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I. Introduction

A. Background

The blue whale Balaenoptera musculus is the largest of the mysticete (baleen) whales, with lengths exceeding 30 meters [START_REF] Mcclain | Sizing ocean giants: patterns of intraspecific size variation in marine megafauna[END_REF]. They are endangered worldwide, although their population status differs from one location to another. The Indian Ocean, particularly its southern extent, is one of the oceans with the greatest blue whale acoustic diversity [START_REF] Stafford | Seasonal detection of three types of "pygmy" blue whale calls in the Indian Ocean[END_REF]. Blue whale subspecies present in the Indian Ocean include the Antarctic blue whale (Balaenoptera musculus intermedia) and the pygmy blue whale (B. m. brevicauda); and pygmy blue whales are further separated into multiple acoustic populations and possibly additional subspecies (e.g., B. m. indica). In the absence of extensive genetic data from Indian Ocean blue whales to determine speciation, the different song types of Indian Ocean blue whales, which are acoustically somewhat geographically distinct, are used to broadly define populations of blue whales. Prior to intensive commercial whaling beginning in the early 1900s, blue whales were once abundant in the Southern Hemisphere. This was particularly true in the Southern Ocean, where as many as 239,000 Antarctic blue whales congregated in summer to feed [START_REF] Branch | Evidence for increases in Antarctic blue whales based on Bayesian modelling[END_REF], primarily on Antarctic krill Euphausia superba.

Despite being the largest animal ever to exist on Earth, there is relatively little known about the distribution and migration of blue whales in the Indian Ocean. The Antarctic blue whale has been declared as "Critically Endangered" and pygmy blue whales are listed as "Data Deficient" by the International Union for the Conservation of Nature [START_REF] Cooke | Balaenoptera Musculus[END_REF] due to lack of sufficient data to assess their conservation status. Monitoring blue whales remains a challenge because of the relative scarcity of individuals as well as their pelagic distribution which largely encompasses remote and inaccessible regions of the ocean. Moreover, identifying pygmy from Antarctic blue whales by visual observation is difficult, as they look almost identical at sea, despite the smaller length of pygmy blue whales (Ichihara, 1966). Thus, most of the knowledge about blue whales in the Indian Ocean comes from whaling data (Branch et al., 2007(Branch et al., , 2009)), and from passive acoustic monitoring (Samaran et al., 2010a(Samaran et al., , 2013;;[START_REF] Stafford | Seasonal detection of three types of "pygmy" blue whale calls in the Indian Ocean[END_REF]Leroy et al., 2016;Dréo et al., 2018;[START_REF] Torterotot | Distribution of blue whale populations in the Southern Indian Ocean based on a decade of acoustic monitoring[END_REF]. Such monitoring efforts are widespread in the world's oceans and often result in many terabytes of digital data, which requires big data analysis efforts to analyze efficiently and robustly. Blue whale signals are particularly good candidates for this type of observation, because of their repetitive, long (more than 15 s), loud (more than 180 dB ref 1 μPa at 1 m) and low frequency (20-100 Hz) highly stereotyped calls (Cummings and Thompson, 1971). Blue whale song calls (hereafter calls) vary from one region to another and have been used to define acoustic populations which are geographically distinct [START_REF] Mcdonald | Biogeographic characterization of blue whale song worldwide: using song to identify populations[END_REF][START_REF] Stafford | Seasonal detection of three types of "pygmy" blue whale calls in the Indian Ocean[END_REF]. Taking advantage of the temporal and frequency differences among song units, we used machine learning methods to automatically detect, classify and count blue whale calls from a subset of acoustic recordings from the southern Indian Ocean. By developing a robust machine learning methodology to identify when and where each population occurs, this opens up a pathway to allocate historical catches and recent abundance estimates among the various populations, allowing us to assess the current status of each identified acoustic population. Such status assessments form the basis for appropriate management efforts to conserve these populations for the future.

