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Vector addition systems with states (VASS for short), or equivalently Petri nets are one of the most popular formal methods for the representation and the analysis of parallel processes. The central algorithmic problem is reachability: whether from a given initial configuration there exists a sequence of valid execution steps that reaches a given final configuration. This paper provides an overview of results about the reachability problem for VASS related to Presburger arithmetic, by presenting 1) a simple algorithm for deciding the reachability problem based on invariants definable in Presburger arithmetic, 2) the class of flat VASS for computing reachability sets in Presburger arithmetic, and 3) complexity results about the reachability problem for flat VASS.

Introduction

Vector addition systems with states [START_REF] Hopcroft | On the reachability problem for 5-dimensional vector addition systems[END_REF], or equivalently vector addition systems [START_REF] Karp | Parallel program schemata[END_REF], or Petri nets are one of the most popular formal methods for the representation and the analysis of parallel processes [START_REF] Esparza | Decidability issues for petri nets -a survey[END_REF]. The central algorithmic problem is reachability: whether from a given initial configuration there exists a sequence of valid execution steps that reaches a given final configuration. Many computational problems reduce to this reachability problem in logic, complexity, real-time systems, protocols [START_REF] Schmitz | The complexity of reachability in vector addition systems[END_REF][START_REF] Hack | Decidability questions for Petri nets[END_REF]. A d-dimensional vector addition system (d-VASS, or just VASS when the dimension d is not relevant) is a pair V = (Q, T ) where Q is a non empty finite set of elements called states, and T is a finite set of triples in Q × Z d × Q called transitions. A configuration is a pair (q, x) ∈ Q × N d also denoted as q(x) in the sequel, and an action is a vector in Z d . The semantics is defined by introducing for each transition t the binary relation t -→ over the configurations defined by p(x) t -→ q(y) if t = (p, y -x, q). We also associate to a word σ = t 1 . . . t k of transitions t 1 , . . . , t k the binary relation σ -→ over the configurations defined by p(x) σ -→ q(y) if there exists a sequence c 0 , . . . , c k of configurations such that:

p(x) = c 0 t1 -→ c 1 • • • t k -→ c k = q(y)
The reachability set from a set C in of configurations is the set Reach V (C in ) of configurations c such that c in σ -→ c for some configuration c in ∈ C in and some word σ of transitions.

Example 1. Let us consider the VASS V depicted bellow. This VASS has a loop on state p and another loop on state q. Intuitively, iterating the loop on state p transfers the content of the first counter to the second counter whereas iterating the loop on state q transfers and multiplies by two the content of the second counter to the first counter. Let us denote by t 1 , t 2 , t 3 and t 4 the transitions (p, (-1, 1), p), (p, (0, 0), q), (q, (2, -1), q) and (q, 0, 0, p). We can prove that the reachability set from {p(1, 0)} is equal to {p, q} × {(n, m) | n + m ≥ 1} by observing that if n, m ∈ N satisfy n + m ≥ 1 then:

p(1, 0) (t1t2t3t4) n+m-1 ----------→ p(n + m, 0) t m 1 --→ p(n, m) t2 -→ q(n, m) p q (0, 0) (-1, 1) (0, 0) (2, -1) 
The reachability problem takes as input a VASS V and two configurations c in , c out and it decides if there exists a word σ of transitions such that c in σ -→ c out . After an incomplete proof by Sacerdote and Tenney [START_REF] Sacerdote | The decidability of the reachability problem for vector addition systems (preliminary version)[END_REF], decidability of the problem was established by Mayr [START_REF] Mayr | An algorithm for the general petri net reachability problem[END_REF][START_REF] Mayr | An algorithm for the general Petri net reachability problem[END_REF], whose proof was then simplified by Kosaraju [START_REF] Kosaraju | Decidability of reachability in vector addition systems (preliminary version)[END_REF]. Building on the further refinements made by Lambert in the 1990s [START_REF] Lambert | A structure to decide reachability in Petri nets[END_REF], in 2015, a first complexity upperbound of the reachability problem was provided [START_REF] Leroux | Demystifying reachability in vector addition systems[END_REF] more than thirty years after the presentation of the algorithm introduced by Mayr [START_REF] Mayr | An algorithm for the general petri net reachability problem[END_REF][START_REF] Mayr | An algorithm for the general Petri net reachability problem[END_REF][START_REF] Kosaraju | Decidability of reachability in vector addition systems (preliminary version)[END_REF][START_REF] Lambert | A structure to decide reachability in Petri nets[END_REF]. The upperbound given in that paper is cubic Ackermannian. This complexity is obtained by analyzing the computation complexity of the Mayr algorithm. By refining this algorithm and by introducing a new ranking function proving the termination of this refinement, an Ackermannian complexity upperbound was obtained in [START_REF] Leroux | Reachability in vector addition systems is primitiverecursive in fixed dimension[END_REF]. This paper also showed that the reachability problem in fixed dimension is primitive recursive by bounding the length of executions thanks to the Grzegorczyk hierarchy. Based on this bound, in [START_REF] Leroux | When reachability meets grzegorczyk[END_REF], the reachability problem for general VASS is shown to be interreducible in log-space to the reachability problem for structurally bounded VASS when numbers are encoded in unary or in binary. Let us recall that a VASS is said to be structurally bounded if the reachability set is finite from any initial configuration, and this property is decidable in polynomial time (even when numbers are encoded in binary) thanks to the Kosaraju-Sullivan algorithm [START_REF] Kosaraju | Detecting cycles in dynamic graphs in polynomial time (preliminary version)[END_REF].

The reachability problem for structurally bounded VASS can be decided by a deterministic brute-force exploration in an obvious way. The computational complexity of such an algorithm is known to be Ackermannian [START_REF] Mcaloon | Petri nets and large finite sets[END_REF]. Moreover, due to the family of VASS introduced in [START_REF] Mayr | The complexity of the finite containment problem for petri nets[END_REF] this bound is tight. It follows that the reachability problem for general VASS can be solved with a simple deterministic brute-force algorithm, and last but not least, the reachability problem for structurally bounded VASS is a central problem.

In this paper, we present results about the reachability problem for VASS related to Presburger arithmetic fo(N, +). In this context, a set C of configurations in Q × N d is said to be Presburger if there exists a sequence (φ q ) q∈Q of formulas φ q in Presburger arithmetic denoting sets X q ⊆ N d such that C = q∈Q {q}×X q . In Sec. 2 we present a simple algorithm for deciding the reachability problem for VASS based on Presburger inductive invariant that shows that the Presburger sets of configurations are central for deciding the reachability problem for VASS even if, as shown in Ex. 2, there exists VASS with non Presburger reachability sets. In Sec. 3 we shows that the reachability set of a VASS is Presburger, if and only if, it is flattable, i.e. the VASS can be unfolded into a VASS without nested cycles called flat VASS. In Sec. 4 we present complexity results about the reachability problem for flat VASS.

Example 2. In 1979, Hopcroft and Pansiot [START_REF] Hopcroft | On the reachability problem for 5-dimensional vector addition systems[END_REF] introduced the VASS depicted bellow. This VASS exhibit a non Presburger reachability set from the initial configuration p(1, 0, 0). Intuitively, on the first and the second counters, the behaviour of that VASS is the same as the one introduced in Ex. 1. The third counter is incremented each time we come back to state p from q. In [START_REF] Hopcroft | On the reachability problem for 5-dimensional vector addition systems[END_REF] the reachability set from the initial configuration p(1, 0, 0) is proved equal to the following set:

{p(x 1 , x 2 , x 3 ) | x 1 + x 2 ≤ 2 x3 } ∪ {q(x 1 , x 2 , x 3 ) | x 1 + 2x 2 ≤ 2 x3+1 } p q (0, 0, 0) (-1, 1, 0) (0, 0 , 1) 
(2, -1, 0)

