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We present some sharper finite extinction time results for solutions of a class of damped nonlinear Schrödinger equations when the nonlinear damping term corresponds to the limit cases of some "saturating non-Kerr law" F (|u| 2 )u = a ε+(|u| 2 ) α u, with a ∈ C, ε 0, 2α = (1m) and m ∈ [0, 1). To carry out the improvement of previous results in the literature we present in this paper a careful revision of the existence and regularity of weak solutions under very general assumptions on the data. We prove that the problem can be solved in the very general framework of the maximal monotone operators theory, even under a lack of regularity of the damping term. This allows us to consider, among other things, the singular case m = 0. We replace the above approximation of the damping term by a different one which keeps the monotonicity for any ε 0. We prove that, when m = 0, the finite extinction time of the solution arises for merely bounded right hand side data f (t, x). This is specially useful in the applications in which the Schrödinger equation is coupled with some other functions satisfying some additional equations.
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Introduction

This paper deals mainly with the asymptotic behavior, as t -→ ∞, of solutions of the damped nonlinear Schrödinger equation

         i ∂u ∂t + ∆u + V (x)u + a|u| -(1-m) u = f (t, x), in (0, ∞) × Ω, u |∂Ω = 0, on (0, ∞) × ∂Ω, u(0) = u 0 , in Ω, (1.1) 
(1.2)

(1.3) where 0 m 1, a ∈ C, Ω ⊆ R N (with |Ω| < ∞, if m = 0), f ∈ L 1 loc [0, ∞); L 2 (Ω) , V ∈ L 1 loc
(Ω; R) and u 0 ∈ L 2 (Ω). More precisely, we will improve previous results in the literature ( [START_REF] Carles | Finite time extinction for nonlinear Schrödinger equation in 1D and 2D[END_REF], [START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF], [START_REF] Bégout | Finite time extinction for a damped nonlinear Schrödinger equation in the whole space[END_REF])

showing that the main assumption 0 m < 1 (1.4) implies the finite extinction time phenomenon (u(t) ≡ 0 on Ω for any t T ⋆ , for some finite T ⋆ > 0)

representing, clearly, the most opposite property to the famous Max Born result on the conservation of the mass u(t) L 2 (Ω) = u(s) L 2 (Ω) , for any t s 0, which arises in the context of the applications of the linear Schrödinger equation in Quantum Mechanics. Notice that this kind of non linear term can be understood as a special "saturating non-Kerr law" which arises in several applications (see, e.g. [START_REF] Sulem | The nonlinear Schrödinger equation[END_REF], [START_REF] Agrawal | Optical Solitons: From Fibers to Photonic Crystals[END_REF], [START_REF] Fibich | The nonlinear Schrödinger equation[END_REF], [START_REF] Biswas | Perturbation of solitons with non-Kerr law nonlinearity[END_REF], [START_REF] Allen-Flowers | Nonlinearity saturation as a singular perturbation of the nonlinear Schrödinger equation[END_REF] and their references) in which the following general nonlinear expression arises in the equation

F (|u| 2 )u = a ε + (|u| 2 ) α u, (1.5) 
with ε 0 and 2α = (1 -m). The assumption m ∈ (0, 1) corresponds to α ∈ (0, 1/2) and the case m = 0 corresponds to α = 1/2. The consideration of the limit case, ε = 0 (assumed in this paper) allows to know the limit behavior of solutions for other weakly saturated cases in which ε > 0. When ε = 0 the saturating term becomes singular at u = 0. We send the reader to the papers [START_REF] Carles | Finite time extinction for nonlinear Schrödinger equation in 1D and 2D[END_REF], [START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF], [START_REF] Bégout | Finite time extinction for a damped nonlinear Schrödinger equation in the whole space[END_REF] for many other information on the modeling and related results concerning problem (1.1)- (1.3).

It was already shown in the above mentioned works ( [START_REF] Carles | Finite time extinction for nonlinear Schrödinger equation in 1D and 2D[END_REF], [START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF], [START_REF] Bégout | Finite time extinction for a damped nonlinear Schrödinger equation in the whole space[END_REF]) that the mere assumption (1.4) is not enough to get to such a global conclusion and some other "additional conditions" are required.

The improvements presented in this paper deal mainly with such type of "additional conditions".

Some of them could be understood as "technical conditions" but they are of not of minor relevance since they require even an important revision already of the notion of solution of the problem. Thus, curiously enough, in some cases a proof about the asymptotic behavior requires to improve the basic framework of the existence and uniqueness of solutions. To carry out the improvement of previous results in the literature we present in this paper a careful revision of the existence and regularity of weak solutions under very general assumptions on the data. We prove that problem (1.1)-(1.3) can be solved in the very general framework of the maximal monotone operators theory on L 2 (Ω), even under a lack of regularity of the damping term. This allows us to consider, among other things, the singular case m = 0. We replace the above approximation of the damping term (1.5) by a different one:

g m ε (u) = (|u| 2 + ε) -1-m 2 u,
which keeps the monotonicity for any ε 0.

The motivation to include in the equation a given data f (t, x) in the right hand side of the equation comes from the fact that very often the solution u(t, x) of the Schrödinger equation is coupled with other unknown term v(t, x) satisfying, perhaps, a different PDE (of the type of the Maxwell equation, Poisson equation, conservation laws equation, etc.). Under suitable conditions (see, e.g., the energy methods applied to some coupled systems in [START_REF] Antontsev | Energy methods for free boundary problems[END_REF]), it is possible that the coupled unknown v(t, x) also presents a finite time extinction (see, e.g., [START_REF] Antontsev | A class of electromagnetic p-curl systems: blow-up and finite time extinction[END_REF] for the case of a nonlinear Maxwell system) and this is the reason why we will assume in some of our results that the given data f (t, x) satisfy such a property.

In this paper we will extend the formulation used in the previously mentioned papers to the case in which there is a linear potential term V u (in the philosophy of the Gross-Pitaevski models) in the equation and, which is perhaps less considered in the former literature, the limit case m = 0. We will understand the associated nonlinear operator as multivalued (see Definition 2.2, Part 3 below) and we will prove a curious result which was not noticed in ( [START_REF] Carles | Finite time extinction for nonlinear Schrödinger equation in 1D and 2D[END_REF]) where the case m = 0 was also considered for a special formulation of problem (1.1)-(1.3) and for dimensions N 2 : the extinction time phenomenon holds in the larger class of data f (t, x) for which we replace the condition f (t) = 0, a.e. t T 0 , by the conditions

f ∈ L ∞ (T 0 , ∞) × Ω and f L ∞ ((T0,∞)×Ω) < Im(a). (1.6)
In particular, when f (t, x) represents a function of other possible coupled unknown v(t, x), as mentioned before, this new condition is much more general than the assumption that v(t, x) also presents a finite extinction time. We mention that although some related abstract results are available in the literature (see [START_REF] Brezis | Monotone operators, nonlinear semigroups and applications[END_REF] and [START_REF] Díaz | Anulación de soluciones para operadores acretivos en espacios de banach. aplicaciones a ciertos problemas parabólicos no lineales[END_REF]) they can not be applied to the framework of problem (1.1)-(1.3): see also this kind of property in the context of multivalued quasilinear parabolic equation ( [START_REF] Díaz | Estimates of the location of a free boundary for the obstacle and Stefan problems obtained by means of some energy methods[END_REF]). Concerning multivalued hyperbolic wave equations, the phenomenon is associated to the presence of a Coulomb friction term in the equation (see, e.g., [START_REF] Cabannes | Study of motions of a vibrating string subject to solid friction[END_REF], [START_REF] Díaz | Coulomb friction and oscillation: stabilization in finite time for a system of damped oscillators[END_REF], [START_REF] Díaz | Special finite time extinction in nonlinear evolution systems: dynamic boundary conditions and Coulomb friction type problems[END_REF] and [START_REF] Baji | Asymptotics for some nonlinear damped wave equation: finite time convergence versus exponential decay results[END_REF]) but usually f (t, x) ≡ 0 in this type of problems. See also the control point of view for some Maxwell class of scattering passive systems in [START_REF] Singh | Non-linear damping for scattering-passive systems in the Maxwell class[END_REF]. The proof of our result (see Theorems 3.5 and 3.9 below) is quite simple and avoids the application of any abstract result.

Although very precise statements will be presented later, we point out that our Theorem 2.7 below allows the consideration of data satisfying merely f ∈ L 1 (H 1 0 ) (and not necessarily f ∈ W 1,1 (H 1 0 ) as assumed in [START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF] and [START_REF] Bégout | Finite time extinction for a damped nonlinear Schrödinger equation in the whole space[END_REF]). Another improvement of a "technical nature" is that in Theorems 3.6, 3.9 and 3.11, we do not need to assume that Ω is a bounded regular set if Ω = R N . Moreover, in the special case of Ω a half-space we show that u, ∆u ∈ L 2 (Ω) implies that u ∈ H 2 (Ω), which is used in 2 of Remark 3.15.

A different additional contribution, with respect to the previous papers ( [START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF] and [START_REF] Bégout | Finite time extinction for a damped nonlinear Schrödinger equation in the whole space[END_REF]) is that when we are not able to prove the finite extinction time at least we obtain some decay estimates as t -→ ∞.

For instance, we prove some cases in which lim t→∞ ∇u(t) L 2 (Ω) = 0 (see Theorem 3.14). This paper is organized as follows. In Section 2, we state the main results about existence, uniqueness and boundness of solutions of (1.1)-(1.3) (Theorem 2.6, 2.7, 2.9 and 2.10). In Section 3, we present the statements of our results about the finite time extinction property (Theorems 3.5, 3.6, 3.9 and 3.11) and on the asymptotic behavior (Theorems 3.3, 3.7, 3.8, 3.12 and 3.14). Their respective proofs are also structured in different sections. In Section 4, we give some a priori estimates about the terms V u and |u| -(1-m) u arising in the equation (1.1), but, the more important part of the proofs is based on Section 5 in which we will prove that it is possible to apply the theory of nonlinear maximal monotone operators on L 2 (Ω) to the case of equation (1.1). To this end we give some monotonicity results which are slight generalizations of the previous ones due to Liskevich and Perel ′ muter [START_REF] Liskevich | Analyticity of sub-Markovian semigroups[END_REF] and Hayashi [START_REF] Hayashi | A note on the nonlinear Schrödinger equation in a general domain[END_REF]. Some additional properties and the proofs of the existence, uniqueness and boundedness of solutions are collected in Section 6. The paper ends with Section 7 with the proofs of the statements on the finite extinction time and on the asymptotic behavior presented in Section 3.

To end this Introduction, we collect here some notations which will be used along with this paper.

