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This paper is part of a special issue on Machine Learning in Acoustics. 19 

Abstract: Blue whales are endangered worldwide, and there are widely recognized to be at 20 

least four clearly distinct populations of blue whales in the Indian Ocean, largely based on 21 

different song types associated with each population. The goal of this project is to use acoustic 22 

signatures to detect, classify and count the calls of each acoustic population so that, ultimately, 23 

the conservation status of each population can be better assessed. We used manual 24 

annotations from 350 hours of audio recordings from the underwater hydrophones in the 25 

Indian Ocean to build a deep learning model to detect, classify, and count the calls from four 26 

acoustic song types. The method we used was Siamese Networks, a class of neural network 27 

architectures that are used to find the similarity of the inputs by comparing its feature vectors, 28 

finding that they outperformed the more widely used convolutional neural networks (CNN). 29 

Specifically, the Siamese Networks outperform a CNN with 2% accuracy improvement in 30 

population classification and 1.7% - 6.4% accuracy improvement in call count estimation for 31 

each blue whale population. In addition, even though we treat the call count estimation 32 

problem as a classification task and encode the number of calls in each spectrogram as 33 

categorical variable, SNN surprisingly learned the ordinal relationship among them. Siamese 34 

Networks are robust and shown here to be an effective way to automatically mine large 35 

acoustic data sets for blue whale calls. 36 
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I. Introduction 43 

A. Background 44 

The blue whale Balaenoptera musculus is the largest of the mysticete (baleen) whales, with 45 

lengths exceeding 30 meters (McClain et al. 2015). They are endangered worldwide, although 46 

their population status differs from one location to another. The Indian Ocean, particularly its 47 

southern extent, is one of the oceans with the greatest blue whale acoustic diversity (Stafford 48 

et al. 2011). Blue whale subspecies present in the Indian Ocean include the Antarctic blue whale 49 

(Balaenoptera musculus intermedia) and the pygmy blue whale (B. m. brevicauda); and pygmy 50 

blue whales are further separated into multiple acoustic populations and possibly additional 51 

subspecies (e.g., B. m. indica). In the absence of extensive genetic data from Indian Ocean blue 52 

whales to determine speciation, the different song types of Indian Ocean blue whales, which 53 

are acoustically somewhat geographically distinct, are used to broadly define populations of 54 

blue whales.  Prior to intensive commercial whaling beginning in the early 1900s, blue whales 55 

were once abundant in the Southern Hemisphere. This was particularly true in the Southern 56 

Ocean, where as many as 239,000 Antarctic blue whales congregated in summer to feed 57 

(Branch, Matsuoka & Miyashita, 2004), primarily on Antarctic krill Euphausia superba.  58 

Despite being the largest animal ever to exist on Earth, there is relatively little known about the 59 

distribution and migration of blue whales in the Indian Ocean. The Antarctic blue whale has 60 



   
 

   
 

been declared as “Critically Endangered” and pygmy blue whales are listed as “Data Deficient” 61 

by the International Union for the Conservation of Nature (Cooke, 2019) due to lack of 62 

sufficient data to assess their conservation status. Monitoring blue whales remains a challenge 63 

because of the relative scarcity of individuals as well as their pelagic distribution which largely 64 

encompasses remote and inaccessible regions of the ocean. Moreover, identifying pygmy from 65 

Antarctic blue whales by visual observation is difficult, as they look almost identical at sea, 66 

despite the smaller length of pygmy blue whales (Ichihara, 1966). Thus, most of the knowledge 67 

about blue whales in the Indian Ocean comes from whaling data (Branch et al., 2007, 2009), 68 

and from passive acoustic monitoring (Samaran et al., 2010a, 2013; Stafford et al., 2011; Leroy 69 

et al., 2016; Dréo et al., 2018; Torterotot et al. 2020). Such monitoring efforts are widespread in 70 

the world’s oceans and often result in many terabytes of digital data, which requires big data 71 

analysis efforts to analyze efficiently and robustly. Blue whale signals are particularly good 72 

candidates for this type of observation, because of their repetitive, long (more than 15 s), loud 73 

(more than 180 dB ref 1 μPa at 1 m) and low frequency (20–100 Hz) highly stereotyped calls 74 