Presburger Inductive Invariants

We present in this section a simple algorithm for deciding the reachability problem based on Presburger inductive invariants [START_REF] Leroux | The general vector addition system reachability problem by Presburger inductive invariants[END_REF][START_REF] Leroux | Vector addition system reachability problem: a short self-contained proof[END_REF][START_REF] Leroux | Vector addition systems reachability problem (A simpler solution)[END_REF] that may have an optimal complexity (this is an open problem). A set C of configurations is called an inductive invariant for a VASS V if for every configurations c, c and every transition t such that c

t - → c , then c ∈ C implies c ∈ C.
Theorem 1 ([35]). For every VASS V , for every Presburger sets of configurations C in , C out , either c in σ -→ c out for some configurations c in ∈ C in and c out ∈ C out and some word σ of transitions, or there exists a Presburger inductive invariant C that contains C in and disjoints from C out .

Since we can decide if a sequence of Presburger formulas denotes an inductive invariant with classical algorithms deciding Presburger arithmetic, the previous theorem shows that a brute-force non-deterministic exploration of the reachability set and sequences of Presburger formulas provides a simple algorithm for deciding the reachability problem. Whereas the proof in [START_REF] Leroux | The general vector addition system reachability problem by Presburger inductive invariants[END_REF] was based on a refinement of Lambert's algorithm, in [START_REF] Leroux | Vector addition system reachability problem: a short self-contained proof[END_REF] a direct proof based on a well quasi order over the executions is provided. This proof was then simplified a bit more in a paper [START_REF] Leroux | Vector addition systems reachability problem (A simpler solution)[END_REF] that received a best paper award at Alan Turing centenary conference in 2012. In those two last papers, Presburger formulas denoting inductive invariants are obtained by proving that reachability sets are "asymptotically" definable in Presburger arithmetic.

Example 3. Let us come back to Ex. 2. Notice that the reachability set from the initial configuration p(1, 0, 0) is not Presburger. Let us introduce the nondecreasing sequence (C n ) n∈N of Presburger sets defined as follows:

C n ={p(x 1 , x 2 , x 3 ) | n i=0 (x 1 + x 2 ≤ 2 i ∧ x 3 = i) ∨ x 3 > n}∪ {q(x 1 , x 2 , x 3 ) | n i=0 x 1 + 2x 2 ≤ 2 i+1 ∧ x 3 = i) ∨ x 3 > n})
Notice that C n is an inductive invariant that contains the initial configuration p(1, 0, 0) and since n∈N C n is the reachability set from p(1, 0, 0), it follows that for every configuration c out outside of this reachability set, there exists n such that c out ∈ C n .

Flat and Flattable VASS

When the reachability set of a VASS is infinite from an initial configuration, a brute-force exploration of the reachability set fails. However, even in that case the computation of the reachability sets may still be possible by using Presburger arithmetic for symbolically representing infinite sets of configurations and by using acceleration techniques to discover infinite sets of reachable configurations. Intuitively, acceleration techniques consist in computing symbolically the effect of iterating cycles of the system. Those techniques were studied for several models: systems with FIFO channels [START_REF] Boigelot | The power of qdds (extended abstract)[END_REF][START_REF] Bouajjani | Symbolic reachability analysis of FIFO channel systems with nonregular sets of configurations (extended abstract)[END_REF][START_REF] Bouajjani | Symbolic reachability analysis of fifo-channel systems with nonregular sets of configurations[END_REF][START_REF] Boigelot | Symbolic verification of communication protocols with infinite state spaces using qdds[END_REF][START_REF] Boigelot | Domain-specific regular acceleration[END_REF], time [START_REF] Annichini | Trex: A tool for reachability analysis of complex systems[END_REF][START_REF] Annichini | Symbolic techniques for parametric reasoning about counter and clock systems[END_REF][START_REF] Boigelot | The power of hybrid acceleration[END_REF][START_REF] Boigelot | Acceleration of affine hybrid transformations[END_REF], other data structures [START_REF] Bozga | On flat programs with lists[END_REF], and systems manipulating counters including the VASS model [START_REF] Boigelot | Symbolic verification with periodic sets[END_REF][START_REF] Fribourg | Proving safety properties of infinite state systems by compilation into presburger arithmetic[END_REF][START_REF] Boigelot | On iterating linear transformations over recognizable sets of integers[END_REF][START_REF] Bardin | FAST: fast acceleration of symbolikc transition systems[END_REF][START_REF] Bardin | Faster acceleration of counter automata in practice[END_REF][START_REF] Bardin | FAST extended release[END_REF][START_REF] Bozga | Flat parametric counter automata[END_REF][START_REF] Bozga | Flat parametric counter automata. Fundam[END_REF].

