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Abstract. Vector addition systems with states (VASS for short), or
equivalently Petri nets are one of the most popular formal methods for
the representation and the analysis of parallel processes. The central
algorithmic problem is reachability: whether from a given initial con-
figuration there exists a sequence of valid execution steps that reaches
a given final configuration. This paper provides an overview of results
about the reachability problem for VASS related to Presburger arith-
metic, by presenting 1) a simple algorithm for deciding the reachability
problem based on invariants definable in Presburger arithmetic, 2) the
class of flat VASS for computing reachability sets in Presburger arith-
metic, and 3) complexity results about the reachability problem for flat
VASS.

Keywords: Formal Methods · Petri Nets · Flat Systems · Presburger
Arithmetic.

1 Introduction

Vector addition systems with states [30], or equivalently vector addition sys-
tems [31], or Petri nets are one of the most popular formal methods for the
representation and the analysis of parallel processes [24]. The central algorith-
mic problem is reachability: whether from a given initial configuration there
exists a sequence of valid execution steps that reaches a given final configura-
tion. Many computational problems reduce to this reachability problem in logic,
complexity, real-time systems, protocols [49, 28].

A d-dimensional vector addition system (d-VASS, or just VASS when the
dimension d is not relevant) is a pair V = (Q,T ) where Q is a non empty finite
set of elements called states, and T is a finite set of triples in Q×Zd ×Q called
transitions. A configuration is a pair (q, x) ∈ Q×Nd also denoted as q(x) in the
sequel, and an action is a vector in Zd. The semantics is defined by introducing

for each transition t the binary relation
t−→ over the configurations defined by

p(x)
t−→ q(y) if t = (p, y − x, q). We also associate to a word σ = t1 . . . tk of
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transitions t1, . . . , tk the binary relation
σ−→ over the configurations defined by

p(x)
σ−→ q(y) if there exists a sequence c0, . . . , ck of configurations such that:

p(x) = c0
t1−→ c1 · · ·

tk−→ ck = q(y)

The reachability set from a set Cin of configurations is the set ReachV (Cin) of

configurations c such that cin
σ−→ c for some configuration cin ∈ Cin and some

word σ of transitions.

Example 1. Let us consider the VASS V depicted bellow. This VASS has a loop
on state p and another loop on state q. Intuitively, iterating the loop on state p
transfers the content of the first counter to the second counter whereas iterating
the loop on state q transfers and multiplies by two the content of the second
counter to the first counter. Let us denote by t1, t2, t3 and t4 the transitions
(p, (−1, 1), p), (p, (0, 0), q), (q, (2,−1), q) and (q, 0, 0, p). We can prove that the
reachability set from {p(1, 0)} is equal to {p, q} × {(n,m) | n + m ≥ 1} by
observing that if n,m ∈ N satisfy n+m ≥ 1 then:

p(1, 0)
(t1t2t3t4)

n+m−1

−−−−−−−−−−→ p(n+m, 0)
tm1−−→ p(n,m)

t2−→ q(n,m)

p q

(0, 0)

(−1, 1)

(0, 0)

(2,−1)

The reachability problem takes as input a VASS V and two configurations
cin, cout and it decides if there exists a word σ of transitions such that cin

