
HAL Id: hal-03436414
https://hal.science/hal-03436414

Preprint submitted on 19 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the asymptotic behavior of solutions to a class of
grand canonical master equations

Sabine Bögli, Pierre-A Vuillermot

To cite this version:
Sabine Bögli, Pierre-A Vuillermot. On the asymptotic behavior of solutions to a class of grand
canonical master equations. 2021. �hal-03436414�

https://hal.science/hal-03436414
https://hal.archives-ouvertes.fr


On the asymptotic behavior of solutions to a
class of grand canonical master equations

Sabine Bögli� and Pierre-A. Vuillermot��;���

Department of Mathematical Sciences, Durham University,
Durham DH1 3LE, United Kingdom�

sabine.boegli@durham.ac.uk
Université de Lorraine, CNRS, IECL, F-54000 Nancy, France��

Grupo de Física Matemática, GFMUL, Faculdade de Ciências,
Universidade de Lisboa, 1749-016 Lisboa, Portugal���

pierre.vuillermot@univ-lorraine.fr

Abstract

In this article we investigate the long-time behavior of solutions to
a class of in�nitely many master equations de�ned from transition rates
that are suitable for the description of a quantum system approaching
thermodynamical equilibrium with a heat bath at �xed temperature and
a reservoir consisting of one species of particles characterized by a �xed
chemical potential. We do so by proving a result which pertains to the
spectral resolution of the semigroup generated by the equations, whose
in�nitesimal generator is realized as a trace-class self-adjoint operator de-
�ned in a suitably weighted sequence space. This allows us to prove the
existence of global solutions which all stabilize toward the grand canoni-
cal equilibrium probability distribution as the time variable becomes large,
some of them doing so exponentially rapidly. When we set the chemical
potential equal to zero, the stability statements continue to hold in the
sense that all solutions converge toward the Gibbs probability distribution
of the canonical ensemble which characterizes the equilibrium of the given
system with a heat bath at �xed temperature.
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1 Introduction and outline

It is well known that the grand canonical ensemble of statistical mechanics
provides a formalism suitable for the description of the properties of classical
or quantum systems in thermodynamical equilibrium with a heat bath a �xed
temperature and a reservoir of possibly di¤erent species of particles, each of
which being characterized by a chemical potential (see, e.g., [1] and [10] for
de�nitions and applications of the above notions in various concrete situations).
From the microscopic properties of the systems it is then possible in principle
to derive all their macroscopic thermodynamical properties by means of the so-
called grand canonical partition function, which depends on the temperature
and on the chemical potentials we alluded to above. In order to achieve that
for systems that are not in thermodynamical equilibrium initially, an important
link may be provided by the solutions to certain master equations. In the sim-
plest setting of a system described by a Hamiltonian having a discrete point
spectrum, those solutions represent time-dependent probabilities which deter-
mine the chance for jumps to occur between the various quantum states. They
also play a signi�cant role in the stochastic approach to equilibrium and non
equilibrium thermodynamics of chemical reactions (see, e.g., the theory and the
applications developed in [13], [14] and their numerous references, as well as in
Chapter V of [15]. For the investigation of master equations in a di¤erent or
more general context with many important applications we also refer the reader
to [3]-[7], [9], [11] and [12]).
It is precisely the long-time behavior of solutions to a class of various initial-

value problems for in�nitely many master equations which is the main theme of
this article. The class in question is associated with sequences of real numbers
(�m) and of non-negative integers (Nm) indexed by m 2 N+, where the former
may be interpreted for instance as the point spectrum of some Hamiltonian and
the latter as the sequence of number of particles of a single species in the corre-
sponding quantum states. More speci�cally, we organize the remaining part of
this article in the following way: in Section 2 we de�ne the relevant initial value
problems in which the transition rates depending on (�m) and (Nm) are chosen in
such a way that the so-called detailed balance conditions of statistical mechanics
hold with respect to the grand canonical equilibrium probability distribution.
We then interpret the master equations as a dynamical system de�ned on a
suitable in�nite-dimensional weighted sequence space, which allows us to real-
ize the in�nitesimal generator of the system as a trace-class self-adjoint operator
whose spectral properties we investigate in detail. In particular, we prove there
a localization principle for all of its eigenvalues and note the absence of a spec-
tral gap around the zero eigenvalue. This eventually leads us to the spectral
resolution of the corresponding semigroup whose consequences we analyze in
Section 3, where we show that the system of master equations we consider pos-
sesses global solutions which all stabilize toward the grand canonical equilibrium
probability distribution as the time variable becomes large, some of them doing
so exponentially rapidly. In the important particular case where the chemical
potential is set equal to zero, the stability statements remain true in that all
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solutions converge toward the Gibbs equilibrium probability distribution of the
canonical ensemble, some of them again exponentially rapidly. Finally, we also
consider there a concrete example involving the quantum harmonic oscillator
which shows how the decay properties of the Fourier coe¢ cients of the initial
conditions can impact on the speed of convergence of the solutions, ending up
with power-law and even logarithmic rates of decay.
We conclude this introduction by noting that the mere idea of making the

generator of a system of master equations a formally self-adjoint operator by
using the detailed balance conditions already appears as a set of remarks scat-
tered in Chapter V of [15]. As we shall see below, the method of investigation
we use in this article represents a systematic and rigorous implementation of
those remarks in a very speci�c context.

