-19 deaths in older vs
younger populations (Dowd et al. 2020). Moreover,
the prevalence of comorbidities can play an equally
important role (Nepomuceno et al. 2020), but
Boschi et al. (2021) found that Italian regions with
greater prevalence of diabetes and allergies experi-
enced lower Covid-19 mortality during the first
wave of the pandemic. Higher population density
may catalyse the spread of the disease (Rocklv and
Sjdin 2020; Wong and Li 2020; Sy et al. 2021),
although other studies have shown no significant
effect (Hamidi et al. 2020; Sun et al. 2020; Khavar-
ian-Garmsir et al. 2021). Intergenerational relation-
ships and co-residency structures have been found
to be important with respect to the number of infec-
tions and deaths (Brandén et al. 2020; Esteve et al.
2020; Giorgi and Boertien 2020; Martin et al. 2020;
Pengyu et al. 2021), but Arpino et al. (2020) and

Liotta et al. (2020) showed that a higher prevalence
of intergenerational co-residence and greater
numbers of contacts were negatively associated
with Covid-19 case fatality rates and infection
spread in Italian regions. Several studies have docu-
mented that a significant number of Covid-19 deaths
in Italy occurred in nursing homes (Ciminelli and
Garcia-Mandicó 2020; di Giacomo et al. 2020; Tra-
bucchi and De Leo 2020) and that the sudden out-
break of Covid-19 saturated intensive care units
(ICUs) in several regions, leading older patients to
die at home because of the lack of available hospital
beds (Favero 2020; Volpato et al. 2020). Further-
more, some workers are at higher risk of Covid-19
than others because they work in physical proximity
to other people and/or they are more exposed to dis-
eases and infections (Barbieri et al. 2020). This is the
case, for example, for workers employed in the
healthcare and manufacturing sectors (Chirico
et al. 2020; Lapolla et al. 2021). Finally, differences
between Italian regions in the start date of the epi-
demic have been shown to mask actual underlying
heterogeneity in local dynamics (Scala et al. 2020);
hence accounting for this diversity is crucial for dis-
entangling the underlying factors behind regional
differences in Covid-19 mortality.
In this paper, we investigate these demographic

and socio-economic factors within the Italian frame-
work. The aim is to reveal which of these factors con-
tributed to regional differences in Covid-19
mortality during the first wave of the pandemic.
Specifically, we analyse the period from the outbreak
of the epidemic (late February 2020) until the first
considerable reduction in Covid-19 deaths (mid-
July 2020), a period during which over 35 thousand
Covid-19 deaths were registered. We study the
association between the daily reported number of
Covid-19 deaths and a set of explanatory variables
at the regional level. By using generalized additive
mixed models within a Poisson framework, we ident-
ify the demographic and economic variables that had
the strongest impact on the number of individuals
dying. Our approach allows us to show how the epi-
demic unfolded in Italy and simultaneously to
uncover the remaining regional heterogeneity that
is not captured by the time trend and selected
covariates.
This paper is organized as follows. The next

section describes the mortality data that we use
and the relevant covariates considered in our study,
as well as the method that we use for our analysis.
The following section illustrates the results of our
analysis, and we then conclude with a discussion of
our findings.
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Data and methods

Mortality data

Since 25 February 2020, the Dipartimento Della Pro-
tezione Civile (2021) has been publishing the new
(non-cumulative) number of reported Covid-19
deaths for each of the 21 NUTS-2 Italian regions
on a daily basis. Regional mortality data are only
available at the aggregate level (i.e. no information
is provided on the age and sex breakdown of
deceased individuals).
It is important to note that several regions did not

register any Covid-19 infections or deaths for the
first few days of the data set. As such, starting the
analysis from 25 February for every region would
not be appropriate, since regions with later epidemic
outbreaks were not exposed to any Covid-19 mor-
tality risk until the SARS-CoV-2 virus entered the
region. To deal with different epidemic dynamics
and to allow regions to share the same initial con-
dition/state, we define region-specific start dates
and shift the time scale of our regression analysis
accordingly. A similar approach for studying the
impact of geographic factors on Covid-19 in China
has been adopted by Sun et al. (2020). In practice,
for each region, we start the analysis from when
cumulative cases surpassed 0.0001 per cent of the
regional population. This allows us also to consider
population size in the timing of the epidemic out-
break across regions.
The left-hand panel of Figure 1 shows a map of

Italy with regions coloured according to their analy-
sis start date. Earlier outbreaks are shown in darker
shades, with later outbreaks in lighter shades. In the
right-hand panels, Covid-19 log mortality rates over
time are shown for each region, with colours corre-
sponding to those in the map. Actual trends are
smoothed here only for illustrative purposes. In the
upper-right panel, rates are plotted over calendar
time (dates); in the lower-right panel, start dates
are shifted to begin from a common time point. An
overall clustering of the curves is visible in the
right-hand panels: regions with earlier epidemic out-
breaks show on average higher levels of Covid-19
mortality than regions with later outbreaks.
In addition to this ‘relative’definition of the analy-

sis start date, we perform a sensitivity analysis and
compute the start date using an ‘absolute’ approach:
for each region, we start the analysis when cumulat-
ive cases surpassed five. Table A1 in the Appendix
shows the start date of the epidemic by region in
the main and sensitivity analyses. Specifically, we
show that the outcomes of our analysis are robust

to the definition of the regional start date for the epi-
demic (see Table A2).