σ−→ cout.
After an incomplete proof by Sacerdote and Tenney [48], decidability of the
problem was established by Mayr [44, 45], whose proof was then simplified by
Kosaraju [32]. Building on the further refinements made by Lambert in the
1990s [34], in 2015, a first complexity upperbound of the reachability problem
was provided [39] more than thirty years after the presentation of the algorithm
introduced by Mayr [44, 45, 32, 34]. The upperbound given in that paper is cubic
Ackermannian. This complexity is obtained by analyzing the computation com-
plexity of the Mayr algorithm. By refining this algorithm and by introducing a
new ranking function proving the termination of this refinement, an Ackerman-
nian complexity upperbound was obtained in [40]. This paper also showed that
the reachability problem in fixed dimension is primitive recursive by bounding
the length of executions thanks to the Grzegorczyk hierarchy. Based on this
bound, in [43], the reachability problem for general VASS is shown to be inter-
reducible in log-space to the reachability problem for structurally bounded VASS
when numbers are encoded in unary or in binary. Let us recall that a VASS is
said to be structurally bounded if the reachability set is finite from any initial
configuration, and this property is decidable in polynomial time (even when
numbers are encoded in binary) thanks to the Kosaraju-Sullivan algorithm [33].
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The reachability problem for structurally bounded VASS can be decided by a
deterministic brute-force exploration in an obvious way. The computational com-
plexity of such an algorithm is known to be Ackermannian [47]. Moreover, due
to the family of VASS introduced in [46] this bound is tight. It follows that the
reachability problem for general VASS can be solved with a simple determin-
istic brute-force algorithm, and last but not least, the reachability problem for
structurally bounded VASS is a central problem.

In this paper, we present results about the reachability problem for VASS re-
lated to Presburger arithmetic fo(N,+). In this context, a set C of configurations
in Q×Nd is said to be Presburger if there exists a sequence (φq)q∈Q of formulas
φq in Presburger arithmetic denoting sets Xq ⊆ Nd such that C =

⋃
q∈Q{q}×Xq.

In Sec. 2 we present a simple algorithm for deciding the reachability problem for
VASS based on Presburger inductive invariant that shows that the Presburger
sets of configurations are central for deciding the reachability problem for VASS
even if, as shown in Ex. 2, there exists VASS with non Presburger reachability
sets. In Sec. 3 we shows that the reachability set of a VASS is Presburger, if
and only if, it is flattable, i.e. the VASS can be unfolded into a VASS without
nested cycles called flat VASS. In Sec. 4 we present complexity results about the
reachability problem for flat VASS.

Example 2. In 1979, Hopcroft and Pansiot [30] introduced the VASS depicted
bellow. This VASS exhibit a non Presburger reachability set from the initial
configuration p(1, 0, 0). Intuitively, on the first and the second counters, the
behaviour of that VASS is the same as the one introduced in Ex. 1. The third
counter is incremented each time we come back to state p from q. In [30] the
reachability set from the initial configuration p(1, 0, 0) is proved equal to the
following set:

{p(x1, x2, x3) | x1 + x2 ≤ 2x3} ∪ {q(x1, x2, x3) | x1 + 2x2 ≤ 2x3+1}

p q

(0, 0, 0)

(−1, 1, 0)

(0, 0, 1)

(2,−1, 0)

2 Presburger Inductive Invariants

We present in this section a simple algorithm for deciding the reachability prob-
lem based on Presburger inductive invariants [35, 36, 37] that may have an
optimal complexity (this is an open problem). A set C of configurations is called
an inductive invariant for a VASS V if for every configurations c, c′ and every

transition t such that c
t−→ c′, then c ∈ C implies c′ ∈ C.
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Theorem 1 ([35]). For every VASS V , for every Presburger sets of config-

urations Cin, Cout, either cin
σ−→ cout for some configurations cin ∈ Cin and

cout ∈ Cout and some word σ of transitions, or there exists a Presburger in-
ductive invariant C that contains Cin and disjoints from Cout.

Since we can decide if a sequence of Presburger formulas denotes an inductive
invariant with classical algorithms deciding Presburger arithmetic, the previous
theorem shows that a brute-force non-deterministic exploration of the reacha-
bility set and sequences of Presburger formulas provides a simple algorithm for
deciding the reachability problem. Whereas the proof in [35] was based on a
refinement of Lambert’s algorithm, in [36] a direct proof based on a well quasi
order over the executions is provided. This proof was then simplified a bit more
in a paper [37] that received a best paper award at Alan Turing centenary con-
ference in 2012. In those two last papers, Presburger formulas denoting inductive
invariants are obtained by proving that reachability sets are “asymptotically”
definable in Presburger arithmetic.