(Cummings and Thompson, 1971). Blue whale song calls (hereafter calls) vary from one region 75 

to another and have been used to define acoustic populations which are geographically distinct 76 

(McDonald et al. 2006; Stafford et al. 2011). Taking advantage of the temporal and frequency 77 

differences among song units, we used machine learning methods to automatically detect, 78 

classify and count blue whale calls from a subset of acoustic recordings from the southern 79 

Indian Ocean.  By developing a robust machine learning methodology to identify when and 80 

where each population occurs, this opens up a pathway to allocate historical catches and recent 81 

abundance estimates among the various populations, allowing us to assess the current status of 82 



   
 

   
 

each identified acoustic population. Such status assessments form the basis for appropriate 83 

management efforts to conserve these populations for the future. 84 

B. Motivation for the work 85 

Technological advances in the past two decades have allowed researchers to record and archive 86 

passive acoustic data from remote underwater ocean moorings. The mooring deployments can 87 

be from months to years with acoustic data archived on digital media in the instrument either 88 

continuously or on a duty cycle.  The acoustic data is retrieved periodically resulting in up to 89 

many terabytes of data collected for each site. It is impractical to analyze all of the data 90 

manually or in real time. The way to efficiently process such a large volume of acoustic 91 

recordings has been the subject of many efforts in the past twenty years and has resulted in a 92 

rich body of literature on automated detection methods, particularly for blue whales (e.g., 93 

Stafford et al. 2004, 2011, Mouy et al. 2009, Širović et al. 2009, Gavrilov and McCauley 2013). 94 

Detection methods based on bespoke detectors and conventional machine learning classifiers 95 

are the most prominent methods used during the last two decades (Kowarski and Moors-96 

Murphy 2020). For example, a non-parametric classification tree analysis (CART) and a Random 97 

Forest analysis were implemented to provide robust results to classify 34 identifiable call types 98 

of beluga whale vocalizations from the eastern Beaufort Sea population (Garland et al. 2015). 99 

To investigate the vocal repertoire of Southeast Alaskan humpback whales, three classification 100 

systems were used, including aural spectrogram analysis, statistical cluster analysis, and 101 

discriminant function analysis, to describe and classify vocalizations; and a hierarchical acoustic 102 

structure was identified to classify vocalizations into 16 individual call types nested within four 103 



   
 

   
 

vocal classes (Fournet et al. 2015). For blue whale signals in particular, most detection methods 104 

have been based on detection either in the time domain (e.g., matched filtering, Stafford et al. 105 

1998) or in the frequency domain (spectrogram correlation, e.g., Širović et al. 2009) although 106 

more recent efforts have involved more novel methods, including sparse representation of 107 

signals (e.g., Socheleau et al. 2015, Torterotot et al. 2019). 108 

More recently, the rapid development of artificial intelligence and deep learning algorithms 109 

provide another approach for intelligent classification and prediction. In classifying animal 110 

sounds, deep neural networks (DNN) methods have progressed tremendously with accessibility 111 

to large training data and increasing computational power. Using spectrograms generated from 112 

raw audio recordings as input, researchers have applied Convolutional Neural Networks (CNN), 113 

either by training the model from scratch, or using transfer learning with pre-trained model 114 

weights, to classify calls from different species (Bergler et al. 2019, Yang et al. 2020, Zhong et al. 115 

2020, Kirsebom et al. 2020). Another approach is Recurrent Neural Networks (RNN), which 116 

utilizes temporal information of animal calls for classification tasks (Ibrahim et al. 2018, Shiu et 117 

al. 2020).  118 

While the deep neural network models CNN and RNN have achieved great success in many 119 

classification tasks, they have limitations that typically these models rely on large size of 120 

datasets to train millions of parameters. For classification purposes of audio recording 121 

classifications, all we need from these models is good embedding representations for 122 

spectrograms. For same classes, we would expect the learned embeddings to be close to each 123 

other in the latent space; for different classes, the learned embeddings are far apart. In this 124 

paper, we proposed using Siamese Neural Networks (SNN) (Koch et al. 2015) as an alternative 125 



   
 

   
 

of widely used CNN to conduct classifications, especially when the size of training data is 126 

limited. Siamese Networks focuses on learning embeddings in the deeper layer that place the 127 

same classes close together. Hence, it can learn semantic similarity effectively.  128 