Explanatory variables

Here we describe the explanatory variables that we
use in our regression setting and provide their
sources and some descriptive statistics. For each vari-
able, we also provide the expected effect on Covid-
19 mortality as suggested by the relevant literature.
The total population for each region at the start of

2020 is retrieved from Istat (2021). Since deaths are
reported on a daily basis, exposures (used as an
offset in the regression setting) are approximated
by dividing the regional population by the number
of days in 2020, (i.e. 366). Consequently, in our analy-
sis estimated mortality can be viewed as the daily
risk of dying with Covid-19.
Istat (2021) also provides data by region on: (1)

the share of population aged 65 years or over; (2)
population density; and (3) the share of population
with at least one chronic disease (comorbidity).
Moreover, we retrieve regional data on the degree
of intergenerational co-residence from Arpino
et al. (2020), who computed the prevalence of
older individuals (aged 60+) living in multigenera-
tional households (of two or more generations)
from the Family, Social Subjects and Life Cycle
survey (Istat 2016).
Furthermore, Istat (2021) provides regional data

on workers employed in the Italian economy.
Specifically, we retrieve data on the number of phys-
icians (general and specialized practitioners) per
capita, and we compute the share of workers
employed in the manufacturing sector.
Regional data on the number of ICU beds avail-

able in 2019 are retrieved from the Ministero della
Salute (2020). Furthermore, we obtain the number
of long-stay residential care homes (LSRCHs) in
each region from the survey of the Istituto Superiore
di Sanità (2020). This survey was carried out to
monitor the spread of Covid-19 in LSRCHs, and it
covered 3,417 out of the 4,629 total LSRCHs
present in Italy. We also retrieve the cumulative
number of Covid-19 swab tests performed from the
first to the last day of the analysis for each region,
from the Dipartimento Della Protezione Civile
(2021). To account for the different sizes of regional
populations, we use these three variables in per
capita terms.
Finally, in addition to starting the analysis for each

region at different time points, we also compute the
number of days of delay in the start of the epidemic.

Regional differences in Covid-19 mortality in Italy 3



This is derived as the number of days between 25
February (the first date in the data set) and the
start of the epidemic in each region (see Table A1
in the Appendix).
As already discussed in the ‘Introduction’, we

select this set of covariates since they have been
suggested as relevant in recent literature on Covid-
19 mortality. An overview of the explanatory vari-
ables is given in Table 1 along with their descriptive
statistics and their expected effect on Covid-19 mor-
tality based on published studies. In the Appendix
(Figure A1), we report an exploratory analysis of
these variables, including a graphical inspection of
their linear relationship with Covid-19 mortality
(Figure A2).

Modelling

Let r = 1, . . . , n denote the regions and t = 1, . . . , m
denote the time points of the analysis. As discussed
in the ‘Mortality data’ subsection, the first time
point of the analysis corresponds to different calen-
dar dates for each region (see Table A1 in the
Appendix). Similarly, the last calendar date of

analysis differs by region, since we keep the same
length of the time period for each region. In the
main analysis, the length of the time period is 132
days (m = 132), whereas it is 128 days in the sensi-
tivity analysis. The total number of regions, n, is
always equal to 21.
Observed Covid-19 deaths, dr,t, are assumed to be

realizations from a Poisson distribution (Brillinger
1986) with mean er,t mr,t, where et,r denotes person-
days of exposure to the risk of death for each
region r. Exposures are assumed fixed over t for
the period under study. The vector mr,t denotes the
Covid-19 force of mortality for each region r at
time t, and its estimation is the object of the pro-
posed model.
We model the Poisson death counts via a log link

function in a generalized additive mixed model
(GAMM) framework. This type of model is particu-
larly suitable in our setting since we clearly deal with
non-independence in the data: the observed death
counts in a given region over time are naturally cor-
related. Adding random effects at the regional level
in the regression setting allows us to estimate correct
standard errors associated to fixed effects and to
avoid invalid relationships between Covid-19

Figure 1 Start date of the epidemic by region (left-hand panel) and smoothed Covid-19 log mortality rates
over time (right-hand panels): Italy, late February to mid-July 2020
Notes: On the right-hand side, calendar dates are shown in the upper panel and aligned days in the lower panel. Lines for the
21 regions are coloured according to their respective epidemic start date.
Source: Authors’ own elaborations on data from Dipartimento Della Protezione Civile (2021).
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Table 1 Explanatory variables considered in this study, together with descriptive statistics (mean, standard deviation, minimum, and maximum values for Italian regions) and their
expected effect on Covid-19 mortality

Variable Year Mean SD Min Max Expected effect on Covid-19 mortality

Population (× 10,000) 2020 284 252.9 12.5 1002.8 – (offset term)
Population aged 65+ years (%) 2020 23.8 2.2 19.3 28.8 ↑ (Dowd et al. 2020)
Population density (per km2) 2020 175.6 112.2 38.3 420.2 ↑ (Rocklv and Sjdin 2020)

