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Simple Summary: This study aims at using a multi-technique approach to detect and analyze the
effects of high dose rate spatially fractionated radiation therapies and to compare them to seamless
broad beam irradiation targeting healthy and glioblastoma-bearing rat brains and delivering three
different doses per each irradiation geometry. Brains were analyzed post mortem by multi-scale X-ray
phase contrast imaging–computed tomography, histology, immunohistochemistry, X-ray fluorescence,
and small- and wide-angle X-ray scattering to achieve detailed visualization, characterization and
classification in 3D of the radio-induced effects on brain tissues. The original results bring new
insights to the understanding of the response of cerebral tissue and tumors treated with high dose
rate spatially fractioned radiotherapies and put the basis for channeling studies of in-vivo applications
for monitoring RT effects.

Abstract: The purpose of this study is to use a multi-technique approach to detect the effects of spa-
tially fractionated X-ray Microbeam (MRT) and Minibeam Radiation Therapy (MB) and to compare
them to seamless Broad Beam (BB) irradiation. Healthy- and Glioblastoma (GBM)-bearing male
Fischer rats were irradiated in-vivo on the right brain hemisphere with MRT, MB and BB delivering
three different doses for each irradiation geometry. Brains were analyzed post mortem by multi-scale
X-ray Phase Contrast Imaging–Computed Tomography (XPCI-CT), histology, immunohistochem-
istry, X-ray Fluorescence (XRF), Small- and Wide-Angle X-ray Scattering (SAXS/WAXS). XPCI-CT
discriminates with high sensitivity the effects of MRT, MB and BB irradiations on both healthy
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and GBM-bearing brains producing a first-time 3D visualization and morphological analysis of the
radio-induced lesions, MRT and MB induced tissue ablations, the presence of hyperdense deposits
within specific areas of the brain and tumor evolution or regression with respect to the evaluation
made few days post-irradiation with an in-vivo magnetic resonance imaging session. Histology,
immunohistochemistry, SAXS/WAXS and XRF allowed identification and classification of these
deposits as hydroxyapatite crystals with the coexistence of Ca, P and Fe mineralization, and the
multi-technique approach enabled the realization, for the first time, of the map of the differential
radiosensitivity of the different brain areas treated with MRT and MB. 3D XPCI-CT datasets enabled
also the quantification of tumor volumes and Ca/Fe deposits and their full-organ visualization. The
multi-scale and multi-technique approach enabled a detailed visualization and classification in 3D of
the radio-induced effects on brain tissues bringing new essential information towards the clinical
implementation of the MRT and MB radiation therapy techniques.

Keywords: X-ray phase-contrast imaging; glioblastoma; animal model; hydroxyapatite; virtual
histology; FLASH; spatially fractionated radiotherapy; MRT

1. Introduction

Glioblastoma (GBM) is the most common and aggressive intra-axial primary tu-
mor, accounting for about 60% of the cases [1] and causing around 2.7% of all cancer-
related deaths [2]. It has a poor prognosis with a survival ranging from 7 months [3]
to 12–15 months [4,5] with a long-term survival probability less than 3% [6]. GBM treat-
ment involves surgery, chemotherapy, and radiation therapy (RT); due to the radio- and
chemo-resistance and highly infiltrative growth of GBM, present treatments are only able
to slow down the development of the disease permitting an increase of the survival by
a few months [7]. For all these reasons, there is the need for an effective therapy for the
management of gliomas.

In the last 25 years, a spatially fractionated RT called Microbeam Radiation Therapy
(MRT) was introduced and developed as an alternative for tumor treatments [8,9]. MRT
was proven to be well tolerated by healthy tissue while being highly effective on tumor
control (in terms of tumor growth delay or complete tumor sterilization) [10]. MRT uses
an array of quasi-parallel X-ray beamlets of width in the 25–100 µm range and inter-
microbeam centre-to-centre (c-t-c) spacing between 100 and 400 µm, producing a non-
homogeneous dose deposition of alternating peaks and valleys delivering peak doses
up to hundreds of Gy in a unique fraction. X-ray beams produced at third and fourth
generation synchrotron facilities are particularly well adapted for producing the beamlets
for MRT because of their inherently high collimation and dose rates of several orders
of magnitude larger than conventional sources. These properties allow the delivery of
radiation locally in micrometric windows at high speed, preventing beam smearing due to
the cardio-synchronous pulsations [11,12].

Simultaneously, X-ray Minibeam (MB) radiation therapy was developed as a RT
with lateral dose profile similar to MRT but with larger beams and c-t-c distances in
order to overcome the problem of possible radiation smearing, as well as to reduce the
stringent requirements of MRT in terms of dose rates [13]. The effectiveness of MRT
and MB fractioned treatments relies on the so-called dose-volume effect [14]: doses of
hundreds of Gray are well tolerated if delivered in micrometric beamlets and produce a
preferential effect on tumoral vasculature rather than on healthy vessel network [15–17].
Despite that, the overall biological response to these RTs of the irradiated tissues is still not
completely known and imaging techniques reaching the sub-micron spatial resolution in
three-dimensions (3D) are keys in identifying and classifying the MRT- and MB-induced
effects on brain tissues.

X-ray Phase Contrast Imaging–Computed Tomography (XPCI-CT) [18,19] is a pow-
erful imaging technique for post mortem radiation treatment evaluation and follow-ups
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of even entire organs. This technique achieves micron and sub-micron resolutions and
is highly sensitive in visualizing brain and CNS structures. Previous studies proved
that XPCI-CT is a well-suited imaging method for multiscale neuroimaging over a broad
range of applications such as Alzheimer’s disease [20–22], experimental autoimmune en-
cephalomyelitis [23], brain tumor detection [24,25], small animal brain visualization within
the skull [26] and human brain nano-anatomy [27].

In this work, we report on a multi-technique analysis performed on both healthy and
GBM-bearing rat brains after treatment with either MRT, MB or standard broad beam RT
(BB) for the assessment and classification of the specific radio-induced effects. Though
histology remains the gold-standard technique for evaluating pathological states at high
spatial resolution, it is still limited to a two-dimensional (2D) analysis and complete or-
gan inspections need serial cutting of the tissue, which is a labor- and time-consuming
sample-destructive practice. XPCI-CT, being able to provide multiscale data (from whole
organs down to cellular level) with isotropic micron and submicron spatial resolutions, is
here applied as a virtual histology technique for post mortem investigation in 3D of full
brain organs. The XPCI-CT technique provided, for the first time, a 3D visualization and
quantification of the tumor volume and of Ca/Fe deposits. In the first phase of this project,
here reported, we aimed at testing the potential and the sensitivity of the methodology on
the different irradiation protocols and presenting the versatile and rich analysis possibilities
offered by the applied 3D imaging and multi-technique approach with respect standard
histology and immunohistochemistry. Finally, it permitted to assess, for the first time, the
3D map of the radiosensitivity of the different brain areas. We postulate/propose that it
can be included in the follow-up protocol for development of novel radiotherapies. We
correlate XPCI-CT with histology analysis in order to benchmark the findings. Further-
more, we applied the Small- and Wide-Angle X-ray Scattering (SAXS/WAXS) and X-ray
Fluorescence (XRF) techniques on specific regions of interest to complement the morpho-
logical characterization of the samples provided by XPCI-CT. SAXS/WAXS provided an
accurate structural and elemental information on the radio-induced effects of the used
therapies and, in particular, an in-depth study of the chemical and crystalline nature of the
microcalcifications produced by both the irradiation and the tumor evolution. Thus, this
study provides, for the first time, a 3D visualization, quantification and characterization of
the effects of BB, MRT and MB irradiations on both healthy and GBM-bearing rat brains.
The objective is to distinguish and separately examine the purely radio-induced lesions
within given brain regions (visible on irradiated healthy brains) and the effects on the
tumor-bearing animals of the different irradiation geometries and applied doses.

2. Materials and Methods
2.1. Animal and Sample Preparation

Sixty-five male Fischer rats were involved in the study performed in two different
experimental sessions. At the age of 8 weeks, at day 0 (D0), forty of these animals were
implanted with 9L GBM cell-line according to literature protocols [28–30]. At D10 all
rats but the healthy-controls (i.e., not implanted and not radiation treated animals) were
irradiated in one shot with different irradiation protocols in-vivo at the Biomedical beamline
ID17 of the European Synchrotron Radiation Facility (ESRF, Grenoble, France), as described
in the section “RT protocol”. Animals were then housed and monitored at the ESRF animal
facility and sacrificed at the end of the experiment or at fixed time points to study the
evolution of the tumor and the radio-induced effects over time. Healthy animals were
sacrificed at D138, while for each GBM-bearing group, the sacrifice day was set accordingly
to the animals’ monitoring protocol including animal daily cares and in-vivo Magnetic
Resonance Imaging (MRI) sessions (see details in Table 1). After animals’ euthanasia,
brains were dissected out and fixed in 4% paraformaldehyde in phosphate buffered saline
solution for immersion. All procedures related to animal care conformed to the guidelines
of the French government and were approved and conducted under the authorization
number #01261.02.
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Table 1. Irradiation parameters for healthy and GBM-bearing animals. The sacrifice day column is referred to the GBM-
bearing groups. The sacrifice day for healthy animals was set to D138. * D26, 41 and 61 where fixed as sacrifice points to
study the tumor and microcalcifications evolution.