B. Motivation for the work

Technological advances in the past two decades have allowed researchers to record and archive passive acoustic data from remote underwater ocean moorings. The mooring deployments can be from months to years with acoustic data archived on digital media in the instrument either continuously or on a duty cycle. The acoustic data is retrieved periodically resulting in up to many terabytes of data collected for each site. It is impractical to analyze all of the data manually or in real time. The way to efficiently process such a large volume of acoustic recordings has been the subject of many efforts in the past twenty years and has resulted in a rich body of literature on automated detection methods, particularly for blue whales (e.g., [START_REF] Stafford | Antarctic-type blue whale calls recorded at low latitudes in the Indian and eastern Pacific Oceans[END_REF], 2011[START_REF] Mouy | Automatic recognition of fin and blue whale calls for real-time monitoring in the St. Lawrence[END_REF][START_REF] Širović | Blue and fin whale acoustic presence around Antarctica during 2003 and 2004[END_REF][START_REF] Gavrilov | Acoustic detection and long-term monitoring of pygmy blue whales over the continental slope in southwest Australia[END_REF].

Detection methods based on bespoke detectors and conventional machine learning classifiers are the most prominent methods used during the last two decades [START_REF] Kowarski | A review of big data analysis methods for baleen whale passive acoustic monitoring[END_REF]. For example, a non-parametric classification tree analysis (CART) and a Random Forest analysis were implemented to provide robust results to classify 34 identifiable call types of beluga whale vocalizations from the eastern Beaufort Sea population [START_REF] Garland | Beluga whale (Delphinapterus leucas) vocalizations and call classification from the eastern Beaufort Sea population[END_REF].

To investigate the vocal repertoire of Southeast Alaskan humpback whales, three classification systems were used, including aural spectrogram analysis, statistical cluster analysis, and discriminant function analysis, to describe and classify vocalizations; and a hierarchical acoustic structure was identified to classify vocalizations into 16 individual call types nested within four vocal classes [START_REF] Fournet | Repertoire and classification of non-song calls in Southeast Alaskan humpback whales (Megaptera novaeangliae)[END_REF]. For blue whale signals in particular, most detection methods have been based on detection either in the time domain (e.g., matched filtering, [START_REF] Stafford | Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean[END_REF] or in the frequency domain (spectrogram correlation, e.g., Širović et al. 2009) although more recent efforts have involved more novel methods, including sparse representation of signals (e.g., [START_REF] Socheleau | Automated detection of Antarctic blue whale calls[END_REF][START_REF] Torterotot | Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean[END_REF].

More recently, the rapid development of artificial intelligence and deep learning algorithms provide another approach for intelligent classification and prediction. In classifying animal sounds, deep neural networks (DNN) methods have progressed tremendously with accessibility to large training data and increasing computational power. Using spectrograms generated from raw audio recordings as input, researchers have applied Convolutional Neural Networks (CNN), either by training the model from scratch, or using transfer learning with pre-trained model weights, to classify calls from different species [START_REF] Bergler | ORCA-SPOT: An automatic killer whale sound detection toolkit using deep learning[END_REF][START_REF] Yang | Classification of odontocete echolocation clicks using convolutional neural network[END_REF][START_REF] Zhong | Beluga whale acoustic signal classification using deep learning neural network models[END_REF][START_REF] Kirsebom | Performance of a deep neural network at detecting North Atlantic right whale upcalls[END_REF]. Another approach is Recurrent Neural Networks (RNN), which utilizes temporal information of animal calls for classification tasks [START_REF] Ibrahim | Automatic classification of grouper species by their sounds using deep neural networks[END_REF][START_REF] Shiu | Deep neural networks for automated detection of marine mammal species[END_REF].

While the deep neural network models CNN and RNN have achieved great success in many classification tasks, they have limitations that typically these models rely on large size of datasets to train millions of parameters. For classification purposes of audio recording classifications, all we need from these models is good embedding representations for spectrograms. For same classes, we would expect the learned embeddings to be close to each other in the latent space; for different classes, the learned embeddings are far apart. In this paper, we proposed using Siamese Neural Networks (SNN) [START_REF] Koch | Siamese neural networks for one-shot image recognition[END_REF] as an alternative of widely used CNN to conduct classifications, especially when the size of training data is limited. Siamese Networks focuses on learning embeddings in the deeper layer that place the same classes close together. Hence, it can learn semantic similarity effectively.