– (Hamidi et al. 2020)
Population with one or more chronic diseases (%) 2019 41.4 3.4 30.4 46.6 ↑ (Nepomuceno et al. 2020)

↓ (Boschi et al. 2021)
Older people living in multigenerational households (%) 2016 40.6 6.1 30.9 52.2 ↑ (Esteve et al. 2020)

↓ (Arpino et al. 2020)
Physicians per capita 2019 4.0 0.5 3.2 4.8 ↑ (Chirico et al. 2020)

↓ (Volpato et al. 2020)
Employees in manufacturing sector (%) 2015 20.2 6.2 10.9 29.0 ↑ (Barbieri et al. 2020)
ICU beds per capita 2019 8.6 1.4 5.7 12.0 ↓ (Volpato et al. 2020)
LSRCHs per capita 2020 39.7 34.5 1.8 106.8 ↑ (Trabucchi and De Leo 2020)
Cumulative Covid-19 swab tests per capita 2020 10.8 5.5 4.7 24.6 ↑ / ↓
Delay in the epidemic (days) 2020 5.2 3.4 0.0 10.0 ↓ (Scala et al. 2020)

Notes: Per capita variables are multiplied by 1,000 (physicians), 100,000 (ICU beds), 1,000,000 (LSRCHs), and 100 (cumulative Covid-19 swab tests) for illustrative purposes. Figures for the population
variable are divided by 10,000 in this table only (and not in the analysis) for illustrative purposes.
Source: Istituto Superiore di Sanità (2020); Ministero della Salute (2020); Dipartimento Della Protezione Civile (2021); Istat (2021).
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mortality and observed covariates. Moreover,
GAMMs provide a powerful tool for including
non-linear effects, making them particularly suitable
in modelling the time dynamic of Covid-19 mortality.
Let d and e denote all observed deaths and associ-

ated exposures, respectively, arranged as a column
mn vector. We model the expected values of the
Poisson distribution as follows:.

ln[E(d)] = ln(e)+ 1n ⊗ h+X b+ Zu , (1)

where ln(e) is the offset term and h = (ht) represents
the common epidemic dynamic over time
t = 1, . . . , m. This trend is repeated for all regions by
means of a Kronecker product (⊗) and 1n, a column
vector of ‘1’s of length n. The mn× p design matrix
X contains the values of the p explanatory variables,
which vary across regions; the vectorbwith the associ-
ated p coefficients is common over regions and time,
and it can be interpreted as in a classic regression
setting. Finally, Z is the mn× n model matrix for the
random effects for observed deaths in region r. Since
wedeal with a balanced design,Z has a block-diagonal
structureand couldbebuilt asZ = In ⊗ 1m, where In is
an identity matrix of size n and 1m a column vector of
‘1’s of length m. The n-vector u contains the region-
specific random effects, added to capture average
regional differences and assumed to be normally dis-
tributed with mean zero and constant variance across
regions. Note that all data used in the model in
equation (1) are observed (i.e. there are no missing
data).
In addition to the GAMM, we also use a simpler

generalized additive model (GAM) that only con-
tains fixed effect terms. The model is identical to
the one described in equation (1), with the exception
of not containing the random effect terms Zu. In
other words, this simplified approach assumes that
mortality trends in each region are only the sum of
a national smoothed trend h and regression term
(Xb) that uniquely depends on observed explana-
tory variables and a common coefficients vector.
Comparisons between the GAM and GAMM
approaches are performed throughout our analysis.
We assume smoothness for the common epidemic

time trend h. Following a P-spline approach, we
model this function as a linear combination of
cubic B-splines and associated coefficients which
are penalized by discrete penalties (Eilers and
Marx 1996). Following the standard approach, we
use an intentionally generous number of B-splines
(29, corresponding to one knot at every fifth data
point, sufficient to describe how the epidemic
unfolded in Italy), and we assign to the penalty the

role of reducing the effective dimension, leading to
a smoothed term h. A review of spline modelling,
including penalized splines and their implementation
in R, can be found in Perperoglou et al. (2019).
Model selection is performed by minimizing the
Bayesian Information Criterion (BIC) (Schwarz
1978), which provides a trade-off between the accu-
racy and parsimony of the model. BIC is given by:

BIC = Dev+ log(mn)ED, (2)

where Dev denotes the Deviance (which captures
the discrepancy between observed and fitted data)
and ED denotes the effective dimension of the
model. The latter term is the sum of the degrees of
freedom used by smoothed, fixed, and random com-
ponents in the model in equation (1).
The estimation procedure is implemented in R (R

Development Core Team 2020), using the mgcv
package (Wood 2019). The code can be obtained
from a public OSF repository (Basellini and
Camarda 2021).
We start by running five different models on the 10

covariates introduced in the ‘Explanatory variables’
subsection. First, we run two models that contain all
covariates, one without random effects (denoted
‘GAM’) and one with random effects (denoted
‘GAMM’). Second, we run a GAMM model that
does not include any covariates (denoted ‘GAMM
w/o covars’). Third, for both the original models
(with and without random effects), we look at all
1,023 possible combinations of the 10 covariates
(210− 1 = 1,023 different combinations), and we
retain the model that minimizes the BIC. (This com-
prehensive approach leads to equivalent outcomes as
using a forward selection or backward elimination
variable selection approach.) These two optimal
models are denoted ‘GAM-opt’ and ‘GAMM-opt’,
respectively. All five models include a smoothed func-
tion of time and, as an offset, person-days of exposure.