2 On the spectral resolution of the semigroup
generated by a class of master equations

As outlined in the introduction, we start out with a sequence of real numbers
(�m) and of non-negative integers (Nm) indexed by m 2 N+, such that the grand
canonical partition function satis�es

��;� :=
+1X
m=1

exp [�� (�m � �Nm)] < +1 (1)

for each � > 0 and every � 2 R, where � may be interpreted as the inverse
temperature and � as the chemical potential. By means of (1) we then de�ne
the grand canonical equilibrium probabilities by

p�;�;m := �
�1
�;� exp [�� (�m � �Nm)] (2)

for each m 2 N+, and with every such m we associate the class of initial-value
problems for master equations of the form

dpm (�)

d�
=

+1X
n=1

(rm;npn (�)� rn;mpm (�)) ; � 2 [0;+1) ;

pm (0) = p�m (3)

where (p�m) stands for any sequence of initial-data satisfying

p�m � 0,
+1X
m=1

p�m = 1: (4)

In (3) the transition rates rm;n > 0 from level n to level m are chosen in such a
way that the so-called detailed balance conditions

rm;np�;�;n = rn;mp�;�;m (5)
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are satis�ed for each � > 0, every � 2 R and all m; n 2 N+. In this manner the
p�;�;m provide a time-independent solution to (3) when we choose p�m = p�;�;m
for every m, in addition to the fact that they make the corresponding entropy
production as de�ned in [12] equal to zero (see also, e.g., Section II A in [13]
for a thorough discussion of this point). Therefore, they do provide genuine
equilibrium probabilities indeed. Furthermore, owing to (2) we may rewrite (5)
as

rm;n
rn;m

= exp [�� (�m � �n) + �� (Nm � Nn)] ; (6)

which is the starting point for the analysis of chemical reactions by means of
stochastic thermodynamics put forward in [14] (see, in particular, Section III of
that article). In particular we may take

rm;n = cm;n exp

�
��
2
(�m � �n) +

��

2
(Nm � Nn)

�
(7)

where the prefactors stand for any choice of real coe¢ cients satisfying the sym-
metry condition cm;n = cn;m for all m; n 2 N+. In what follows we investigate
(3) as a dynamical system on a suitable weighted sequence space with rates of
the form (7), which requires a speci�c and of course non unique choice of the
cm;n to ensure that the dynamical system in question be well de�ned. In fact, in
order to keep our upcoming computations as simple as possible we shall settle
for

cm;n = exp [�� (�m + �n)� �� (Nm + Nn)] ; (8)

which will play the role of convergence factors in Proposition 1 below as we shall
soon explain. Thus, let us denote by l2C;w�;�the set of all complex sequences p :=
(pm) satisfying

kpk22;w�;� :=
+1X
m=1

w�;�;m jpmj2 < +1 (9)

where w�;�;m := exp [� (�m � �Nm)], which becomes a complex separable Hilbert
space when endowed with the usual operations and the sesquilinear form

(p; q)2;w�;� :=
+1X
m=1

w�;�;mpm�qm (10)

de�ned with respect to the weight sequence w�;�:= (w�;�;m). Furthermore, let
us reformulate (3) as

dpm (�)

d�
=

+1X
n=1

am;npn (�) ; � 2 [0;+1) ;

pm (0) = p�m (11)

where

am;n =

8<: �
P+1

k=1; k 6=m rk;m for m = n;

rm;n for m 6= n:
(12)
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Then the following preliminary result holds, which is interesting in its own
right:

Proposition 1. For each p 2 l2C;w�;� , the expression

(Ap)m :=
+1X
n=1

am;npn (13)

de�nes a linear, self-adjoint trace-class operator A : l2C;w�;� 7! l2C;w�;� whose
trace is given by

TrA = �2�;�� �� �
2 ;�3�

� 3�
2 ;�

�
3
< 0: (14)

Proof. We begin by showing that A is a bounded operator. Rewriting (13) as

(Ap)m =
+1X
n=1

�
am;nw

� 1
2

�;�;n

��
w

1
2

�;�;npn

�
and using the Cauchy-Schwarz inequality we �rst obtain

kApk22;w�;� 6
+1X
m=1

w�;�;m

+1X
n=1

w�1�;�;n jam;nj
2 � kpk22;w�;� : (15)

Furthermore, using (12) we may write and estimate the right-hand side in (15)
as

+1X
m=1

w�;�;m

+1X
n=1

w�1�;�;n jam;nj
2

=
+1X
m=1

0@jam;mj2 + w�;�;m +1X
n=1;n6=m

w�1�;�;nr
2
m;n

1A (16)

6
+1X
m=1

0@ +1X
n=1

rn;m

!2
+ w�;�;m

+1X
n=1

w�1�;�;nr
2
m;n

1A :
In addition, putting (8) into (7) gives

rm;n = exp

�
��
2
(3�m + �Nm)�

�

2
(�n + 3�Nn)