II. Data

A. Data Sources and Data Annotation

The acoustic data used in this study was recorded by the OHASISBIO (Observatoire Hydro-Acoustique de la SISmicité et de la Biodiversité) hydrophone network [START_REF] Royer | OHASISBIO -Hydroacoustic Observatory for the Seismicity and Biodiversity in the Indian Ocean[END_REF], located in the Southwest Indian Ocean (see Fig. 1). The network was deployed in December 2009 and was still recording as of the date of this publication. To provide a testing and training dataset, we manually annotated signals from four populations of blue whales (Antarctic blue whale and three pygmy blue whale populations) using data from 5 of 11 available mooring sites (see Table I, Figure 2). Originally, song types were named based on the first location where calls were recorded. More recently, with the realization that the extent of each population is greater than originally understood, this naming convention has been updated (IWC 2020) to refer to broad geographical regions as follows (with abbreviation and first location): central Indian Ocean (CIO, Sri Lanka), southwest Indian Ocean (SWIO, Madagascar), southeast Indian Ocean (SEIO, Australia/Indonesia), and Antarctic blue whales. In addition, there are two additional song types of pygmy-type blue whales not yet reported on the OHASISBIO network: southwest Pacific Ocean (SWPO, New Zealand), and northwest Indian Ocean (NWIO, Oman, [START_REF] Cerchio | A new blue whale song-type described for the Arabian Sea and Western Indian Ocean[END_REF].

We follow this regional naming convention throughout the present study (Antarctic, SEIO, SWIO, CIO). 

B. Data for modeling

For all four acoustic populations of blue whales, calls range from 6 to 40 seconds duration.

Using custom written scripts in Python 3.6, spectrograms were produced from audio files (with NFFT = 1024 and 75% overlap, Hanning window). Each spectrogram was generated from a 240-s audio segment that contained either one or multiple annotated blue whale calls and was resized as 224 pixels by 224 pixels with RGB channels (Fig. 3). During the annotation process, we only focused on the presence of one blue whale population in each acoustic file. However, as part of the temporal and geographical distributions overlap among these blue whale populations, their acoustic co-occurrence is common. As a result, for each extracted spectrogram, its corresponding label (the name of blue whale population, and the number of calls associated with the spectrogram) only represented the presence of that particular population but did not indicate absence of the other three populations.

FIG. 3. Example spectrograms from different acoustic populations of blue whale in the Indian

Ocean that illustrate the range of signal-to-noise ratios in the data from loudest to faintest from left to right. Row 1: Antarctic; row 2: SEIO; row 3: SWIO; row 4: CIO.

While the spectrograms extracted from annotated audio segments corresponded to positive labels (i.e., presence of a blue whale population with at least one call), we also extracted spectrograms that associated with negative labels (i.e., absence of a blue whale population with no call). For each of the four populations, we randomly selected audio clips that did not contain any annotated calls.

In total, we extracted 12,155 spectrograms (see Table II for breakdown by population), each representing a 240-second-long audio clip. These spectrograms, along with their associated labels, were used as input for building classification models. 

III. Approaches

We assessed the performance of Convolutional Neural Networks (CNN) and a newer technique, Siamese Neural Networks (SNN), to determine which best identified and classified blue whale calls.

A. Classification Models using Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNN) have been widely used for image classification tasks, and their success has also been proven in bioacoustic classification applications [START_REF] Bianco | Machine learning in acoustics: Theory and applications[END_REF]).

Here we used the DenseNet-201 architecture [START_REF] Huang | Densely connected convolutional networks[END_REF]) as a baseline to classify calls of the four blue whale populations, and to count the number of calls in each 240-s spectrogram.

DenseNet was developed specifically to improve the declined accuracy caused by the vanishing gradient in high-level neural networks and has the advantage of improving feature propagation both in forward as well as backward fashion. In a DenseNet architecture, each layer is connected to every other layer and obtains additional inputs from all preceding layers, and then passes its own feature-maps to all subsequent layers.

B. Classification Models using Siamese Neural Network (SNN)

Siamese Neural Networks (SNN) are a class of neural network architectures that contain two or more identical subnetworks. "Identical" here means that they have the same configuration with the same parameters and weights. Parameter updating is mirrored across both sub-networks.

SNN focuses on learning image embeddings in the deeper layers that place the same classes close together. Hence, it can be used to measure the similarity of the inputs by comparing their feature vectors and make decisions on whether the two images belong to the same category or different categories.