Results

Table 2 and Figure 2 report the results for the five
models introduced in the previous subsection. Note
that results for the GAM and GAM-opt models
are the same (in both Figure 2 and Table 2), and
that the GAMM w/o covars model does not appear
in Figure 2 since it does not contain explanatory vari-
ables. To aid the interpretation and comparison of
the different coefficients, we normalize each variable
by mean-centring and scaling to one standard devi-
ation (1SD). As such, the estimated coefficients
can be interpreted as the change in the Covid-19
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Table 2 Estimated coefficients with 95 per cent confidence intervals for five Poisson regression models of Covid-19 mortality (dependent variable) and 10 explanatory variables:
Italy’s 21 regions, late February to mid-July 2020

Model

GAM and GAM-opt GAMM w/o covars GAMM GAMM-opt

Population aged 65+ years 0.49
(0.44, 0.54)

– 0.30
(−0.50, 1.10)

–

Population density 0.29 – 0.17 –

(0.27, 0.32) (−0.57, 0.91)
Population with one or more chronic diseases −0.48

(−0.55, −0.40)
– −0.20

(−0.82, 0.41)
–

Older people living in multigenerational households −0.54 – −0.66 −0.82
(−0.57, −0.52) (−1.19, −0.13) (−1.11, −0.54)

Physicians per capita 0.19
(0.13, 0.25)

– −0.06
(−0.67, 0.55)

–

Employees 0.34 – −0.03 –

manufacturing sector (0.29, 0.38) (−0.68, 0.62)
ICU beds per capita −0.60

(−0.64, −0.55)
– −0.39

(−0.87, 0.09)
−0.42

(−0.73, −0.10)
LSRCHs per capita 0.56 – −0.12 –

(0.50, 0.62) (−0.75, 0.51)
Cumulative tests

per capita
−0.40

(−0.46, −0.35)
– 0.21

(−0.57, 0.99)
–

Delay in the epidemic −0.25 – −0.49 −0.61
(−0.30, −0.20) (−1.40, 0.43) (−0.92, −0.30)

Observations 2,772 2,772 2,772 2,772
Regions 21 21 21 21
Deviance 8,721.22 7,274.20 7,274.16 7,274.34
Effective dimension 24.87 35.04 35.01 34.86
BIC 8,918.35 7,552.00 7,551.71 7,550.67
Deviance explained (%) 87.9 89.9 89.9 89.9

Notes:All models include a smoothed function of time and person-days of exposure as an offset. Estimation is performed using (restricted) maximum likelihood. See ‘Modelling’ subsection for details of
the five models.
Source: Authors’ elaborations on data from Istituto Superiore di Sanità (2020); Ministero della Salute (2020); Dipartimento Della Protezione Civile (2021); Istat (2021).
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log mortality corresponding to a 1SD increase in the
variable.
The first consideration that can be drawn from

Table 2 is that the inclusion of random effects
greatly improves the fit of the model, resulting in a
considerable reduction of the deviance compared
with models that do not consider them: 7,274 vs
8,721. This gain comes at a price of about 10 degrees
of freedom (about 35 vs. 25). However, based on the
BIC, any of the threemodelswith randomeffects out-
performs the models with only fixed effects.
As expected, random effects also increase the

standard errors of the estimated fixed coefficients,
thereby widening the 95 per cent confidence inter-
vals associated with the covariates’ effects. Figure 2
clearly depicts these differences: error bars associ-
ated with point estimates increase considerably for
the GAMM and GAMM-opt models compared
with the GAM and GAM-opt ones. As such, it
appears that the omission of random effects from
the model specification likely underestimates the
uncertainty associated with the coefficient estimates.

In all models containing covariates, the strongest
effect on mortality is found for the prevalence of
older individuals living in multigenerational house-
holds, with a 1SD increase (6.1 percentage points;
see Table 1) associated with a 0.54–0.82 decrease in
Covid-19 log mortality. The smallest effects are
observed for the share of employees in the manufac-
turing sector and physicians per capita, whose coeffi-
cients are slightly negative in the GAMM model.
Furthermore, most of the estimated coefficients are
robust to the model specification, as the signs and
values of the estimates are quite similar across the
four models in Figure 2. For four variables, the esti-
mates change sign (from positive to negative or vice
versa) from the GAM to the GAMMmodels, but the
confidence intervals of the GAMM model include
zero for all four variables and include the point esti-
mates of the GAM model (except for the LSRCHs
variable). Nonetheless, this issue does not concern
the variables selected for the optimal model
(GAMM-opt). Finally, the BIC selection without
and with random effects results in rather different