Acceleration techniques for VASS are related to the class of flat VASS. Formally, a VASS V is said to be flat if for every state q, there exists at most one simple cycle on q (intuitively no nested cycles).

Example 4. The two VASS depicted in Ex. 1 and Ex. 2 are not flat. The VASS depicted below is flat.

p 1 q 2 p 3 q 3 p 2 q 1 (0, 0) (0, 0) (-1, 1) (2, -1) (0, 0) (-1, 1) (0, 0)
The reachability set of a flat VASS is clearly Presburger by compiling in Presburger arithmetic the effect of iterating simple cycles [START_REF] Fribourg | Proving safety properties of infinite state systems by compilation into presburger arithmetic[END_REF]. The problem of deciding if the reachability set of a general (non flat) VASS from an initial Presburger set of configurations is Presburger was studied thirty years ago independently by Dirk Hauschildt during his PhD [START_REF] Hauschildt | Semilinearity of the Reachability Set is Decidable for Petri Nets[END_REF] and Jean-Luc Lambert. Unfortunately, these two works were never published. Moreover, from these works, it is difficult to derive a simple algorithm for computing Presburger formulas denoting the reachability set. In [START_REF] Leroux | Presburger vector addition systems[END_REF] a simple algorithm for computing such a formula based on flat VASS is given. Intuitively when a VASS V is not flat, one can try to unfold it into a flat VASS V such that the reachability set of V from a Preburger set C in can be derived from the reachability set of V from a Preburger set C in derived from C in .

More formally, an unfolding of a VASS V = (Q, T ) is a pair (V , f ) where V = (Q , T ) is a VASS and f : Q → Q is a total mapping such that (f (p ), a, f (q )) is in T for every transition (p , a, q ) ∈ T . We observe that for every set of configurations C in of V , we have where f is extended over the configurations by f (q , x) = (f (q ), x) for every configuration (q , x)

∈ Q × N d : f (Reach V (f -1 (C in ))) ⊆ Reach V (C in )
When the previous inclusion is an equality, the unfolding is said to be complete from C in . An unfolding is called a flattening when V is flat [START_REF] Bardin | Flat acceleration in symbolic model checking[END_REF]. A VASS V is said to be flattable from a set C in of initial configurations if there exists a flattening of V complete from C in (see [START_REF] Leroux | Flat counter automata almost everywhere! In: Software Verification: Infinite-State Model Checking and Static Program Analysis[END_REF] for various examples of flattable VASS).

Theorem 2 ([38]

). For every VASS V , for every Presburger set C in of configurations, the reachability set

Reach V (C in ) is Presburger if, and only if, V is flattable from C in .
It follows that if the reachability set from an initial Presburger set of configurations is Presburger, a sequence of Presburger formulas denoting the reachability set can be computed by finding the right flattening. In [START_REF] Finkel | How to compose presburger-accelerations: Applications to broadcast protocols[END_REF] heuristics and algorithms for finding such a flattening are presented. Those heuristics are implemented in the tool FAST [START_REF] Bardin | FAST: fast acceleration of symbolikc transition systems[END_REF][START_REF] Bardin | Faster acceleration of counter automata in practice[END_REF][START_REF] Bardin | FAST extended release[END_REF] for analyzing Minsky machines, a class of systems strictly extending VASS with undecidable reachability problem.