RT Group Peak Dose (Gy) Valley Dose (Gy) Beam Width (µm) c-t-c Distance
(µm)

Sacrifice Day for
GBM-Bearing Animals

BB5 5 – – – 20–23

BB10 10 – – – 29–38

BB15 15 – – – 42–44

MRT200 200 7.7 50 200 15–31

MRT400 400 15.3 50 200 43–59

MRT600 600 23.0 50 200 26, 41, 61, 55–138 *

MB180 180 7.2 500 1000 26–30

MB350 350 14.0 500 1000 15–16

Controls – – – – 20–26

Few days before the XPCI-CT imaging experiment, all the samples were dehydrated
in an increasing ethanol series (50%, 60% for 4 hours) and kept in 86% ethanol. Once all
samples were imaged with XPCI-CT, histology, immunohistochemistry, SAXS/WAXS and
XRF analysis were performed as described in the following sections. A timeline of the
experimental protocol is reported in Figure 1a.

Figure 1. Timeline of the experimental protocol: (a) the days of the sacrifice depends on the groups
and/or on the decided time points. Animals’ irradiation setup: the synchrotron X-ray beam, indicated
by the yellow arrow, is filtered by some metal absorbers and shaped by slits collimators to the desired
vertical and horizontal dimensions and the goniometer allows for the precise positioning of the
animal by means of translation and rotation motor stages that are remotely controlled (b); picture
of an irradiated rat with a GafChromic film placed just before the animal for checking the correct
delivery of the X-ray beam (c).

2.2. RT Protocol

The irradiation sessions were performed at the MRT dedicated hutch of ID17, with
the animal stage placed on a remotely controlled goniometer located at about 38.5 m from
the radiation source (further details in [31]). Animals were irradiated under anesthesia
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with isoflurane inhalation (4% for 2 minutes) for induction followed by an intraperitoneal
xylazine/ketamine injection (64.5/5.4 mg/kg). Irradiations, either BB or spatially fraction-
ated RTs (MRT or MB), were delivered in an antero-posterior geometry placing the animals
on a stereotactic frame [29], see Figure 1b. The 40 GBM-bearing animals were divided into
9 groups according to Table 1. The field of irradiation (FOI) was set to 5 × 8 mm2 (H × V)
for BBs and MRTs and to 6.5 × 8 mm2 (H × V) for MBs to ensure an integer number of
beamlets in the FOI, respectively 24 and 7. The same irradiation protocols were applied
to the 25 healthy (no tumor implanted) rats to investigate the effects of the treatment on
the healthy brain tissue. The two control groups are named healthy- and GBM-control,
respectively, to avoid ambiguity.

For the MRT and MB cases, the beam was fractionated by means of a custom-made
multi-slit collimator [32].

The beam centering procedure was achieved on each rat after having acquired a
radiograph of the animal on the stereotactic frame, which allows targeting the RT beams in
the same anatomical area after identification of the bregma and the irradiation coordinates
following a rat atlas [33] and sparing the eye. Details on the imaging procedure for the RT
target alignment are given in [34]. The irradiation area was vertically centered with the
bregma, while it was displaced of 3.5 mm horizontally in order to only irradiate the right
hemisphere. A GafChromic film was placed on the stereotactic frame at the beam entrance
face to verify the effective irradiation (Figure 1c).

2.3. In-Vivo MRI Monitoring

To follow up the tumor growth and evolution, in-vivo MRI was performed on the
implanted animals. Two in-vivo MRI sessions were performed at D12-13 and D35 to
investigate the initial size and shape of the tumor and possible intra-animal variabilities
and to check the tumor evolution.

All MRI sessions were performed at the 4.7 T IRMaGe MRI facility (Avance III console;
Bruker, Ettlingen, Germany) in Grenoble using an actively decoupled cross-coil setup.
Animals were anesthetized with 4% isoflurane for induction and 2% for maintenance. The
tail vein was equipped with a catheter to deliver the MRI contrast agent (Gadolinium
(Gd) Dotarem®, 0.4 µL/g of the animal weight). During the whole MRI session, the rat
temperature was maintained at 37.0 ◦C, by means of pre-heated water-filled tubes, and the
breath rate at about 60 breath/min by modulating the gaseous isoflurane delivery. The
following imaging sequences were applied:

Anatomical imaging was performed with a T2-weighted (T2W) spin-echo sequence:
voxel size = 117 × 117 × 1000 µm3, 19 slices, echo time = 40 ms, flip angle = 90◦; number of
averages = 2, repetition time = 2500 ms, 2:40 min of total acquisition time;

T1-weighted (T1w) spin-echo sequence was performed before and 30s after the in-
jection of the Gd contrast agent through the tail vein and flushed with 500 µL of sterile
saline solution. The used parameters are: voxel size = 234 × 234 × 1000 µm3, 19 slices,
echo time = 5, flip angle = 90◦; number of averages = 4, repetition time = 800 ms, 1:17 min
of total acquisition time.

2.4. XPCI-CT Imaging

Ex vivo propagation-based XPCI-CT was performed at ID17 (ESRF), at the TOMCAT-
X02DA beamline [35,36] of the Swiss Light Source (SLS, Villigen, Switzerland) and at
the P05 beamline [37,38] of the PETRA III synchrotron (Hamburg, Germany) to achieve
different spatial resolutions and thus allowing a multi-scale morphological analysis. For
all the imaging sessions, samples (within sealed plastic containers in an 86% ethanol bath)
were placed on sophisticated motorized translation and rotation stages allowing the sample
alignment with respect to the beam and detector and the CT imaging acquisitions. All
measurements were performed by using monochromatic X-ray beams. Samples were first
imaged at the ESRF with a 3.25 × 3.25 × 3.25 µm3 voxel size (in the following indicated as
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3.253 µm3, being the voxel isotropic) and afterwards, a selection of interesting cases were
analyzed at the other facilities at higher spatial resolutions.

2.4.1. 3.253 µm3 Voxel Size XPCI-CT at ID17, ESRF

These scans were realized in the imaging hutch of the ID17 beamline, placed around
150 m downstream the X-ray source. The sample was illuminated by a laminar, monochro-
matic 35 keV X-ray beam and placed 1.8 m from the imaging detector, which is a sCMOS
PCO.Edge 5.5 [39], equipped with a 50 µm-thick LuAG:Ce scintillator screen and a
2× magnification indirect conversion optics [31]. For each CT scan, 4000 projections were
acquired over 360◦ with an exposure time per projection of 30 ms. Every rat brain was
entirely imaged requiring 5–6 vertical CT scans. The CT images were reconstructed us-
ing the filtered back-projection reconstruction method and the Paganin’s phase retrieval
algorithm [40], both implemented in the PyHST2 package [41].

2.4.2. 1.23 µ.m3 Voxel Size XPCI-CT at P05, PETRA III

These scans were obtained in the micro-tomography experimental hutch (EH2) with
a 30 keV X-ray beam impinging on the sample placed at 50 cm from the CMOS KIT
detector. For each CT scan, 6000 projections over 720◦ were acquired with an exposure
time of 55 ms per projection. A 5× magnification optic system was used together with a
100 µm thick LuAG:Ce single crystal scintillator. The image reconstruction was performed
with dedicated MATLAB [42,43] scripts based on filtered back-projection and Paganin’s
algorithm. In some cases, maximum intensity projections (MIP) of a stack of N subsequent
slices were computed. The MIP creates an output image containing in each pixel the
maximum value over all images in the stack at that particular pixel location.

2.4.3. 0.73 µm3 Voxel Size XPCI-CT at TOMCAT, PSI

These scans were acquired using a 21 keV monochromatic beam with a sample-to-
detector distance of 5 cm. A total of 1801 angular projections were collected over 180◦ with
an exposure time of 150 ms per projection with a PCO.Edge 5.5 camera coupled to a 20 µm
thick LuAG:Ce scintillator screen and an UPLAPO10× microscope. The reconstruction
procedure was performed using a specified gridrec based software [44,45] and the Paganin’s
algorithm for phase retrieval.

2.5. Segmentation Procedure

Specific segmentation procedures to separate and quantify the volumes of the features
of interest (either tumor or microcalcifications) were implemented and applied to all the
3.253 µm3 voxel size datasets, which encompass the entire brain volume.

2.5.1. Tumor Segmentation on MRI Images

The segmentation of tumor volumes was performed on T2w images acquired post Gd
injection. Thus, the contrast agent uptake made the tumor well distinguishable from the
rest of the brain tissue allowing an upper threshold-based segmentation procedure [46].
Hemorrhage was excluded by the segmentation procedure since it produces a recognizable
signal, i.e., a T2w signal loss [47]. For every imaged sample, a threshold in the grey
scale values was set to segment the Gd-loaded tumor out from the surrounding tissues in
MRI images. This was realized with the Analyze Particles plugin of the Fiji software [48]
returning the number of pixels of the segmented area (tumor area) on each slice. The
total volume of the tumor was obtained by multiplying the tumor area by the MRI slice-
image thickness.