Since training of Siamese networks involves pairwise learning, cross entropy loss cannot be used in this case. Instead, we used another loss function called triplet loss [START_REF] Hoffer | Deep metric learning using triplet network[END_REF]. This is a loss function where an anchor (baseline) image is compared to a positive image (i.e., an image that is in the same category as the anchor image) and a negative image (i.e., an image that is in a different category as the anchor image). The distance (here we used squared Euclidean distance) from the anchor image to the positive image is minimized, and the distance from the anchor image to the negative image is maximized. As shown in formula (1), D(x, y)

represents the distance between the learned vector representation of spectrograms x and y, and α is a margin term used to stretch the distance differences between similar and dissimilar pairs in the triplet, and the remaining parameters represent the feature embeddings for the anchor (a), positive (p), and negative (n) images.

L(a, p, n) = max(0, D(a, p) -D(a, n) + α)

(1)

During the training process, an image triplet (anchor image, positive image, negative image) is fed into the model as a single sample (see Fig. 4). The distance between the anchor and positive images should be smaller than that between the anchor and negative images. For many deep learning models, a large training data set is needed to achieve good performance. While this may not be practical in many real applications, the architecture of Siamese Networks enables these networks to learn from very little data. When counting the number of blue whale calls, we only classified the spectrograms that had at least one annotated call, and the model was fit separately to each of the four blue whale acoustic populations, as the call densities varied from one population to another. Only 5% of the training dataset spectrograms had 5 or more annotated calls, and 1% had 6 or more, so we created categorical labels of "1", "2", "3", "4", and "5+" to correspond the number of calls in each spectrogram.

IV. Results

We have two classification tasks: the first is to detect and classify the presence or absence of calls from each of the four blue whale populations; and the second is to estimate the number of calls from each of these populations in the training dataset and eventually, novel acoustic datasets. For the two tasks, we compared the performance of the CNN and SNN methods. The annotated data was randomly split into training, validation, and testing sets (which account for 49%, 21% and 30% of the annotated data, respectively), and the model results were reported on the testing set.

A. Model performance for classifying the presence of blue whale calls

For Convolutional Neural Networks (CNN), the multi-class classification model outputs the predicted probability of blue whale call presence for each population, and can be assessed with commonly used metrics, including accuracy, sensitivity, specificity, and Area Under the Curve (AUC). For Siamese Neural Networks (SNN), the output is not probability based and there is no "threshold score", and thus no AUC which is measured at various threshold settings.

To have a fair comparison of the outputs of the two models, we will then use three metrics: accuracy, sensitivity, and specificity. To determine these, we denote annotated calls that were correctly identified as true positives (TP), spectrograms with no calls that were correctly classified as true negatives (TN), calls that were identified as blue whales but were not annotated as false positives (FP), and annotated calls that were not correctly identified as false negatives (FN). Accuracy is the fraction of predictions that model got right (i.e., (TP + TN)/(TP + FP + TN + FN)); sensitivity, or true positive rate, measures the percentage of presence that was correctly predicted (i.e., TP/(TP + FN)); and specificity, or true negative rate, measures the percentage of absence that was correctly predicted (i.e., TN/(TN + FP)). Since sensitivity and specificity in CNN model are dependent on the choice of threshold score, we used a default neutral threshold score of 0.5. For all three metrics, the Siamese Networks model outperforms CNN in overall metrics and almost for each individual population, although CNN is slightly better in Sensitivity for SEIO and Specificity for SWIO (Table III). 

B. Model performance for counting the number of blue whale calls

Although treated as a classification task, using standard metrics alone (such as accuracy) that are commonly used to evaluate multi-class classification models may not be appropriate or comprehensive here, as the classes here actually have ordinal implications. Therefore, we used the prediction percentage error as the evaluation metric (see Table IV). The Siamese Networks provided a higher prediction accuracy (lower prediction error) than CNN. score. This makes it convenient for the users to have better understanding of how confident the model is when making classifications and under which circumstances the model may make mistakes. In practical implementations, it also allows users to choose appropriate threshold scores to have either less false positives or less false negatives depending on their specific needs (Fig. 5).

FIG. 5. Illustraiont of the results of call classification task by CNN. Top left and top right:

Histograms for predicted probabilities of positive and negative samples in the testing set.