Remark 1. In [START_REF] Leroux | Presburger vector addition systems[END_REF], a stronger version of Thm. 2 is proved. More precisely, it is shown that for every VASS V , for every Presburger set C in of configurations, and for every Presburger set C ⊆ Reach V (C in ), there exists a flattening (V , f

) of V such that C ⊆ f (Reach V (f -1 (C in ))
). This extension is used in [START_REF] Esparza | Verification of population protocols[END_REF] in order to provide witnesses of well-specification for population protocols [START_REF] Angluin | Computation in networks of passively mobile finite-state sensors[END_REF].

Example 5. Let V = (Q, T ) be the VASS introduced in Ex. 1, V = (Q , T ) be the flat VASS introduced in Ex. 4, and f : Q → Q defined by f (p i ) = p and f (q i ) = q for every i ∈ {1, 2, 3}. Observe that (V , f ) is a flattening of V . Moreover, we derive from Ex. 1 that this flattening is complete from {p(1, 0)}. It follows that V is flattable from {p(1, 0)}.

Flattening are also used for deriving fine complexity results for the reachability problem for 2-VASS. Recall that the reachability sets from an initial configuration have been shown to be effectively Presburger for 2-VASS in [START_REF] Hopcroft | On the reachability problem for 5-dimensional vector addition systems[END_REF]. In [START_REF] Leroux | On flatness for 2-dimensional vector addition systems with states[END_REF], it was proved that for every 2-VASS V there exists a flattening (V , f ) of V effectively computable such that for every configuration p(x), q(y), we have p(x) * -→ V q(y) if, and only if, there exist two states p ∈ f -1 (p) and q ∈ f -1 (q) such that p (x) * -→ V q (y). Based on a similar proof, ten years later, it was proved that for every 2-VASS V , there exists a family F of flattening (V , f ) of V of "small sizes" such that for every configurations p(x), q(y), we have p(x) -→ V q(y) if, and only if, there exists a flattening (V , f ) in F and states p ∈ f -1 (p) and q ∈ f -1 (q) such that p (x) * -→ V q (y). From this result the reachability problem for 2-VASS encoded in binary was proved to be PSPACE-complete in the same paper. Finally, thanks to the family F, and the fact that the reachability problem for flat 2-VASS encoded in unary is NL-complete [START_REF] Englert | Reachability in two-dimensional unary vector addition systems with states is nl-complete[END_REF], the reachability problem for general 2-VASS encoded in unary was proved NL-complete in [START_REF] Englert | Reachability in two-dimensional unary vector addition systems with states is nl-complete[END_REF].

Reachability Problem for Flat VASS

In this section we present some complexity lowerbounds of the reachability problem for flat VASS. In that context, the subclass of ultraflat VASS will play a central role. Formally, an ultraflat VASS is a VASS V = (Q, T ) such that Q = {q 1 , . . . , q n } with n = |Q|, and T = {(q j-1 , (0, . . . , 0), q j ) | 2 ≤ j ≤ n} ∪ {(q j , a j , q j ) | 1 ≤ j ≤ n} for some actions a 1 , . . . , a n . An ultraflat VASS is clearly flat since (q j , a j , q j ) is the unique simple cycle on q j for every j.

The reachability problem for flat 1-VASS with numbers encoded in binary can be easily proved NP-hard by reduction of the subset sum problem. Let us recall that the subset sum problem takes as input a sequence s, s 1 , . . . , s k of natural numbers encoded in binary and it decides if there exists a finite set I ⊆ {1, . . . , k} such that s = i∈I s i . The following lemma shows that this lowerbound also holds for ultraflat 1-VASS in binary.

Lemma 1. The reachability problem for ultraflat 1-VASS with numbers encoded in binary is NP-hard.

Proof. Let us consider an instance s, s 1 , . . . , s k of the subset sum problem. We can assume that 0 < s < k j=1 s j and k ≥ 2 since other instances are trivially accepting or non accepting. We introduce x = k j=1 (1 + s j ). Notice that x ≥ 4, s + k < x, and 1 + s j < x for every 1 ≤ j ≤ k.