Example 3. Let us come back to Ex. 2. Notice that the reachability set from
the initial configuration p(1, 0, 0) is not Presburger. Let us introduce the non-
decreasing sequence (Cn)n∈N of Presburger sets defined as follows:

Cn ={p(x1, x2, x3) |
n∨
i=0

(x1 + x2 ≤ 2i ∧ x3 = i) ∨ x3 > n}∪

{q(x1, x2, x3) |
n∨
i=0

x1 + 2x2 ≤ 2i+1 ∧ x3 = i) ∨ x3 > n})

Notice that Cn is an inductive invariant that contains the initial configuration
p(1, 0, 0) and since

⋂
n∈N Cn is the reachability set from p(1, 0, 0), it follows that

for every configuration cout outside of this reachability set, there exists n such
that cout 6∈ Cn.

3 Flat and Flattable VASS

When the reachability set of a VASS is infinite from an initial configuration, a
brute-force exploration of the reachability set fails. However, even in that case
the computation of the reachability sets may still be possible by using Pres-
burger arithmetic for symbolically representing infinite sets of configurations
and by using acceleration techniques to discover infinite sets of reachable config-
urations. Intuitively, acceleration techniques consist in computing symbolically
the effect of iterating cycles of the system. Those techniques were studied for
several models: systems with FIFO channels [11, 15, 16, 10, 9], time[3, 2, 12, 13],
other data structures[17], and systems manipulating counters including the VASS
model [14, 27, 8, 5, 4, 6, 18, 19].

Acceleration techniques for VASS are related to the class of flat VASS. For-
mally, a VASS V is said to be flat if for every state q, there exists at most one
simple cycle on q (intuitively no nested cycles).
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Example 4. The two VASS depicted in Ex. 1 and Ex. 2 are not flat. The VASS
depicted below is flat.

p1 q2 p3 q3

p2 q1
(0, 0)

(0, 0)

(−1, 1) (2,−1)

(0, 0)

(−1, 1)

(0, 0)

The reachability set of a flat VASS is clearly Presburger by compiling in Pres-
burger arithmetic the effect of iterating simple cycles [27]. The problem of decid-
ing if the reachability set of a general (non flat) VASS from an initial Presburger
set of configurations is Presburger was studied thirty years ago independently
by Dirk Hauschildt during his PhD[29] and Jean-Luc Lambert. Unfortunately,
these two works were never published. Moreover, from these works, it is difficult
to derive a simple algorithm for computing Presburger formulas denoting the
reachability set. In [38] a simple algorithm for computing such a formula based
on flat VASS is given. Intuitively when a VASS V is not flat, one can try to un-
fold it into a flat VASS V ′ such that the reachability set of V from a Preburger
set Cin can be derived from the reachability set of V ′ from a Preburger set C ′in
derived from Cin.

More formally, an unfolding of a VASS V = (Q,T ) is a pair (V ′, f) where
V ′ = (Q′, T ′) is a VASS and f : Q′ → Q is a total mapping such that (f(p′), a, f(q′))
is in T for every transition (p′, a, q′) ∈ T ′. We observe that for every set of con-
figurations Cin of V , we have where f is extended over the configurations by
f(q′, x) = (f(q′), x) for every configuration (q′, x) ∈ Q′ × Nd:

f(ReachV ′(f
−1(Cin))) ⊆ ReachV (Cin)

When the previous inclusion is an equality, the unfolding is said to be complete
from Cin. An unfolding is called a flattening when V ′ is flat [7]. A VASS V is said
to be flattable from a set Cin of initial configurations if there exists a flattening
of V complete from Cin (see [42] for various examples of flattable VASS).

Theorem 2 ([38]). For every VASS V , for every Presburger set Cin of con-
figurations, the reachability set ReachV (Cin) is Presburger if, and only if, V is
flattable from Cin.