Bottom left: receiver operating characteristic (ROC) curve. Bottom right: precision-recall curve.

In contrast, Siamese Networks, at the end of the common network in its architecture, output a vectored representation for each input image, thus providing an easy way to visualize in a 2dimension t-distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton, 2008) plot.

t-SNE is a nonlinear dimensionality reduction technique well-suited for embedding highdimensional data for visualization in a low-dimensional space of two or three dimensions.

Specifically, a Siamese Network models each high-dimensional object by a two-or threedimensional point in such a way that similar objects are modeled by nearby points and dissimilar objects are modeled by distant points with high probability. Fig. 6 shows the t-SNE plots of the testing set for the two classification tasks. From the plot, we can see that the classifications for each of the four blue whale calls are distinct from each other. The "Negative" class, which included "no call" samples for each population, sits in the middle of the four "Positive" classes and overlaps very little with any of them. In the second classification model the number of blue whale calls present in a spectrogram is estimated for each population (Fig 4b). Although we encoded the number of calls as categorical variables which ignored their ordinal implications (that is, category "1" should be closer to category "2" than category "3", and category "2" should be closer to category "3" than category "4" or "5+", etc.), the Siamese Networks clearly learned such ordinal relationships. 

V. Discussion

We built classification models to detect, classify and count the number of calls by each of four blue whale acoustic populations in the Indian Ocean. In comparison to Convolutional Neural Networks (CNN) which have shown success in several prior research in classifying bioacoustics for multiple species [START_REF] Bianco | Machine learning in acoustics: Theory and applications[END_REF], Siamese Networks achieved better performance in this study.

While Siamese Networks are particularly suitable for scenarios where there are only a few samples in each class (i.e., few-shot learning), they can also be applied to larger datasets, like the one we used in this study. However, since Siamese Networks learns from quadratic pairs (to make use of all information available), the training is much slower than pointwise learning models such as CNN. Additionally, instead of outputting probabilities of the prediction, they output the distance from closest training samples in each class instead. In practice, CNN and SNN can be used together to complement each other. Given that the learning mechanism of SNN is somewhat different from CNN, their ensembled results are likely to perform even better.

While both models performed well in general on classifying calls from 4 populations of blue whales, their performance differed among different populations. Classification of Antarctic blue whale calls had the highest accuracy among 4 populations, while CIO had the lowest accuracy.

One possible reason is that Antarctic, SEIO and SWIO have larger sizes of training samples compared to CIO, but more likely is that Antarctic blue whale calls (Z-calls) have more frequency modulation on the spectrograms, compared to that of the CIO blue whale calls (which looks like a flat line). Another factor is the call loudness in the audio recordings. In general, CIO blue whale calls have lower signal-to-noise ratios in the annotated data, which increases the difficulty for the model to classify correctly with high confidence. The lower signal-to-noise ratios for CIO blue whale calls could be due to a number of factors among which we cannot currently distinguish. These include the CIO call having a lower source level than other calls; there are only a few source levels reported for blue whale signals globally, and none for CIO blue whale calls. It is also likely that the animals producing these signals are further from the hydrophones than the other populations, given what is known about their distributions, although since the hydrophones are omni-directional we cannot ascertain this for certain. This signal is the highest frequency signal we detected and as such would be subject to greater transmission loss than the other signals.

Compared to traditional methods which rely heavily on manual verification by a human user or template matching by software, the method presented here uses deep learning models and has the advantage of flexibility with regards to temporal and frequency variations in a dataset.

Notably for blue whale calls, the call frequency has been getting lower in all populations over time [START_REF] Mcdonald | Worldwide decline in tonal frequencies of blue whale songs[END_REF][START_REF] Leroy | Broad-scale study of the seasonal and geographic occurrence of blue and fin whales in the Southern Indian Ocean[END_REF], and one major advantage of this approach is that it looks for the shape of the call independent of the frequency of the call. Siamese methods for marine mammals. Density estimation is one of the key ways to determine trends in marine mammal populations using single instrument passive acoustic data and estimates of call counts [START_REF] Küsel | Cetacean population density estimation from single fixed sensors using passive acoustics[END_REF][START_REF] Marques | Estimating animal population density using passive acoustics[END_REF]. In this way, Siamese Networks are robust and shown here to be an effective way to automatically mine large acoustic data sets for the presence and number of blue whale calls.
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 1 FIG. 1. Map of the southern Indian Ocean. Black dots represent moorings of the OHASISIBIO
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 2 FIG. 2. Examples of annotated blue whale call with Raven Pro 1.5. a) SEIO pygmy blue whales, b)
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 4 FIG. 4. Architecture of Siamese Networks with triplet loss.
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 6 FIG. 6. (a) t-SNE plot for the model that classifies the presence or absence of blue whale calls