For t ∈ R, t + = max{t, 0} is the positive part of t. For z ∈ C, z is the conjugate of z, Re(z) is its real part and Im(z) is its imaginary part. Unless if specified, all functions are complex-valued (H 1 (Ω) def = H 1 (Ω; C), etc) and all the vector spaces are considered over the field R. For 1 p ∞, p ′ is the conjugate of p defined by 1 p + 1 p ′ = 1. For a (real) Banach space X, we denote by X ⋆ def = L (X; R) its topological dual and by . , . X ⋆ ,X ∈ R the X ⋆ -X duality product. In particular, for any T ∈ L p ′ (Ω)

and u ∈ L p (Ω) with 1 p < ∞, T, u L p ′ (Ω),L p (Ω) = Re Ω T (x)u(x)dx. The scalar product in L 2 (Ω) between two functions u, v is, (u, v) L 2 (Ω) = Re Ω u(x)v(x)dx.
For a Banach space X and p ∈ (0, ∞],

u ∈ L p loc [0, ∞); X means that u ∈ L p loc (0, ∞); X and for any T > 0, u |(0,T ) ∈ L p (0, T ); X . In the same way, we will use the notation

u ∈ W 1,p loc [0, ∞); X . If p ∈ (0, ∞] then L p r (Ω) = L ∞ (Ω) and W 1, p r (Ω) = W 1,∞ (Ω) if r = 0
, and L 0 (Ω) is the space of measurable functions u : Ω -→ C such that |u| < ∞, almost eveywhere in Ω. As usual, we denote by C auxiliary positive constants, and sometimes, for positive parameters a 1 , . . . , a n , write as C(a 1 , . . . , a n ) to indicate that the constant C depends only on a 1 , . . . , a n and that dependence is continuous (we will use this convention for constants which are not denoted merely by "C").

Main results

For m ∈ [0, 1], let us introduce the following sets of complex numbers:

C(m) = z ∈ C; Im(z) > 0 and 2 √ mIm(z) (1 -m)|Re(z)| , (2.1) 
D(m) = z ∈ C; Im(z) > 0 and 2 √ mIm(z) = (1 -m)Re(z) , 0 < m < 1, (2.2) 
C int (m) = C(m) \ D(m), 0 < m < 1. (2.3)
In the particular cases m = 0 and m = 1, the set C(m) becomes,

C(0) = z ∈ C; Re(z) = 0 and Im(z) > 0 , C(1) = z ∈ C; Im(z) > 0 .
Our main assumptions concerning the existence of the solutions are the following:

Assumption 2.1. We assume the following.

0 m 1, (2.4) 
Ω is any nonempty open subset of R N , (2.5)

|Ω| < ∞, if m = 0, (2.6)      a ∈ C(m), if m ∈ {0, 1}, a ∈ C int (m), if 0 < m < 1. (2.7) V ∈ L ∞ (Ω; R) + L pV (Ω; R), (2.8) 
where,

p V =      2, if N = 1, 2 + β, for some β > 0, if N = 2, N, if N 3. 
(2.9)

Here and after, we shall always identify L 

a 1 A1 + a 2 A2 .
If, in addition, A 1 ∩ A 2 is dense in both A 1 and A 2 then,

A 1 ∩ A 2 ⋆ = A ⋆ 1 + A ⋆ 2 and A 1 + A 2 ⋆ = A ⋆ 1 ∩ A ⋆ 2 .
See, for instance, Bergh and Löfström [START_REF] Bergh | Interpolation spaces. An introduction[END_REF] (Lemma 2.3.1 and Theorem 2.7.1). We will often apply these results in the following cases. Let 0 m 1, let X = H ∩ L m+1 (Ω), where H = L 2 (Ω) or

H = H 1 0 (Ω)
, and let Y be a Banach space such that Y ֒→ L p (Ω) with dense embedding, for some p ∈ [1, ∞). We then have,

X ⋆ = H ⋆ + L m+1 m (Ω), (2.10) 
D(Ω) ֒→ X ֒→ L m+1 (Ω) with both dense embeddings, (2.11)

L m+1 m (Ω) ֒→ X ⋆ ֒→ D ′ (Ω), (2.12) u, v Y ⋆ ,Y = u, v L p ′ (Ω),L p (Ω) = Re Ω u(x)v(x)dx, (2.13) 
for any u ∈ L p ′ (Ω) and v ∈ Y. If 1 < q < ∞ and p = 2 then by Bégout and Díaz [START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF]Lemma A.4], We recall the definition of solution ( [START_REF] Bégout | Finite time extinction for a damped nonlinear Schrödinger equation in the whole space[END_REF][START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF]), with a slight modification for m = 0, since it is not treated in [START_REF] Bégout | Finite time extinction for a damped nonlinear Schrödinger equation in the whole space[END_REF][START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF]. Definition 2.2. Assume (2.4), (2.5), (2.8) and (2.9). Let a ∈ C, f ∈ L 1 loc [0, ∞); L 2 (Ω) and u 0 ∈ L 2 (Ω). Let us consider the following assertions.

L q loc [0, ∞); Y ∩ W 1,q ′ loc [0, ∞); Y ⋆ ֒→ C [0, ∞); L 2 (Ω) . ( 2 
1. u ∈ L m+1 loc [0, ∞); H 1 0 (Ω) ∩ L m+1 (Ω) ∩ W 1, m+1 m loc [0, ∞); H ⋆ + L m+1 m (Ω) .
2. For almost every t > 0, ∆u(t) ∈ H ⋆ .

(a) If

m > 0 then u satisfies (1.1) in D ′ (0, ∞) × Ω . (b) If m = 0 then there exists U ∈ L ∞ (0, ∞) × Ω such that U L ∞ ((0,∞)×Ω) 1, U (t, x) = u(t, x) |u(t, x)| , if u(t, x) = 0, and u satisfies (1.1) in D ′ (0, ∞) × Ω , where the term |u| -(1-m) u is replaced with U. 4. u(0) = u 0 .
We shall say that u is a strong solution if u is an H 2 -solution or an H 1 0 -solution. We shall say that u is an H 2 -solution of (1.1)-(1.3) respectively, an H 1 0 -solution of (1.1)-(1.3) , if u satisfies the Assertions 1-4 with H = L 2 (Ω) respectively, with H = H 1 0 (Ω) . We shall say that u is an L 2 -solution or a weak solution of (1.1)-(1.3) if there exists a pair,

(f n , u n ) n∈N ⊂ L 1 loc [0, ∞); L 2 (Ω) × C [0, ∞); L 2 (Ω) , (2.15) 
such that for any n ∈ N, u n is an H 2 -solution of (1.1)- (1.3) where the right hand side of (1.1) is f n , with Let ε 0. For any u ∈ L 0 (Ω) and almost every x ∈ Ω, we define

f n L 1 ((0,T );L 2 (Ω)) ----------→ n→∞ f and u n C([0,T ];L 2 (Ω)) ---------→ n→∞ u, (2.16 
g m ε (u)(x) = (|u(x)| 2 + ε) -1-m 2 u(x), m + ε > 0, g 0 0 (u)(x) = u(x) |u(x)| , u(x) = 0, g(u)(x) = g m 0 (u)(x).
Remark 2.3. Let us clarify the Definition 2.2. See also Bégout [7] for more details in the case m > 0.

1. If u is any strong or weak solution then by 1 of Definition 2.2, (2.14), (2.16) and the embedding

W 1,∞ loc [0, ∞); H ⋆ + L ∞ (Ω) ֒→ C [0, ∞); H ⋆ + L ∞ (Ω) ,
we have,

u ∈ C [0, ∞); L 2 (Ω) , if m > 0 or if u is a weak solution, u ∈ C [0, ∞); H -1 (Ω) + L ∞ (Ω) , if m = 0 and if u is an H 1 0 -solution, u ∈ C [0, ∞); L 2 (Ω) + L ∞ (Ω) , if m = 0 and if u is an H 2 -solution,
and thus the Cauchy condition u(0) = u 0 makes sense in some functional space according to the above different cases. Assume m = 0 and |Ω| < ∞ (such as indicated in Assumption 2.1).

Then, it is obvious that if u is an H 2 -solution then u ∈ C [0, ∞); L 2 (Ω) . We claim that if u is an H 1 0 -solution with m = 0, |Ω| < ∞ and f ∈ L 1+ε loc [0, ∞); H -1 (Ω) , for some ε ∈ (0, 1), then for r = 2 ε+1 ε+2 ∈ (1, 2), u ∈ L r loc [0, ∞); H 1 0 (Ω) ∩ W 1,r ′ loc [0, ∞); H -1 (Ω) ֒→ C [0, ∞); L 2 (Ω) . (2.17) 
Indeed, by 1 of Definition 2.2 and the inequality u(t) 2

L 2 (Ω) u(t) H -1 (Ω) u(t) H 1 0 (Ω) , we have u ∈ L 2 loc [0, ∞); L 2 (Ω)
. With the help of (4.4) below and (1.1), we get that ∆u ∈ L 1+ε loc [0, ∞); H -1 (Ω) . Finally, using the inequality ∇u(t) r

L 2 (Ω) ∆u(t) r 2 H -1 (Ω) u(t) r 2 H 1 0 (Ω) , with r = 2 ε+1
ε+2 , and integrating in time, we obtain, by the Hölder inequality,

∇u 2 L r (0,T );L 2 (Ω)) ∆u L 1+ε ((0,T );H -1 (Ω)) u L 1 ((0,T );H 1 0 (Ω)) ,
for any T > 0. Hence (2.17) holds.

Any H

2 -solution satisfies (1.1) in L 1 loc [0, ∞); L 2 (Ω) + L m+1 m (Ω) , and any H 1 0 -solution satis- fies (1.1) in L 1 loc [0, ∞); H -1 (Ω)+L m+1 m (Ω)
. Indeed, this is a direct consequence of Definition 2.2 and Lemmas 4.1 and 4.3 below.

3. Notice that the boundary condition u(t) |∂Ω = 0 is implicitely included in the assumption u(t) ∈ H 1 0 (Ω), for the strong solutions. For the weak solutions, this has to be understood in a generalized sense by using the limit of strong solutions.

The way in which the weak solutions satisfy the equation (1.1) is explained in the following result:

Proposition 2.4. Let Assumption 2.1 be fulfilled and let f ∈ L 1 loc [0, ∞); L 2 (Ω) . If u is a weak solution to (1.1) then u ∈ W 1,1 loc [0, ∞); H -2 (Ω) + L 2 m (Ω) . (2.18)
In addition, u solves

(1.1) in L 1 loc [0, ∞); H -2 (Ω) + L 2 m (Ω) and so in D ′ (0, ∞) × Ω .
Concerning the uniqueness and continuous dependance with respect to the initial data of solutions, we have:

Proposition 2.5 (Uniqueness and continuous dependance). Assume (2.4)-(2.6) and (2.8)-

(2.9). Let a ∈ C(m), let f, f ∈ L 1 loc [0, ∞); L 2 (Ω) and X = H 1 0 (Ω) ∩ L m+1 (Ω). Finally, let u, u ∈ L p loc [0, ∞); X ∩ W 1,p ′ loc [0, ∞); X ⋆ ֒→ C [0, ∞); L 2 (Ω) , (2.19 
)

for some 1 < p < ∞, be solutions in D ′ (0, ∞) × Ω to, iu t + ∆u + V u + a|u| -(1-m) u = f, i u t + ∆ u + V u + a| u| -(1-m) u = f ,
respectively (with the obvious modification, as in Definition 2.2, if m = 0). Then,

u(t) -u(t) L 2 (Ω) u(s) -u(s) L 2 (Ω) + t s f (σ) -f (σ) L 2 (Ω) dσ, (2.20) 
for any t s 0.