�
; (17)

so that by taking (1) and the expression for w�;�;m into account we obtain

+1X
n=1

rn;m = � 3�
2 ;�

�
3
exp

�
��
2
(�m + 3�Nm)

�
and

+1X
n=1

w�1�;�;nr
2
m;n = �2�;�� exp [�� (3�m + �Nm)] :
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The substitution of these expressions into the last line of (16) and a straight-
forward computation then lead to the estimate

+1X
m=1

w�;�;m

+1X
n=1

w�1�;�;n jam;nj
2 � ��;�3��23�

2 ;�
�
3

+�22�;�� < +1; (18)

which proves that A is indeed a bounded operator.
Next, we observe that the detailed balance conditions (5) may be rewritten

as
am;nw�;�;m = an;mw�;�;n

for all m; n 2 N+, which immediately implies the relation

(Ap; q)2;w�;� =
+1X
m;n=1

w�;�;mam;npn�qm =
+1X
m;n=1

w�;�;nan;mpn�qm = (p; Aq)2;w�;�

so that A is self-adjoint.
In order to prove that A is trace-class let us introduce the sequence of canon-

ical vectors (em) given by (em)n = �m;n for all m; n 2 N+; and let us consider the
sequence de�ned by fm = w

� 1
2

�;�;mem for each m 2 N+. From this and (10) it fol-
lows immediately that the fm form an orthonormal system in l2C;w�;� . Moreover

we have (fm; q)2;w;�;� = w
1
2

�;�;m�qm for every q 2 l2C;w�;� , so that if (fm; q)2;w�;� = 0
for each m then q = 0. Therefore the fm constitute an orthonormal basis in
l2C;w�;� , and furthermore a direct computation shows that

(Afm; fn)2;w�;� = w
1
2

�;�;nan;mw
� 1
2

�;�;m (19)

for all m; n 2 N+. For any orthonormal basis (gm) in l2C;w�;� we now have

Agm =
+1X
j=1

(gm; fj)2;w�;� Afj

after expanding each gm along the basis (fj). In this manner we obtain

(Agm; gm)2;w�;� =
+1X
j;k=1

w
1
2

�;�;kak;jw
� 1
2

�;�;j (gm; fj)2;w�;� (fk; gm)2;w�;�

according to (19), so that the estimate

+1X
m=1

���(Agm; gm)2;w�;� ���
6 1

2

+1X
j;k=1

w
1
2

�;�;k jak;jjw
� 1
2

�;�;j

+1X
m=1

����(gm; fj)2;w�;����2 + ���(gm; fk)2;w�;� ���2� (20)
=

+1X
j;k=1

w
1
2

�;�;k jak;jjw
� 1
2

�;�;j
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holds. The last equality in (20) follows from the expansion of each fj along the
basis (gm), which entails the relation

+1X
m=1

���(gm; fj)2;w�;� ���2 = kfjk22;w�;� = 1
for every j 2 N+. According to (12) we then have

+1X
k=1

w
1
2

�;�;k

+1X
j=1

jak;jjw
� 1
2

�;�;j

=
+1X
k=1

0@jak;kj+ w 1
2

�;�;k

+1X
j=1;j 6=k

rk;jw
� 1
2

�;�;j

1A
6

+1X
k=1

0@+1X
j=1

rj;k + w
1
2

�;�;k

+1X
j=1

rk;jw
� 1
2

�;�;j

1A < +1

for the right-hand side of the equality in (20), where we used (17) and compu-
tations similar to those leading to (18) to prove convergence. The series

+1X
m=1

(Agm; gm)2;w�;�

is therefore itself convergent and since the orthonormal basis (gm) was arbitrary
we may conclude that A is trace-class, with

TrA =

+1X
m=1

(Afm; fm)2;w�;� =
+1X
m=1

am;m = �
+1X
m=1

+1X
n=1; n6=m

rn;m

as a consequence of (12) and (19), which eventually leads to (14). �

Remark. Had we chosen (7) for the rates with cm;n = 1 for all m; n 2 N+
instead of (17), some of the series in the proof of Proposition 1 would have been
divergent, for instance the very last series on the right-hand side of (16). That
is the reason why we referred to (8) as convergence factors.

In what follows we state and prove the main result of this section, in which
we investigate in detail the spectral properties of A including in particular a
principle of localization of the eigenvalues, from which we obtain the spectral
resolution of the semigroup generated by A. In this context the sequence (bm)
given by

bm = � 3�
2 ;�

�
3
exp

�
��
2
(�m + 3�Nm)

�
(21)

plays an important role.
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Theorem 1. Let A be the operator de�ned by (13). Then the spectrum
of A, �(A), is a discrete compact set with in�nitely many real elements (�k)
indexed by k 2 N+, which are all eigenvalues including �1 = 0.
Assuming in addition that

�m+1 � �m > 3� (Nm � Nm+1) (22)

for every m 2 N+, the following two statements also hold:
(a) Each eigenvalue of A is simple and the corresponding eigenspace is

spanned by p̂k = (p̂k;m) where

p̂k;m =
exp

h
��
2 (3�m + �Nm)

i
�k + bm

:

Moreover, each such an eigenvalue is implicitly characterized by the relation

+1X
m=1

exp [�� (3�m + �Nm)]
�k + bm

= 1: (23)

Furthermore, the set of normalized eigenvectors given by

q̂k :=
p̂k

kp̂kk2;w�;�

for every k 2 N+ constitutes an orthonormal basis of l2C;w�;� .
(b) If the nonzero eigenvalues of A are ordered as �k < �k+1 for every

k 2 f2; 3; :::g, then they are localized according to

�k 2 (�bk�1;�bk) (24)

for every such k: In particular, all the nonzero elements of �(A) are negative
and furthermore, for every p 2 l2C;w�;� we have the norm-convergent spectral
resolution

exp [�A] p =
+1X
k=1

(p; q̂k)2;w�;� exp [��k] q̂k (25)

of the semigroup exp [�A]�2[0;+1) generated by A:

Proof. From (2) it is straightforward to check that p�;� := (p�;�;m) 2 l2C;w�;� .
Moreover, we infer from Proposition 1 that A is a compact self-adjoint operator
in l2C;w�;� , which implies in particular the very �rst statement of the theorem
since we have

Ap�;� = 0

as a consequence of (5), (12) and (13).
As for the proof of Statement (a), we �rst note that the eigenvalue equation

Ap = �kp
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is equivalent to having the relation

+1X
n=1

rm;npn =

 
�k +

+1X
n=1

rn;m

!
pm (26)

satis�ed for all m; k 2 N+. We then use (17) in (26) to get

cp;�;� exp

�
��
2
(3�m + �Nm)

�
= (�k + bm) pm (27)

where we took (21) into account and de�ned

cp;�;� :=
+1X
n=1

exp

�
��
2
(3�n + �Nn)

�
pn: (28)

Now for any p 2 l2C;w�;� we evidently have either cp;�;� 6= 0 or cp;�;� = 0. In the
�rst case Relation (27) implies that (�k + bm) pm 6= 0 for each m 2 N+, so that
we may solve for pm and get

pk;m = cpk;�;�p̂k;m (29)

where

p̂k;m :=
exp

h
��
2 (3�m + �Nm)

i
�k + bm

: (30)

Moreover, with the p̂k;m given by (30) we claim that p̂k : = (p̂k;m) 2 l2C;w�;� . On
the one hand, this is clear if �k = 0 for then (30) reduces to p�;� up to a trivial
multiplicative constant. On the other hand, if �k 6= 0 we have

+1X
m=1

w�;�;m j�k + bmj2 jp̂k;mj2

=
+1X
m=1

exp [�2� (�m + �Nm)] = �2�;�� < +1 (31)

from (30) and (1), the latter also implying that limm!+1 bm = 0. Therefore we
have

lim
m!+1

j�k + bmj = j�kj 6= 0

so that (31) implies
+1X
m=1

w�;�;m jp̂k;mj2 < +1

by asymptotic comparison, as desired. In this manner the p̂k provide a set of
eigenvectors of A associated with the �k, and we now prove that there are no
others. Indeed, in the second case we alluded to above where cp;�;� = 0, we
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have (�k + bm) pm = 0 for each m 2 N+ and therefore there exists an m� 2 N+
such that �k + bm� = 0 since p = 0 is not an eigenvector. But the spectral
condition (22) is equivalent to having bm+1 < bm for each m 2 N+, so that the
m� in question is unique. Consequently we necessarily have pm = 0 for every
m 6= m� and pm� 6= 0, which implies the relation

cp;�;� = exp

�
��
2
(3�m� + �Nm�)

�
pm� 6= 0;

a contradiction. Finally, the characterization (23) of the eigenvalues is a direct
consequence of the substitution of (29) into (28). The preceding considerations
thus prove the �rst part of Statement (a), while the second part follows imme-
diately from the fact that A is a compact self-adjoint operator.
Let us now prove Statement (b) by �rst ordering the non-zero eigenvalues

of A as �k < �k+1 for every k 2 f2; 3; :::g. To this end we consider the auxiliary
function a : (�1; 0) n f�bm; m 2 N+g de�ned by

a(�) :=
+1X
m=1

exp [�� (3�m + �Nm)]
� + bm

;

and remark that this series is absolutely convergent by virtue of (1) and the fact
that bm ! 0 as m! +1. Furthermore, it is easily veri�ed that

lim
�&�bk�1

a(�) = +1;

lim
�%�bk

a(�) = �1;

and that a0(�) < 0 for every � 2 (�bk�1;�bk), which implies the existence of a
unique ��k 2 (�bk�1;�bk) satisfying a(��k) = 1: Therefore, from the characteriza-
tion (23) of the eigenvalues we necessarily have ��k = �k for every k 2 f2; 3; :::g,
thereby proving the �rst part of Statement (b). Finally, for every p 2 l2C;w�;�we
have the norm-convergent expansion

p =
+1X
k=1

(p; q̂k)2;w�;� q̂k

from the last part of Statement (a), which implies (25) at once. �

Remark. Since A is trace-class, it follows from Lidski¼¬�s theorem (see, e.g.,
Theorem 8.4 in Chapter III of [8]) that the so-called matrix trace (14) coincides
with the spectral trace, to wit,