It follows that if the reachability set from an initial Presburger set of config-
urations is Presburger, a sequence of Presburger formulas denoting the reach-
ability set can be computed by finding the right flattening. In [26] heuristics
and algorithms for finding such a flattening are presented. Those heuristics are
implemented in the tool FAST [5, 4, 6] for analyzing Minsky machines, a class
of systems strictly extending VASS with undecidable reachability problem.
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Remark 1. In [38], a stronger version of Thm. 2 is proved. More precisely, it is
shown that for every VASS V , for every Presburger set Cin of configurations, and
for every Presburger set C ⊆ ReachV (Cin), there exists a flattening (V ′, f) of V
such that C ⊆ f(ReachV ′(f

−1(Cin))). This extension is used in [25] in order to
provide witnesses of well-specification for population protocols [1].

Example 5. Let V = (Q,T ) be the VASS introduced in Ex. 1, V ′ = (Q′, T ′)
be the flat VASS introduced in Ex. 4, and f : Q′ → Q defined by f(pi) = p
and f(qi) = q for every i ∈ {1, 2, 3}. Observe that (V ′, f) is a flattening of V .
Moreover, we derive from Ex. 1 that this flattening is complete from {p(1, 0)}.
It follows that V is flattable from {p(1, 0)}.

Flattening are also used for deriving fine complexity results for the reach-
ability problem for 2-VASS. Recall that the reachability sets from an initial
configuration have been shown to be effectively Presburger for 2-VASS in [30].
In [41], it was proved that for every 2-VASS V there exists a flattening (V ′, f)
of V effectively computable such that for every configuration p(x), q(y), we have

p(x)
∗−→V q(y) if, and only if, there exist two states p′ ∈ f−1(p) and q′ ∈ f−1(q)

such that p′(x)
∗−→V ′ q

′(y). Based on a similar proof, ten years later, it was proved
that for every 2-VASS V , there exists a family F of flattening (V ′, f) of V of

“small sizes” such that for every configurations p(x), q(y), we have p(x)
∗−→V q(y)

if, and only if, there exists a flattening (V ′, f) in F and states p′ ∈ f−1(p) and

q′ ∈ f−1(q) such that p′(x)
∗−→V ′ q

′(y). From this result the reachability prob-
lem for 2-VASS encoded in binary was proved to be PSPACE-complete in the
same paper. Finally, thanks to the family F , and the fact that the reachability
problem for flat 2-VASS encoded in unary is NL-complete [23], the reachability
problem for general 2-VASS encoded in unary was proved NL-complete in [23].

4 Reachability Problem for Flat VASS

In this section we present some complexity lowerbounds of the reachability prob-
lem for flat VASS. In that context, the subclass of ultraflat VASS will play
a central role. Formally, an ultraflat VASS is a VASS V = (Q,T ) such that
Q = {q1, . . . , qn} with n = |Q|, and T = {(qj−1, (0, . . . , 0), qj) | 2 ≤ j ≤
n} ∪ {(qj , aj , qj) | 1 ≤ j ≤ n} for some actions a1, . . . , an. An ultraflat VASS is
clearly flat since (qj , aj , qj) is the unique simple cycle on qj for every j.

The reachability problem for flat 1-VASS with numbers encoded in binary
can be easily proved NP-hard by reduction of the subset sum problem. Let us
recall that the subset sum problem takes as input a sequence s, s1, . . . , sk of
natural numbers encoded in binary and it decides if there exists a finite set
I ⊆ {1, . . . , k} such that s =

∑
i∈I si. The following lemma shows that this

lowerbound also holds for ultraflat 1-VASS in binary.

Lemma 1. The reachability problem for ultraflat 1-VASS with numbers encoded
in binary is NP-hard.
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Proof. Let us consider an instance s, s1, . . . , sk of the subset sum problem. We
can assume that 0 < s <

∑k
j=1 sj and k ≥ 2 since other instances are trivially

accepting or non accepting. We introduce x =
∑k
j=1(1 + sj). Notice that x ≥ 4,

s+ k < x, and 1 + sj < x for every 1 ≤ j ≤ k.
We introduce the ultraflat 1-VASS V = (Q,T ) defined by the set of states

Q = {p1, q1, . . . , pk, qk}, and the set of transitions T that contains the transitions
labeled by 0 that connect the states of Q to form an ultraflat VASS, and the
transitions αj = (pj , uj , pj) and βj = (qj , vj , qj) with vj = 1−(x−1)x2k+1−j and

uj = sj +vj for every 1 ≤ j ≤ k. Let us prove that p1(x2k+1)
∗−→ qk(xk+1 +s+k)

if, and only if, there exists J ⊆ {1, . . . , k} such that s =
∑
j∈J sj .