Theorem 2.6 (Existence and uniqueness of L 2 -solutions). Let Assumption 2.1 be fulfilled and

let f ∈ L 1 loc [0, ∞); L 2 (Ω) .
Then for any u 0 ∈ L 2 (Ω), there exists a unique weak solution u to (1.1)-(1.3). In addition, ). Let Assumption 2.1 be fulfilled. Assume that each component of the vector ∇V satisfies the regularity (2.8) and let f ∈ L 1 loc [0, ∞); H 1 0 (Ω) . Then for any u 0 ∈ H 1 0 (Ω), the weak solution u satisfies, additionally, that

u ∈ L m+1 loc [0, ∞); L m+1 (Ω) , (2.21) 1 2 u(t) 2 L 2 (Ω) + Im(a) t s u(σ) m+1 L m+1 (Ω) dσ 1 2 u(s) 2 L 2 (Ω) + Im t s Ω f (σ, x) u(σ, x) dx dσ, (2.22)
for any t s 0. If |Ω| < ∞ or if m = 1 then the inequality in (2.22) is an equality. Finally, if u is a weak solution to (1.1) with u(0) = u 0 ∈ L 2 (Ω) and f ∈ L 1 loc ([0, ∞); L 2 (Ω)) instead of f in (1.1) then (2.
   u ∈ C [0, ∞); L 2 (Ω) ∩ L ∞ loc [0, ∞); H 1 0 (Ω) ∩ L m+1 loc [0, ∞); L m+1 (Ω) , u ∈ W 1,1 loc [0, ∞); H -1 (Ω) + L m+1 m (Ω) , (2.23 
)

and u satisfies (1.1) in L 1 loc [0, ∞); H -1 (Ω) + L m+1 m (Ω) . In addition, u verifies, u(t) H 1 0 (Ω)   u(s) H 1 0 (Ω) + t s f (σ) H 1 0 (Ω) dσ   e C ∇V L ∞ +L p V (t-s) , (2.24) 
for almost every t > s > 0, where

C = C(N ) (C = C(β), if N = 2).
Remark 2.8. Below are some comments about Theorems 2.6 and 2.7.

1. Let Assumption 2.1 be fulfilled and let u be a weak solution.

If f ∈ L 1 (0, ∞); L 2 (Ω) then, u ∈ C b [0, ∞); L 2 (Ω) ∩ L p(1-m) 2-p (0, ∞); L p (Ω) , (2.25) 
for any p

∈ [m + 1, 2]. Here, by C b we mean C ∩ L ∞ . If, in addition, (ϕ n ) n∈N ⊂ L 2 (Ω), (f n ) n∈N ⊂ L 1 (0, ∞); L 2 (Ω) and, ϕ n L 2 (Ω) ----→ n→∞ u 0 and f n L 1 ((0,∞);L 2 (Ω)) -----------→ n→∞ f, then for any p ∈ (m + 1, 2), u n C b ([0,∞);L 2 (Ω))∩L p(1-m) 2-p ((0,∞);L p (Ω)) ---------------------------→ n→∞ u,
where for each n ∈ N, u n is the weak solution to (1.1) with u n (0) = ϕ n and f n instead of f. See Bégout [7, Remark 2.5] for more details.

2. The solution obtained in Theorem 2.7 could be called an almost H 1 0 -solution since it verifies all the conditions of Definition 2.2, except the property

u ∈ W 1, m+1 m loc [0, ∞); X ⋆ , (2.26) 
which need not be satisfied, where

X ⋆ = H -1 (Ω) + L m+1 m (Ω).
In particular, we cannot apply Proposition 2.5 and, as a consequence, we do not know if the solution is unique in the class of functions satisfying (2.23). Of course, it is unique in the class of weak solutions (Theorem 2.6). Finally, (2.26) may be obtained if we assume additionally f ∈ L m+1 m loc [0, ∞); X ⋆ , (see Theorem 2.9 below).

3.

The assumption on ∇V in Theorem 2.7 (and Theorem 2.9 below) is needed to obtain (2.24) and, thereby, the approximating sequence of the H 2 -solutions bounded in L ∞ loc [0, ∞); H 1 0 (Ω) . If V is a constant function then we may obtain a better estimate as follows. We claim that,

∇u(t) L 2 (Ω) ∇u(s) L 2 (Ω) + t s ∇f (σ) L 2 (Ω) dσ, (2.27) 
for almost every t > s > 0. Indeed, since the solution obtained in Theorem 2.7 is a weak solution, by uniqueness of the weak solutions and by a time translation argument, it is sufficient to establish (2.27) for s = 0 and the H 2 -solutions. Taking the L 2 -scalar product of (1.1) with -i∆u, it follows from Bégout and Díaz [8, Lemma A.5] and Lemma 5.1 below that for almost every σ > 0,

1 2 d dt ∇u(σ) 2 L 2 (Ω) ∇f (σ), i∇u(σ) L 2 (Ω) ∇f (σ) L 2 (Ω) ∇u(σ) L 2 (Ω) .
The result then follows by integration. See the proof of Theorem 2.7 for more details.

Below and after, we denote by

C w [0, ∞); H 1 0 (Ω) the space of continuous functions from [0, ∞) to H 1 0 (Ω), where H 1 0 (Ω) is endowed of the weak topology σ H 1 0 (Ω), H -1 (Ω) .
Theorem 2.9 (Existence and uniqueness of H 1 0 -solutions). Let Assumption 2.1 be fulfilled. Assume that each component of the vector ∇V satisfies (2.8) and let

f ∈ L 1 loc [0, ∞); H 1 0 (Ω) ∩ L m+1 m loc [0, ∞); H -1 (Ω) + L m+1 m (Ω) .
Then for any u 0 ∈ H 1 0 (Ω), there exists a unique H 1 0 -solution u to (1.1)-(1.3). Furthermore, u is also a weak solution and satisfies the following properties.

1. u ∈ C w [0, ∞); H 1 0 (Ω) and (2.24) holds for any t s 0.

2. The map t -→ u(t) 2 L 2 (Ω) belongs to W 1,1 loc [0, ∞); R and we have,

1 2 d dt u(t) 2 L 2 (Ω) + Im(a) u(t) m+1 L m+1 (Ω) = Im Ω f (t, x) u(t, x) dx, (2.28) 
for almost every t > 0.

Theorem 2.10 (Existence and uniqueness of H 2 -solutions). Let Assumption 2.1 be fulfilled

and f ∈ W 1,1 loc [0, ∞); L 2 (Ω) . Then for any u 0 ∈ H 1 0 (Ω) ∩ L 2m (Ω), with ∆u 0 ∈ L 2 (Ω), there exists a unique H 2 -solution u to (1.1)-(1.3). Furthermore, u satisfies (1.1) in L ∞ loc [0, ∞); L 2 (Ω)
as well as the following properties.

1. u ∈ C [0, ∞); H 1 0 (Ω) ∩ W 1,∞ loc [0, ∞); L 2 (Ω) and, in addition, u ∈ L ∞ loc [0, ∞); L 2m (Ω) , if m > 0. 2. ∆u ∈ L ∞ loc [0, ∞); L 2 (Ω) and,            u(t) -u(s) L 2 (Ω) u t L ∞ ((s,t);L 2 (Ω)) |t -s|, ∇u(t) -∇u(s) L 2 (Ω) M |t -s| 1 2 , u t L ∞ ((0,t);L 2 (Ω)) iA m 0 u 0 -f (0) L 2 (Ω) + t 0 f ′ (σ) L 2 (Ω) dσ, (2.29) 
(2.30)

(2.31)

for any t s 0, where M 2 = 2 u t L ∞ ((s,t);L 2 (Ω)) ∆u L ∞ ((s,t);L 2 (Ω)) and iA m 0 u 0 = ∆u 0 + V u 0 + ag(u 0 ) iA 0 0 u 0 = ∆u 0 + V u 0 + aU 0 , for some U 0 in the closed unit ball of L ∞ (Ω) with U 0 = u0
|u0| , almost everywhere where u 0 = 0, if m = 0 .

3. The map t -→ u(t) 2 L 2 (Ω) belongs to C 1 [0, ∞); R and (2.28) holds for any t 0.

4. If f ∈ W 1,1 (0, ∞); L 2 (Ω) then we have, u ∈ C b [0, ∞); H 1 0 (Ω) ∩ W 1,∞ (0, ∞); L 2 (Ω) , ∆u ∈ L ∞ (0, ∞); L 2 (Ω) , u ∈ L ∞ (0, ∞); L 2m (Ω) , if m > 0.
Remark 2.11. Below are some comments about Theorem 2.10.

1. Since f ∈ W 1,1 loc [0, ∞); L 2 (Ω) ֒→ C [0, ∞); L 2 (Ω) , estimate (2.31) with f (0) makes sense. 2. For any p ∈ 2m, 2N N -2 (p ∈ (2m, ∞) if N = 2, p ∈ (2m, ∞] if N = 1), u ∈ C 0,α [0, ∞); L p (Ω) u ∈ C 0,α b [0, ∞); L p (Ω) , if f ∈ W 1,1 (0, ∞); L 2 (Ω) ,
where α = 2N -p(N -4) Remark 2.12. The existence of the solutions of (1.1)-(1.3) for a ∈ D(m) is not treated here and will be the subject of a future work. Note that if |Ω| < ∞ and V = 0, this was done in Bégout and Díaz [START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF].

Finite time extinction and asymptotic behavior

We will improve the result of Bégout and Díaz [START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF] by avoiding, among other things, some regularity and boundedness conditions on the spatial domain.

For N ∈ N, let ℓ ∈ {1, 2}, m ∈ [0, 1) and

δ ℓ = (N + 2ℓ) -m(N -2ℓ) 4ℓ . (3.1)
Notice that if N = ℓ = 1 or if N 3 then for any m ∈ [0, 1), δ ℓ ∈ 1 2 , 1 .

Assumption 3.1 (Case of the H 1 0 -solutions). Assumption 2.1 holds true with 0 m < 1 and V a constant function. Let f ∈ L 1 (0, ∞); H 1 0 (Ω) , let u 0 ∈ H 1 0 (Ω) and let u be the unique L 2 -solution to (1.1)-(1.3) given by Theorem 2.6. We assume that there exists a finite time

T 0 0 such that    f ∈ L ∞ (T 0 , ∞) × Ω and f L ∞ ((T0,∞)×Ω) < Im(a), if m = 0, f (t) = 0, for almost every t > T 0 , if 0 < m < 1. (3.2) Assumption 3.2 (Case of the H 2 -solutions). Assumption 2.1 holds true with 0 m < 1. Let f ∈ W 1,1 (0, ∞); L 2 (Ω) , u 0 ∈ H 1 0 (Ω) ∩ L 2m (Ω) with ∆u 0 ∈ L 2
(Ω) and let u be the unique H 2solution to (1.1)-(1.3) given by Theorem 2.10. We assume that there exists a finite time T 0 0 such that f satisfies (3.2).