+1X
k=1

�k = �2�;�� �� �
2 ;�3�

� 3�
2 ;�

�
3
;

which implies that limk!+1 �k = 0 = �1. Therefore, there is no spectral gap
around the zero eigenvalue of A whose eigenspace is generated by p�;�. In the
next section we investigate some consequences of this fact.
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3 On the eigenspace associated with the zero
eigenvalue of A as a global attractor

Since �1 = 0 is an accumulation point of � (A), we might want to truncate ex-
pansion (25) in order to get an exponential decay of some sort for the solutions
to (3), or else proceed more generally to obtain convergence statements without
error bounds, or more speci�cally with bounds that may be slower than expo-
nential. We �rst make the idea of truncation precise by writing _Nk=1E�k (A) for
the closed linear hull of [Nk=1E�k (A) in l2C;w�;� for any N 2 N

+, where E�k (A)
stands for the eigenspace of A associated with the eigenvalue �k. Then we have:

Theorem 2. Let A be the operator de�ned by (13), and let p� 2 l2C;w�;� be
any initial condition satisfying (4). Then

(exp [�A] p�)m > 0;
+1X
m=1

(exp [�A] p�)m = 1 (32)

for every � 2 [0;+1).
Assuming moreover that (22) holds, and that the ordering �k < �k+1 for

every k 2 f2; 3; :::g is still valid, then for each N 2 N+ with N > 2 and p� 2
_Nk=1E�k (A) satisfying (4) we have the exponential decay estimate

kexp [�A] p� � p�;�k2;w�;� 6 exp [�� j�Nj] kp
�k2;w�;� (33)

for every � 2 [0;+1), where p�;� is given by (2).

Proof. Relations (32) are an immediate consequence of some continuity
arguments and of the summation of (3) over m 2 N+.
As for the proof of (33), we start out from (25) to get

exp [�A] p� � (p�; q̂1)2;w�;� q̂1=
NX
k=2

(p�; q̂k)2;w�;� exp [��k] q̂k

since p� is orthogonal to q̂k in l2C;w�;� for each k > N+ 1, so that from Parseval�s
relation we obtainexp [�A] p� � (p�; q̂1)2;w�;� q̂122;w�;� 6 exp [�2� j�Nj] kp�k22;w�;� (34)

for every � 2 [0;+1). It remains to show that

(p�; q̂1)2;w�;� q̂1 = p�;�: (35)

From (2) and (9) we �rst have

kp�;�k22;w�;� = �
�2
�;�

+1X
m=1

exp [�� (�m � �Nm)] = ��1�;�

11



as a consequence of (1), so that we may choose q̂1 = �
1
2

�;�p�;� as one of the unit
eigenvectors associated with �1 = 0. Moreover, using (9) on the left-hand side
of (34) we eventually get���(exp [�A] p�)m � (p�; q̂1)2;w�;� q̂1;m���6 exp ���2 (�m � �Nm)

�
exp [�� j�Nj] kp�k2;w�;�

for every m. Therefore, the summation of both sides of this expression over
m 2 N+ leads to�����1� (p�; q̂1)2;w�;�

+1X
m=1

q̂1;m

�����6� �
2 ;�
exp [�� j�Nj] kp�k2;w�;�

where we have used (1) and the normalization condition in (32), so that letting
� ! +1 in the preceding relation necessarily gives

(p�; q̂1)2;w�;�

+1X
m=1

q̂1;m = 1: (36)

But from our choice of q̂1 we have

+1X
m=1

q̂1;m = �
1
2

�;�

+1X
m=1

p�;�;m = �
1
2

�;�

and thereby

(p�; q̂1)2;w�;� = �
� 1
2

�;�

independently of p�. Consequently we end up with

(p�; q̂1)2;w�;� q̂1 = �
� 1
2

�;�q̂1 = p�;�;

as desired. �

Remark. All the p� 2 _Nk=1E�k (A) satisfying (4) provide a large supply of
initial data for which estimate (33) holds, which obviously grows with N. But
this is at the expense of having a smaller exponential rate of decay whenever N
becomes large since j�Nj > j�N+1j and limN!+1 exp [�� j�Nj] = 1.

We can avoid the truncation method and yet obtain convergence results for
the solutions to (3) by modifying the basic argument, but that is at the expense
of having no error bounds in general unless we impose additional conditions
regarding the Fourier coe¢ cients of the initial data, as in Corollary 2 below.
We begin with the crucial observation that (35) still holds for an arbitrary
initial condition p� 2 l2C;w�;� satisfying (4). More precisly we have:

Lemma 1. Let p� 2 l2C;w�;� satisfy the second relation in (4). Then we have

(p�; q̂1)2;w�;� q̂1 = p�;�:

12



Proof. From (2) and the de�nition of the weights w�;�;m we have

(p�;�; q̂k)2;w�;� = �
�1
�;�

+1X
m=1

q̂k;m = 0

for each k 2f2; 3; :::g by virtue of the orthogonality of the eigenvectors of A, so
that