Assume first that p1(x2k+1)
∗−→ qk(xk+1 + s + k). Since V is an ultraflat

VASS, there exist sequences (nj)1≤j≤k, (mj)1≤j≤k, (aj)1≤j≤k+1, and (bj)1≤j≤k
of natural numbers with a1 = x2k+1, ak+1 = xk+1 + s + k, and such that for
every 1 ≤ j ≤ k, we have:

pj(aj)
α

mj
j−−−→ pj(bj) qj(bj)

β
nj
j−−→ qj(aj+1)

It follows that aj+1 = aj +mjuj + njvj for every 1 ≤ j ≤ k.
From 1 + sj < x, we derive uj < x − (x − 1)xk+1 ≤ (2 − x)xk+1 ≤ −xk+1

since x ≥ 3. As vj ≤ uj , we have proved that uj , vj < −xk+1. Since ak+1 =

a1 +
∑k
j=1mjuj + njvj ≤ x2k+1 − (xk+1 + 1)

∑k
j=1(mj + nj), and ak+1 ≥

0, we get
∑k
j=1mj + nj < xk. Moreover, since uj = 1 + sj mod xk+1 and

vj = 1 mod xk+1, we deduce from aj+1 = aj + mjuj + njvj that aj+1 =
aj +mj(1 + sj) +nj mod xk+1. It follows that ak+1 = a1 + r mod xk+1 where

r =
∑k
j=1(mj(1 + sj) + nj). As ak+1 = s+ k mod xk+1 and a1 = 0 mod xk+1

we get r = s + k mod xk+1. Since r ≤ (xk − 1)
∑k
j=1(1 + sj) < xk+1 and

s+k < x ≤ xk+1 we deduce that r = s+k. In particular
∑k
j=1(mj+nj) ≤ s+k.

Assume by contradiction that there exists ` ∈ {1, . . . , k} such thatm`+n` 6= 1
and let ` be the minimal one. By induction we deduce that a` = x2k+2−`+`−1+∑
j∈J sj where J = {j ∈ {1, . . . , `−1} | mj = 1}. It follows that a` < x2k+2−`+x.
Notice that if m` + n` ≥ 2 then:

a`+1 = a` +m`u` + n`v`

≤ a` + (m` + n`)u`

< x2k+2−` + x+ 2(x− (x− 1)x2k+1−`)

≤ x2k+1−`(2− x) + 3x

≤ −xk+1 + x2

≤ 0

And we get a contradiction with a`+1 ≥ 0. Therefore m` + n` ≤ 1 and since
m`+n` 6= 1 we deduce that m` = n` = 0. It follows that a`+1 = a`. In particular
a`+1 ≥ x2k+2−`.
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Now, observe that ak+1 = a`+1 +
∑k
j=`+1 njuj+mjvj ≥ a`+1 +

∑k
j=`+1(nj+

mj)v`+1 ≥ a`+1 + (s+ k)v`+1. It follows that ak+1 ≥ x2k+2−` + (s+ k)(1− (x−
1)x2k−`) = x2k−`(x2 − (s + k)(x − 1)) + s + k. Since s + k ≤ x − 1, we deduce
that x2 − (s+ k)(x− 1) ≥ x2 − (x− 1)2 = 2x− 1 > x since x ≥ 2. In particular
ak+1 > xk+1 + s+ k = ak+1 and we get a contradiction.