Figure 2 Estimated coefficients with 95 per cent confidence intervals from four models of Covid-19 mortality
with 10 explanatory variables: Italy, late February to mid-July 2020
Note: Outcomes are also reported in Table 2. See ‘Explanatory variables’ subsection and Table 1 for details of the 10 expla-
natory variables.
Source: Authors’ elaborations on data from Istituto Superiore di Sanità (2020); Ministero della Salute (2020); Dipartimento
Della Protezione Civile (2021); Istat (2021).
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models: in the former, no covariates are excluded
from the model, while in the latter only three covari-
ates are retained.
The three variables retained in the optimal model

(GAMM-opt) are: the prevalence of older individ-
uals living in multigenerational households, the
delay in the epidemic, and the number of ICU beds
per capita. Regions with a greater prevalence of
intergenerational co-residence experience lower
Covid-19 mortality than regions with smaller inter-
generational co-residence. Similarly, lower Covid-
19 mortality is associated with greater delays in the
arrival of the epidemic and with greater stock of
ICU beds per capita. Very similar results are
obtained in the sensitivity analysis using the absolute
approach to define the start date of the analysis and
the computation of the delay in the epidemic (see
Table A2 in the Appendix).
Figure 3 shows additional results of our analysis by

comparing the GAMM w/o covars model with the
GAMM-opt model. The left-hand panel shows the
observed Covid-19 log mortality rates alongside the

estimated smoothed curves over time for the two
models, with 95 per cent confidence intervals. The
smoothed curves for the two models are visually
indistinguishable from each other, hence only one
curve appears in the graph. The smoothed curve
describes the average profile of the epidemic over
time, with a rapid log mortality increase in the first
30 days, followed by a relatively stable but slower
decline. In the right-hand panel, the random effects
of the two models are plotted on corresponding
maps of Italy. The inclusion of relevant covariates
in the GAMM-opt model considerably reduces the
size of the random effects, pointing towards the
importance of the covariates in capturing the varia-
bility in the data. The random effects from the
GAMM w/o covars model (upper-right panel)
provide a direct visualization of the severity of the
epidemic in different regions: higher (or lower)
random effects translate into a vertical upward (or
downward) shift of the estimated smoothed curve
in the left-hand panel. The well-documented
north–south divide emerges from the random

Figure 3 Observed Covid-19 log mortality rates and estimated smoothed reference curve for GAMM w/o
covars and GAMM-opt models (left-hand panel), and estimated random effects for the two models (right-
hand panel): Italy and its 21 regions, late February to mid-July 2020
Notes: In the left-hand panel, points show observed Covid-19 log mortality rates and lines with shaded areas show estimated
smoothed reference curves with 95 per cent confidence intervals. The smoothed curves for the two models are visually indis-
tinguishable from each other.
Source: As for Figure 2.
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effects of this model. Conversely, the random effects
from the GAMM-opt model (lower-right panel)
capture remaining unexplained heterogeneity in
the data that is not captured by the time trend and
the three covariates in this model.
Finally, we can inspect the goodness of fit of the

GAMM-opt model by comparing the observed and
fitted regional evolution of the epidemic. Figure 4
shows the observed and fitted Covid-19 log mortality
with 95 per cent confidence intervals for each region,
as well as for Italy overall (top-left panel). The graph
shows that the model describes the data well,
although the flatter epidemic shape in the Veneto
and Lazio regions is not perfectly captured. For com-
pleteness, we report a similar plot for death counts, as
well as the model’s deviance residuals as a model
diagnostic in Figures A3 and A4 in the Appendix.

Discussion

The research community has been very responsive in
analysing the spread of Covid-19 across the globe,
generating an extensive number of analyses.

Consequently, for the purpose of this paper, we
focused mainly on the relevant literature for the
Italian context. Early efforts were directed towards
monitoring the virus’s spread at the national or sub-
national level using Poisson models. Chiogna and
Gaetan (2020) proposed a dynamic generalized
linear model for the Poisson distribution of new
and total cases at the national, regional, and provin-
cial levels. The analysis of the time-varying slope of
the local linear trend allowed them to detect
changes in the underlying process in terms of accel-
eration, deceleration, or stabilization of the disease’s
diffusion. Moreover, Bonetti and Basellini (2021)
introduced a tool for visualizing the spread of
Covid-19 in Italian provinces and regions by model-
ling the total number of cases with Poisson
regression and using parametric and non-parametric
hazard functions. Furthermore, Agosto et al. (2020)
proposed a Poisson autoregression on the daily
number of cases and compared the Italian context
with that of China and other European countries.
All these works consider the spread of the virus in

different territories in isolation, that is, each region
or province is analysed independently without

Figure 4 Observed and fitted (with 95 per cent confidence intervals) Covid-19 log mortality rates in Italy and
its 21 regions for 132 aligned days between 25 February and 15 July 2020
Note: Fitted curves are from the GAMM-opt model.
Source: As for Figure 2.
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taking into account their correlations. However,
regional contexts have played a relevant role in the
unfolding of the Italian epidemic. As such, in this
paper we introduced a method that considers the
country as the sum of different regional experiences.
Our regression model allowed us to identify the most
significant variables that contributed to the greater
or lower burden of deaths across regional units
during the first wave of the pandemic (i.e. from the
end of February until mid-July 2020). In particular,
we found that regions with three features—(1) a
greater degree of intergenerational co-residence,
(2) a longer delay in the start of the epidemic, and
(3) higher number of ICU beds per capita—experi-
enced lower levels of Covid-19 mortality. The other
demographic and socio-economic variables that we
analysed (share of the older population, population
density, prevalence of one or more chronic con-
ditions, number of physicians per capita, share of
employees in the manufacturing sector, number of
LSRCHs per capita, and Covid-19 swab tests per
capita) were not retained in the optimal model
selection.
Few attempts have been made to take into account