Asymptotic behavior of the L 2 -solutions and f = 0 almost everywhere on (T 0 , ∞), for some T 0 0. Then,

Theorem 3.3. Let Assumption 2.1 be fulfilled, let f ∈ L 1 (0, ∞); L 2 (Ω) , u 0 ∈ L 2 (Ω)
∀t T 0 , u(t) L 2 (Ω) = u(T 0 ) L 2 (Ω) e -Im(a)(t-T0) .
Indeed, by (2.20) and density, we may assume that u is an H 2 -solution. We then have by (2.28),

∀t T 0 , 1 2 d dt u(t) 2 L 2 (Ω) + Im(a) u(t) 2 L 2 (Ω) = 0,
from which the result follows. We have a similar statement for the strong solutions when m < 1 (Theorems 3.7 and 3.12 below).

Finite time extinction and asymptotic behavior of the H 1 0solutions Theorem 3.5 (Finite time extinction). Let Assumption 3.1 be fulfilled with N = 1. Then,

∀t T ⋆ , u(t) L 2 (Ω) = 0, (3.3) 
where,

T ⋆ C u(T 0 ) 1-m 2 L 2 (Ω) ∇u 1-m 2 L ∞ ((0,∞);L 2 (Ω)) + T 0 , (3.4) 
for some

C = C(Im(a), m) (C = C(Im(a) -f L ∞ ((T0,∞)×Ω) ), if m = 0).
Theorem 3.6 (Synchronized finite time extinction). Let Assumption 3.1 be fulfilled with N = 1.

Assume further that f ∈ L m+1 m (0, ∞); H -1 (Ω) + L m+1 m (Ω) so that u is an H 1 0 -solution. There exists ε ⋆ = ε ⋆ (|a|, m) satisfying the following property. If            u 0 2(1-δ1) L 2 (Ω) ε ⋆ T 0 , ∇u 0 L 2 (Ω) + ∇f L 1 ((0,∞);L 2 (Ω)) ε ⋆ , f (t) 2 L 2 (Ω) ε ⋆ T 0 -t 2δ 1 -1 1-δ 1 + , (3.5) 
for almost every t > 0, where δ 1 is defined by (3.1), then (3.3) holds true with T ⋆ = T 0 .

Theorem 3.7 (Time decay estimates). Let Assumption 3.1 be fulfilled with N 2. Then for any

t T 0 , u(t) L 2 (Ω) u(T 0 ) L 2 (Ω) e -C(t-T0) , (3.6) 
if N = 2, and

u(t) L 2 (Ω) u(T 0 ) L 2 (Ω) 1 + C u(T 0 ) (1-m)(N -2) 2 L 2 (Ω) (t -T 0 ) 2 (1-m)(N -2) , (3.7 
) if N 3, where C = C( ∇u L ∞ ((0,∞);L 2 (Ω)) , Im(a), N, m) (C = C( ∇u L ∞ ((0,∞);L 2 (Ω)) , Im(a) - f L ∞ ((T0,∞)×Ω) , N ), if m = 0).
Theorem 3.8 (Time decay). Let Assumption 2.1 be fulfilled with V a constant function. Let f ∈ L 1 (0, ∞); H 1 0 (Ω) , u 0 ∈ H 1 0 (Ω) and let u be the unique weak solution given by Theorem 2.6. Then,

lim tր∞ u(t) L p (Ω) = 0, (3.8) 
for any p ∈ 2, 2N N -2 (p ∈ [2, ∞] if N = 1). If m = 0 then (3.8) is also true for any p ∈ (0, 2].
Finite time extinction and asymptotic behavior of the H 2solutions Theorem 3.9 (Finite time extinction). Let Assumption 3.2 be fulfilled with N 3. Then,

∀t T ⋆ , u(t) L 2 (Ω) = 0, (3.9) 
where,

T ⋆ C u(T 0 ) (1-m)(4-N ) 4 L 2 (Ω) ∆u N (1-m) 4 L ∞ ((0,∞);L 2 (Ω)) + T 0 , (3.10) 
for some Assume that, for some T 0 0, f satisfies (3.2). Let u be a solution as in Theorems 3.5 or 3.9. Then by (3.3) or (3.9), the equation (1.1) becomes, iIm(a) U (t, x) = f (t, x),

C = C(Im(a), N, m) (C = C(Im(a) -f L ∞ ((T0,∞)×Ω) , N ), if m = 0).
for almost every (t, x) ∈ (T ⋆ , ∞) × Ω.

For 0 < m < 1, let us define the quasi-norm . m,Ω by,

u m,Ω = u H 1 0 (Ω) + u L 2m (Ω) + ∆u L 2 (Ω) , (3.11) 
for any u ∈ H 1 0 (Ω) ∩ L 2m (Ω) with ∆u ∈ L 2 (Ω). 

           u 0 2(1-δ2) L 2 (Ω) ε ⋆ T 0 , u 0 m,Ω + f W 1,1 ((0,∞);L 2 (Ω)) ε ⋆ , f (t) 2 L 2 (Ω) ε ⋆ T 0 -t 2δ 2 -1 1-δ 2 + , (3.12) 
for almost every t > 0, where δ 2 is defined by (3.1), then (3.9) holds true with T ⋆ = T 0 .

Theorem 3.12 (Time decay estimates). Let Assumption 3.2 be fulfilled with N 4. Then for any

t T 0 , u(t) L 2 (Ω) u(T 0 ) L 2 (Ω) e -C(t-T0) , (3.13) 
if N = 4, and

u(t) L 2 (Ω) u(T 0 ) L 2 (Ω) 1 + C u(T 0 ) (1-m)(N -4) 4 L 2 (Ω) (t -T 0 ) 4 (1-m)(N -4) , (3.14) if N 5, where C = C( ∆u L ∞ ((0,∞);L 2 (Ω)) , Im(a), N, m) (C = C( ∆u L ∞ ((0,∞);L 2 (Ω)) , Im(a) - f L ∞ ((T0,∞)×Ω) , N ), if m = 0).
Remark 3.13. As mentioned at the introduction, the results of Theorems 3.5, 3.7, 3.9 and 3.12 for m = 0 can be applied to the case in which the Schrödinger equation is coupled with some other

dynamic equation        i ∂u ∂t + ∆u + V (x)u + a u |u| = g(v), ∂v ∂t + B(v) = h(u, v).
Then by taking f (t, x) = g v(t, x) , if we can prove, for instance, that v(t) L ∞ (Ω) t→∞ ---→ 0, and if g is Lipschitz continuous with g(0) = 0, then the assumption f L ∞ ((T0,∞)×Ω) < Im(a) is satisfied, for T 0 > 0 large enough.

Theorem 3.14 (Time decay). Let Assumption 2.1 be fulfilled. Let f ∈ W 1,1 (0, ∞); L 2 (Ω) , u 0 ∈ H 1 0 (Ω) ∩ L 2m (Ω) with ∆u 0 ∈ L 2 (Ω) and let u be the unique strong solution given by Theorem 2.10. Then,

lim tր∞ u(t) H 1 0 (Ω) = lim tր∞ u(t) L p (Ω) = lim tր∞ d dt u(t) 2 L 2 (Ω) = 0, (3.15 
)

for any p ∈ 2m, 2N N -2 (p ∈ (2m, ∞) if N = 2, p ∈ (2m, ∞] if N = 1).
Remark 3.15. Let the assumptions of Theorem 3.14 be fulfilled. Below are some comments about the asymptotic behavior of the solution.

1. If m = 0 then |Ω| < ∞ and by (3.15), lim tր∞ u(t) W 1,q (Ω) = 0, for any q ∈ (0, 2]. 

Let

E = u ∈ H 1 0 (Ω); ∆u ∈ L 2 (Ω) and u 2 E = u 2 L 2 (Ω) + ∆u 2 L 2 (Ω) , for any u ∈ E. We recall that if Ω = R N , if Ω is a half-space or if Ω is bounded with a C 1,1 -boundary then E = H 2 (Ω) ∩ H 1 0 (Ω)
u(t) W 1,q (Ω) = lim tր∞ u(t) L p (Ω) = 0,
for any q ∈ 4 3 , 2 with q > 4m m+1 , and any p ∈ 2m, 2N N -4 (p ∈ (2m, ∞] if N 3).

On the zero-order terms

In this section we analize the functionals associated to the zero-order terms in equation (1.1).

Lemma 4.1.

Let V = V 1 + V 2 ∈ L ∞ (Ω; R) + L pV (Ω; R)
, where p V is given by (2.9). Then for any

u ∈ H 1 0 (Ω), we have V u ∈ L 2 (Ω) and, V u L 2 (Ω) C V L ∞ (Ω)+L p V (Ω) u H 1 0 (Ω) , (4.1) 
where

C = C(N ) (C = C(β), if N = 2). In addition, for any u ∈ H 1 0 (Ω), V 1 u L 2 (Ω) V 1 L ∞ (Ω) u L 2 (Ω) , (4.2) 
Proof of Lemma 4.2. Let u, v ∈ H 1 0 (Ω). By Lemma 4.1, V u ∈ L 2 (Ω) ֒→ H -1 (Ω) with dense embedding and,

V u, v H -1 (Ω),H 1 0 (Ω) = V u, v L 2 (Ω),L 2 (Ω) = (u, V v) L 2 (Ω) , sup v H 1 0 (Ω) =1 V u, v H -1 (Ω),H 1 0 (Ω) C V L ∞ (Ω)+L p V (Ω) u L 2 (Ω) ,
by Cauchy-Schwarz's inequality and (4.1). The inequality is extended to any u ∈ L 2 (Ω) by density.

The lemma is proved.

Some maximal monotone operators

In all this section, we suppose Assumption 2.1 but with a ∈ C(m), not merely a ∈ C int (m), if m ∈ (0, 1) (unless if specified). Let ε 0. Let us define the following operators on L 2 (Ω).