2.5.2. Tumor Segmentation on XPCI-CT Images

After XPCI-CT image reconstruction, each sample dataset was prepared for tumor
segmentation to be performed with the ilastik software [49], as shown in Figure S1. The
procedure is explained in the “tumor segmentation” section of the Supplementary Materials.
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The validation of the tumor segmentation is reported in Figure S2, where the segmented
volume is validated by monoclonal mouse anti-glial fibrillary acidic protein (GFAP) staining
on four different samples: results of this ilastik-based segmentation procedure show a
good match for the GBM detection with the GFAP histology images. Nevertheless, areas
with infiltrative tumor cells are overestimated by the segmentation procedure, as visible
in Figure S2d–d”. The estimated tumor volumes are plotted against the animal survival;
data of animals belonging to the same group, which died within 3 days, are averaged and
reported as a single point.

2.5.3. Compatibility Study between XPCI- and MRI-Based Tumor Volumes

In order to include in the same analysis the tumor volumes obtained from MRI (in-
vivo) and XPCI-CT (ex-vivo) images, the assessed tumor volumes were normalized by
the total brain volume. This volume scaling is necessary to account for modifications
(usually shrinkage) of the organ due to the tissue fixation procedures, which is a necessary
step for ex-vivo experiments to avoid degradation of biological material. Before doing
so, a compatibility study between the tumor volumes obtained with MRI and XPCI-CT
was performed. The MB350 group was selected for this purpose since all animals in this
group died by D15-16, i.e., 3–4 days after an MRI session. Among all the irradiated animal
groups, the MB350 is the only one where MRI and XPCI-CT images were acquired a few
days apart enabling a good comparison of the tumor volume estimations obtained with
the two imaging techniques independently. To compare the assessments of the tumor
volumes calculated by XPCI-CT and MRI, and thus to verify the compatibility between
the two estimations, the following parameters were computed: (i) the tumor volumes,
normalized to the full-brain volume, for all the seven tumor-bearing animals of the MB350
group computed both by segmenting the MRI and XPCI-CT images, together with the
associated error; (ii) the compatibility reporting the t value, i.e., the difference of the tumor
volumes obtained with the two methods divided by the error of the difference; (iii) the
probability P(t) associated with the different values of t according to the Gaussian table;
(iv) the complementary value of P(t), named confidence level (C.L.). Measures with C.L.
>5% are considered to be compatible to each other.

2.5.4. Segmentation of Hyperdense Structures (i.e., Microcalcifications)

For every brain in which hyperdense structures (proved to be microcalcifications)
were detected, an automated threshold method was applied to segment these features from
the embedding tissues. The segmentation procedure was performed with the Fiji 3D Object
Counter plugin. A threshold in the grey scale was chosen for each sample to select all the
microcalcifications, which are characterized by grey values in the range of (4.8–65.5) × 103

for 16-bit images, and segment out their volume-data. The 3D Object counter plugin detects
slice by slice the pixels above the set threshold and, afterwards, creates a volume for every
single microcalcification by putting together the areas that in the different slices were
assigned to the same object. At the end of the process, the plugin returns the total number
of voxels composing each microcalcification. To compare the results obtained for the BB,
MRT and MB groups, the total volume of the detected microcalcifications was normalized
to the FOI. The volumes of microcalcifications of rats that died within three days and that
belong to the same RT group, are averaged together.

2.5.5. 3D Image Rendering and Computing Aspects

3D rendering of the tumor and microcalcifications image volume were realized with
the software VG Studio Max 3.5 (Volume Graphics GmbH, Heidelberg, Germany) importing
the full brain volume and separately the segmented tumor or microcalcification volumes.

The image processing and segmentation procedures were carried out with a Fujitsu
laptop with 4 Intel Core i7 CPU processors and 2.5 GHz, a Fujitsu workstation with 8 Intel
Xeon CPU processors with 4 kernels and 2.6 GHz or via the ESRF Networked Interactive
Computing Environment (NICE) where larger computational power was required. The
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segmentation procedures of a tumor volume on MRI images, on XPCI-CTs and microcalci-
fications volumes can take up to about 15 min, 5 h and 90 h, respectively. Usually, when
performing microcalcifications segmentation the full dataset is divided in sub volumes that
are segmented separately.

2.6. Histology and Immunohistochemistry Analysis

All the healthy brain samples were included in paraffin blocks and 3 µm thick slices
were cut with a Leica SM2010R Sliding Microtome, Leica Microsystems GmbH, Wetzlar,
Deutschland to perform Hematoxylin and Eosin (H&E), Alizarin Red (for Ca deposits),
Perls’ Prussian Blue (for Fe particles) and GFAP (for gliosis detection) histologic stainings.
Details are given in the “Histologic procedures” section of the Supplementary Materials.

In addition to healthy brains, the tumor bearing brains treated with MRT600 showing
a small or no residual GBM on XPCI-CT images were serially cut and stained with GFAP
for validating the tumor presence or sterilization.

2.7. SAXS/WAXS and XRF Experiments
2.7.1. Sample Preparation

For seventeen (healthy and GBM bearing) rats brain samples, 80 µm thick slices were
cut with a Leica SM2010R Sliding Microtome and were prepared for the SAXS/WAXS
and XRF experimental sessions placing them in sealed Ultralene sachets mounted on a
custom-made and in-house designed sample holder.

2.7.2. Data Acquisition

SAXS and WAXS scanning microscopy data were collected at the cSAXS beamline [50,51]
using a monochromatic X-ray beam of 13.589 keV of energy and 2.4 × 1011 photons/s ex-
tracted by means of a liquid N2-cooled, fixed-exit Si(111) monochromator with bend-
able second crystal for horizontal focusing to about 45 µm Full Width at Half Maximum
(FWHM), focused by a Rh coated mirror for vertical focusing to about 25 µm FWHM. The
SAXS and WAXS maps were recorded by a Pilatus 2M area detector [52] and the XRF
maps were collected with Ketek VIAMP KC00-C1T0-H030-ML8B 133 Silicon drift detector
with the signal processing done by XIA FALCONX electronics. With calibration samples,
energy-windows have been defined to integrate the P, Ca, and Fe signal. Samples were
placed onto a motorized 2D translation stage allowing movements on the perpendicular
plane with respect to the X-ray beam direction. The sample-to-detector distance was set
to 7098 and 243.7 mm for SAXS in combination with XRF and WAXS, respectively, with
exposure times of 0.4 s for SAXS and XRF and 0.3 s for WAXS. Data collection was per-
formed in continuous vertical lines with the sample moving at constant speed while the
detector was recording data frames with in-line rates of 1/0.405 Hz for SAXS and XRF and
1/0.305 Hz for WAXS. For SAXS data collection, a 7 m long air-evacuated flight tube was
inserted between the sample and the detector. SAXS and WAXS 2D data were calibrated by
silver behenate (SAXS) and NIST SRM640b (WAXS) and folded into 1D profiles. Details of
the SAXS/WAXS and XRF data analysis are reported in the “SAXS/WAXS and XRF data
analysis” section of the Supplementary Materials.

3. Results
3.1. Radio-Induced Effects on Healthy Treated Rat Brains

XPCI-CT coronal images of healthy BB, MB and MRT irradiated brains acquired with
a voxel size of 3.253 µm3 are presented in Figures 2 and 3 and correlated to histology
results. All the images are displayed in the radiologic view and are obtained from samples
harvested at D138, which was the decided sacrifice point for all the healthy animals. The
main effects on the irradiated tissues caused by the three different treatment modalities are
visualized with high contrast and detail. XPCI-CT data are then compared with H&E, Ca,
Fe and GFAP stained histological images.
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Figure 2. BB and MB180 healthy treated samples. Coronal XPCI-CT images are compared with
histology and immunohistochemistry analysis. When the entire slice is not displayed, only the
irradiated hemisphere of the brain is reported. (a) Shows an XPCI-CT image for the treated side of
the BB5 brain reporting no damages in the cortex (CTX), hippocampus (HIP) and thalamus (TH) as
confirmed by its H&E and GFAP (a’) stained corresponding tissue slices. The BB10 sample is analyzed
in (b) and (b’), where just small Fe deposits are present and marked in blue (see white arrows) in
the Fe-stained histology. The GPAF slice reports small reagent uptake in both the hemispheres thus,
no RT-induced lesions are revealed. Subfigures (c–c’) report a BB15 sample analysis where the three
different investigations do not show significant pathology: only a small Fe sediment is visible. GFAP
staining reveals discrete reactive gliosis in both the hemispheres. MB180 sample display RT-induced
scars along the beam path that are visible in XPCI-CT (d) especially in the caudate putamen (CP) of
the right-side brain and in its 3× zoom together with the left-side counterpart. By this comparison, a
reshape in the nervous structures is illustrated along the MB peak delivery areas (indicated by the
blue arrows). Subfigures (d’–d”’) and their insets report the presence of Ca and Fe minerals within
the MB-driven scar indicated by cyan and white arrows, respectively together with cell-loss findings
displayed as bubbles in the tissue (black arrows) and small astrocytes next to the calcifications. All
the images are displayed in the radiological view.
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Figure 3. MRT-treated healthy samples: coronal XPCI-CT images compared with histology and
immunohistochemistry on the irradiated brain hemisphere. MRT200 sample reports some hyperdense
agglomerates in the thalamus (TH) (a) that are better visible in the adjusted windowing inset and
are recognized as Ca and Fe deposits thanks to the H&E, Alizarin Red and Perl’s Prussian Blue
histologies (a’). Iron deposits are pointed out by white arrows, while red arrows identify the MRT
paths. The GFAP staining of the thalamus area (a’ inset), shows limited gliosis in two zones. Magenta
arrows are for astrocytes and cyan arrows for Ca deposits. MRT paths are visible in both XPCI-CT
and histology as tissue ablation in the hippocampus (HIP), thalamus, hypothalamus (HYP) and
amygdala (AMG) as visible in the 2× zoom of (a) and in (a’). MRT400 (b) and MRT600 (c) samples
manifest big cluster of Ca/Fe deposits together with small dot-shaped ones. The different applied
stainings reveal a low content in Fe and massive astrogliosis in the deposit surroundings (GFAP
staining of (b’) and (c’)). MRT paths are visible in both XPCI and histologic images. In particular, the
cortex (CTX) GFAP inset of (b’) demonstrate that no gliosis is induced by MRT irradiation without
being entangled to Ca agglomerates.