II. Data 129 

A. Data Sources and Data Annotation 130 

The acoustic data used in this study was recorded by the OHASISBIO (Observatoire Hydro-131 

Acoustique de la SISmicité et de la Biodiversité) hydrophone network (Royer 2009), located in 132 

the Southwest Indian Ocean (see Fig. 1). The network was deployed in December 2009 and was 133 

still recording as of the date of this publication. To provide a testing and training dataset, we 134 

manually annotated signals from four populations of blue whales (Antarctic blue whale and 135 

three pygmy blue whale populations) using data from 5 of 11 available mooring sites (see Table 136 

I, Figure 2). Originally, song types were named based on the first location where calls were 137 

recorded. More recently, with the realization that the extent of each population is greater than 138 

originally understood, this naming convention has been updated (IWC 2020) to refer to broad 139 

geographical regions as follows (with abbreviation and first location): central Indian Ocean (CIO, 140 

Sri Lanka), southwest Indian Ocean (SWIO, Madagascar), southeast Indian Ocean (SEIO, 141 

Australia/Indonesia), and Antarctic blue whales. In addition, there are two additional song types 142 

of pygmy-type blue whales not yet reported on the OHASISBIO network: southwest Pacific 143 

Ocean (SWPO, New Zealand), and northwest Indian Ocean (NWIO, Oman, Cerchio et al. 2020). 144 

We follow this regional naming convention throughout the present study (Antarctic, SEIO, 145 

SWIO, CIO). 146 



   
 

   
 

 147 

FIG. 1. Map of the southern Indian Ocean. Black dots represent moorings of the OHASISIBIO 148 

hydrophone network from which data were used in this paper: north of Crozet archipelago 149 

(NCRO); west of Kerguelen Island (WKER); southwest and northeast of St Paul and Amsterdam 150 

islands (SWAMS and NEAMS); south of the southeast Indian Ridge (SSEIR); south of Kerguelen 151 

plateau (ELAN). 152 

TABLE I: Manually annotated acoustic data from 5 mooring sites for four populations of blue 153 

whales by hours and number of annotations per site. 154 

Mooring Site Antarctic SEIO SWIO CIO 

SSEIR _ _ _ 19.5 h,  

138 calls 

NCRO _ _ 71.5 h, 

1503 calls 

_ 



   
 

   
 

WKER 32.5 h, 

801 calls 

13 h, 

109 calls 

19.5 h, 

334 calls 

_ 

SWAMS 26 h, 

698 calls 

26 h, 

572 calls 

_ 78 h, 

537 calls 

NEAMS _ 52 h, 

769 calls 

19.5 h, 

841 calls 

_ 

Manual annotation was performed with Raven Pro 1.5 (Cornell Lab of Ornithology software) by 155 

a single bioacoustics expert. Given the distinct geographical distribution of the four blue whale 156 

acoustic populations, four datasets were annotated, one for each call type. The audio files 157 

composing each dataset were chosen among the OHASISBIO 2015 recordings, to cover a broad 158 

range of acoustic scenarios, from high to low SNR calls. Ten-minute spectrograms with fixed 159 

parameters (Hanning windows with 50% overlap and 512-point FFT) were screened for blue 160 

whale calls. For pygmy blue whales (CIO, SWIO, SEIO), only the strongest unit was annotated 161 

(see white boxes on Fig. 2) whereas for Antarctic blue whales, the whole call was annotated. 162 



   
 

   
 

 163 

FIG. 2. Examples of annotated blue whale call with Raven Pro 1.5. a) SEIO pygmy blue whales, b) 164 

SWIO pygmy blue whales, c) CIO blue whales and d) Antarctic blue whales. 165 

B. Data for modeling 166 

For all four acoustic populations of blue whales, calls range from 6 to 40 seconds duration. 167 

Using custom written scripts in Python 3.6, spectrograms were produced from audio files (with 168 

NFFT = 1024 and 75% overlap, Hanning window). Each spectrogram was generated from a 240-s 169 

audio segment that contained either one or multiple annotated blue whale calls and was 170 

resized as 224 pixels by 224 pixels with RGB channels (Fig.3). During the annotation process, we 171 

only focused on the presence of one blue whale population in each acoustic file. However, as 172 

part of the temporal and geographical distributions overlap among these blue whale 173 

populations, their acoustic co-occurrence is common. As a result, for each extracted 174 

spectrogram, its corresponding label (the name of blue whale population, and the number of 175 