∀u ∈ D(L) def = u ∈ H 1 0 (Ω); ∆u ∈ L 2 (Ω) , Lu = -i∆u -iV u,    D(B m ε ) = L 2 (Ω), ε > 0 or m = 1, ∀u ∈ D(B m ε ), B m ε u = -iag m ε (u),    D(A m ε ) = D(L), ε > 0, ∀u ∈ D(A m ε ), A m ε u = Lu + B m ε u,    D(B 0 0 ) = L 2 (Ω), |Ω| < ∞, ∀u ∈ D(B 0 0 ), B 0 0 u = U ∈ L ∞ (Ω); U L ∞ (Ω) 1 and if u(x) = 0, U (x) = g 0 0 (u)(x) ,    D(A 0 0 ) = D(L), |Ω| < ∞, ∀u ∈ D(A 0 0 ), A 0 0 u = Lu -iaU ; U ∈ B 0 0 u ,    D(A m 0 ) = u ∈ D(L); u ∈ L 2m (Ω) , m > 0, ∀u ∈ D(A m 0 ), A m 0 u = Lu -iag m 0 (u).
It is clear that the all above domains are dense in L 2 (Ω) since they all contain D(Ω), which is dense in L 2 (Ω). The monotonicity result below is a slight generalization of a result of Hayashi [START_REF] Hayashi | A note on the nonlinear Schrödinger equation in a general domain[END_REF]Lemma 4.3] but for the convenience of the reader, we give its proof. Actually, in his paper the quantity in (5.3) below is nonegative and we need a positive quantity.

Lemma 5.3. Let f : (0, ∞) -→ (0, ∞) be an increasing function. Then for any Proof. Let f : (0, ∞) -→ (0, ∞) be an increasing function and let (z 1 , z 2 ) ∈ C 2 be such that z 1 z 2 = 0 1. Assume that m + ε > 0.

(z 1 , z 2 ) ∈ C 2 such that z 1 z 2 = 0 and |z 1 | = |z 2 |, Re f (|z 1 |) z 1 |z 1 | -f (|z 2 |) z 2 |z 2 | z 1 -z 2 > 0. ( 5 
and |z 1 | = |z 2 |. We have, Re f (|z 1 |) z 1 |z 1 | -f (|z 2 |) z 2 |z 2 | z 1 -z 2 = f (|z 1 |)|z 1 | -f (|z 1 |) Re(z 1 z 2 ) |z 1 | -f (|z 2 |) Re(z 1 z 2 ) |z 2 | + f (|z 2 |)|z 2 | f (|z 1 |)|z 1 | -f (|z 1 |)|z 2 | -f (|z 2 |)|z 1 | + f (|z 2 |)|z 2 | = f (|z 1 | -f (|z 2 |) |z 1 | -|z 2 | > 0,
If |z 1 | = |z 2 | then, Re (|z 1 | 2 + ε) m-1 2 z 1 -(|z 2 | 2 + ε) m-1 2 z 2 z 1 -z 2 > 0, (5.4) (respectively, 0, if |z 1 | = |z 2 |).

Assume that

m + ε = 0. If z 1 z 2 = 0 then, Re z 1 |z 1 | - z 2 |z 2 | z 1 -z 2 0.
(5.5)

Proof. Apply Lemma 5.3, where for any t > 0,

f (t) = (t 2 + ε) m-1 2 t.
The result below, for ε = 0, is due to Liskevich and Perel ′ muter [28, Lemma 2.2]. Nevertheless, we will need to generalize it to the regularized case ε > 0.

Lemma 5.6. We have,

2 √ m Im (|z 1 | 2 + ε) m-1 2 z 1 -(|z 2 | 2 + ε) m-1 2 z 2 z 1 -z 2 (1 -m)Re (|z 1 | 2 + ε) m-1 2 z 1 -(|z 2 | 2 + ε) m-1 2 z 2 z 1 -z 2 .
for any (z 1 , z 2 ) ∈ C × C (and z 1 z 2 = 0, if m = ε = 0).

Remark 5.7. If m = 0 then Lemma 5.6 is nothing else but Corollary 5.5 (while if m = 1 then the conclusion is that the complex number we are computing between the parentheses is a nonnegative real number, which is obvious).

Proof of Lemma 5.6. By Remark 5.7, we may assume that 0

< m < 1. Let (z 1 , z 2 ) ∈ C 2 . Set Z ε = (|z 1 | 2 + ε) m-1 2 z 1 -(|z 2 | 2 + ε) m-1 2 z 2 z 1 -z 2 . A straightforward calculation gives, Re(Z ε ) = |z 1 | 2 (|z 1 | 2 + ε) m-1 2 + |z 2 | 2 (|z 2 | 2 + ε) m-1 2 -Re(z 1 z 2 ) |z 1 | 2 + ε) m-1 2 + (|z 2 | 2 + ε) m-1 2 , Im(Z ε ) = Im(z 1 z 2 ) (|z 1 | 2 + ε) m-1 2 -(|z 2 | 2 + ε) m-1 2 , Re(z 1 z 2 ) = |z 1 | |z 2 | cos Arg(z 1 z 2 ) , Im(z 1 z 2 ) = |z 1 | |z 2 | sin Arg(z 1 z 2 ) . Note that Im(Z ε ) = 0 Re(Z ε ) if z 1 z 2 = 0 or |z 1 | = |z 2 | (Corollary 5.5
). So we may assume that

|z 1 | > |z 2 | > 0. We set t = |z 1 |, s = |z 2 | and θ = Arg(z 1 z 2 )
. By Corollary 5.5, Re(Z ε ) > 0 and we may define F ε by,

F ε (t, s, θ) = |Im(Z ε )| Re(Z ε ) .
Since F ε 0, we shall show that,

F ε (t, s, θ) 2 (1 -m) 2 4m , (5.6) 
with,

F ε (t, s, θ) 2 = t 2 s 2 (t 2 + ε) m-1 2 -(s 2 + ε) m-1 2 2 (1 -cos 2 θ) t 2 (t 2 + ε) m-1 2 + s 2 (s 2 + ε) m-1 2 -ts (t 2 + ε) m-1 2 
+ (s 2 + ε) m-1 2 cos θ 2 , def = A(1 -cos 2 θ) (B -C cos θ) 2 .
We proceed with the proof in four steps.

Step 1:

F ε (t, s, θ) 2 t 2 s 2 (t 2 + ε) m-1 2 -(s 2 + ε) m-1 2 2 (t 2 -s 2 ) t 2 (t 2 + ε) m-1 -s 2 (s 2 + ε) m-1 .
We write σ = cos θ and g(σ

) = F ε (t, s, θ) 2 = A(1-σ 2 ) (B-Cσ) 2 .
Note that since t > s > 0 then, with help of Corollary 5.5, we have A > 0, B > 0 and B -Cσ > 0, for any σ ∈ [-1, 1]. In particular, 0 < C < B.

A study of g gives,

max σ∈[-1,1] g(σ) = g C B .
It follows that, sup

θ∈(-π,π] F ε (t, s, θ) 2 g C B ,
which gives the desired result.

Step 2:

(t 2 + ε) m-1 2 -(s 2 + ε) m-1 2 2 (1 -m) 2 4m t 2 -s 2 (t 2 + ε)(s 2 + ε) (t 2 + ε) m -(s 2 + ε) m .
By the Cauchy-Schwarz inequality, we have,

(t 2 + ε) m-1 2 -(s 2 + ε) m-1 2 2 = (1 -m) 2 4    t 2 +ε s 2 +ε σ m-3 2 dσ    2 = (1 -m) 2 4    t 2 +ε s 2 +ε σ -1 σ m-1 2 dσ    2 (1 -m) 2 4 t 2 +ε s 2 +ε σ -2 dσ t 2 +ε s 2 +ε σ m-1 dσ = (1 -m) 2 4m (s 2 + ε) -1 -(t 2 + ε) -1 (t 2 + ε) m -(s 2 + ε) m , which is Step 2.
Step 3:

0 < (t 2 + ε) m -(s 2 + ε) m t 2 (t 2 + ε) m-1 -s 2 (s 2 + ε) m-1 .
Indeed,

(t 2 + ε) m -(s 2 + ε) m = t 2 (t 2 + ε) m-1 -s 2 (s 2 + ε) m-1 -ε (s 2 + ε) m-1 -(t 2 + ε) m-1 t 2 (t 2 + ε) m-1 -s 2 (s 2 + ε) m-1 ,
since t > s > 0 and m -1 < 0. Hence Step 3.

Step 4: Conclusion.

Putting together Steps 1-3, we infer,

F ε (t, s, θ) 2 (1 -m) 2 4m t 2 s 2 (t 2 + ε)(s 2 + ε) (1 -m) 2 4m ,
which is (5.6). This ends the proof.

Corollary 5.8. Assume m + ε > 0. Let u, v ∈ L m+1 (Ω) if ε = 0, and let u, v ∈ L 2 (Ω) if ε > 0. Then g m ε (u) -g m ε (v) (u -v) ∈ L 1 (Ω) and, Re   -ia Ω g m ε (u) -g m ε (v) (u -v)dx   0, (5.7) 
for any a ∈ C(m).

Proof. Assume m ∈ [0, 1) and ε 0 with m + ε > 0. Let u, v be as in the corollary. Then by Lemma 4.3 and Hölder's inequality,

g m ε (u) -g m ε (v) (u -v) ∈ L 1 (Ω). Now, let a ∈ C(m). By Lemma 5.6, Re   -ia Ω g m ε (u) -g m ε (v) (u -v)dx   = Im(a)Re Ω g m ε (u) -g m ε (v) u -v dx + Re(a)Im Ω g m ε (u) -g m ε (v) u -v dx Im(a) -|Re(a)| 1 -m 2 √ m Re Ω g m ε (u) -g m ε (v) u -v dx 0, if m > 0. If m = 0 then a ∈ C(0) = {0} × i(0, ∞) and, Re   -ia Ω g 0 ε (u) -g 0 ε (v) (u -v)dx   = Im(a)Re Ω g 0 ε (u) -g 0 ε (v) u -v dx 0,
by Corollary 5.5. This ends the proof.

Corollary 5.9. Assume m ∈ (0, 1] and a ∈ C(m). Then (A m 0 , D(A m 0 )) is monotone on L 2 (Ω) with dense domain.

Proof. By Lemmas 5.2 and 4.3,

A m 0 : D(A m 0 ) -→ L 2 (Ω) is well-defined. Let u, v ∈ D(A m 0 ). We have, D(A m 0 ) ⊂ L 2m (Ω) ∩ L 2 (Ω) ⊂ L m+1
(Ω), and so Corollary 5.8 applies. Finally, by skew-adjointness of

L (Lemma 5.2), (A m 0 u -A m 0 v, u -v) L 2 (Ω) = Re   -ia Ω g m 0 (u) -g m 0 (v) (u -v)dx   0, by Corollary 5.8. 
Corollary 5.10. Assume a ∈ C(0). Then (A 0 0 , D(A 0 0 )) is monotone on L 2 (Ω) with dense domain.