XPCI-CT and histologic images of the BB-treated rat brains are visible in Figure 2a–c,
where only the irradiated hemisphere is displayed. In all the irradiated brain regions only
histology could reveal the presence of small structures in the BB10 and BB15-treated sam-
ples that were recognized as deposits of ferric ion with lateral dimensions of ~30 µm (see the
insets of Figure 2b,c). Conversely, the BB5 group does not show any pathological changes.
No RT-induced reactive gliosis, as confirmed by GFAP staining, could be observed in any
of the three groups. Some brown-marked areas (indicating the presence of astrocytes) are
visible in the GFAP histologies of both treated and untreated brain hemispheres, therefore
these lesions are not radiation specific and are not necessarily caused by the treatment.

MB-treated rat brains show evident traces of the dose-delivery geometry. This is
clearly visible by comparing the right and left hemispheres of the MB180 brain reported
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in the coronal XPCI-CT image of Figure 2d and the related 3× zoom insets. The scar
produced by the minibeams causes a reshape in the nervous structures in the caudate
putamen (CP) as pointed out by blue arrows in the lilac-bordered zoom, to be compared
with the homogeneously organized tissue in the pink-bordered inset. Furthermore, along
the beam path, hyperdense structures are present as bright spots in XPCI-CT image, as
overcolored structures in H&E, and in the Ca and Fe histologic images (Figure 2d–d”’)
as indicated by cyan and white arrows (as in all figures), respectively (histologies only
show the irradiated hemisphere of the brain). This correlation allows labelling the bright
XPCI-CT signal as Ca and Fe deposits. In addition, the MB delivery causes local cell
loss and microcystic degeneration of the tissue (black arrows, as in all figures), as visible
in the insets of Figure 2d’,d”’. The 10× zoom of Figure 2d”’ shows in detail three Fe
mineralizations and some smaller ones in the surroundings. The GFAP staining for the
same area, performed on a subsequent slice, shows that Ca deposits (here stained in blue)
coexist with Fe ones. In all the images, the blue arrows indicate the MB path direction.
Increasing the MB peak dose (e.g., MB350 group), the effects induced on the tissues become
more invasive, as shown in Figure S3. The minibeams delivered with a peak dose of 350 Gy
causes the complete destruction of the irradiated tissues, which is visible in both XPCI-CT
and H&E images. The coronal XPCI-CT (0.73 µm3 voxel size) and H&E stained histology
insets zoom into the hippocampal lesions (yellow arrows) revealing that a very low content
in cells is present producing in some cases small microcystic degeneration in the tissue.
Both XPCI-CT and H&E images report the irradiated hemisphere only. The GFAP staining
shows a reactive gliosis in the cortex areas corresponding to the valley dose delivery; cell
loss is predominant in the peak delivery areas.

By analyzing the XPCI-CT images of MRT-treated animals (Figure 3), tissue micro-
ablations, appearing like long micrometer-wide areas with cell losses, are detected in all
the irradiated regions of the brain and micro- and macro-deposits of dense materials are
visualized, which are identified as Ca and Fe by histologic analysis. These features are
shown in Figure 3a–c, where only the irradiated hemispheres are reported. Results obtained
on a MRT200-treated brain (Figure 3a–a’) showcase the formation of Ca/Fe deposits in
the thalamic area of the right hemisphere along the X-ray microbeam paths (red arrows
indicate the MRT delivery direction, as in all figures). On the XPCI-CT image of Figure 3a,
the presence of hyperdense, highly absorbing, structures is shown as bright accumulations
in the thalamus (TH), while MRT paths are observable in Figure 3a–a’ (XPCI-CT and H&E
histology images, respectively) in the hippocampus (HIP), amygdala (AMG), thalamus
and hypothalamus (HYP). Thanks to the adjusted windowing (AW) inset of Figure 3a
it is noticeable that the bright structures are embedded and appear to be aligned along
parallel lines corresponding to the MRT microbeam paths. In Figure 3a it is rather difficult
to simultaneously visualize Ca/Fe deposits and the related MRT paths due to the stripe
artefacts caused by the abrupt variation of index of refraction between dense deposits and
the surrounding soft tissue. The 2× zoom inset of the hippocampus helps recognizing
the MRT paths in the XPCI-CT image. The Ca and Fe stained histological slices of the
thalamic regions (insets of Figure 3a’) allow for the identification of those deposits as Ca/Fe
accumulations, which are revealed as red and blue spots, respectively. For this sample, the
GFAP stained inset highlights the presence of some reactive gliosis agglomerates (magenta
arrows pointing to astrocytes, as in all figures) within Ca/Fe deposits. In the rat brains
of the MRT400 group, large mineral deposits are detected in the thalamus (red-bordered
rectangle in the coronal XPCI-CT view in Figure 3b) and they are present both as micro-
deposits and as clusters, as it is more clearly highlighted in the AW inset. H&E, Fe, Ca
and GFAP histological images (Figure 3b’) attest the presence of an abundant content of
Ca with respect to Fe. A massive astrogliosis is visible around the microcalcifications
(GFAP 5× zoomed image) while no astrocytes reaction is evident along the MRT paths
unless calcifications are present, as demonstrated in the GFAP inset of Figure 3b’, where a
portion of a microbeam irradiated cortex (CTX) region is shown. In the MRT600 group, the
hyperdense signal on the coronal XPCI-CT image of Figure 3c corresponds again to small
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deposits and big clusters of granular aggregates (see the AW insert). Those aggregates are
mainly composed of Ca, as the different histological stainings also reveal (Figure 3c’ and
insets). For this sample, in both XPCI-CT and H&E histology, MRT microbeam paths can be
seen crossing the entire hemisphere from the cortex down to the hypothalamus. In the H&E
histology (Figure 3c’) the MRT paths are not displayed as straight lines in the thalamus,
but they are bent as a result of the tissue deformation due to the Ca deposits formation
(light-blue arrows). The two GFAP antibody stained histology images (insets of Figure 3c’)
demonstrates again the presence of gliosis in the region around the macrocalcifications and
next to a blood vessel (BV) that was probably damaged by the MRT transections.

3.2. Effects of Spatially Fractionated Radiotherapy on Glioblastoma-Bearing Animals
3.2.1. Survival Curves

The rats belonging to the MB350 groups, both GBM-implanted and healthy, died at
D15–16 and are not included in the survival curves. The healthy-treated animals of the
MB180 group and of all the BB and MRT groups lived until the programmed end of the
experiment, i.e., D138. Therefore, the survival curves reported in Figure 4 only contain
data for GBM-bearing animals. Healthy-controls, MRT200 and BB5 groups show a similar
survival according to the long-rank-test in a 95% confidence level, resulting in a median
survival of 22, 24 and 21 days from the day of GBM implantation, respectively. On the
contrary, MRT400 and MRT600 treatments increase the median survival with respect to the
untreated group. We obtained a median survival of 52 days for MRT400 and 110 days for
the MRT600 group: the last one presents the best survival among the different groups, thus
MRT with peak dose of 600 Gy provides the best results in terms of survival in this study.
Lastly, the MB180 group shows a median survival of 28 days.

Figure 4. Survival curves of glioblastoma-bearing rats. The curves for the different irradiation groups are given as a
percentage of surviving rats as a function of the survival days, counted from the glioblastoma implant day.