cross-regional dependence in the spread of Covid-19
in Italy. Maltagliati (2020) was among the first to
suggest analysing the Italian epidemic as the sum
of region-specific outbreaks. This author described
the cumulative number of deaths using a logistic
model that considered the delay in the start of
regional outbreaks. The proposed model produced
large differences in the region-specific asymptotes,
and the author argued that the regional perspective
is fundamental to understanding the evolution of
Covid-19 in Italy. Furthermore, Boschi et al. (2021)
used functional data analysis techniques to investi-
gate the association of Covid-19 mortality with
mobility, positivity (i.e. the proportion of performed
Covid-19 tests returning positive results), and other
covariates at the regional level from mid-February
to April 2020. The authors documented the outbreak
of two starkly different epidemic types: an exponen-
tial one in the worst hit areas in the north of the
country and a flat one in the remaining regions.
Our analysis shares commonalities with these two

studies, but it differs substantially in a number of
ways. First, the parametric model proposed by Mal-
tagliati (2020) did not consider the role of explana-
tory variables in shaping the effects of the Covid-
19 outbreak across the regions. Second, while the
semi-parametric analysis by Boschi et al. (2021)
was conceptually closer to our approach, the focus
of the two studies was rather different. In their analy-
sis, Boschi et al. (2021) concentrated on the role of

mobility and positivity as predictors of Covid-19
mortality, and other covariates were only con-
sidered, one at a time, as control variables in the
regression model. In our work, we took a more com-
prehensive view and assesses the competing effect of
several factors on mortality during the pandemic.
Nonetheless, we acknowledge the contributions of
these two studies; our work was intended to comp-
lement them and provide additional insights on the
dynamics of the Italian epidemic.
An important contribution of our paper is the con-

sideration of random effects in the analysis of the
association between Covid-19 mortality and other
factors. The mixed effects specification of the
model indeed allowed us to isolate and estimate
the effect of different covariates on Covid-19 mor-
tality while controlling for: (1) the time trend of
the epidemic; and (2) all other unobserved region-
specific factors that are captured by the random
effects of the model. This allowed us to control, for
example, for regional differences in terms of testing
and reporting procedures, which are not well docu-
mented and could have affected the number of
reported Covid-19 deaths across regions.
Several of our findings are in line with those docu-

mented by recent research on the Covid-19 pan-
demic. The association between greater availability
of ICU beds and lower Covid-19 mortality is reason-
able, especially given that some regions (e.g. Lom-
bardia) experienced a saturation in ICU bed and
ventilator capacity during the Covid-19 outbreak
and that could have resulted in a great number of
Covid-19-related deaths (Favero 2020; Volpato
et al. 2020). Similarly, the negative association
between mortality and the delay in the outbreak is
justifiable, since regions that experienced a later out-
break had relatively more time to prepare for it, for
example, by increasing their stock of available ICU
beds. Furthermore, we found a positive—albeit com-
paratively weaker, and with confidence intervals
crossing zero in the model with random effects—
association of mortality with the share of population
aged 65+ and population density (in line with Dowd
et al. 2020; Rocklv and Sjdin 2020, respectively).
Interestingly, some of our findings do not align

with other recent research on the pandemic. First,
co-residence patterns (and, relatedly, household
size) have been proposed as a key factor (together
with population age structure) in determining
countries’ vulnerability to Covid-19 outbreaks
(Esteve et al. 2020). In our analysis, we found that
co-residence patterns were negatively associated
with Covid-19 mortality in Italian regions during
the period analysed. A similar negative relationship
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for the Italian regions has been documented in other
studies (Arpino et al. 2020; Belloc et al. 2020; Liotta
et al. 2020). Given the aggregate level of our analysis,
we are not able to infer whether this finding suggests
that greater intergenerational support helped to
reduce Covid-19 mortality or simply that regions
with a higher prevalence of older individuals living
in multigenerational households were not particu-
larly affected during the first wave of Covid-19 in
Italy. We also found some weak evidence of a nega-
tive relationship between prevalence of comorbid-
ities in the population and Covid-19 mortality,
possibly due to the fact that regions with a greater
prevalence of individuals with comorbidities were
hit less harshly by the epidemic during the first
wave (Boschi et al. 2021). Moreover, nursing
homes have been identified as hotspots of Covid-
19-related deaths in Italy (di Giacomo et al. 2020;
Trabucchi and De Leo 2020), and employees in
healthcare and manufacturing sector have been
found to be at greatest risk of Covid-19 (Barbieri
et al. 2020; Chirico et al. 2020). In our analysis,
these variables were not significantly associated
with higher or lower Covid-19 mortality, after con-
trolling for the time trend of the epidemic and
random effects. On one hand, some of these discre-
pancies are related to the contexts of the analyses,
as our subnational setting differed from those con-
sidered in some of the previous studies. On the
other hand, the different methods used may also
contribute to the different findings, as several of
the previously cited works focused on only one or
two covariates of interest and did not control for
other factors. From our results, the importance of
including random effects when assessing the
relationship of different variables with Covid-19
mortality clearly emerges.
A growing body of literature is documenting the