We introduce the ultraflat 1-VASS V = (Q, T ) defined by the set of states Q = {p 1 , q 1 , . . . , p k , q k }, and the set of transitions T that contains the transitions labeled by 0 that connect the states of Q to form an ultraflat VASS, and the transitions α j = (p j , u j , p j ) and β j = (q j , v j , q j ) with v j = 1-(x-1)x 2k+1-j and u j = s j + v j for every 1 ≤ j ≤ k. Let us prove that p 1 (x 2k+1 ) * -→ q k (x k+1 + s + k) if, and only if, there exists J ⊆ {1, . . . , k} such that s = j∈J s j .

Assume first that p 1 (x 2k+1 ) * -→ q k (x k+1 + s + k). Since V is an ultraflat VASS, there exist sequences (n j ) 1≤j≤k , (m j ) 1≤j≤k , (a j ) 1≤j≤k+1 , and (b j ) 1≤j≤k of natural numbers with a 1 = x 2k+1 , a k+1 = x k+1 + s + k, and such that for every 1 ≤ j ≤ k, we have:

p j (a j ) α m j j ---→ p j (b j ) q j (b j ) β n j j --→ q j (a j+1 )
It follows that a j+1 = a j + m j u j + n j v j for every 1 ≤ j ≤ k.

From 1 + s j < x, we derive

u j < x -(x -1)x k+1 ≤ (2 -x)x k+1 ≤ -x k+1 since x ≥ 3. As v j ≤ u j , we have proved that u j , v j < -x k+1 . Since a k+1 = a 1 + k j=1 m j u j + n j v j ≤ x 2k+1 -(x k+1 + 1)
k j=1 (m j + n j ), and a k+1 ≥ 0, we get k j=1 m j + n j < x k . Moreover, since u j = 1 + s j mod x k+1 and v j = 1 mod x k+1 , we deduce from a j+1 = a j + m j u j + n j v j that a j+1 = a j + m j (1 + s j ) + n j mod x k+1 . It follows that a k+1 = a 1 + r mod x k+1 where r = k j=1 (m j (1 + s j ) + n j ). As a k+1 = s + k mod x k+1 and a 1 = 0 mod x k+1 we get r = s + k mod x k+1 . Since r ≤ (x k -1) k j=1 (1 + s j ) < x k+1 and s + k < x ≤ x k+1 we deduce that r = s + k. In particular k j=1 (m j + n j ) ≤ s + k. Assume by contradiction that there exists ∈ {1, . . . , k} such that m +n = 1 and let be the minimal one. By induction we deduce that a = x 2k+2-+ -1+ j∈J s j where J = {j ∈ {1, . . . , -1} | m j = 1}. It follows that a < x 2k+2-+x. Notice that if m + n ≥ 2 then:

a +1 = a + m u + n v ≤ a + (m + n )u < x 2k+2-+ x + 2(x -(x -1)x 2k+1-) ≤ x 2k+1-(2 -x) + 3x ≤ -x k+1 + x 2 ≤ 0
And we get a contradiction with a +1 ≥ 0. Therefore m + n ≤ 1 and since m + n = 1 we deduce that m = n = 0. It follows that a +1 = a . In particular

a +1 ≥ x 2k+2-. Now, observe that a k+1 = a +1 + k j= +1 n j u j + m j v j ≥ a +1 + k j= +1 (n j + m j )v +1 ≥ a +1 + (s + k)v +1 . It follows that a k+1 ≥ x 2k+2-+ (s + k)(1 -(x - 1)x 2k-) = x 2k-(x 2 -(s + k)(x -1)) + s + k. Since s + k ≤ x -1, we deduce that x 2 -(s + k)(x -1) ≥ x 2 -(x -1) 2 = 2x -1 > x since x ≥ 2.
In particular a k+1 > x k+1 + s + k = a k+1 and we get a contradiction.