3.2.2. XPCI-CT: A Multi-Scale Imaging Approach

The effects of microbeam and minibeam RTs on glioblastoma-bearing rat brains are
shown in Figure 5 by using a multi-scale approach enabling a hierarchical representation of
the treated tissues. Coronal XPCI-CT images acquired at different spatial resolutions (i.e.,
voxel sizes of 3.253, 1.23 and 0.73 µm3) are presented. At first, the volume of GBM tumor is
well distinguishable against the surrounding healthy tissue as well as the re-organization
and disruption of the overall brain anatomy caused by the presence of the tumor (MRT200
specimen in Figure 5a). Necrotic tissue (nec) is displayed with low grey levels (dark area
indicated by green arrows) with respect to the other brain tissues and the tumor and blood-
filled vessels (BFV) appear as bright features in the XPCI-CT image within the tumor milieu
(light-blue arrows). Blood filled vessels appear brighter than the surrounding tissues, as
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some blood content is still present, since the animals were not perfused and blood cells
were not washed out during the sacrifice. The inset of Figure 5a shows an area of the brain
cortex of Figure 5a examined with a voxel size of 0.73 µm3; in none of these two images the
paths of the 200 Gy-peak microbeams are detectable and, overall, for the MRT200-treated
brains no sign of the MRT paths is visible in the cortex, that is the MRT entrance area. The
structures in the cortex tissue are homogeneously arranged: cells and both formalin (FFV,
orange arrows) and blood-filled vessels are clearly recognizable.

Figure 5. Multi-scale XPCI-CT coronal images of MRT and MB180-treated tumor-bearing brains. The
MRT200 sample (a) shows great discrimination between healthy and tumor tissue distinguishing
necrosis (nec, green arrows) among the GBM structures. A cortex zoom was realized with a 0.73 µm3

voxel size setup revealing uniform cell content and no MRT path track. Orange and light-blue arrows
indicate formalin (ffv) and blood-filled (bfv) vessel. (b) Reports an MRT400-treated sample displaying
MRT paths induced tissue ablation (red arrows) and necrosis. Its 1.23 µm3 voxel size inset depicts in
detail a hypocellular area where calcium deposits are present (cyan arrows). Purple arrows point
at the hypocellular area borders. The panels (c) and (c’) present two different coronal views of the
same MRT600-treated brain together with their adjust-windowing insets and high-resolution insets
showing in detail that microcalcifications developed along the MRT tracks. The maximum intensity
projection (MIP) reveals small deposits that are not visible with 3.253 µm3 voxel size. (d) Displays
in detail the MB180 induced scars together with cells swelling (yellow arrows) and Ca/Fe deposits
(cyan arrows) along the minibeam path.
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MRT400 brains are showcased in Figure 5b where the tumor is grown replacing almost
completely the entire right hemisphere and destroying the healthy structures. Consequently,
the brain regions of MRT delivery are replaced by tumor tissue exception made for a small
area in the cortex where the signs (cell loss) due to MRT paths are deviated as a result of the
tumor growth. Necrotic tissue and intra-tumoral calcifications are visible with a different
degree of detail in the 3.253 and 1.23 µm3-voxel size-images (Figure 5b and related inset).
XPCI-CT image well discriminates the presence of aggregating cells around a hypocellular
zone where a denser lump, with an XPCI-CT signal compatible with Ca (see cyan arrows),
appears too. Purple arrows point at the borders of this hypocellular area, while cyan ones
indicate the agglomerates. The multi-scale XPCI-CT images of an MRT600-treated brain
acquired using voxel sizes of 3.253, 1.23 and 0.73 µm3 show that small mineralizations can be
discriminated by using the highest spatial resolutions, and that a 3.253 µm3 voxel size is not
sufficient, instead, to separate individual microcalcifications. Figure 5c,c’ are two coronal
XPCI-CT slices of the same sample illustrating different anatomical areas of the irradiated
hemisphere where both MRT paths and large Ca/Fe agglomerates are evident (see the AW
insets). The 1.23 µm3 voxel size (pink-bordered) inset is a MIP of 50 subsequent XPCI-CT
images (corresponding approximately to a 60 µm thick slice) around the slice shown in
Figure 5c. This MIP image highlights the presence of small agglomerates, compatible with
the microcalcifications found in other anatomical regions, that are not detectable when
using a 3.253 µm3 voxel size. Both the high-resolution insets of Figure 5c,c’ display micro
agglomerates developing along the MRT peak dose paths. Finally, XPCI-CT coronal images
of a tumor-bearing rat brain treated with MB180 are shown in Figure 5d. By applying the
multi-scale XPCI-CT approach, it is possible to depict the MB-induced scars (blue arrows)
with Ca agglomerates and microcystic-like cell loss regions (black arrows).

3.3. Quantification and 3D Rendering of Radiotherapy Effects

Results of the characterization and quantification study of tumor and microcalcifi-
cations for all the irradiation groups are reported in Figures 6 and 7. Tumor volumes
graphs report both the volumes assessed with MRI and XPCI-CT according to the results
of the compatibility test performed as explained in the Materials and Methods section. The
compatibility test between MRI and XPCI-CT tumor volume measurements is reported
in Table S1 showing that, overall, the MRI and XPCI-CT segmentation procedures are
compatible on six out of the eight considered samples. Furthermore, if the averaged values
(last raw) of all the computed parameters are considered, MRI- and XPCI-CT-based tumor
volumes are overall within the compatibility. As a result, the values of tumor volumes
obtained from in-vivo MRI and ex vivo XPCI-CT data can be displayed in the same plot.

The GBM-control group (Figure 6a) as well the BB groups (Figure 6b) show a linear
trend for the tumor development over time. Furthermore, as noticeable in Figure 6b, the
MRT200 and MB180 groups have values of tumor volumes similar to those of the BB5
and GBM-control groups. The MRT400 group presents the largest tumor volumes among
the different groups and the MRT600-treated brains show the smallest tumor volumes
achieved within this study. For animals surviving more than 60 days, no tumor residue
is detected on the 3.253 µm3-voxel-size XPCI-CT images. Nevertheless, some residual
GBM infiltrations are detected with GFAP stained immunohistochemistry, as can be seen
in Figure S4, meaning that no complete tumor sterilization has been achieved. Here, the
tumor is indicated by high cellularity and nuclear pleomorphism, i.e., variability of size,
shape and chromatin density of the nuclei.

As a case in point, Figure 6c reports the 3D rendering of one tumor-bearing brain
sample of the BB15 group. Three different views are reported (one axial and two sagittal
views). The brain volume is rendered in a semi-transparent mode while the glioblastoma is
colored in red and rendered as a solid mass. The three different views allow identifying
how the irregular GBM shape has developed within the organ, shifting the brain mid-line
(axial view). Other tumor 3D renderings are presented in Figure S5 showing how the
glioblastoma has grown in MRT200 and MB180-treated brains.
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Figure 6. Quantification of tumor volumes for the GBM-control group (a) and all the groups involved in the study (b) as
a function of the survival days which are counted starting from the tumoral cells implantation day (D0). All the values
are extracted from XPCI-CT images but the one at day 12, which is in-vivo MRI-based. Tumor volumes are given as a
percentage of the entire brain volume; values of animals belonging to the same group with survivals within three days are
averaged and the mean values are reported in the graphs. (c) Reports three different orientations (axial and two different
sagittal views) of the 3D rendering of a BB15 irradiated rat brain showing how the tumor develops into the brain volume
shifting the brain mid-line. The full organ dataset is rendered in semi-transparency while the tumor is colored in red and
co-registered as a solid mass.
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Figure 7. Graphs of the microcalcifications content in healthy irradiated rats sacrificed at D138 (a) and in GBM-bearing
animals as a function of the survival days (b). Values are normalized over the field of irradiation. The zoom in (b) better
discriminates the values obtained before D39.

As for the assessment of the microcalcifications’ volume, all the healthy animals treated
with MRT and MB180 show microcalcifications within the irradiated tissues, as reported
in the histogram in Figure 7a. The MB180 and MRT200 groups have comparable total
volumes of microcalcifications; for the MRT-treated groups it increases as the peak dose
levels rise. All the tumor-bearing animals, exception made for two GBM-controls, show
microcalcifications; the total volume of microcalcifications vs the survival days are reported
in the plot in Figure 7b. The total volume of microcalcifications in the MRT200, BB5, BB10,
MB180 and GBM-control animals present similar values and trends over time, while the
MRT400 group has no specific trend and the MRT600 volumes have a quadratic growth
over time. A 3D representation of the distribution of the microcalcifications (indicated
as mcs in the figures) within the whole brain and within the irradiated tissues for an
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MRT600-treated healthy brain are shown in Figure 8a,b, respectively. Figure 8a shows the
sagittal view of the whole 3D rendered brain, displayed in semi-transparent modality, and
the co-registered segmented microcalcifications volume. Here it is possible to appreciate
how microcalcifications are formed within the brain and that they agglomerate in the
thalamus, caudate putamen, frontal, parietal and orbital cortex. Furthermore, in the
axial view of Figure 8b and its inset, the grey-scale 3D rendering of both the organ and
microcalcifications allow identifying the location of the structures with respect to the beam
paths, indicated by the red arrows. The light-blue arrow points to a region of the tissue
where the tacks of the MRT microbeam paths appear “bended” in the proximity of the
Ca/Fe deposits. As a comparison, the 3D rendering of an MRT200-treated healthy brain is
presented in Figure S6. In this case, the microcalcifications only develop in the thalamus as
non-clustered agglomerates of different dimensions.

Figure 8. (a,b) Three-dimensional (3D) images of the distribution of microcalcifications (mcs) for a
healthy MRT600-treated sample in a sagittal and axial view, respectively. The (d) zoom enhances that
microcalcifications are distributed along the MRT paths (red arrows) and the green arrow points out
that the MRT paths are bended along their track. (c–f) The tumor and microcalcifications 3D rendering,
in a sagittal view, within the entire brain organ for an MRT200, MRT600, BB15 and MB180—irradiated
sample respectively. (g–j) The zoomed rendering, in axial view, of (c–j) respectively. All tumor and
brain volumes are presented in semi-transparency while microcalcifications are co-registered to the
other volumes as solid white deposits.