+1X
m=1

q̂k;m = 0 (37)

for every such k. Furthermore, for p� 2 l2C;w�;� we have the norm-convergent
series expansion

p� = (p�; q̂1)2;w�;� q̂1 +
+1X
k=2

(p�; q̂k)2;w�;� q̂k

and therefore
+1X
m=1

p�m = (p
�; q̂1)2;w�;�

+1X
m=1

q̂1;m = 1

as a consequence of (37) and the second relation in (4). In this way (36) holds
again, so that we may conclude as in the proof of Theorem 2. �

Lemma 1 now allows us to get the following generalization of the preceding
theorem:

Theorem 3. Let A be the operator de�ned by (13), and let p� 2 l2C;w�;�
be any initial condition satisfying (4). Assuming moreover that (22) holds, and
that the ordering �k < �k+1 for every k 2 f2; 3; :::g is still valid, we have

lim
�!+1

kexp [�A] p� � p�;�k2;w�;� = 0:

Proof. From the preceding lemma and its proof we may write

p� = p�;� +
+1X
k=2

(p�; q̂k)2;w�;� q̂k

and therefore

kexp [�A] p� � p�;�k22;w�;� =
+1X
k=2

���(p�; q̂k)2;w�;� ���2 exp [2��k] < +1 (38)

for every � 2 [0;+1], without truncation. Now for every �xed k 2 f2; 3; :::g we
have

lim
�!+1

���(p�; q̂k)2;w�;� ���2 exp [2��k] = 0
13



since �k < 0, and moreover���(p�; q̂k)2;w�;� ���2 exp [2��k] 6 ���(p�; q̂k)2;w�;� ���2
for every k uniformly in � 2 [0;+1], with

+1X
k=2

���(p�; q̂k)2;w�;� ���2 6 kp�k22;w�;� < +1.
The result then follows from dominated convergence. �

All the preceding results remain valid when � = 0, which corresponds to the
description of a quantum system in thermodynamical equilibrium with a heat
bath at inverse temperature � > 0, and to transition rates in (3) of the form

rm;n = exp

�
��
2
(3�m + �n)

�
(39)

according to (17). Furthermore, in this case the components (30) of the eigen-
vectors of A reduce to

p̂k;m =
exp

h
� 3�

2 �m

i
�k + bm

(40)

where

bm = Z 3�
2
exp

�
��
2
�m

�
: (41)

In the preceding expression we have de�ned

Z� := ��;0 =
+1X
m=1

exp [���m] < +1

for every � > 0, which stands for the usual partition function of the canonical
ensemble. Eigenvectors (40) then constitute an orthonormal basis of l2C;w� where
w� := w�;�=0 = (w�;�=0;m) = (exp [��m]), and moreover the grand canonical
equilibrium distribution p�;� reduces to p� := p�;�=0 whose components are
given by

p�;m = Z
�1
� exp [���m] (42)

for every m 2 N+. In the next result we state two consequences of the above
theorems:

Corollary 1. Let A be the operator de�ned by (13), with the am;n given
by (12) and (39). Then A : l2C;w� 7! l2C;w� is a linear, self-adjoint trace-class
operator whose trace is given by

TrA = Z2� � Z �
2
Z 3�

2
< 0:

14



Moreover, let us assume in addition that

�m+1 � �m > 0 (43)

for every m 2 N+, and that the ordering �k < �k+1 of the eigenvalues still holds
for every k 2 f2; 3; :::g. Then the following statements are valid:
(a) For each N 2 N+ with N > 2 and p� 2 _Nk=1E�k (A) satisfying (4) we

have the exponential decay estimate

kexp [�A] p� � p�k2;w� 6 exp [�� j�Nj] kp
�k2;w�

for every � 2 [0;+1), where p� is given by (42).
(b) Let p� 2 l2C;w� be any initial condition satisfying (4). Then we have

lim
�!+1

kexp [�A] p� � p�k2;w� = 0:

Remark. The operator A of the preceding corollary may also be realized as
a non normal and non dissipative trace-class operator in the usual unweighted
Hilbert space l2C consisting of all square summable complex sequences. This
approach was implemented in [2], with the goal of putting the analysis of A
into the perspective of the spectral theory of linear non self-adjoint operators
as developed in [8]. However, this was at the expense of having to deal with
a host of more complicated technical issues while imposing a more restrictive
condition on the spectral condition (43), namely,

�m+1 � �m > c exp [���m]

for every m 2 N+, with both c > 0; � > 0 independent of m.