It follows that mj + nj = 1 for every 1 ≤ j ≤ k. Let us introduce J = {j ∈
{1, . . . , k} | mj = 1}. An immediate induction shows that ak+1 = xk+1 + k +∑
j∈J sj . Since ak+1 = xk+1 + k + s, we get s =

∑
j∈J sj .

Conversely, observe that if there exists J ⊆ {1, . . . , k} such that s =
∑
j∈J sj

then p1(x2k+1)
∗−→ qk(xk+1 + s+ k) by considering the sequence (mj)1≤j≤k and

(nj)1≤j≤k satisfying (mj , nj) = (1, 0) if j ∈ J and (mj , nj) = (0, 1) otherwise.
ut

When the dimension is part of the input, the following lemma shows that
the reachability problem for ultraflat VASS in unary is also NP-hard.

Lemma 2. The reachability problem for ultraflat VASS with numbers encoded
in unary is NP-hard.

Proof. Let us consider an instance s, s1, . . . , sk of the subset sum problem. We
can assume that s ≤

∑k
j=1 sj . We consider the minimal ` ∈ N such that∑k

j=1 sj < 2`, and we let d = ` + k. We denote by z the zero vector of Nd,
and we denote by ei the ith unit vector of Nd defined by ei(i) = 1 and ei(j) = 0
if j 6= i. We denote for a natural number n < 2` the vector bin(n) ∈ Nd defined

as
∑`
i=1 biei where b1, . . . , b` ∈ {0, 1} are such that n =

∑`
i=1 bi2

i−1.
We introduce the ultraflat d-VASS V = (Q,T ) where Q is the set of states

q1, p1 . . . , qk, pk, qk+1, . . . , qk+`, and T is the set of transitions that contains the
transitions labeled by z that connect the states of Q to form an ultraflat VASS,
the transitions (qj ,−e`+k, qj) and (pj ,−e`+k + bin(sj), pj) for every 1 ≤ j ≤ k,
transitions (qk+i,−2ei + ei+1, qk+i) for every 1 ≤ i < `.

Just observe that q1(
∑k
j=1 e`+j)

∗−→ qk+`(bin(s)) if, and only if, there exists

J ⊆ {1, . . . , k} such that s =
∑k
j=1 sj . ut

Finally, let us consider the reachability problem for flat d-VASS where d is
fixed and numbers are encoded in unary. In this context, the complexity of the
problem is difficult to determined since we need to compute with a fix number
of counters large numbers with actions that involves only small numbers. This
intuition is confirmed up to the dimension 2. In fact, the reachability problem
for (not necessarily flat) 1-VASS encoded in unary is NL-complete by using a
classical hill-cutting argument. For flat 2-VASS encoded in unary, the reacha-
bility problem was also proved to be NL-complete in [23] by observing that if

there exists a word σ such that cin
σ−→ cout for a flat 2-VASS, then there exists

another one with a length polynomially bounded in the size of the VASS and
the configurations cin, cout encoded in unary. Such a property is not trivial since
an hill-cutting argument can no longer be applied in that context as shown by
the following example.
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Example 6. Let us introduce the family (Vn)n∈N of ultraflat 2-VASS parameter-
ized by a natural number n and depicted below (zero vectors are not depicted).
Intuitively, iterating the loop on a state pi transfers and multiplies by two the
content of the first counter to the second counter, iterating the loop on a state ri
transfers back the content of the second counter to the first counter, iterating the
loop on a state si transfers the content of the first counter to the second counter,
and iterating the loop on a state qi transfers back and divides by two the con-
tent of the second counter to the first counter. Observe that p1(1, 0)

σn−−→ q1(1, 0)
where σn is a run obtained by executing each loop a maximal number of times.
It follows that σn is exponentially long in n. Moreover, the set Cn of configura-
tions c such that p1(1, 0)

u−→ c
v−→ q1(1, 0) where u, v are such that σn = uv is

an exponential set of incomparable configurations for the relation v defined by
p(x1, x2) v q(y1, y2) if p = q, x1 ≤ y1 and x2 ≤ y2.

p1 r1 · · · pn rn

(−1, 2) (1,−1) (−1, 2) (1,−1)

q1 s1 · · · qn sn

(1,−2) (−1, 1) (1,−2) (−1, 1)

A complexity lowerbound better than NL is open for ultraflat 3-VASS. Start-
ing from that dimension, the minimal length of a word σ such that cin

σ−→ cout
can be exponentially long in the size of the VASS and the configurations cin, cout
encoded in unary as shown by the following example.