The coexistence of tumor and microcalcifications within the treated brains is shown, for
different irradiation geometries, in Figure 8c–j. Images in Figure 8c–f report the sagittal view
of the 3D rendering of an MRT200, MRT600, BB15 and MB180 samples respectively, while
3D renderings in Figure 8g–j are zoomed views of the regions with microcalcifications on
an axial orientation, for the same samples. The brain and the tumor volumes are rendered
with the same color code as in the previous figures, while microcalcifications are here all
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depicted in white. As for the healthy case, MRT200 samples only show microcalcifications
in the thalamus; Figure 8g displays the deposits next to the tumor borders, similarly to BB15.
The MRT600-treated sample, if compared with the MRT200 one, shows more extended
calcifications in the area from the thalamus to the cortex. The zoom of Figure 8h allows
discriminating both micro- and macro-deposits. Lastly, in the MB180 sample (Figure 8f,j)
microcalcifications are clearly arranged along the MB paths (see the arrows) along the
entire irradiation field.

3.4. SAXS/WAXS and XRF Study of Microcalcifications

SAXS/WAXS and XRF analysis enabled the structural and chemical classification
of microcalcifications for MRT-treated brain samples. In all the investigated specimens
showing crystallized Ca, WAXS identified the Ca content as hydroxyapatite (HAP) crystals.
The HAP peak position, evaluated for the most intense peak (q~2.28 Å−1) is reported in
Figure 9a, showing that all these samples, which are the ones with a crystalline Ca content,
include HAP. For the same samples, the median value of the HAP crystalline domains
(∝2π/peak width) evaluated along the most intense peak, are reported in Figure 9b, where
the median value over all the detected signals is reported. Figure 9b shows that, for
both healthy and GBM-bearing MRT-treated brains, no specific trend as a function of the
delivered MRT peak dose is recognizable and all the samples exhibit the formation of
HAP crystals with similar domain sizes. It must be noted that the GBM-bearing MRT600
values are from animals that were sacrificed at different time points, while the others are all
sacrificed at the last time point. Overall, the graphs of Figure 9b report the median values,
but large error bars (+/− one standard deviation) reveal that, in some cases, different HAP
WAXS profiles are distinguished, corresponding to distinct HAP crystalline domains, i.e.,
peaks have different FWHM. As a showcase, in Figure 9c the most representative WAXS
signals found within a healthy MRT600-treated sample are reported. Yellow and cyan
profiles correspond to HAP and their Rietveld analysis and crystalline domain evaluation
along the [2] direction, which is the (002) peak at q = 1.83 Å−1, are reported in the caption.
The colored 2D sample map (Figure 9d) helps in identifying the HAP regions and the
sub-areas corresponding to the two HAP-WAXS profiles (same color code in Figure 9c,d).
It is noticeable that the largest crystalline domain value is associated with low signal in
the transmission and high XPCI-CT, Ca, Fe and P XRF signals (Figure 9e), all expressed
in arbitrary units. The “Combined-XRF” image reports the combined Fe, Ca and P XRF
signals in RGB scale. Thus, the areas in white exhibit the coexistence of the three elements,
while cyan areas are rich in Ca and P; the red Fe background present in the entire slice is
due to the used stainless-steel microtome blade. A similar behavior was found in other
samples: SAXS/WAXS and XRF collected data are reported in Figure S7 for a GBM-control
sample, as a further example.

The Fe median signal was extracted for each sample as explained in the Materials
and Methods section, and is reported in the graphs of Figure 9f. For the healthy-treated
samples, no specific trend is visible, and a large intra-group variability is shown, while for
the GBM-bearing brain all values are compatible to each other. In these plots, some samples
show large error values indicating that the Fe signals detected in the different pixels is
spread over a large interval of values. By looking at the GBM-bearing MRT-600-treated
samples, a decrease in the mean value for the Fe signal is visible for the animals sacrificed
at D138 (samples B12–B13).
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Figure 9. SAXS/WAXS and XRF data analysis for controls and MRT-treated samples. (a) Peak position graph of the samples
showing hydroxyapatite (HAP) as crystallized phase for the Ca content. (b) Inverse peak width for healthy and GBM-bearing
MRT-treated brains. The reported value is the median over all the detected signals within the q-range from 2.20 Å−1 to 2.34 Å−1.
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(c–e) Signal classification, showcase the presence of two different populations of HAP within the same sample, which is
revealed by the two WAXS signals, the yellow and cyan one, in (c) that are also displayed with their Rietveld analysis.
Here, the crystalline domains evaluated along the 002 direction are 11.7 and 27.0 nm. The colored micrograph (d) helps
in identifying the sample areas associated with the detected WAXS signals. (e) The micrographs obtained for the same
specimen, for transmission, XPCI-CT, Ca, P, Fe and combined XRF signals. (f) Mean XRF Fe signal for all the available
samples. Fe signal was only studied in the image pixels where a relevant XRF Ca signal is detected.

4. Discussion
4.1. Effects of Treated Healthy Rat Brains

The potential of XPCI-CT as a tool for investigating the effects induced by radiotherapy
has been shown analyzing rat brains treated with both standard and spatially-fractionated
RTs. First, the study was performed on healthy brains to access how the brain responds to
the different RT protocols. All the delivered BB irradiations (using 5, 10 and 15 Gy) do not
determine visible pathological signs or tissue alterations; histological images only reveal a
few Fe deposits (see Figure 2). The presence of astrocyte excess in the BB-treated brains is
likely due to rat age (D138 for all the animals) and do not represent a pathological state as
confirmed by a symmetric GFAP uptake in the two hemispheres (Figure 2).

MRT-treated samples show more pronounced effects that appear as tissue ablations
corresponding to the peak delivery areas together with microcalcifications agglomerates,
as visible in Figure 3. During the treatment, the following brain areas were irradiated:
neocortex, hippocampus, thalamus, hypothalamus, caudate putamen, frontal, parietal and
orbital cortex. The MRT-induced ablations are visible in all these areas for the MRT400
and MRT600 groups, while the MRT200-treated animals exhibit ablations mainly in the
thalamus and hypothalamus (as showcased in Figure 2). MRT-induced tissue ablations
were already seen in Barbone et al. 2018 and Bouchet et al. 2016 [25,53], but no preferential
effect with the applied dose and the anatomical brain area has been reported. Nonetheless,
MRT transection preserve the overall neuroanatomy and some neurons are still visible
within the microbeams peak delivery area, as confirmed by histology. Microcalcifications
are visible in a small amount in the MRT200-irradiated samples, and the amount of deposits
increases by increasing the peak dose value, as visible in the plot of Figure 7a. Overall,
microcalcifications are observable as old (i.e., advanced stage) and well-organized lesions,
probably caused by local micro-bleeding from blood vessels (see the dedicated paragraph).
The MRT200 microcalcifications are mainly found in the thalamus (Figure S6) while for the
MRT400 and MRT600 groups they also appear in other anatomical regions (for instance
in the caudate putamen and orbitofrontal cortex) accompanied by massive astrogliosis
(Figures 3 and 8). The fact that microcalcifications are only present in specific areas of
the brain suggests a different radio-sensitivity of the different brain anatomical areas,
as discussed later in the paragraph dedicated to the 3D-based information. This is also
confirmed by the presence of bended microbeam paths next to Ca/Fe agglomerates in
healthy samples (Figures 3c’ and 8b): slow-down of metabolism causes deposits and thus,
the MRT bending occurs at the interface with an area with more accelerated metabolism.

MB-treated rat brains present pronounced scar induced by the MB passage, which are
characterized by Ca and Fe deposits, in a smaller amount with respect to all the MRT cases,
and by low cell density areas (Figure 2d–d”’ and Figure S3) that are well distinguishable
with both histology and high-resolution XPCI-CT (Figure 5d). This latter type of lesion
derives from a degradation of the tissue and a neuronal band interruption that are typical
signs of old-occurred localized lesions that did not result in a complete tissue destruction
nor in a repaired necrosis. MB and MRT groups showcase how the dose-volume effect
determines very different outcomes in spatially fractionated RTs depending on the size of
the field of irradiation. Limited to the investigated cases, microbeams are well tolerated
by the brain tissues for radiation doses up to 600 Gy of peak, while minibeams cause
important damages (see Figure S3) even if the peak and valley doses are both lower
than in the MRT600 case. Lastly, it has to be considered that the MB350 valley dose is
compatible with the uniformly delivered dose in the BB15 case, where no substantial
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effects are found. Thus, the used protocol for MB350 animals represents a dose limit that
should not be exceeded when planning the minibeam RT with the used spacing. This
evidence is corroborated by the fact that all the MB350-treated animals, both healthy and
tumor-bearing, died at D15-16.