positive effects of non-pharmaceutical interventions
(NPIs)—for example school closures, travel bans,
and lockdowns—on reducing the spread and mor-
tality of Covid-19 (see e.g. Flaxman et al. 2020;
Davies et al. 2021; Brauner et al. 2021). In our
study, we did not investigate the effect of such
measures on Covid-19 mortality, due to the coinci-
dent introduction and relaxation of nationwide
NPIs during the first wave of the epidemic. A very
different region-based approach was implemented
by the Italian government after the period that we
analysed: from 3 November 2020, regions were
divided into three different colours (yellow, orange,
and red) according to 21 indicators related to the epi-
demic, with increasing levels of restrictions for
darker colours (Ministero Della Giustizia 2021).

The effectiveness of NPIs in Italy could thus be
better assessed by studying this second wave of
Covid-19 mortality.
There are some limitations to our study that

should be acknowledged. First, the geographical
unit of analysis that we used (Italian NUTS-2
regions) may not be the most appropriate one,
given that some covariates (e.g. population density,
prevalence of older individuals living in multigenera-
tional households) may vary greatly within regions.
However, Covid-19 deaths and data on some covari-
ates are not available for smaller geographical units
(e.g. provinces or municipalities), and sparser data
may not be powerful enough to investigate the
relationship between Covid-19 mortality and
several factors. Second, no information on the age
and sex of individuals who have died with Covid-19
at the regional level is provided by the Dipartimento
Della Protezione Civile (2021); this does not allow
for standardization of mortality rates. Nonetheless,
we believe that our study provides important insights
into regional differences in Covid-19 mortality
during the outbreak of the epidemic. Future work
will be directed towards the analysis of excess mor-
tality, as death counts by age group for the last five
years have recently been released by Istat (2021).
In conclusion, our study has shed light on the most

significant factors associated with Covid-19 mortality
in Italian regions during the first wave of the pan-
demic. In addition to their scientific value, our find-
ings highlight the importance of context-specific
analysis, providing a warning regarding the general-
izability of Covid-19-related hypotheses and results.
Finally, the method that we have proposed in this
paper is a novel contribution to the analysis of mor-
tality during epidemics and can be fully replicated
and applied to other countries and frameworks
(even outside epidemic research) using the code we
have made available (Basellini and Camarda 2021).
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Appendix. Additional results

In this Appendix, we present additional results from our
analysis.

We start with the exploratory analysis of the data set
that we use in our study. Figure A1 shows the distributions
(diagonal), correlations (upper-right quadrant) and scatter
plots (lower-left quadrant) for the 10 covariates described
in the ‘Explanatory variables’ subsection. The straight
lines in the lower-left quadrant correspond to linear
regression lines between the two variables. We do not
include population size in this analysis because the vari-
able enters the regression model as an offset term. Some
strong correlations emerge among the variables. For
example, the share of population aged 65+ is highly corre-
lated with the share of the population with one or more
chronic diseases (r = 0.685). Moreover, the number of
Covid-19 swab tests per capita is highly correlated with
the number of LSRCHs (r = 0.722). In our analysis, we
keep all these variables, since we investigate all possible
combinations and retain the model that minimizes the
BIC. In the optimal model (GAMM-opt), these four vari-
ables are not retained.

Moreover, Figure A2 shows the linear relationships
between Covid-19 log mortality rates and the 10 covariates
that we analyse. In this figure, the time-varying values of
log mortality rates for each region (y-axis) are plotted
against the time-invariant value of each covariate (x-
axis). Colours indicate the start date of the epidemic.
Some of these relationships display an expected sign: for
example, the share of population aged 65+, the share of
employees in the manufacturing sector, and the number
of LSRCHs per capita (all with a positive linear relation-
ship). Some covariates display an opposite sign from
those posited by the literature: for example, population
density and intergenerational co-residence. For two vari-
ables (prevalence of chronic conditions, number of ICU
beds per capita) the relationship is almost null.

Next, Table A1 reports the start date of the analysis and
the delay variable by region for both main and sensitivity
analyses. In the main analysis, the start date is defined as
the date when cumulative cases surpassed 0.0001 per
cent of the regional population. In the sensitivity analysis,
the start date is defined as the date when cumulative cases
surpassed five.

Figures A3 and A4 provide additional details on the
goodness of fit of the GAMM-opt model. Figure A3
shows the observed and the GAMM-opt fitted number
of Covid-19 deaths, together with 95 per cent confidence
intervals in each region, as well as for Italy overall (top-
left panel). Moreover, Figure A4 presents the Poisson
deviance residuals of this model.