   
 

   
 

calls associated with the spectrogram) only represented the presence of that particular 176 

population but did not indicate absence of the other three populations. 177 

 178 

FIG. 3. Example spectrograms from different acoustic populations of blue whale in the Indian 179 

Ocean that illustrate the range of signal-to-noise ratios in the data from loudest to faintest from 180 

left to right. Row 1: Antarctic; row 2: SEIO; row 3: SWIO; row 4: CIO.  181 

While the spectrograms extracted from annotated audio segments corresponded to positive 182 

labels (i.e., presence of a blue whale population with at least one call), we also extracted 183 

spectrograms that associated with negative labels (i.e., absence of a blue whale population with 184 

no call). For each of the four populations, we randomly selected audio clips that did not contain 185 

any annotated calls. 186 



   
 

   
 

In total, we extracted 12,155 spectrograms (see Table II for breakdown by population), each 187 

representing a 240-second-long audio clip. These spectrograms, along with their associated 188 

labels, were used as input for building classification models. 189 

TABLE II: Number of labeled data for each population of blue whale. The number of true signals 190 

is shown in the left-hand column and the number of spectrograms with no calls used as 191 

negative training data is shown in the right-hand column. 192 

Population Name Annotated calls used for training Null data used for training 

Antarctic 1,491 1,099 

SEIO 1,459 1,988 

SWIO 2,670 1,187 

CIO 659 1,602 
 193 

III. Approaches 194 

We assessed the performance of Convolutional Neural Networks (CNN) and a newer technique, 195 

Siamese Neural Networks (SNN), to determine which best identified and classified blue whale 196 

calls.  197 

A. Classification Models using Convolutional Neural Network (CNN) 198 

Convolutional Neural Networks (CNN) have been widely used for image classification tasks, and 199 

their success has also been proven in bioacoustic classification applications (Bianco et al. 2019). 200 

Here we used the DenseNet-201 architecture (Huang et al. 2016) as a baseline to classify calls 201 

of the four blue whale populations, and to count the number of calls in each 240-s spectrogram. 202 

DenseNet was developed specifically to improve the declined accuracy caused by the vanishing 203 

gradient in high-level neural networks and has the advantage of improving feature propagation 204 



   
 

   
 

both in forward as well as backward fashion. In a DenseNet architecture, each layer is 205 

connected to every other layer and obtains additional inputs from all preceding layers, and then 206 

passes its own feature-maps to all subsequent layers. 207 

B. Classification Models using Siamese Neural Network (SNN) 208 

Siamese Neural Networks (SNN) are a class of neural network architectures that contain two or 209 

more identical subnetworks. “Identical” here means that they have the same configuration with 210 

the same parameters and weights. Parameter updating is mirrored across both sub-networks. 211 

SNN focuses on learning image embeddings in the deeper layers that place the same classes 212 

close together. Hence, it can be used to measure the similarity of the inputs by comparing their 213 

feature vectors and make decisions on whether the two images belong to the same category or 214 

different categories. 215 

Since training of Siamese networks involves pairwise learning, cross entropy loss cannot be 216 

used in this case. Instead, we used another loss function called triplet loss (Hoffer and Ailon, 217 

2015). This is a loss function where an anchor (baseline) image is compared to a positive image 218 

(i.e., an image that is in the same category as the anchor image) and a negative image (i.e., an 219 

image that is in a different category as the anchor image). The distance (here we used squared 220 

Euclidean distance) from the anchor image to the positive image is minimized, and the distance 221 

from the anchor image to the negative image is maximized. As shown in formula (1), D(x, y) 222 

represents the distance between the learned vector representation of spectrograms x and y, 223 

and α is a margin term used to stretch the distance differences between similar and dissimilar 224 

pairs in the triplet, and the remaining parameters represent the feature embeddings for the 225 

anchor (a), positive (p), and negative (n) images. 226 



   
 

   
 

                                     L(a, p, n) = max(0, D(a, p) — D(a, n) + α)                              (1)        227 