Proof. Since |Ω| < ∞, L ∞ (Ω) ֒→ L 2 (Ω) and we have A 0 0 u ∈ P L 2 (Ω) , for any u ∈ D(A 0 0 ). Since a ∈ C(0), we have a = iλ, for some real λ > 0. Let u 1 , u 2 ∈ D(A 0 0 ) and (V 1 , V 2 ) ∈ A 0 0 u 1 × A 0 0 u 2 .
Then for each j ∈ {1, 2}, there exists U j ∈ B 0 0 u j such that V j = Lu j + λU j . By skew-adjointness of L,

(V 1 -V 2 , u 1 -u 2 ) L 2 (Ω) = λ(U 1 -U 2 , u 1 -u 2 ) L 2 (Ω) .
For each j ∈ {1, 2}, we define, ω j = x ∈ Ω; u j (x) = 0 . We then have,

(U 1 -U 2 , u 1 -u 2 ) L 2 (Ω) = Re    ω c 1 ∩ ω2 U 1 - u 2 |u 2 | (-u 2 )dx    + Re    ω1∩ ω c 2 u 1 |u 1 | -U 2 u 1 dx    + Re   ω1∩ ω2 u 1 |u 1 | - u 2 |u 2 | u 1 -u 2 dx   Re    ω c 1 ∩ ω2 |u 2 | -U 1 u 2 dx    + Re    ω1∩ ω c 2 |u 1 | -U 2 u 1 dx    0.
Indeed, the first inequality is due to (5.5), while the last one comes from the fact that |U 

m ε ) = L 2 (Ω), B m ε ∈ C L 2 (Ω); L 2 (Ω) and (B m ε u -B m ε v, u -v) L 2 (Ω) = Re   -ia Ω g m ε (u) -g m ε (v) (u -v)dx   0,
for any u, v ∈ L 2 (Ω) (Corollary 5.8). We then deduce that (B m ε , L 2 (Ω)) is maximal monotone (Brezis [11, Proof. Let F ∈ L 2 (Ω). We proceed with the proof in five steps.

Step 1: Let ε > 0. There exists u ε ∈ D(A m ε ) satisfying, Step 2: The families (u ε ) ε>0 and (V u ε ) ε>0 are bounded in H 1 0 (Ω) and in L 2 (Ω), respectively, and there exist a u ∈ H 1 0 (Ω) and a decreasing sequence (ε n ) n∈N ⊂ (0, ∞) converging toward 0 such that V u ∈ L 2 (Ω) and,

-i∆u ε -iV u ε -iag m ε (u ε ) + u ε = F, in L 2 (Ω). ( 5 
u εn D ′ (Ω) ----→ n→∞ u, (5.9) 
V u εn

D ′ (Ω) ----→ n→∞ V u, (5.10) 
u εn L 2 loc (Ω) -----→ n→∞ u, (5.11) 
u εn a.e. in Ω -----→ n→∞ u. (5.12) 
Let ε > 0. We successively take the L 2 -scalar product of (5.8) with u ε and then with iu ε . We get, Im(a)

Ω (|u ε | 2 + ε) -1-m 2 |u ε | 2 dx + u ε 2 L 2 (Ω) = Re Ω F u ε dx, (5.13) ∇u ε 2 L 2 (Ω) - Ω V |u ε | 2 dx -Re(a) Ω (|u ε | 2 + ε) -1-m 2 |u ε | 2 dx = Im Ω F u ε dx. (5.14)
Applying Cauchy-Schwarz's inequality to (5.13), we obtain u ε L 2 (Ω) F L 2 (Ω) and so,

Im(a) Ω (|u ε | 2 + ε) -1-m 2 |u ε | 2 dx + u ε 2 L 2 (Ω) F 2 L 2 (Ω) , (5.15) 
Using Hölder's and Cauchy-Schwarz's inequalities in (5.14), we get by (5.15),

∇u ε 2 L 2 (Ω) 1 + Re(a) + Im(a) F 2 L 2 (Ω) + V u ε L 2 (Ω) F L 2 (Ω) . (5.16) Let us write V = V 1 + V 2 with (V 1 , V 2 ) ∈ L ∞ (Ω; R) × L pV (Ω; R).
Then by (4.2), (4.3) and (5.15),

V u ε L 2 (Ω) C V 1 L ∞ (Ω) + V 2 2-γ L p V (Ω) F L 2 (Ω) + 1 2 F L 2 (Ω) ∇u ε 2 L 2 (Ω) , (5.17) 
where

C = C(N ) (C = C(β), if N = 2)
. Putting together (5.16) and (5.17), we infer sup

ε>0 ∇u ε L 2 (Ω) + sup ε>0 V u ε L 2 (Ω) < ∞.
(5.18) By (5.15) and (5.18), (u ε ) ε>0 and (V u ε ) ε>0 are bounded in H 1 0 (Ω) and in L 2 (Ω), respectively. Since both spaces are reflexive, we obtain (5.9)-(5.12) for some u ∈ H 1 0 (Ω) with V u ∈ L 2 (Ω) by local compactness, (4.1), (4.5) and a decreasing sequence ε n ց 0. ). We take the L 2 -scalar product of (5.8) with abg m ε (u ε ). We then get,

Re   iab Ω g m ε (u ε )∆u ε dx   -Im(ab) Ω V g m ε (u ε )u ε dx + |a| 2 |Im(b)| g m ε (u ε ) 2 L 2 (Ω) + Re   ab Ω g m ε (u ε )u ε dx   = Re   ab Ω F g m ε (u ε )dx   ,
By (6.8) in Bégout and Díaz [START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF]Lemma 6.3], the first term in the left hand side of the above equality is nonnegative. With help of Cauchy-Schwarz's and Young's inequalities, and Step 2, we infer,

|a| |Im(b)| g m ε (u ε ) 2 L 2 (Ω) sup ε>0 V u ε L 2 (Ω) + sup ε>0 u ε L 2 (Ω) + F L 2 (Ω) g m ε (u ε ) L 2 (Ω) C + |a| |Im(b)| 2 g m ε (u ε ) 2 L 2 (Ω) ,
and thus sup ε>0 g m ε (u ε ) L 2 (Ω) < ∞. By (5.8) and Step 2, we deduce that, sup

ε>0 ∆u ε L 2 (Ω) + sup ε>0 g m ε (u ε ) L 2 (Ω) < ∞.
This last estimate with Step 2 and Fatou's Lemma imply that ∆u ∈ L 2 (Ω) and g m 0 (u) ∈ L 2 (Ω). This last point means that u ∈ L 2m (Ω) and finally u ∈ D(A m 0 ). Now, we turn out to the case m = 0. In particular, |Ω| < ∞. We have Step 2 and (5.8), this implies that (∆u ε ) ε>0 is bounded in L 2 (Ω). Hence u ∈ D(A 0 0 ) by (5.9).

g 0 ε (u ε )(x) = 0, if u ε (x) = 0 and |g 0 ε (u ε )(x)| |g 0 0 (u ε )(x)| = 1, otherwise. With the embedding L ∞ (Ω) ֒→ L 2 (Ω),
Step 4: If m = 0 then there exists U ∈ B 0 0 u such that, up to a subsequence, g 0 εn (u εn )

D ′ (Ω) ----→ n→∞ U.
For any n ∈ N, g 0 εn (u εn ) L ∞ (Ω) 1 and by (5.12), g 0 εn (u εn )(x) ----→ n→∞ g 0 0 (u)(x), for almost every x ∈ Ω such that u(x) = 0. Then applying Cazenave [17, Proposition 1.2.1, p.3], we get the desired result.

Step 5: Conclusion. By (5.8) and Steps 2-4, if m = 0 then for some U ∈ B 0 0 u, u -i∆u -iV u -iaU = F, in D ′ (Ω), so in

We multiply (2.28) by C 0 = |Re(a)|+1 Im(a) . Then, we take again the L 2 -scalar product of (1.1) with u. Summing the result with C 0 × (2.28), we infer

∇u 2 L 2 (Ω) + u m+1 L m+1 (Ω) C u t L 2 (Ω) + V u L 2 (Ω) + f L 2 (Ω) u L 2 (Ω) ,
almost everywhere on (0, ∞). It follows from (4.2)-( 4.3) that for some

C = C(N, C 0 ) (C = C(β, C 0 ), if N = 2), ∇u 2 L 2 (Ω) + u m+1 L m+1 (Ω) C u t L 2 (Ω) + V 1 L ∞ (Ω) + V 2 2-γ L p V (Ω) u L 2 (Ω) + f L 2 (Ω) u L 2 (Ω) , (6.8) 
almost everywhere on (0, ∞). By (6.7)-( 6 Lemma 4.2]). We take the L 2 -scalar product of (1.1) with iabg m 0 (u). We get,

.8), u ∈ L ∞ loc [0, ∞); H 1 0 (Ω) ∩ L m+1 (Ω) and u is an H 2 - solution. Using (4.1), we get V u ∈ L ∞ loc [0, ∞); L 2 (Ω) . By (1.1), if m = {1, 0} then ∆u ∈ L ∞ loc [0, ∞); L 2 (Ω) . Now, asssume that 0 < m < 1. Since a ∈ C int (m), there exists b ∈ C such that |b| = 1, Im(b) < 0 and ab ∈ C int (m) (Bégout [7,
Re   iab Ω iu t g m 0 (u)dx   + Re   iab Ω g m 0 (u)∆udx   + Re(iab) Ω V ug m 0 (u)dx + |a| 2 |Im(b)| g m 0 (u) 2 L 2 (Ω) = Re   iab Ω f g m 0 (u)dx   .
By Lemma 5.1, the second term in the left hand side of the above is nonnegative which becomes,

|a||Im(b)| u 2m L 2m (Ω) Ω |iu t + V u -f | |g(u)|dx.
By Cauchy-Schwarz's and Young's inequalities, we get

u 2m L 2m (Ω) 1 (|a||Im(b)|) 2 iu t + V u -f 2 L 2 (Ω) , (6.9) 
almost everywhere on (0, ∞). We deduce from (1.1)and (6.9) that,

∆u L 2 (Ω) + |a| u m L 2m (Ω) 2 |Im(b)| iu t + V u -f L 2 (Ω) , (6.10) 
almost everywhere on (0, ∞).

It follows that u ∈ L ∞ loc [0, ∞); L 2m (Ω) and ∆u ∈ L ∞ loc [0, ∞); L 2 (Ω)
. Now we go back to the general case 0 m 1. Then (2.30) follows from (2.29) and the estimate,

∇u 2 L 2 (Ω) u L 2 (Ω) ∆u L 2 (Ω) , (6.11) 
which holds for any u ∈ H 1 0 (Ω) such that ∆u ∈ L 2 (Ω). Finally, the rest of the properties is clear by (1.1), (2.31), (4.1), (6.7), (6.8), (6.10) and Remark 2.11. This ends the proof of the theorem.