Example 7. Let us introduce the family (Vn)n∈N of ultraflat 3-VASS parameter-
ized by a natural number n and depicted below (zero vectors are not depicted).
Those VASS are presented as counter programs in [21]. Intuitively, the loop on
state p initialized the VASS from p(1, 0, 1) to a configuration p0(x, 0, x) where
x is any positive natural number. Iterating the loop on a state pi transfers and
multiplies by n+2−i

n+1−i the content of the first counter to the second counter, iterat-
ing the loop on a state ri transfers back the content of the second counter to the
first counter. By iterating all those loops, starting from p0(x, 0, x), if all the mul-
tiplications are performed exactly, we get the configuration q(x(n+1), 0, x) since∏n
i=1

n+2−i
n+1−i = n+ 1. From such a configuration, by iterating the loop on state q

we get the configuration q(0, 0, 0). In order to obtain such an execution, we prove

in [21] that x is necessarily a non zero multiple of lcm(2,...,n+1)
n+1 which is expo-

nential in n. It follows that the minimal word σ such that p(1, 0, 1)
σ−→ q(0, 0, 0)

is exponential in n.
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p p1 r1 · · · pn rn q

(1, 0, 1)

(−n, n+ 1, 0)

(1,−1, 0)

(−1, 2, 0)

(1,−1, 0)

−(n+ 1, 0, 1)

Based on Ex. 7, the reachability problem for flat 7-VASS in unary is proved
to be NP-complete in [21]. In a work in progress, we recently proved that the
problem is also NP-complete in dimension 5. It follows that the best complexity
lowerbound of the reachability problem for flat d-VASS is NL for d ∈ {3, 4}.
Proving that the reachability problem is NP-hard in those dimensions requires to
find a way to use counters in a non trivial way. Such a trick, if it exists, could pave
the way for increasing the best known complexity lower bound [20] of the general
(non flat) reachability problem for VASS in order to match the Ackermannian
complexity upper bound [40]. On the other side, the best complexity upperbound
of the reachability problem for ultraflat d-VASS encoded in unary is NP for d ≥ 3.
Proving that this problem is in P when d ∈ {3, 4} could provide a way to prove
that the reachability problem for flat d-VASS in unary is in P.

5 Conclusion

We presented in this paper an overview of results about the reachability problem
for VASS related to Presburger arithmetic. Those results came from several peer
reviewed publications, except Lem. 1 and Lem. 2 (we are confident that those
results are correct, but, in case of, notice that when replacing ultraflat by flat in
those lemmas, proofs are almost immediate).

The complexity of the reachability problem for general VASS is still open. The
best known complexity lowerbound is a tower function with an height limited
by the dimension of the VASS. A possible way to lift up this bound to match
the Ackermannian upperbound is to find a trick to reuse some counters in a non
trivial way. We think that looking at the complexity of flat 3-VASS encoded in
unary may pave the way to get such a trick since if this problem is NP-hard,
in order to prove such a bound, we need to encode an NP-hard problem like
the subsetsum problem with only three counters and small actions. Intuitively
some counters must be reused along the computation. On the other hand, if the
problem is in P, we may obtain from the proof of that result a way to prove
that the reachability problem for general 3-VASS is elementary (the best known
upperbound is tower for structurally bounded 3-VASS).

In this paper, we did not present the vast set of results related to Petri
net extensions. Anyway, let us mention that the complexity of the reachability
problem for flat 3-VASS encoded in unary seems to be related to the complexity
of the coverability problem for pushdown 1-VASS [22].
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