We complete this section by analyzing a concrete example which illustrates
the direct impact of the decay properties of the initial data in (3) on the speed
of convergence of the corresponding solutions. The example involves the quan-
tum harmonic oscillator whose spectrum we rescaled and shifted by irrelevant
constants. We assume throughout that � = 0:

Corollary 2. Let us consider the initial-value problem (3)-(4) where the
transition rates are given by (39) and �m = m 2 N+. Moreover, let us assume
that the ordering �k < �k+1 of the eigenvalues of the operator A still holds for
every k 2 f2; 3; :::g. Then the following statements are valid:
(a) If the Fourier coe¢ cients of p� 2 l2C;w� along the orthonormal basis

(q̂k)k2N+ of l
2
C;w� satisfy ���(p�; q̂k)2;w� ���2 6 � exp [��k] (44)

for every k 2 f2; 3; :::g and some �; � > 0, then we have

kexp [�A] p� � p�k2;w� 6 c�;�;��
� �
� (45)
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for all su¢ ciently large � and for some c�;�;� > 0 depending solely on �; � and
�.
(b) If the Fourier coe¢ cients of p� 2 l2C;w� along the orthonormal basis

(q̂k)k2N+ of l
2
C;w� satisfy ���(p�; q̂k)2;w� ���2 6 �k�� (46)

for every k 2 f2; 3; :::g and some � > 0; � > 1, then we have

kexp [�A] p� � p�k2;w� 6 c�;�;� (ln �)
� ��1

2 (47)

for all su¢ ciently large � and for some c�;�;� > 0 depending solely on �; � and
�.

Proof. The starting point is the relation

kexp [�A] p� � p�k22;w� =
+1X
k=2

���(p�; q̂k)2;w� ���2 exp [2��k]
which is (38) with � = 0, where we assume that � > 0. Using (44) along with
�k < �bk, the latter being a consequence of (24), we �rst obtain

kexp [�A] p� � p�k22;w�

6 �

+1X
k=2

exp

�
��k� 2�Z 3�

2
exp

�
��
2
k

��
(48)

by using (41). In order to extract an explicit dependence in � from the preceding
expression let us now consider the function f (:; �) : (0;+1) 7! R+ given by

f(x; �) := exp

�
��x� 2�Z 3�

2
exp

�
��
2
x

��
: (49)

We remark that f (:; �) possesses a unique critical point at

xc(�) = ln
�c��
�

� 2
�

(50)

where c� = �Z 3�
2
. Furthermore we choose � su¢ ciently large so that the in-

teger part of (50) satis�es [xc(�)] > 3, with f (:; �) monotone increasing for
x 2 (0; xc(�)) and monotone decreasing for x 2 (xc(�);+1). For the right-hand

16



side of (48) we then obtain the estimate
+1X
k=2

f(k; �)

=

[xc(�)]�1X
k=2

f(k; �) +
+1X

k=[xc(�)]�1

f(k+ 1; �) (51)

6
Z [xc(�)]

2

dxf(x; �) + f([xc(�)] ; �) + f([xc(�)] + 1; �) +

Z +1

[xc(�)]+1

dxf(x; �)

6
Z +1

2

dxf(x; �) + f([xc(�)] ; �) + f([xc(�)] + 1; �):

It is now easy to extract the desired dependence in � for each term in the
preceding expression. For the integral this follows from the change of variables

x! y = � exp
h
��
2 x
i
; which leads to the estimateZ +1

2

dx exp

�
��x� 2�Z 3�

2
exp

�
��
2
x

��
=

2

�

 Z � exp[��]

0

dyy
2�
� �1 exp

h
�2Z 3�

2
y
i!
��

2�
�

6 2

�

�Z +1

0

dyy
2�
� �1 exp

h
�2Z 3�

2
y
i�
��

2�
� (52)

= c�;��

�
2�

�

�
��

2�
�

for some c�;� > 0 depending only on � and �, where � stands for Euler�s Gamma
function.
As for the second and third terms on the right-hand side of (51), we �rst

note that the direct substitution of (50) into (49) gives

f(xc(�); �) = ĉ�;��
� 2�

�

where ĉ�;� > 0, and therefore we get

f([xc(�)] ; �) 6 ĉ�;���
2�
�

since [xc(�)] 6 xc(�) and since f (:; �) is monotone increasing there. An identical
estimate holds for f([xc(�)]+1; �) since xc(�) < [xc(�)]+1 with f (:; �) monotone
decreasing there. The substitution of all the gathered information into (51) and
the use of (48) then lead to (45).
The proof of (47) follows a similar pattern but is a little bit trickier. We

start with

kexp [�A] p� � p�k22;w�

6 �
+1X
k=2

k�� exp

�
�2�Z 3�

2
exp

�
��
2
k

��
(53)
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and

f(x; �) := x�� exp

�
�2�Z 3�

2
exp

�
��
2
x

��
: (54)

It is easily seen that the possible critical points of (54) are solutions to the
equation

exp
h
�
2 x
i

x
=
c��

�
(55)

where c� is as in (50), and that the function on the left-hand side of (55) is
convex, possesses an absolute minimum at x� = 2

� and is strictly increasing for
x 2 (x�;+1). Then for every su¢ ciently large � there exists a unique critical
point xc(�) 2 (x�;+1) of f (:; �), this function being monotone increasing for
x 2 (x�; xc(�)) and monotone decreasing for x 2 (xc(�);+1). Moreover, writing
[x�] for the integral part of x�, we may break up the right-hand side of (53) as

+1X
k=2

f(k; �)

=

[x�]+2X
k=2

f(k; �) +

[xc(�)]�1X
k=[x�]+3

f(k; �) +
+1X

k=[xc(�)]�1

f(k+ 1; �) (56)