Proof of Theorem 2.6. Existence, estimate (2.20) and uniqueness come from density of D(Ω) × As a consequence, there exists u ∈ C [0, ∞); L 2 (Ω) such that for any T > 0,

W 1,1 loc ([0, ∞); L 2 (Ω)) in L 2 (Ω) × L 1 loc ([0, ∞); L 2 (Ω)), Theorem 2.
0 ∈ H 1 0 (Ω) and f ∈ L 1 loc [0, ∞); H 1 0 (Ω) . Let (ϕ n ) n∈N ⊂ D(Ω) and (f n ) n∈N ⊂ D [0, ∞); H 1 0 (Ω) be such that ϕ n H 1 0 (Ω) ----→ n→∞ u 0 and f n L 1 ((0,T );H 1 0 ) --------→ n→∞ f,
u n C([0,T ];L 2 (Ω)) ---------→ n→∞ u. (6.12)
By definition, u is a weak solution and satisfies (1.1) in D (0, ∞)×Ω (Proposition 2.4). In particular, u fulfills (2.21). Taking the L 2 -scalar product of (1.1) with -i∆u n , it follows from [8, Lemma A.5] and Lemma 5.1 that for any n ∈ N and almost every s > 0,

1 2 d dt ∇u n (s) 2 L 2 (Ω) ∇f n (s) -u n (s)∇V, i∇u n (s) L 2 (Ω) .
We apply Cauchy-Schwarz's inequality, (4.1) and (2.28). We get for any n ∈ N and almost every

s > 0, 1 2 d dt u n (t) 2 H 1 0 f n (t) H 1 0 u n (t) H 1 0 + C ∇V L ∞ +L p V u n (t) 2 H 1 0 ,
where C is given by (4.1). After integration, we obtain

u n (t) H 1 0 ϕ n H 1 0 + t 0 f n (s) H 1 0 ds + t 0 C ∇V L ∞ +L p V u n (s) H 1 0 ds,
and by Gronwall's Lemma,

u n (t) H 1 0   ϕ n H 1 0 + t 0 f n (s) H 1 0 ds   e C ∇V L ∞ +L p V t , (6.13) 
for almost every t > 0 and any n ∈ N. It follows that, , if m = 0). In Theorems 3.6, 3.9, 3.11 and 3.12, u is always a strong solution and

(2.28) is verified almost everywhere on (0, ∞) Now, we let ℓ = 1 for the proof of Theorems 3.5-3.7, and ℓ = 2 for the proof of Theorems 3.9 and 3.11-3.12. By (2.24) and Theorem 2.10, it follows that u ∈ L ∞ (0, ∞); H 1 0 (Ω) , if ℓ = 1, with additionally ∆u ∈ L ∞ (0, ∞); L 2 (Ω) , if ℓ = 2. Setting for any t 0, y(t) = u(t) 2 L ∞ ((0,∞);L 2 (Ω)) , it follows from (2.28), (7.1)-(7.2) and Cauchy-Schwarz's inequality that, y ′ (t) + 2α ℓ y(t) δ ℓ 2 f (t) L 2 (Ω) y(t)

1 2 , (7.3) 
where δ ℓ is defined by (3.1). We proceed with the proof in four steps.

Step 1: Proof of Theorem 3.5, 3.7, 3.9 and 3.12.

By Assumptions 3.1 and 3.2, if m = 0 then the right hand side member of (7.3) vanishies on (T 0 , ∞)

and after integration, we obtain the results of these theorems. If m = 0, we have by (2.28) and Hölder's inequality, This comes from (2.27).

Step 3: In Theorem 3.11, there exists ε ⋆ = ε ⋆ (|a|, N, m) satisfying (7.4) such that under assumption (3.12), we have ∆u L ∞ ((0,∞);L 2 (Ω)) 1.

This comes from (2.20), (2.31), (4.1), (6.8) and (6.10).

Step 4: Proof of Theorems 3.6 and 3.11.

Let x ⋆ = (αδ ℓ (1 -δ ℓ )T 0 ) By Steps 2 and 3, α min α 1 , α 2 . Applying Young's inequality to (7.3), we arrive at,

y ′ (t) + 2αy(t) δ ℓ 2δ ℓ -1 δ ℓ (αδ ℓ ) -1 2δ ℓ -1 f (t) 2δ ℓ 2δ ℓ -1 L 2 (Ω) + αy(t) δ ℓ ,
for almost every t 0. Replacing (3.5) and (3.12) in the above and using (7.4), we obtain y ′ (t) + αy(t) δ ℓ y ⋆ T 0 -t

δ ℓ 1-δ ℓ + , (7.6) 
for almost every t > 0. By (7.5), (7.6) and [8, Lemma 5.2], y(t) = 0, for any t T 0 .

Proof of Theorem 3.3. By (2.20), density and Remark 3.4, we may assume that f ∈ D [0, ∞); L 2 (Ω) , u 0 ∈ D(Ω) and m < 1. The result then comes from Theorems 3.9 and 3.12.

Proof of Theorem 3.8. By (2.24), u ∈ L ∞ (0, ∞); H 1 0 (Ω) . The result then comes from Theorem 3.3 and Gagliardo-Nirenberg's inequality.

Proof of Theorem 3.14. By Property 4 of Theorem 2.10, Theorem 3.3 and (6.11), lim tր∞ u(t) H 1 0 (Ω) = 0. The second limit is due to the first one, Hölder's inequality and the Sobolev embeddings. The last limit comes from the two first and (2.28).

. 14 )

 14 By reflexivity of D(Ω), the emdeddings X ⋆ ֒→ D ′ (Ω) and L m+1 m (Ω) ֒→ D ′ (Ω) are always dense. If 0 < m 1 or if |Ω| < ∞ then X is reflexive and the embedding L m+1 m (Ω) ֒→ X ⋆ is dense.

  ) for any T > 0. Throughout this paper, we shall use the following notations and conventions. Let m ∈ [0, 1]. Since |z| -(1-m) z = |z| m , we extend by continuity at z = 0 the map z -→ |z| -(1-m) z by setting, |z| -(1-m) z = 0, if m > 0 and z = 0.

20 )

 20 holds for any t s 0.

Theorem 2 . 7 (

 27 Additional regularity in H 1 0

4p if p 2 ,

 2 α = p-2m p(1-m) if p 2 and m > 0, and α = 1 if p 2 and m = 0. Indeed, if p 2 this comes from Properties 1 and 2, and Gagliardo-Nirenberg's inequality. If m > 0 and p ∈ (2m, 2], this regularity comes from Hölder's inequality, Property 1 and (2.29).Finally, if m = 0 and p ∈ (0, 2], this comes from (2.29) and the embedding L 2 (Ω) ֒→ L p (Ω), since |Ω| < ∞.

Remark 3 . 4 .

 34 and let u be the unique weak solution to (1.1)-(1.3) given by Theorem 2.6. Then, lim tր∞ u(t) L 2 (Ω) = 0. Let the hypotheses of Theorem 3.3 be fulfilled with m = 0 and |Ω| < ∞. By the embedding L 2 (Ω) ֒→ L p (Ω), we have lim tր∞ u(t) L p (Ω) = 0, for any p ∈ (0, 2]. Now, suppose m = 1

Remark 3 . 10 .

 310 Assume m = 0. When u(t, x) = 0, we do not know exactly what is the term U (t, x) in the equation (1.1) (remember Part 3b of Definition 2.2), except in the following particular case.

Theorem 3 . 11 (

 311 Synchronized finite time extinction). Let Assumption 3.2 be fulfilled with N 3 and 0 < m < 1. There exists ε ⋆ = ε ⋆ (|a|, N, m) satisfying the following property. If

Lemma 5 . 1 . 1 .C 1 )

 5111 Let u ∈ D(L) and U ∈ B 0 0 u. We have the following results. If m > 0 and if u m ∆u ∈ L 1 (Ω) then Re ia By Bégout and Díaz [8, Lemma 6.3 and Remark 6.4], we only have to show 2. Let u ∈ D(L)and U ∈ B 0 0 u. Set ω = x ∈ Ω; u(x) = 0 . Since a ∈0<m<1 follows fom the dominated convergence Theorem and 1 that, It is well-known that if u ∈ H 1 (Ω) then ∇u = 0, almost everywhere in ω c . In fact, since u ∈ H 2 loc (Ω), ∆u = 0, almost everywhere in ω c ∩ K, for any compact subset K ⊂ Ω, hence in ω c . It follows that, with (5.2), we get the desired result. Lemma 5.2. (L, D(L)) is a linear skew-adjoint operator on L 2 (Ω) with dense domain. In particular, it is maximal monotone. Proof. It is clear that Lu ∈ L 2 (Ω), for any u ∈ D(L) (Lemma 4.1) and that (L, D(L)) is a skewadjoint linear operator with dense domain, from which the result follows (Cazenave and Haraux [18, Corollary 2.4.9, p.24]).

. 3 )

 3 If f is merely nondecreasing or if |z 1 | = |z 2 | then the quantity in (5.3) is nonnegative.

since f is increasing and |z 1 |Remark 5 . 4 .Corollary 5 . 5 .

 15455 = |z 2 |. Since on C \ {0}, Re(z 1 z 2 ) = |z 1 ||z 2 | if, and only if, Arg(z 1 ) = Arg(z 2 ), it follows from the proof of Lemma 5.3 that if f : (0, ∞) -→ (0, ∞) is a nondecreasing function then for any (z 1 , z 2 ) ∈ C 2 such that z 1 z 2 = 0 and Arg(z 1 ) = Arg(z 2 ) (with possibly |z 1 | = |z 2 |), the quantity in (5.3) is positive (and not merely nonnegative). Here and after, Arg(z) ∈ (-π, π] denotes the principal value of the argument of z ∈ C \ {0}. Let (z 1 , z 2 ) ∈ C 2 .

1 u 2 | |u 2 |Corollary 5 . 11 .

 22511 and |U 2 u 1 | |u 1 |. This ends the proof. Assume m ∈ [0, 1) and ε > 0, or (m, ε) = (1, 0). Let a ∈ C(m). Then (A m ε , D(A m ε )) is maximal monotone on L 2 (Ω)with dense domain. Proof. By Lemma 5.2, (L, D(L)) is maximal monotone and by Lemma 4.3, D(B

  Corollary 2.5, p.33]) and so is, from abstract perturbations results, A m ε def = L + B m ε (Brezis [11, Corollary 2.7, p.36]).

Lemma 5 . 12 .

 512 Assume m ∈ (0, 1) and a ∈ C int (m), or m = 0 and a ∈ C(0). Then, R(I + A m 0 ) = L 2 (Ω).

. 8 )

 8 Since (A m ε , D(A m ε )) is maximal monotone (Corollary 5.11), we have R(I + A m ε ) = L 2 (Ω) (Brezis [11, Proposition 2.2, p.23]).

Step 3 :

 3 u ∈ D(A m 0 ) and if m = 0 then sup n∈N g 0 εn (u εn ) L ∞ (Ω) 1. If m = 1 then the result is a direct consequence of Step 2, (4.1) and the equation (5.8). We continue with the case m > 0. Since a ∈ C int (m), there exists b ∈ C such that |b| = 1, Re(b) > 0, Im(b) < 0 and ab ∈ C int (m) (Bégout [7, Lemma 4.2]

  for any T > 0. For each n ∈ N, let u n be the unique H 2 -solution to (1.1) such that u n (0) = ϕ n , given by Theorem 2.10. By Proposition 2.5, (u n ) n∈N is a Cauchy sequence in C [0, T ]; L 2 (Ω) , for any T > 0.