4.2. Effects on GBM-Bearing Rat Brains

The main visible effects of the RTs on tumor-bearing animals concerns the tumor
control, i.e., the regression or progression of the tumoral entity, to be interpreted together
with the analysis of survival curves and the occurrence of microcalcifications. The high
sensitivity of XPCI-CT with respect to the nervous tissue structures allows for an optimal
GBM discrimination, as previously demonstrated in the literature [25,54,55]. This capability
is evident in Figure 5a–b where the GBM tissue and necrosis are appreciable, as in [56], at
different length scales enabling the establishment of a solid and precise pipeline for tumor
segmentation that can be also applied to other animal models. The implemented ilastik-
based segmentation tool exploits the 3D nature of the XPCI-CT data providing, isotropically,
greater precision in tumor segmentation with respect to the one achievable with histology
or MRI. Indeed, histologic-based tumor quantification is intrinsically 2D (the thickness of
the cut slices determines the spatial resolution in the third dimension), and the MRI-based
one has the drawback of being based on low spatial resolution data, especially in the third
dimension where is limited by the inter-space between two subsequent slices [8,30,53].
Thanks to the implemented segmentation procedure, it was possible to build the graphs
of Figure 6a,b reporting the tumor development over time. The first plot reports a tumor
volume trend for the GBM-controls compatible with the linear growth found in [53,57]
and the second show the computed tumor volume for all the different groups. As in [53],
the tumor volumes for BBs and MRT200 groups have an upward trend as a function of
time and overall, for the BB groups, the median survival is increased as the delivered dose
increases. The MRT400 group shows large values of the tumor volumes and are not in
accordance with the available literature. Probably, this is due to the low statistics and to
the intra-animal variability in reacting to treatment since those values represent data from
a small number of animals. The MRT600 group shows the best tumor control achieved in
this study and, for animals surviving more than 60 days, no traces of GMB are detected by
inspection with 3.253 µm3 voxel size XPCI-CT. However, GFAP stained histologies reveals
small GBM traces in all these samples (Figure S4), meaning that these tumor infiltrations
are below the 3.253 µm3 voxel size detectability limit. Figure 7d,h showcase in 3D the
MRT600 induced tumor shrinkage and thus regression.

4.3. Microcalcification Study

By analyzing the microcalcifications content in the different samples, it is possible
to see that those deposits are both radio- and tumor-induced. Healthy MB180- and MRT-
treated animals exhibit pure radio-induced accumulations (Figure 7a), GBM-controls dis-
play pure tumor-induced mineralizations and GBM-bearing treated animals show the
presence of both types of HAP crystals (Figure 7b). On the contrary, healthy-controls do not
show any Ca/Fe accumulation. Thus, the radio- and tumor-induced microcalcifications are
caused by two different sources but do not show significant differences from a chemical and
structural point of view (see SAXS/WAXS and XRF results in Figure 9). In the literature,
the presence of microcalcifications has been demonstrated in MRT-treated GBM-bearing
and healthy brains [15,28] and on healthy MB-treated brains [13] with different geometrical
parameters or applied radiation doses. Although in this study the segmentation was
performed on the full-organ 3.253 µm3 voxel size CT datasets, the multi-scale approach
applied in targeted regions allows for a better identification of small deposits, as shown in
Figure 5.

Microcalcifications are a well-known post-irradiation effect. Ca deposits are classified
as a late effect of cranial irradiation in childhood [58]. This effect is known as mineral-
izing microangiopathy, an autoimmune reaction localized to the irradiated area that is
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associated with vasculitis and hyalinization [59]. Thus, hypersensitivity of the vessels after
irradiation produces vascular damages with hypoxia that results in Ca mineralization.
Mineralizing microangiopathy found after child and adult cranial irradiations is mainly
present in the basal ganglia and is asymptomatic in most cases [60]. These observations
strengthen the XPCI-CT based evidence of microcalcifications mainly occurring in the
thalamus and caudate putamen that are strictly connected or part of the basal ganglia,
respectively (Figures 3 and 8). XPCI-CT enables the full-organ 3D analysis with great detail
and sensitivity allowing the investigation of RT-induced effects and their localization.
Histological examination of the mineralizing microangiopathy deposits showed a strong
positive stain for Ca and a weak positive stain for Fe [61], as also seen in our cases (histolo-
gies of Figures 2 and 3). Furthermore, brain irradiation was found to cause microbleeding
in survivors irradiated during childhood [62], which is likely to increase during the follow-
up, and is classified as a small vessel disease [63]. Thus, microbleeding and mineralizing
microangiopathy can be seen as the responsible for microcalcifications formation in the
irradiated animals of our study.

For the first time an in-depth analysis of the chemical and crystalline nature of the
microcalcifications was realized by means of SAXS/WAXS and XRF tools. Interestingly,
many MRT-treated samples showed a crystallized phase of Ca that was identified with HAP
crystals by means of the WAXS analysis (Figure 9a). The microcalcifications content for
healthy MRT-treated samples show an increasing trend with the peak dose (Figure 7a), but
no visible trend for their crystalline domain values or XRF Fe intensity signal is retrievable.
It is worth to note that in Figure 9b the plotted values of crystalline domains are the typical
(median) values obtained for each sample, but the coexistence of different HAP populations
in the same specimen is detected (Figures 9c and S7) suggesting a heterogeneous formation
of HAP deposits within the brain tissue. All samples containing HAP crystals exhibit the
coexistence of Ca, Fe and P in the same sites (Figures 9e and S7). Nevertheless, some GBM-
bearing samples were found to contain Fe (from XRF measurements) and no crystallized
HAP (as from WAXS analysis) in the region where there is a XPCI-CT signal compatible
with that of microcalcifications. Probably, an X-ray amorphous phase of HAP is present,
thus corroborating the evidence that no specific values of crystalline domains can be
associated with each MRT group. In the literature, the presence of HAP calcifications on
humans is reported in various pathological cases (see [51,64,65]), where mineralizations are
associated with cells injury, explaining the radio-induced calcifications or with apoptosis
and necrosis, which cause a pathological release of high concentrations of calcium and
phosphate that can explain the detected GBM-induced microcalcifications.

4.4. A Full 3D Characterization and Quantification of RT-Induced Effects

The 3D rendering of the distribution of the tumor and microcalcifications within
the study organ shown in Figures 6 and 8 displays how XPCI-CT enables an accurate
volumetric visualization of anatomical structures and pathological states. From the tumor
volume rendering it is possible to see how the tumor develops inside the full brain for the
three different radiotherapy protocols (BB, MRT and MB) shifting, in some cases, the brain
midline and consequently displacing the healthy surrounding tissues.

As for the microcalcifications 3D rendering, in Figures 8 and S6, it is possible to have a
visual and qualitative assessment of the different radio-sensitivity of brain anatomical re-
gions depending on the applied RT protocol. As it can be seen in Figure 8e,i, BB cases show
microcalcifications in the thalamic area if only associated with tumor presence. This could
be explained considering that tumor areas are characterized by a fragile vasculature where
microbleeding is more likely to happen and thus Ca/Fe deposits can build in. Healthy
BB-treated animals do not show evident clusters of Ca/Fe and only isolated deposits
are present (see Figure 2). MB-treated brains do not display evident differences in radio-
sensitivity for microcalcifications formation. Clusters of mineralizations are present along
the full FOI reproducing the MB path with discontinuity (see Figure 8f,j). Healthy-treated
brains show about three times more Ca/Fe deposits with respect to the GBM-bearing ones,
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exception made for the MRT600 group. This is probably due to the tumor growth within the
organ and to metabolic processes that remodel the presence of microcalcifications and their
formation processes within the brain with respect to the healthy cases. The MRT-treated
brains have a very different content in microcalcifications depending on the delivered
dose (see Figures 8 and S6). Nevertheless, the thalamus is the most sensitive brain area to
X-ray MRT irradiation (as also confirmed by the aforementioned studies on mineralizing
microangiopathy): microcalcifications are present in all the MRT-treated brains (200–600 Gy
of peak dose) regardless the peak dose. Analyzing the distribution of microcalcifications
on MRT400 and MRT600-treated animals, they appear also to be visible in the caudate
putamen and in some cortex areas. Furthermore, it is noticeable that only MRT200-treated
animals do not show clustered deposits. At the best of our knowledge, no previous work
reported experimental 3D results on the induced effects of RTs and thus on the different
radio-sensitivity within the different brain areas.

4.5. Limitations of the Study

The main limitation of this study is related to the low statistics in terms of number
of animals available for each RT group. This is justified by the fact that in the first phase
of the project the aim was to test the sensitivity of the approach to different irradiation
conditions (different groups). The survival curves are reported to show the curing power
of the different RT protocols on the GBM-bearing irradiated animals, but they were not
presumed to be statistically significant at this stage of the study. Furthermore, SAXS/WAXS
and XRF analyses were only performed on one representative tissue slice per each sample.
Additional experiments have been planned to increase the sample numbers and the statistic
relevance of the quantitative assessments.