6
[x�]+2X
k=2

f(k; �) +

Z +1

[x�]+3

dxf(x; �) + f([xc(�)] ; �) + f([xc(�) + 1] ; �):

We now claim that the �rst term on the right-hand side of the preceding in-
equality satis�es the exponential decay estimate

[x�]+2X
k=2

f(k; �) 6 c�;� exp [�c�� ] (57)

for some c�;�; c� > 0. Indeed we have

[x�]+2X
k=2

k�� exp

�
�2�Z 3�

2
exp

�
��
2
k

��
6 2�� ([x�] + 1) exp

�
�2�Z 3�

2
exp

�
��
2
([x�] + 2)

��
since 2 6 k 6 [x�] + 2, which is (57) with an obvious choice for c�;� and c� as
[x�] depends only on �.
As for the integral we haveZ +1

[x�]+3

dxx�� exp

�
�2�Z 3�

2
exp

�
��
2
x

��

= c�;�

Z � exp[� �
2 ([x

�]+3)]

0

dy

y

�
ln
�

y

���
exp

h
�2Z 3�

2
y
i
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following the same change of variables as in (52), for some c�;� > 0. Therefore,
integrating by parts and using the fact that � > 1 to control the completely
integrated term we obtain, changing the value of c�;� if necessary,Z +1

[x�]+3

dxf(x; �) (58)

= c�;� exp [�c�� ] + ĉ�;�
Z � exp[� �

2 ([x
�]+3)]

0

dy

�
ln
�

y

�1��
exp

h
�2Z 3�

2
y
i

for some c� ; ĉ�;� > 0, thereby exhibiting the exponential decay of the �rst term
on the right-hand side. In order to extract the dependence in � of the second
term we start withZ � exp[� �

2 ([x
�]+3)]

0

dy

�
ln
�

y

�1��
exp

h
�2Z 3�

2
y
i

=

Z p
�

0

dy

�
ln
�

y

�1��
exp

h
�2Z 3�

2
y
i

+

Z � exp[� �
2 ([x

�]+3)]

p
�

dy

�
ln
�

y

�1��
exp

h
�2Z 3�

2
y
i
;

which leads to the estimateZ p
�

0

dy

�
ln
�

y

�1��
exp

h
�2Z 3�

2
y
i

6 c�

�Z +1

0

dy exp
h
�2Z 3�

2
y
i�
(ln �)

1��
= c�;� (ln �)

1�� (59)

for the �rst term on the right-hand side where c�; c�;� > 0. As for the second
term we get Z � exp[� �

2 ([x
�]+3)]

p
�

dy

�
ln
�

y

�1��
exp

h
�2Z 3�

2
y
i

6
 Z � exp[� �

2 ([x
�]+3)]

p
�

dy

�
ln
�

y

�1��!
exp

h
�2Z 3�

2

p
�
i

=

 Z exp[� �
2 ([x

�]+3)]

1p
�

dy

�
ln
1

y

�1��!
� exp

h
�2Z 3�

2

p
�
i

6
 Z exp[� �

2 ([x
�]+3)]

0

dy

�
ln
1

y

�1��!
� exp

h
�2Z 3�

2

p
�
i

= ĉ�;�� exp
h
�2Z 3�

2

p
�
i

(60)

for some ĉ�;� > 0, the last improper integral being convergent. The combination
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of (58)-(60) thus leads toZ +1

[x�]+3

dxf(x; �) 6 c�;� (ln �)1�� (61)

for some appropriate c�;� > 0.
It remains to estimate the last two terms on the right-hand side of inequality

(56). We begin by observing that (54) implies

f(xc(�); �) 6 x��c (�) (62)

for every � 2 (0;+1), while (55) and the fact that xc(�) > x� for � su¢ ciently
large lead to

exp

�
�

2
xc(�)

�
= xc(�)

c��

�
> x� c��

�
:

Since x� = 2
� , we may therefore change the value of c� if necessary and thus

obtain the lower bounds

xc(�) >
2

�
ln
c��

�
> 1

�
ln � (63)

for the critical point, where the second inequality follows from the fact that we
may take c��

� >
p
� for � su¢ ciently large since c�

� > 0. From (62) and (63) we
then get

f(xc(�); �) 6 c�;� (ln �)��

for some suitably chosen c�;� > 0, so that arguing as in the proof of Statement
(a) we end up with

f([xc(�)] ; �) 6 c�;� (ln �)��

and with an identical bound for f([xc(�)] + 1; �). The substitution of this infor-
mation along with (57) and (61) into (56) then leads (47). �

Remark. Throughout this article we carried out our computations with
transition rates given by (7) and (8) mainly for the sake of clarity and sim-
plicity. However, there are plenty of other choices for them that lead to similar
results, as long as they satisfy the detailed balance conditions (6). Furthermore,
as an illustration of our considerations we showed in Corollary 2 that even if
the quantum harmonic oscillator is initially steered away from thermodynamic
equilibrium due to its interaction with a heat bath at inverse temperature � > 0,
it will eventually return there at a rate which strongly depends on the decay
properties of the initial conditions (4), a result that is complementary to those
in Section 3 of [4].
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