( 2 L 2 2 L 2 ( 4 L 2 4 L 2

 22224242 u n ) n∈N is bounded in C [0, T ]; H 1 0 (Ω) ,(6.14)for any T > 0. By (6.14), (4.1) and(2.22),∆u n + V u n + ag(u n ) n∈N is bounded in L m+1 m loc [0, ∞); X ⋆ ,(6.15)pionering result to obtain finite time extinction for solutions of some damped nonlinear Schrödinger equation is due to Carles and Gallo[START_REF] Carles | Finite time extinction by nonlinear damping for the Schrödinger equation[END_REF]. As said in the Introduction, the present extension is possible thanks to a sharper study of the regularity and existence frameworks. In addition, synchronized finite extinction time and the results for m = 0 and f (t) non zero are completely new.Proof of Theorems 3.5-3.7, 3.9 and 3.11-3.12. The proof of these Theorems relies on the following Gagliardo-Nirenberg inequality which asserts that there existsC GN = C GN (m, N ) such that for any u ∈ H 1 0 (Ω) ∩ L m+1 (Ω), u (N +2)-m(N -2) (Ω) C GN u m+1 L m+1 (Ω) ∇u N (1-m) Ω) .(7.1)If, in addition, ∆u ∈ L 2 (Ω), then it follows from (6.11) thatu (N +4)-m(N -4) (Ω) C GN u m+1 L m+1 (Ω) ∆u N (1-m) (Ω) .(7.2)Now, suppose Assumptions 3.1 or 3.2 are fulfilled. In Theorems 3.5 and 3.7, by (3.2), u becomes a strong solution (except for m = 0). Therefore, (2.28) is satisfied on (T 0 , ∞) (which comes from the equality(2.22)

L 2 ( 2 L

 22 Ω) , α 1 = Im(a)C -1 GN ∇u -N (1-m) ∞ ((0,∞);L 2 (Ω)) , and α 2 = Im(a)C -1 GN ∆u -N (1-m) 4

2 L 2 ( 2 L 4 L

 2224 Ω) + ω f u(t) L 1 (Ω) 0,for almost every t > T 0 , with ω f = Im(a) -f L ∞ ((T0,∞)×Ω) . From assumption (3.2) we know that ω f > 0. Then, by the Gagliardo-Nirenberg interpolation inequalities (7.1)-(7.2) we get that for almost every t > T 0 , y ′ (t) + β ℓ y(t) δ ℓ 0, whereβ 1 = 2ω f C -1 GN ∇u -N ∞ ((0,∞);L 2 (Ω)) ,andβ 2 = 2ω f C -1 GN ∆u -N ∞ ((0,∞);L 2 (Ω)). And again the conclusion follows by integration. We turn out to the proof of Theorems 3.6 and 3.11. Let α = Im(a)C -1 GN .Step 2: In Theorem 3.6, there exists ε ⋆ = ε ⋆ (|a|, m) with,ε ⋆ min (2δ ℓ -1) ℓ (1 -δ ℓ ) 2δ ℓ -1 δ ℓ (1-δ ℓ ) , α δ ℓ (1 -δ ℓ ) ,(7.4)such that if (3.5) holds true then ∇u L ∞ ((0,∞);L 2 (Ω)) 1.

1 1 -

 1 δ ℓ and y ⋆ = αδ δ ℓ ℓ (1 -δ ℓ ) 1 1-δ ℓ . By (3.5), (3.12) and (7.4), y(0) x ⋆ .(7.5)

  ⋆ , where e ⋆ is the transpose of e :∀L ∈ F ⋆ , ∀x ∈ E, e ⋆ (L), x E ⋆ ,E = L, e(x) F ⋆ ,F . If, furthermore, E is reflexive then the embedding F ⋆ e ⋆ ֒→ E ⋆ is dense. Often,e is the identity function, so that e ⋆ is nothing else but the restriction to E of continuous linear forms on F. For more details, see Trèves [31, Corollary 5, p.188; Corollary, p.199; Theorem 18.1, p.184]. Let A 1 and A 2 two Banach spaces be such that A 1 , A 2 ⊂ H for some Hausdorff topological vector space H. Then A 1 ∩ A 2 and A 1 + A 2 are Banach spaces where,

		2 (Ω) with its topological dual. Let us recall some important
	results of Functional Analysis. Let E and F be locally convex Hausdorff topological vector spaces. If
	E	e ֒→ F with dense embedding then F ⋆ e ⋆ ֒→ E a A1∩A2 = max a A1 , a A2 and a A1+A2 =	inf a=a1+a2
			(a1,a2)∈A1×A2

  10, Proposition 2.5 and completeness of C [0, T ]; L 2 (Ω) , for any T > 0. Let u be the unique weak solution. Then u is a limit of H 2 -strong solutions (u n ) n∈N in C([0, T ]; L 2 (Ω)), for any T > 0. By (2.28), each u n satisfies (2.22) with equality.If |Ω| < ∞ or if m = 1 then we can pass to the limit to obtain (2.21)-(2.22), still with equality.Otherwise, we work with u n (σ) m+1 L m+1 (Ω∩B(0,R)) in place of u n (σ) m+1 L m+1 (Ω) in (2.22), pass to the limit in n and then in R. For more details, see the proof of Bégout and Díaz[START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF] Proposition 2.3].Proof of Theorems 2.7 and 2.9. Let u
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and for any ρ > 0,

)

, where p V is given by (2.9). Then for any u ∈ L 2 (Ω), we get that V u ∈ H -1 (Ω) and,

V u, v

for any v ∈ H 1 0 (Ω), where C is given by (4.1).

Lemma 4.3. The following properties are satisfied by the saturation terms g m 0 (u) :

1. Let m ∈ (0, 1]. Then for any p ∈ [1, ∞), we have that g m 0 ∈ C L p (Ω); L p m (Ω) and g m 0 is bounded on bounded sets. More precisely,

for any u, v ∈ L p (Ω).

2. Let m ∈ [0, 1] and ε > 0. Then g m ε ∈ C L 2 (Ω); L 2 (Ω) and g m ε is bounded on bounded sets.

Proof. The first part can be found in Bégout and Díaz [8, Lemma 6.2] while 2 is obvious.

Proof of Lemma 4.1. Let u ∈ H 1 0 (Ω). By Hölder's inequality, we get (4.2) and, 

. By Sobolev's embedding and Gagliardo-Nirenberg's and Young's inequalities, we have

Putting together (4.6) and the above estimates, we obtain (4.3).

L 2 (Ω), since u ∈ D(A 0 0 ). In other words, u ∈ D(A 0 0 ) and (I + A 0 0 )u ∋ F.

This ends the proof for m = 0. Now, assume that m > 0. By Step 3, u ∈ D(A m 0 ). It remains to show that, (I + A m 0 )u = F. Let ϕ ∈ D(Ω). By (5.8), we have for any n ∈ N, (with no change of notation), we obtain that h ∈ L 2 (Ω; R). With help of (5.12), we obtain,

(Ω; R) by Hölder's inequality. Applying the dominated convergence Theorem, we may pass to the limit in (5. [START_REF] Díaz | Anulación de soluciones para operadores acretivos en espacios de banach. aplicaciones a ciertos problemas parabólicos no lineales[END_REF]) to get with help of (5.9) and (5.10),

But u ∈ D(A m 0 ) and so the above equation makes sense in L 2 (Ω). We conclude that,

This ends the proof. 

Proofs of the existence theorems

In this section, we shall use the notations of the previous section.

Proof of Proposition 2.4.

. By (2.16), (4.4) and Lemma 4.3, 

Then it follows from the equation satisfied by u n , (2.16) and (6.1)-(6.6) that (2.18) holds true and

Finally, by the dense embedding D(Ω) ֒→ Y, we deduce that L 1 loc [0, ∞); Y ⋆ ֒→ D ′ (0, ∞) × Ω and the proposition is proved.

Proof of Proposition 2.5. As we shall see, the proof can be easily from the one given in Bégout and

Díaz [START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF]Lemma 6.5]. The embedding in (2.19) comes from (2.14). We make the difference between the two equations satisfied by u and u. If follows from Lemmas 4.1 and 4.3 that u -u satisfies the equation obtained in L 1 loc (0, ∞); X ⋆ . We take the X ⋆ -X duality product with i(u -u). By Corollaries 5.8, 5.10, (A.3) of Lemma A.5 in Bégout and Díaz [START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF] and Cauchy-Schwarz's inequality, we then arrive at,

almost everywhere on (0, ∞). Integrating over (s, t), we obtain (2.20).

Proof of Theorem 2.10. Let the assumptions of the theorem be fulfilled 

, for almost every t > 0, u(0) = u 0 and (2.31). This last estimate yields (2.29). Since u ∈ W 1,∞ loc [0, ∞); L 2 (Ω) , it follows from Lemma A.5 in Bégout and Díaz [START_REF] Bégout | Finite time extinction for the strongly damped nonlinear Schrödinger equation in bounded domains[END_REF] that the map

, for almost every t > 0. Taking the L 2 -scalar product of (1.1) with iu, we obtain (2.28), for almost every t > 0. By (2.28) and Cauchy-Schwarz's inequality, we get

for any T > 0, where X ⋆ = H -1 (Ω) + L m+1 m (Ω). We have L 2 (0, T ); L 2 (Ω) ֒→ L 1 (0, T ); H -1 (Ω) with dense embedding and L 2 (0, T ); L 2 (Ω) ∼ = L 2 ((0, T ) × Ω), which is separable. It follows that L 1 (0, T ); H -1 (Ω) is separable, for any T > 0. In addition, H -1 (Ω) is a reflexive Banach space, and so L 1 (0, T ); H -1 (Ω)

⋆ ∼ = L ∞ (0, T ); H 1 0 (Ω) , for any T > 0 (Edwards [START_REF] Edwards | Functional analysis. Theory and applications[END_REF]Theorem 8.18.3,p.590]). With help of (6.12) and (6.14), it follows that u ∈ L ∞ loc [0, ∞); H 1 0 (Ω) and for any T > 0,

We deduce from (6.12), ( 6 

. This ends the proof of Theorem 2.7. Now assume further that f ∈ L m+1 m loc [0, ∞); X ⋆ . It follows from (1.1), (6.15) and (6.17) that

for any T > 0. Hence u is an H 1 0 -solution. Using the embedding, W 1, m+1 m (0, T ); X ⋆ ֒→ C 0, 1 m+1 [0, T ]; X ⋆ , it follows from (6.12), (6.14), (6.18) and Cazenave [17, Proposition 1.1.2, p.2] that,

By 2 of Remark 2.3, we can take the X -X ⋆ duality product of (1.1) with iu. Applying [8, Lemma A.5],

Property 2 follows. Finally, u is the unique H 1 0 -solution by Proposition 2.5 (and also by (2.17) if m = 0). This ends the proof of Theorem 2.9.

Proofs of the finite time extinction and asymptotic behavior theorems

In this section, we shall prove the results of Section 3. Theorems 3.5, 3.7, 3.9 and 3.12 may be obtained with the same method, while Theorems 3.6 and 3.11 require an adaptation. As far as we know, the