It follows that m j + n j = 1 for every 1 ≤ j ≤ k. Let us introduce J = {j ∈ {1, . . . , k} | m j = 1}. An immediate induction shows that a k+1 = x k+1 + k + j∈J s j . Since a k+1 = x k+1 + k + s, we get s = j∈J s j . Conversely, observe that if there exists J ⊆ {1, . . . , k} such that s = j∈J s j then p 1 (x 2k+1 ) * -→ q k (x k+1 + s + k) by considering the sequence (m j ) 1≤j≤k and (n j ) 1≤j≤k satisfying (m j , n j ) = (1, 0) if j ∈ J and (m j , n j ) = (0, 1) otherwise.

When the dimension is part of the input, the following lemma shows that the reachability problem for ultraflat VASS in unary is also NP-hard.

Lemma 2. The reachability problem for ultraflat VASS with numbers encoded in unary is NP-hard.

Proof. Let us consider an instance s, s 1 , . . . , s k of the subset sum problem. We can assume that s ≤ k j=1 s j . We consider the minimal ∈ N such that k j=1 s j < 2 , and we let d = + k. We denote by z the zero vector of N d , and we denote by e i the ith unit vector of N d defined by e i (i) = 1 and e i (j) = 0 if j = i. We denote for a natural number n < 2 the vector bin(n

) ∈ N d defined as i=1 b i e i where b 1 , . . . , b ∈ {0, 1} are such that n = i=1 b i 2 i-1 .
We introduce the ultraflat d-VASS V = (Q, T ) where Q is the set of states q 1 , p 1 . . . , q k , p k , q k+1 , . . . , q k+ , and T is the set of transitions that contains the transitions labeled by z that connect the states of Q to form an ultraflat VASS, the transitions (q j , -e +k , q j ) and (p j , -e +k + bin(s j ), p j ) for every 1 ≤ j ≤ k, transitions (q k+i , -2e i + e i+1 , q k+i ) for every 1 ≤ i < .

Just observe that q 1 ( k j=1 e +j ) * -→ q k+ (bin(s)) if, and only if, there exists J ⊆ {1, . . . , k} such that s = k j=1 s j . Finally, let us consider the reachability problem for flat d-VASS where d is fixed and numbers are encoded in unary. In this context, the complexity of the problem is difficult to determined since we need to compute with a fix number of counters large numbers with actions that involves only small numbers. This intuition is confirmed up to the dimension 2. In fact, the reachability problem for (not necessarily flat) 1-VASS encoded in unary is NL-complete by using a classical hill-cutting argument. For flat 2-VASS encoded in unary, the reachability problem was also proved to be NL-complete in [START_REF] Englert | Reachability in two-dimensional unary vector addition systems with states is nl-complete[END_REF] by observing that if there exists a word σ such that c in σ -→ c out for a flat 2-VASS, then there exists another one with a length polynomially bounded in the size of the VASS and the configurations c in , c out encoded in unary. Such a property is not trivial since an hill-cutting argument can no longer be applied in that context as shown by the following example. Example 6. Let us introduce the family (V n ) n∈N of ultraflat 2-VASS parameterized by a natural number n and depicted below (zero vectors are not depicted). Intuitively, iterating the loop on a state p i transfers and multiplies by two the content of the first counter to the second counter, iterating the loop on a state r i transfers back the content of the second counter to the first counter, iterating the loop on a state s i transfers the content of the first counter to the second counter, and iterating the loop on a state q i transfers back and divides by two the content of the second counter to the first counter. Observe that p 1 (1, 0) σn --→ q 1 (1, 0) where σ n is a run obtained by executing each loop a maximal number of times. It follows that σ n is exponentially long in n. Moreover, the set C n of configurations c such that p 1 (1, 0) u -→ c v -→ q 1 (1, 0) where u, v are such that σ n = uv is an exponential set of incomparable configurations for the relation defined by p(x 1 , x 2 ) q(y 1 , y 2 ) if p = q, x 1 ≤ y 1 and x 2 ≤ y 2 .

p 1 r 1 • • • p n r n (-1, 2) (1, -1) (-1, 2) (1, -1) q 1 s 1 • • • q n s n (1, -2) (-1, 1) (1, -2) (-1 , 1) 
A complexity lowerbound better than NL is open for ultraflat 3-VASS. Starting from that dimension, the minimal length of a word σ such that c in σ -→ c out can be exponentially long in the size of the VASS and the configurations c in , c out encoded in unary as shown by the following example.