During the training process, an image triplet (anchor image, positive image, negative image) is 228 

fed into the model as a single sample (see Fig. 4).  The distance between the anchor and 229 

positive images should be smaller than that between the anchor and negative images. For many 230 

deep learning models, a large training data set is needed to achieve good performance. While 231 

this may not be practical in many real applications, the architecture of Siamese Networks 232 

enables these networks to learn from very little data.  233 

 234 

FIG. 4. Architecture of Siamese Networks with triplet loss. 235 

When triplets are generated for model training, as the training continues, some of the 236 

additional triplets are easy to deal with (their loss value is very small or even 0), preventing the 237 

network from further improvement. A good training strategy would be to constantly “mine” out 238 

those difficult cases in each epoch, based on the current performance of model’s snapshot, so 239 

that the model will always have certain percentage of hard cases in the training loop from 240 



   
 

   
 

which it still struggles to tell a difference. This is similar to the triplet mining in FaceNet (Schroff 241 

et al. 2015). In our training process, we choose batch size = 5. Within each batch, we first 242 

generated 5 triplets randomly and kept the 2 hardest examples, and then generated another 3 243 

triplets randomly. 244 

C. Implementation 245 

For Convolutional Neural Networks (CNN), since our training data were weakly labeled (that is, 246 

for each spectrogram, the corresponding label only indicated the presence or absence of one 247 

blue whale call type, without labeling whether there were calls from the remaining three 248 

acoustic populations), during the model training, we used a custom binary cross-entropy loss 249 

function that only penalized the population category with known labels. For each spectrogram 250 

in the training data, therefore, the loss function calculated the loss for the one blue whale call 251 

type with a known (either positive or negative) label and did not assess the remaining three 252 

populations. 253 

For Siamese Neural Networks (SNN), the model outputs an n-dimensional embedding for each 254 

spectrogram, where n corresponds to the dimension of the vector before the last (output) 255 

layer. For DenseNet-201 that we used, the corresponding n = 1920. For each spectrogram in the 256 

testing set, we compared its embedding vector with all the embedding vectors of the 257 

spectrograms in the training set by calculating distance, and then assigned the label to the 258 

population that has the smallest distance (here we used closest 10 training spectrograms from 259 

each population). 260 



   
 

   
 

When counting the number of blue whale calls, we only classified the spectrograms that had at 261 

least one annotated call, and the model was fit separately to each of the four blue whale 262 

acoustic populations, as the call densities varied from one population to another. Only 5% of 263 

the training dataset spectrograms had 5 or more annotated calls, and 1% had 6 or more, so we 264 

created categorical labels of “1”, “2”, “3”, “4”, and “5+” to correspond the number of calls in 265 

each spectrogram.  266 

IV. Results 267 

We have two classification tasks: the first is to detect and classify the presence or absence of 268 

calls from each of the four blue whale populations; and the second is to estimate the number of 269 

calls from each of these populations in the training dataset and eventually, novel acoustic 270 

datasets. For the two tasks, we compared the performance of the CNN and SNN methods. The 271 

annotated data was randomly split into training, validation, and testing sets (which account for 272 

49%, 21% and 30% of the annotated data, respectively), and the model results were reported 273 

on the testing set. 274 

A. Model performance for classifying the presence of blue whale calls 275 

For Convolutional Neural Networks (CNN), the multi-class classification model outputs the 276 

predicted probability of blue whale call presence for each population, and can be assessed with 277 

commonly used metrics, including accuracy, sensitivity, specificity, and Area Under the Curve 278 

(AUC). For Siamese Neural Networks (SNN), the output is not probability based and there is no 279 

“threshold score”, and thus no AUC which is measured at various threshold settings. 280 



   
 

   
 

To have a fair comparison of the outputs of the two models, we will then use three metrics: 281 

accuracy, sensitivity, and specificity. To determine these, we denote annotated calls that were 282 

correctly identified as true positives (TP), spectrograms with no calls that were correctly 283 

classified as true negatives (TN), calls that were identified as blue whales but were not 284 

annotated as false positives (FP), and annotated calls that were not correctly identified as false 285 

negatives (FN). Accuracy is the fraction of predictions that model got right (i.e., (TP + TN)/(TP + 286 