Table A2 reports the results of the sensitivity analysis on
the definition of the start date of the epidemic. Here, the
start date is computed using the absolute approach: we
consider the epidemic to have begun when cumulative
cases surpassed five (rather than 0.0001 per cent of the
regional population as in the main analysis). Point esti-
mates and 95 per cent confidence intervals are extremely
close to those of the main analysis shown in Table 2.
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Figure A1 Exploratory analysis of the 10 explanatory variables used in the models: Italy’s 21 regions, late Feb-
ruary to mid-July 2020
* p < 0.05; ** p < 0.01; *** p <0.001.
Notes: Distributions, correlations, and scatter plots are shown in the diagonal, upper-right, and lower-left quadrants, respect-
ively. Labels on the axes correspond to the 10 explanatory variables (see the ‘Explanatory variables’ subsection for details).
Source: Authors’ elaborations on data from Istituto Superiore di Sanità (2020); Ministero della Salute (2020); Dipartimento
Della Protezione Civile (2021); Istat (2021).
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Figure A2 Linear relationship between Covid-19 log mortality rates and the 10 exploratory variables: Italy’s
21 regions, late February to mid-July 2020
Notes: Colours correspond to the start date of the analysis. X-axis labels correspond to the panel titles (see ‘Explanatory
variables’ subsection for details of the 10 explanatory variables). Covid-19 mortality rates are time varying, whereas expla-
natory variables are time invariant.
Source: As for Figure A1.
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Figure A3 Observed and fitted (with 95 per cent confidence intervals) number of Covid-19 deaths in Italy and
its 21 regions for 132 aligned days between 25 February and 15 July 2020
Note: Fitted curves are from the GAMM-opt model.
Source: As for Figure A1.

Figure A4 Poisson deviance residuals of theGAMM-optmodel for Italy’s 21 regions, 25 February to 15 July 2020
Source: As for Figure A1.
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Table A1 Start date of the epidemic and number of days of delay in the start of the epidemic in the main analysis (start
date defined as when cumulative cases surpassed 0.0001 per cent of the regional population) and sensitivity analysis (start
date defined as when cumulative cases surpassed five), by Italian region

Region

Main analysis Sensitivity analysis

Start date in 2020
Delay in start of
epidemic (days) Start date in 2020

Delay in start of
epidemic (days)

Valle d’Aosta 5 March 9 6 March 10
Piemonte 28 February 3 28 February 3
Lombardia 25 February 0 25 February 0
P.A. Trento 3 March 7 5 March 9
P.A. Bolzano 6 March 10 7 March 11
Veneto 25 February 0 25 February 0
Friuli Venezia Giulia 1 March 5 1 March 5
Liguria 26 February 1 26 February 1
Emilia/Romagna 25 February 0 25 February 0
Toscana 28 February 3 28 February 3
Umbria 1 March 5 3 March 7
Marche 27 February 2 28 February 3
Lazio 2 March 6 29 February 4
Abruzzo 1 March 5 3 March 7
Molise 3 March 7 5 March 9
Campania 29 February 4 29 February 4
Puglia 3 March 7 3 March 7
Basilicata 6 March 10 10 March 14
Calabria 6 March 10 8 March 12
Sicilia 1 March 5 1 March 5
Sardegna 6 March 10 8 March 12

Source: Authors’ own elaborations on data from Dipartimento Della Protezione Civile (2021).
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Table A2 Sensitivity analysis on the definition of the start date of the epidemic (defined here as when cumulative cases
surpassed five) for the five models used in the main analysis reported in Table 2: Italy’s 21 regions, late February to mid-July
2020

Model

GAM and GAM-opt GAMM w/o covars GAMM GAMM-opt

Population aged 65+ years 0.53
(0.48, 0.58)

– 0.31
(−0.50, 1.13)

–

Population density 0.31 – 0.18 –

(0.28, 0.33) (−0.63, 0.99)
Population with one or more chronic
diseases

−0.48
(−0.55, −0.40)

– −0.15
(−0.81, 0.51)

–

Older people living in multigenerational −0.52 – −0.63 −0.82
households (−0.55, −0.49) (−1.17, −0.08) (−1.11, −0.53)

Physicians per capita 0.21
(0.15, 0.27)

– −0.08
(−0.73, 0.56)

–

Employees 0.40 – 0.06 –

manufacturing sector (0.36, 0.44) (−0.52, 0.63)
ICU beds per capita −0.62

(−0.66, −0.58)
– −0.40

(−0.88, 0.09)
−0.42

(−0.74, −0.10)
LSRCHs per capita 0.62 – −0.06 –

(0.57, 0.68) (−0.68, 0.55)
Cumulative tests
per capita

−0.45
(−0.50, −0.39)

– 0.19
(−0.59, 0.97)

–

Delay in the epidemic −0.17 – −0.42 −0.6
(−0.22, −0.12) (−1.33, 0.49) (−0.93, −0.28)

Observations 2,668 2,668 2,668 2,668
Regions 21 21 21 21
Deviance 8,915.60 7,391.15 7,391.10 7,391.23
Effective dimension 24.34 34.52 34.49 34.35
BIC 9,107.77 7,663.70 7,663.44 7,662.46
Deviance explained (%) 87.4 89.5 89.5 89.5

Notes: The dependent variable is Covid-19 deaths. All models include a smoothed function of time and person-days of exposure as an offset.
In the main analysis the start date was defined as when cumulative cases surpassed 0.0001 per cent of the regional population.
Source: As for Table 2.
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