4.6. Translational Aspects of the Research

In-vivo XPCI-CT applications exist and are already set up for particular target organs
and purposes such as breast mammography and CT [66–68], joint cartilage imaging for
the diagnosis of arthritis [69,70] and lung diseases detection [71–73] putting the basis
for exploiting XPCI-CT as an in-vivo RT follow-up technique. Aspects that need to be
addressed and optimized in view of the in-vivo application of XPCI-CT are the dose
issue related to the use of ionizing radiation and the linked questions of the applicable
spatial resolution and scan duration. The doses currently delivered when imaging post
mortem soft tissues are strongly dependent on the chosen voxel size, among the different
experimental parameters. As an example, for a single CT performed at ESRF-ID17 with a
monochromatic beam of 35 keV, the dose delivered to an excised soft-tissue sample (e.g., a
rat brain) is about 150 Gy with a voxel size of 3.253 µm3, while for voxel sizes of 63–83 µm3

the dose ranges from hundreds of mGy to few Gy, which is in line with the delivered doses
in conventional micro-CT full-animal scans [74,75]. The dose can be further lowered if, e.g.,
iterative or machine learning methods are used for CT reconstruction [76,77].

Another aspect to be taken into account is associated to the physiological motions of
living organisms. The smaller the used voxel size, the more sensitive is the technique to
the small movements of the animal and to motions within the animal’s body (breathing,
heartbeat, etc.) and the higher is the risk of image artefacts that can jeopardize the quality
of the resulting images. Overall, voxel sizes of the order of 63-103 µm3 are a good candidate
for XPCI-CT in-vivo applications.

Additional limitations may arise when the soft tissue to be examined is embedded
within a bony structure, as in the case of in-vivo brain imaging. The presence of the
skull may impair the visibility of the soft cerebral structures. The limits encountered in
imaging complex organisms due to the co-presence of both soft and hard tissues can be
mitigated by the use of multi-material phase retrieval algorithms as demonstrated by
recently published works [78]. Previous studies by our group already demonstrated that
XPCI-CT may facilitate a more complete evaluation of complex samples and organisms by
providing concurrent comprehensive information about soft and hard tissue [79,80].
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As far as it concerns the spatially fractionated RTs, due to the micrometric width of
the single beamlet, very short irradiation time (high dose rates) are needed to obtain a
precise MRT dose distribution within the treated tissue: any movement of the target would
cause the smearing of the MRT lateral dose profile. X-ray beams issued at third and fourth
generation synchrotron facilities are particularly adapted for this treatment because of
their inherent high collimation (quasi-parallel X-rays) and fluxes (i.e., high dose rates).
These requirements are less stringent for the MB technique. Indeed, MB was developed as
an alternative to MRT to (partially) overcome these difficulties [13,81]: small movements
occurring during irradiations will not merge the millimeter-distant MB beamlets and lower
doses with respect to the MRT case are needed. Over the past years, technical efforts
have been also addressed for the development of alternative X-ray sources for MRT and
MB for translation into clinical practice. As an example, line-focus X-ray tubes are being
considered as microbeam source and Monte Carlo simulations have demonstrated they
have a great potential as a radiation source for clinical application [82], of MRT. With this
respect it is also important to mention recent studies in which in-vitro MRT treatments
performed with laboratory sources at conventional dose rates enhanced an increased tumor
cell sensitivity [83,84].

5. Conclusions

This study proves that the XPCI-CT imaging technique is well suited for visualizing
ex-vivo, with a label-free, 3D full organ approach the neuroanatomy of irradiated brains
and side effects after radiotherapy. The effects of standard and novel radiotherapies on
both healthy and tumor-bearing rat brains are visualized with high sensitivity, quantified
and classified by a multi-technique approach. The comparison of XPCI-CT with histol-
ogy, immunohistochemistry, SAXS/WAXS and XRF analyses enabled the morphological,
structural and chemical categorization of radio-induced effects on brain tissues.

This is the first study that compares X-ray BB, MRT and MB treatment protocols,
provides an accurate 3D visualization and quantification of tumor and microcalcifications
volumes and demonstrates a non-uniform radio-sensitivity of the different brain areas.
Microcalcifications are also identified, from a multi-technique approach, as HAP with a
coexistence of Fe, Ca and P. Supplementary investigations are necessary to study if the
microcalcifications crystalline structures varies depending on the brain area in which they
develop and to compare the presented results with behavioral studies. The qualitative and
quantitative methodologies here presented are of high value for an accurate and precise
evaluation of the efficacy of treatments. Additional experimental sessions are planned to
improve the statistical significance of the results of this study and to extend the analysis of
the evolution over time of the radio-induced effects of these novel radiotherapies.

Overall, this study proves that XPCI-CT is a valuable imaging technique for a post
mortem follow-up of full organs at high resolution. It also puts the basis for channeling
studies of in-vivo applications for monitoring RT effects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13194953/s1, [85–92]. Figure S1: Ilastik segmentation workflow. The segmentation
procedure is applied on a set of XPCI-CT images undergoing the procedure here displayed for one
single image. Original 16bit images (1) are used to segment the tumor out and are subsequently
reshaped for reducing the dataset size (2). A variance filter is applied with a radius of 4 pixels (3).
A homogeneous image without edges would be displayed in black, while in the presence of edges
a brighter signal is displayed. For enhancing the tumor borders, the original image is divided by
the filtered one (4). Thanks to the carving tool of the ilastik software, the object of interest and the
background can be labelled by the user (5). Based on that, the software identifies the object to be
segmented. For a full dataset, it is sufficient to label the 10% of the available slices, the full-volume
segmentation will be done by interpolation. After the tumor is correctly identified (6), binary images
are produced (7) and the tumor volume can be quantified by the Analyze Particles Fiji plugin (8). This
volume can also be rendered in 3D via the software VGStudio MAX 4.3 together with the original
brain dataset (9). Figure S2: Ilastik segmentation validation. For four samples the comparison of

https://www.mdpi.com/article/10.3390/cancers13194953/s1
https://www.mdpi.com/article/10.3390/cancers13194953/s1
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GFAP histology staining (first column) with the XPCI-CT images (second column) and the segment
tumor (third column) is given. One slice for each sample is reported. Good agreement is shown for
three samples (a–a”), (b–b”) and (c–c”), while for the images (d–d”) a good matching is visible for
the solid tumor mass, but the ilastik segmentation overestimates the GBM infiltrations shown in the
magnified insets. Figure S3: XPCI-CT multi-scale approach for a MB350-trated brain and comparison
with histology and immunohistochemistry. The minibeam delivery caused a complete tissue ablation:
see the XPCI-CT image and the H&E histology (white and blue arrows point at the minibeam paths).
The GFAP cortex (CTX) zoom shows reactive gliosis in the minibeam valleys while in peak delivery
area cell loss is predominant, as seen in the XPCI-CT and H&E hippocampal (HIP) zooms. Black
arrows indicate the cell swelling induced by radiation. Figure S4: Coronal XPCI-CT and GFAP
immunohistochemistry images comparison for GBM-bearing MRT600-treated samples sacrificed
69 (a,b) and 138 (c,d) days after the tumor implant. Only the implanted hemisphere is shown.
(a) The GFAP stained coronal histology and (b) the respective XPCI-CT image obtained at similar
magnification. The insets show, at the maximum available magnification, the residual GBM: the
GFAP staining reveal the presence of necrosis (blue bordered inset) and hypercellularity (light-blue
bordered box), while the two XPCI-CT insets (yellow borders), obtained with two windowings, do not
show abnormal structures due to the numerous streak artefacts. (c,d) The GFAP and XPCI-CT coronal
slices for another GBM-bearing rat brain where XPCI cannot detect any residual tumor (see yellow
bordered insets), while immunohistochemistry reveals the presence of residual GBM infiltrations with
increased cellularity and nuclear pleomorphism (blue bordered inset). Figure S5: Three-dimensional
(3D) tumor rendering of an MRT200 (a)–(b) and MB180 (c)–(d) treated rat brain. The full brain dataset
is displayed in semi-transparency while the tumor volume is obtained from ilastik segmentation
and rendered as a solid red volume. The axial and sagittal views allow understanding, in 3D, of
how the tumor has developed within the brain. Figure S6: Microcalcifications 3D rendering for an
MRT200-treated healthy rat brain. The brain XPCI-CT dataset is given as semi-transparent volume
while the macrocalcifications (mcs) are reported as colored solid deposits of dimensions according
to the legend. This 3D rendering showcases that MRT200-induced microcalcifications are mainly
present in the thalamus. Figure S7: SAXS/WAXS and fluorescence data for a GBM-bearing control
brain. (a) The four WAXS profiles detected in the sample shown in (c) on a transmission image. In
(a) the Rietveld analysis of the HAP signals (red and cyan profiles) is also displayed in the colored
bordered boxes. (b) The sample image in which every pixel is colored according to which WAXS
profile is detected in it. (d)–(i) The 2D micrographs of the XPCI-CT signal, HAP map, Ca, P, Fe
and combined fluorescence signals for this GBM-control sample. Table S1. Compatibility study
of the MRI- and XPCI-CT-based tumour volumes (TV) for the MB350 group. The table reports
the animal name, the survival counted from the day of glioblastoma implant, XPCI-CT and MRI
tumour volumes normalized to the full brain volume with errors and the compatibility evaluation
of MRI-XPCI-CT values together with the statistical indicators P(t) and the confidence level (C.L.).
MRI-XPCI-CT tumour volumes with C.L.>5% are considered compatible each other. The last raw
reports the average of the columns.
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