FP + TN + FN)); sensitivity, or true positive rate, measures the percentage of presence that was 287 

correctly predicted (i.e., TP/(TP + FN)); and specificity, or true negative rate, measures the 288 

percentage of absence that was correctly predicted (i.e., TN/(TN + FP)). Since sensitivity and 289 

specificity in CNN model are dependent on the choice of threshold score, we used a default 290 

neutral threshold score of 0.5. For all three metrics, the Siamese Networks model outperforms 291 

CNN in overall metrics and almost for each individual population, although CNN is slightly 292 

better in Sensitivity for SEIO and Specificity for SWIO (Table III). 293 

TABLE III: Model results for classifying the presence of blue whale calls for the CNN and SNN 294 

models. Highest performance for each measure and acoustic population is in bold type. 295 

 296 

Population 

 

Accuracy 

CNN 

Sensitivity 

 

Specificity 

 

Accuracy 

SNN 

Sensitivity  

 

Specificity  

All 4 populations 0.901 0.893 0.909 0.922 0.921 0.922 

Antarctic 0.911 0.900 0.922 0.943 0.949 0.936 

SEIO 0.908 0.917 0.899 0.909 0.895 0.919 



   
 

   
 

SWIO 0.907 0.905 0.910 0.928 0.957 0.863 

CIO 0.838 0.779 0.899 0.908 0.787 0.963 

 297 

B. Model performance for counting the number of blue whale calls 298 

Although treated as a classification task, using standard metrics alone (such as accuracy) that 299 

are commonly used to evaluate multi-class classification models may not be appropriate or 300 

comprehensive here, as the classes here actually have ordinal implications. Therefore, we used 301 

the prediction percentage error as the evaluation metric (see Table IV). The Siamese Networks 302 

provided a higher prediction accuracy (lower prediction error) than CNN. 303 

TABLE IV: Model results for predicting the number of calls by CNN and SNN. 304 

Population 

Annotated 

number of 

calls 

Predicted 

number of 

calls by CNN 

Predicted 

number of 

calls by SNN 

Prediction 

percentage 

error by CNN 

Prediction 

percentage 

error by SNN 

Antarctic 1478 1552 1504 5% 1.76% 

SEIO 889 957 878 7.65% 1.24% 

SWIO 2187 2087 2124 4.57% 2.88% 

CIO 316 305 311 3.48% 1.58% 

 305 

C. Further comparisons of two models 306 



   
 

   
 

Even though Convolutional Neural Networks (CNN) did not perform as well as Siamese Neural 307 

Networks (SNN) in this dataset, CNN has its advantages of making predictions with probability 308 

score. This makes it convenient for the users to have better understanding of how confident the 309 

model is when making classifications and under which circumstances the model may make 310 

mistakes. In practical implementations, it also allows users to choose appropriate threshold 311 

scores to have either less false positives or less false negatives depending on their specific 312 

needs (Fig. 5). 313 

 314 



   
 

   
 

FIG. 5. Illustraiont of the results of call classification task by CNN. Top left and top right: 315 

Histograms for predicted probabilities of positive and negative samples in the testing set. 316 

Bottom left: receiver operating characteristic (ROC) curve. Bottom right: precision-recall curve. 317 

In contrast, Siamese Networks, at the end of the common network in its architecture, output a 318 

vectored representation for each input image, thus providing an easy way to visualize in a 2-319 

dimension t-distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton, 2008) plot. 320 

t-SNE is a nonlinear dimensionality reduction technique well-suited for embedding high-321 

dimensional data for visualization in a low-dimensional space of two or three dimensions. 322 

Specifically, a Siamese Network models each high-dimensional object by a two- or three-323 

dimensional point in such a way that similar objects are modeled by nearby points and 324 

dissimilar objects are modeled by distant points with high probability. Fig. 6 shows the t-SNE 325 

plots of the testing set for the two classification tasks. From the plot, we can see that the 326 

classifications for each of the four blue whale calls are distinct from each other. The “Negative” 327 

class, which included “no call” samples for each population, sits in the middle of the four 328 

“Positive” classes and overlaps very little with any of them. In the second classification model 329 

the number of blue whale calls present in a spectrogram is estimated for each population (Fig 330 

4b). Although we encoded the number of calls as categorical variables which ignored their 331 

ordinal implications (that is, category “1” should be closer to category “2” than category “3”, 332 

and category “2” should be closer to category “3” than category “4” or “5+”, etc.), the Siamese 333 