Example 7. Let us introduce the family (V n ) n∈N of ultraflat 3-VASS parameterized by a natural number n and depicted below (zero vectors are not depicted). Those VASS are presented as counter programs in [START_REF] Czerwinski | Reachability in fixed dimension vector addition systems with states[END_REF]. Intuitively, the loop on state p initialized the VASS from p(1, 0, 1) to a configuration p 0 (x, 0, x) where x is any positive natural number. Iterating the loop on a state p i transfers and multiplies by n+2-i n+1-i the content of the first counter to the second counter, iterating the loop on a state r i transfers back the content of the second counter to the first counter. By iterating all those loops, starting from p 0 (x, 0, x), if all the multiplications are performed exactly, we get the configuration q(x(n+1), 0, x) since n i=1 n+2-i n+1-i = n + 1. From such a configuration, by iterating the loop on state q we get the configuration q(0, 0, 0). In order to obtain such an execution, we prove in [START_REF] Czerwinski | Reachability in fixed dimension vector addition systems with states[END_REF] that x is necessarily a non zero multiple of lcm(2,...,n+1) n+1 which is exponential in n. It follows that the minimal word σ such that p(1, 0, 1)

σ -→ q(0, 0, 0) is exponential in n. p p 1 r 1 • • • p n r n q (1, 0, 1) (-n, n + 1, 0) (1, -1, 0) (-1, 2, 0) (1, -1, 0) -(n + 1, 0, 1)
Based on Ex. 7, the reachability problem for flat 7-VASS in unary is proved to be NP-complete in [START_REF] Czerwinski | Reachability in fixed dimension vector addition systems with states[END_REF]. In a work in progress, we recently proved that the problem is also NP-complete in dimension 5. It follows that the best complexity lowerbound of the reachability problem for flat d-VASS is NL for d ∈ {3, 4}. Proving that the reachability problem is NP-hard in those dimensions requires to find a way to use counters in a non trivial way. Such a trick, if it exists, could pave the way for increasing the best known complexity lower bound [START_REF] Czerwiński | The reachability problem for petri nets is not elementary[END_REF] of the general (non flat) reachability problem for VASS in order to match the Ackermannian complexity upper bound [START_REF] Leroux | Reachability in vector addition systems is primitiverecursive in fixed dimension[END_REF]. On the other side, the best complexity upperbound of the reachability problem for ultraflat d-VASS encoded in unary is NP for d ≥ 3. Proving that this problem is in P when d ∈ {3, 4} could provide a way to prove that the reachability problem for flat d-VASS in unary is in P.

Conclusion

We presented in this paper an overview of results about the reachability problem for VASS related to Presburger arithmetic. Those results came from several peer reviewed publications, except Lem. 1 and Lem. 2 (we are confident that those results are correct, but, in case of, notice that when replacing ultraflat by flat in those lemmas, proofs are almost immediate).

The complexity of the reachability problem for general VASS is still open. The best known complexity lowerbound is a tower function with an height limited by the dimension of the VASS. A possible way to lift up this bound to match the Ackermannian upperbound is to find a trick to reuse some counters in a non trivial way. We think that looking at the complexity of flat 3-VASS encoded in unary may pave the way to get such a trick since if this problem is NP-hard, in order to prove such a bound, we need to encode an NP-hard problem like the subsetsum problem with only three counters and small actions. Intuitively some counters must be reused along the computation. On the other hand, if the problem is in P, we may obtain from the proof of that result a way to prove that the reachability problem for general 3-VASS is elementary (the best known upperbound is tower for structurally bounded 3-VASS).

In this paper, we did not present the vast set of results related to Petri net extensions. Anyway, let us mention that the complexity of the reachability problem for flat 3-VASS encoded in unary seems to be related to the complexity of the coverability problem for pushdown 1-VASS [START_REF] Englert | A lower bound for the coverability problem in acyclic pushdown VAS[END_REF].
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