  Networks can easily classify and count multiple types of calls from several populations at the same time and have the ability to classify novel datasets that were collected from different mooring sites or different years. Even at the sites that have somewhat different underwater environments, the model still detected and classified the signals. An additional, and future advantage is that the model can easily scale up to include other species or call types with the addition of annotated data. Although we treated the call count estimation problem as a classification task and encoded the number of calls in each spectrogram as categorical variable, SNN surprisingly learned the ordinal relationship among them. Call counts, or cue rates (how often a signal occurs over a fixed time period, or number of individuals), are critical elements of density estimation

  

  

TABLE I :

 I Manually annotated acoustic data from 5 mooring sites for four populations of blue whales by hours and number of annotations per site.

	WKER	32.5 h,	13 h,	19.5 h,	_
		801 calls	109 calls	334 calls	
	SWAMS	26 h,	26 h,	_	78 h,
		698 calls	572 calls		537 calls
	NEAMS	_	52 h,	19.5 h,	
			769 calls	841 calls	
	Mooring Site	Antarctic	SEIO	SWIO	CIO
	SSEIR	_	_	_	19.5 h,
					138 calls
	NCRO	_	_	71.5 h,	_
				1503 calls	

_

Manual annotation was performed with Raven Pro 1.5 (Cornell Lab of Ornithology software) by a single bioacoustics expert. Given the distinct geographical distribution of the four blue whale acoustic populations, four datasets were annotated, one for each call type. The audio files composing each dataset were chosen among the OHASISBIO 2015 recordings, to cover a broad range of acoustic scenarios, from high to low SNR calls. Ten-minute spectrograms with fixed parameters (Hanning windows with 50% overlap and 512-point FFT) were screened for blue whale calls. For pygmy blue whales (CIO, SWIO, SEIO), only the strongest unit was annotated (see white boxes on Fig.

2

) whereas for Antarctic blue whales, the whole call was annotated.

TABLE II :

 II Number of labeled data for each population of blue whale. The number of true signals is shown in the left-hand column and the number of spectrograms with no calls used as negative training data is shown in the right-hand column.

	Population Name Annotated calls used for training		Null data used for training
	Antarctic	1,491	1,099
	SEIO	1,459	1,988
	SWIO	2,670	1,187
	CIO	659	1,602

TABLE III :

 III Model results for classifying the presence of blue whale calls for the CNN and SNN models. Highest performance for each measure and acoustic population is in bold type.

	SWIO	0.907	0.905	0.910	0.928	0.957	0.863
	CIO	0.838	0.779	0.899	0.908	0.787	0.963
			CNN			SNN	
	Population	Accuracy	Sensitivity Specificity Accuracy	Sensitivity Specificity
	All 4 populations 0.901	0.893	0.909	0.922	0.921	0.922
	Antarctic	0.911	0.900	0.922	0.943	0.949	0.936
	SEIO	0.908	0.917	0.899	0.909	0.895	0.919

TABLE IV :

 IV Model results for predicting the number of calls by CNN and SNN.Even though Convolutional Neural Networks (CNN) did not perform as well as Siamese Neural Networks (SNN) in this dataset, CNN has its advantages of making predictions with probability

		Annotated	Predicted	Predicted	Prediction	Prediction
		number of	number of	number of	percentage	percentage
	Population	calls	calls by CNN	calls by SNN	error by CNN	error by SNN
	Antarctic	1478	1552	1504	5%	1.76%
	SEIO	889	957	878	7.65%	1.24%
	SWIO	2187	2087	2124	4.57%	2.88%
	CIO	316	305	311	3.48%	1.58%
	C. Further comparisons of two models			
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