Networks clearly learned such ordinal relationships.                 334 



   
 

   
 

335 
                                               336 

FIG. 6. (a) t-SNE plot for the model that classifies the presence or absence of blue whale calls 337 

from each of the four populations. (b) t-SNE plot for the model that estimates the number of 338 

Antarctic blue whale calls (for the other three populations, the plots show similar patterns). 339 

V. Discussion 340 

We built classification models to detect, classify and count the number of calls by each of four 341 

blue whale acoustic populations in the Indian Ocean. In comparison to Convolutional Neural 342 

Networks (CNN) which have shown success in several prior research in classifying bioacoustics 343 

for multiple species (Bianco et al. 2019), Siamese Networks achieved better performance in this 344 

study.  345 

While Siamese Networks are particularly suitable for scenarios where there are only a few 346 

samples in each class (i.e., few-shot learning), they can also be applied to larger datasets, like 347 

the one we used in this study. However, since Siamese Networks learns from quadratic pairs (to 348 

make use of all information available), the training is much slower than pointwise learning 349 

models such as CNN. Additionally, instead of outputting probabilities of the prediction, they 350 



   
 

   
 

output the distance from closest training samples in each class instead. In practice, CNN and 351 

SNN can be used together to complement each other. Given that the learning mechanism of 352 

SNN is somewhat different from CNN, their ensembled results are likely to perform even better. 353 

While both models performed well in general on classifying calls from 4 populations of blue 354 

whales, their performance differed among different populations. Classification of Antarctic blue 355 

whale calls had the highest accuracy among 4 populations, while CIO had the lowest accuracy. 356 

One possible reason is that Antarctic, SEIO and SWIO have larger sizes of training samples 357 

compared to CIO, but more likely is that Antarctic blue whale calls (Z-calls) have more 358 

frequency modulation on the spectrograms, compared to that of the CIO blue whale calls 359 

(which looks like a flat line). Another factor is the call loudness in the audio recordings. In 360 

general, CIO blue whale calls have lower signal-to-noise ratios in the annotated data, which 361 

increases the difficulty for the model to classify correctly with high confidence.  The lower 362 

signal-to-noise ratios for CIO blue whale calls could be due to a number of factors among which 363 

we cannot currently distinguish. These include the CIO call having a lower source level than 364 

other calls; there are only a few source levels reported for blue whale signals globally, and none 365 

for CIO blue whale calls. It is also likely that the animals producing these signals are further 366 

from the hydrophones than the other populations, given what is known about their 367 

distributions, although since the hydrophones are omni-directional we cannot ascertain this for 368 

certain. This signal is the highest frequency signal we detected and as such would be subject to 369 

greater transmission loss than the other signals.  370 

Compared to traditional methods which rely heavily on manual verification by a human user or 371 

template matching by software, the method presented here uses deep learning models and has 372 



   
 

   
 

the advantage of flexibility with regards to temporal and frequency variations in a dataset. 373 

Notably for blue whale calls, the call frequency has been getting lower in all populations over 374 

time (McDonald et al. 2009, Leroy et al. 2018), and one major advantage of this approach is 375 

that it looks for the shape of the call independent of the frequency of the call. Siamese 376 

Networks can easily classify and count multiple types of calls from several populations at the 377 

same time and have the ability to classify novel datasets that were collected from different 378 

mooring sites or different years. Even at the sites that have somewhat different underwater 379 

environments, the model still detected and classified the signals. An additional, and future 380 

advantage is that the model can easily scale up to include other species or call types with the 381 

addition of annotated data. 382 

Although we treated the call count estimation problem as a classification task and encoded the 383 

number of calls in each spectrogram as categorical variable, SNN surprisingly learned the 384 

ordinal relationship among them. Call counts, or cue rates (how often a signal occurs over a 385 

fixed time period, or number of individuals), are critical elements of density estimation 386 

methods for marine mammals. Density estimation is one of the key ways to determine trends in 387 

marine mammal populations using single instrument passive acoustic data and estimates of call 388 

counts (Küsel et al. 2011, Marques et al. 2013). In this way, Siamese Networks are robust and 389 

shown here to be an effective way to automatically mine large acoustic data sets for the 390 

presence and number of blue whale calls.  391 
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